1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33
34 #include "internal.h"
35
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
38
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41
42 /*
43 * This path almost never happens for VM activity - pages are normally
44 * freed via pagevecs. But it gets used by networking.
45 */
__page_cache_release(struct page * page)46 static void __page_cache_release(struct page *page)
47 {
48 if (PageLRU(page)) {
49 unsigned long flags;
50 struct zone *zone = page_zone(page);
51
52 spin_lock_irqsave(&zone->lru_lock, flags);
53 VM_BUG_ON(!PageLRU(page));
54 __ClearPageLRU(page);
55 del_page_from_lru(zone, page);
56 spin_unlock_irqrestore(&zone->lru_lock, flags);
57 }
58 free_hot_page(page);
59 }
60
put_compound_page(struct page * page)61 static void put_compound_page(struct page *page)
62 {
63 page = compound_head(page);
64 if (put_page_testzero(page)) {
65 compound_page_dtor *dtor;
66
67 dtor = get_compound_page_dtor(page);
68 (*dtor)(page);
69 }
70 }
71
put_page(struct page * page)72 void put_page(struct page *page)
73 {
74 if (unlikely(PageCompound(page)))
75 put_compound_page(page);
76 else if (put_page_testzero(page))
77 __page_cache_release(page);
78 }
79 EXPORT_SYMBOL(put_page);
80
81 /**
82 * put_pages_list() - release a list of pages
83 * @pages: list of pages threaded on page->lru
84 *
85 * Release a list of pages which are strung together on page.lru. Currently
86 * used by read_cache_pages() and related error recovery code.
87 */
put_pages_list(struct list_head * pages)88 void put_pages_list(struct list_head *pages)
89 {
90 while (!list_empty(pages)) {
91 struct page *victim;
92
93 victim = list_entry(pages->prev, struct page, lru);
94 list_del(&victim->lru);
95 page_cache_release(victim);
96 }
97 }
98 EXPORT_SYMBOL(put_pages_list);
99
100 /*
101 * pagevec_move_tail() must be called with IRQ disabled.
102 * Otherwise this may cause nasty races.
103 */
pagevec_move_tail(struct pagevec * pvec)104 static void pagevec_move_tail(struct pagevec *pvec)
105 {
106 int i;
107 int pgmoved = 0;
108 struct zone *zone = NULL;
109
110 for (i = 0; i < pagevec_count(pvec); i++) {
111 struct page *page = pvec->pages[i];
112 struct zone *pagezone = page_zone(page);
113
114 if (pagezone != zone) {
115 if (zone)
116 spin_unlock(&zone->lru_lock);
117 zone = pagezone;
118 spin_lock(&zone->lru_lock);
119 }
120 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
121 int lru = page_is_file_cache(page);
122 list_move_tail(&page->lru, &zone->lru[lru].list);
123 pgmoved++;
124 }
125 }
126 if (zone)
127 spin_unlock(&zone->lru_lock);
128 __count_vm_events(PGROTATED, pgmoved);
129 release_pages(pvec->pages, pvec->nr, pvec->cold);
130 pagevec_reinit(pvec);
131 }
132
133 /*
134 * Writeback is about to end against a page which has been marked for immediate
135 * reclaim. If it still appears to be reclaimable, move it to the tail of the
136 * inactive list.
137 */
rotate_reclaimable_page(struct page * page)138 void rotate_reclaimable_page(struct page *page)
139 {
140 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
141 !PageUnevictable(page) && PageLRU(page)) {
142 struct pagevec *pvec;
143 unsigned long flags;
144
145 page_cache_get(page);
146 local_irq_save(flags);
147 pvec = &__get_cpu_var(lru_rotate_pvecs);
148 if (!pagevec_add(pvec, page))
149 pagevec_move_tail(pvec);
150 local_irq_restore(flags);
151 }
152 }
153
update_page_reclaim_stat(struct zone * zone,struct page * page,int file,int rotated)154 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
155 int file, int rotated)
156 {
157 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
158 struct zone_reclaim_stat *memcg_reclaim_stat;
159
160 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
161
162 reclaim_stat->recent_scanned[file]++;
163 if (rotated)
164 reclaim_stat->recent_rotated[file]++;
165
166 if (!memcg_reclaim_stat)
167 return;
168
169 memcg_reclaim_stat->recent_scanned[file]++;
170 if (rotated)
171 memcg_reclaim_stat->recent_rotated[file]++;
172 }
173
174 /*
175 * FIXME: speed this up?
