• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Handle caching attributes in page tables (PAT)
3  *
4  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5  *          Suresh B Siddha <suresh.b.siddha@intel.com>
6  *
7  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8  */
9 
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/gfp.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18 
19 #include <asm/cacheflush.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/pgtable.h>
23 #include <asm/fcntl.h>
24 #include <asm/e820.h>
25 #include <asm/mtrr.h>
26 #include <asm/page.h>
27 #include <asm/msr.h>
28 #include <asm/pat.h>
29 #include <asm/io.h>
30 
31 #ifdef CONFIG_X86_PAT
32 int __read_mostly pat_enabled = 1;
33 
pat_disable(char * reason)34 void __cpuinit pat_disable(char *reason)
35 {
36 	pat_enabled = 0;
37 	printk(KERN_INFO "%s\n", reason);
38 }
39 
nopat(char * str)40 static int __init nopat(char *str)
41 {
42 	pat_disable("PAT support disabled.");
43 	return 0;
44 }
45 early_param("nopat", nopat);
46 #endif
47 
48 
49 static int debug_enable;
50 
pat_debug_setup(char * str)51 static int __init pat_debug_setup(char *str)
52 {
53 	debug_enable = 1;
54 	return 0;
55 }
56 __setup("debugpat", pat_debug_setup);
57 
58 #define dprintk(fmt, arg...) \
59 	do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
60 
61 
62 static u64 __read_mostly boot_pat_state;
63 
64 enum {
65 	PAT_UC = 0,		/* uncached */
66 	PAT_WC = 1,		/* Write combining */
67 	PAT_WT = 4,		/* Write Through */
68 	PAT_WP = 5,		/* Write Protected */
69 	PAT_WB = 6,		/* Write Back (default) */
70 	PAT_UC_MINUS = 7,	/* UC, but can be overriden by MTRR */
71 };
72 
73 #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
74 
pat_init(void)75 void pat_init(void)
76 {
77 	u64 pat;
78 
79 	if (!pat_enabled)
80 		return;
81 
82 	/* Paranoia check. */
83 	if (!cpu_has_pat && boot_pat_state) {
84 		/*
85 		 * If this happens we are on a secondary CPU, but
86 		 * switched to PAT on the boot CPU. We have no way to
87 		 * undo PAT.
88 		 */
89 		printk(KERN_ERR "PAT enabled, "
90 		       "but not supported by secondary CPU\n");
91 		BUG();
92 	}
93 
94 	/* Set PWT to Write-Combining. All other bits stay the same */
95 	/*
96 	 * PTE encoding used in Linux:
97 	 *      PAT
98 	 *      |PCD
99 	 *      ||PWT
100 	 *      |||
101 	 *      000 WB		_PAGE_CACHE_WB
102 	 *      001 WC		_PAGE_CACHE_WC
103 	 *      010 UC-		_PAGE_CACHE_UC_MINUS
104 	 *      011 UC		_PAGE_CACHE_UC
105 	 * PAT bit unused
106 	 */
107 	pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
108 	      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
109 
110 	/* Boot CPU check */
111 	if (!boot_pat_state)
112 		rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
113 
114 	wrmsrl(MSR_IA32_CR_PAT, pat);
115 	printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
116 	       smp_processor_id(), boot_pat_state, pat);
117 }
118 
119 #undef PAT
120 
cattr_name(unsigned long flags)121 static char *cattr_name(unsigned long flags)
122 {
123 	switch (flags & _PAGE_CACHE_MASK) {
124 	case _PAGE_CACHE_UC:		return "uncached";