176 */
activate_page(struct page * page)177 void activate_page(struct page *page)
178 {
179 struct zone *zone = page_zone(page);
180
181 spin_lock_irq(&zone->lru_lock);
182 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
183 int file = page_is_file_cache(page);
184 int lru = LRU_BASE + file;
185 del_page_from_lru_list(zone, page, lru);
186
187 SetPageActive(page);
188 lru += LRU_ACTIVE;
189 add_page_to_lru_list(zone, page, lru);
190 __count_vm_event(PGACTIVATE);
191
192 update_page_reclaim_stat(zone, page, !!file, 1);
193 }
194 spin_unlock_irq(&zone->lru_lock);
195 }
196
197 /*
198 * Mark a page as having seen activity.
199 *
200 * inactive,unreferenced -> inactive,referenced
201 * inactive,referenced -> active,unreferenced
202 * active,unreferenced -> active,referenced
203 */
mark_page_accessed(struct page * page)204 void mark_page_accessed(struct page *page)
205 {
206 if (!PageActive(page) && !PageUnevictable(page) &&
207 PageReferenced(page) && PageLRU(page)) {
208 activate_page(page);
209 ClearPageReferenced(page);
210 } else if (!PageReferenced(page)) {
211 SetPageReferenced(page);
212 }
213 }
214
215 EXPORT_SYMBOL(mark_page_accessed);
216
__lru_cache_add(struct page * page,enum lru_list lru)217 void __lru_cache_add(struct page *page, enum lru_list lru)
218 {
219 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
220
221 page_cache_get(page);
222 if (!pagevec_add(pvec, page))
223 ____pagevec_lru_add(pvec, lru);
224 put_cpu_var(lru_add_pvecs);
225 }
226
227 /**
228 * lru_cache_add_lru - add a page to a page list
229 * @page: the page to be added to the LRU.
230 * @lru: the LRU list to which the page is added.
231 */
lru_cache_add_lru(struct page * page,enum lru_list lru)232 void lru_cache_add_lru(struct page *page, enum lru_list lru)
233 {
234 if (PageActive(page)) {
235 VM_BUG_ON(PageUnevictable(page));
236 ClearPageActive(page);
237 } else if (PageUnevictable(page)) {
238 VM_BUG_ON(PageActive(page));
239 ClearPageUnevictable(page);
240 }
241
242 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
243 __lru_cache_add(page, lru);
244 }
245
246 /**
247 * add_page_to_unevictable_list - add a page to the unevictable list
248 * @page: the page to be added to the unevictable list
249 *
250 * Add page directly to its zone's unevictable list. To avoid races with
251 * tasks that might be making the page evictable, through eg. munlock,
252 * munmap or exit, while it's not on the lru, we want to add the page
253 * while it's locked or otherwise "invisible" to other tasks. This is
254 * difficult to do when using the pagevec cache, so bypass that.
255 */
add_page_to_unevictable_list(struct page * page)256 void add_page_to_unevictable_list(struct page *page)
257 {
258 struct zone *zone = page_zone(page);
259
260 spin_lock_irq(&zone->lru_lock);
261 SetPageUnevictable(page);
262 SetPageLRU(page);
263 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
264 spin_unlock_irq(&zone->lru_lock);
265 }
266
267 /*
268 * Drain pages out of the cpu's pagevecs.
269 * Either "cpu" is the current CPU, and preemption has already been
270 * disabled; or "cpu" is being hot-unplugged, and is already dead.
271 */
drain_cpu_pagevecs(int cpu)272 static void drain_cpu_pagevecs(int cpu)
273 {
274 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
275 struct pagevec *pvec;
276 int lru;
277
278 for_each_lru(lru) {
279 pvec = &pvecs[lru - LRU_BASE];
280 if (pagevec_count(pvec))
281 ____pagevec_lru_add(pvec, lru);
282 }
283
284 pvec = &per_cpu(lru_rotate_pvecs, cpu);
285 if (pagevec_count(pvec)) {
286 unsigned long flags;
287
288 /* No harm done if a racing interrupt already did this */
289 local_irq_save(flags);
290 pagevec_move_tail(pvec);
291 local_irq_restore(flags);
292 }
293 }
294
lru_add_drain(void)295 void lru_add_drain(void)
296 {
297 drain_cpu_pagevecs(get_cpu());
298 put_cpu();
299 }
300
lru_add_drain_per_cpu(struct work_struct * dummy)301 static void lru_add_drain_per_cpu(struct work_struct *dummy)
302 {
303 lru_add_drain();
304 }
305
306 /*
307 * Returns 0 for success
308 */
lru_add_drain_all(void)309 int lru_add_drain_all(void)
310 {
311 return schedule_on_each_cpu(lru_add_drain_per_cpu);
312 }
313
314 /*
315 * Batched page_cache_release(). Decrement the reference count on all the
316 * passed pages. If it fell to zero then remove the page from the LRU and
317 * free it.
318 *
319 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
320 * for the remainder of the operation.
321 *
322 * The locking in this function is against shrink_inactive_list(): we recheck
323 * the page count inside the lock to see whether shrink_inactive_list()
324 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
325 * will free it.
326 */
release_pages(struct page ** pages,int nr,int cold)327 void release_pages(struct page **pages, int nr, int cold)
328 {
329 int i;
330 struct pagevec pages_to_free;
331 struct zone *zone = NULL;
332 unsigned long uninitialized_var(flags);
333
334 pagevec_init(&pages_to_free, cold);
335 for (i = 0; i < nr; i++) {
336 struct page *page = pages[i];
337
338 if (unlikely(PageCompound(page))) {
339 if (zone) {
340 spin_unlock_irqrestore(&zone->lru_lock, flags);
341 zone = NULL;
342 }
343 put_compound_page(page);
344 continue;
345 }
346
347 if (!put_page_testzero(page))
348 continue;
349
350 if (PageLRU(page)) {
351 struct zone *pagezone = page_zone(page);
352
353 if (pagezone != zone) {
354 if (zone)
355 spin_unlock_irqrestore(&zone->lru_lock,
356 flags);
357 zone = pagezone;
358 spin_lock_irqsave(&zone->lru_lock, flags);
359 }
360 VM_BUG_ON(!PageLRU(page));
361 __ClearPageLRU(page);
362 del_page_from_lru(zone, page);
363 }
364
365 if (!pagevec_add(&pages_to_free, page)) {
366 if (zone) {
367 spin_unlock_irqrestore(&zone->lru_lock, flags);
368 zone = NULL;
369 }
370 __pagevec_free(&pages_to_free);
371 pagevec_reinit(&pages_to_free);
372 }
373 }
374 if (zone)
375 spin_unlock_irqrestore(&zone->lru_lock, flags);
376
377 pagevec_free(&pages_to_free);
378 }
379
380 /*
381 * The pages which we're about to release may be in the deferred lru-addition
382 * queues. That would prevent them from really being freed right now. That's
383 * OK from a correctness point of view but is inefficient - those pages may be
384 * cache-warm and we want to give them back to the page allocator ASAP.
385 *
386 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
387 * and __pagevec_lru_add_active() call release_pages() directly to avoid
388 * mutual recursion.
389 */
__pagevec_release(struct pagevec * pvec)390 void __pagevec_release(struct pagevec *pvec)
391 {
392 lru_add_drain();
393 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
394 pagevec_reinit(pvec);
395 }
396
397 EXPORT_SYMBOL(__pagevec_release);
398
399 /*
400 * Add the passed pages to the LRU, then drop the caller's refcount
401 * on them. Reinitialises the caller's pagevec.
402 */
____pagevec_lru_add(struct pagevec * pvec,enum lru_list lru)403 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
404 {
405 int i;
406 struct zone *zone = NULL;
407
408 VM_BUG_ON(is_unevictable_lru(lru));
409
410 for (i = 0; i < pagevec_count(pvec); i++) {
411 struct page *page = pvec->pages[i];
412 struct zone *pagezone = page_zone(page);
413 int file;
414 int active;
415
416 if (pagezone != zone) {
417 if (zone)
418 spin_unlock_irq(&zone->lru_lock);
419 zone = pagezone;
420 spin_lock_irq(&zone->lru_lock);
421 }
422 VM_BUG_ON(PageActive(page));
423 VM_BUG_ON(PageUnevictable(page));
424 VM_BUG_ON(PageLRU(page));
425 SetPageLRU(page);
426 active = is_active_lru(lru);
427 file = is_file_lru(lru);
428 if (active)
429 SetPageActive(page);
430 update_page_reclaim_stat(zone, page, file, active);
431 add_page_to_lru_list(zone, page, lru);
432 }
433 if (zone)
434 spin_unlock_irq(&zone->lru_lock);
435 release_pages(pvec->pages, pvec->nr, pvec->cold);
436 pagevec_reinit(pvec);
437 }
438
439 EXPORT_SYMBOL(____pagevec_lru_add);
440
441 /*
442 * Try to drop buffers from the pages in a pagevec
443 */
pagevec_strip(struct pagevec * pvec)444 void pagevec_strip(struct pagevec *pvec)
445 {
446 int i;
447
448 for (i = 0; i < pagevec_count(pvec); i++) {
449 struct page *page = pvec->pages[i];
450
451 if (PagePrivate(page) && trylock_page(page)) {
452 if (PagePrivate(page))
453 try_to_release_page(page, 0);
454 unlock_page(page);
455 }
456 }
457 }
458
459 /**
460 * pagevec_swap_free - try to free swap space from the pages in a pagevec
461 * @pvec: pagevec with swapcache pages to free the swap space of
462 *
463 * The caller needs to hold an extra reference to each page and
464 * not hold the page lock on the pages. This function uses a
465 * trylock on the page lock so it may not always free the swap
466 * space associated with a page.
467 */
pagevec_swap_free(struct pagevec * pvec)468 void pagevec_swap_free(struct pagevec *pvec)
469 {
470 int i;
471
472 for (i = 0; i < pagevec_count(pvec); i++) {
473 struct page *page = pvec->pages[i];
474
475 if (PageSwapCache(page) && trylock_page(page)) {
476 try_to_free_swap(page);
477 unlock_page(page);
478 }
479 }
480 }
481
482 /**
483 * pagevec_lookup - gang pagecache lookup
484 * @pvec: Where the resulting pages are placed
485 * @mapping: The address_space to search
486 * @start: The starting page index
487 * @nr_pages: The maximum number of pages
488 *
489 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
490 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
491 * reference against the pages in @pvec.
492 *
493 * The search returns a group of mapping-contiguous pages with ascending
494 * indexes. There may be holes in the indices due to not-present pages.
495 *
496 * pagevec_lookup() returns the number of pages which were found.
497 */
pagevec_lookup(struct pagevec * pvec,struct address_space * mapping,pgoff_t start,unsigned nr_pages)498 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
499 pgoff_t start, unsigned nr_pages)
500 {
501 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
502 return pagevec_count(pvec);
503 }
504
505 EXPORT_SYMBOL(pagevec_lookup);
506
pagevec_lookup_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,int tag,unsigned nr_pages)507 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
508 pgoff_t *index, int tag, unsigned nr_pages)
509 {
510 pvec->nr = find_get_pages_tag(mapping, index, tag,
511 nr_pages, pvec->pages);
512 return pagevec_count(pvec);
513 }
514
515 EXPORT_SYMBOL(pagevec_lookup_tag);
516
517 #ifdef CONFIG_SMP
518 /*
519 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
520 * CPUs
521 */
522 #define ACCT_THRESHOLD max(16, NR_CPUS * 2)
523
524 static DEFINE_PER_CPU(long, committed_space);
525
vm_acct_memory(long pages)526 void vm_acct_memory(long pages)
527 {
528 long *local;
529
530 preempt_disable();
531 local = &__get_cpu_var(committed_space);
532 *local += pages;
533 if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
534 atomic_long_add(*local, &vm_committed_space);
535 *local = 0;
536 }
537 preempt_enable();
538 }
539
540 #ifdef CONFIG_HOTPLUG_CPU
541
542 /* Drop the CPU's cached committed space back into the central pool. */
cpu_swap_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)543 static int cpu_swap_callback(struct notifier_block *nfb,
544 unsigned long action,
545 void *hcpu)
546 {
547 long *committed;
548
549 committed = &per_cpu(committed_space, (long)hcpu);
550 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
551 atomic_long_add(*committed, &vm_committed_space);
552 *committed = 0;
553 drain_cpu_pagevecs((long)hcpu);
554 }
555 return NOTIFY_OK;
556 }
557 #endif /* CONFIG_HOTPLUG_CPU */
558 #endif /* CONFIG_SMP */
559
560 /*
561 * Perform any setup for the swap system
562 */
swap_setup(void)563 void __init swap_setup(void)
564 {
565 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
566
567 #ifdef CONFIG_SWAP
568 bdi_init(swapper_space.backing_dev_info);
569 #endif
570
571 /* Use a smaller cluster for small-memory machines */
572 if (megs < 16)
573 page_cluster = 2;
574 else
575 page_cluster = 3;
576 /*
577 * Right now other parts of the system means that we
578 * _really_ don't want to cluster much more
579 */
580 #ifdef CONFIG_HOTPLUG_CPU
581 hotcpu_notifier(cpu_swap_callback, 0);
582 #endif
583 }
584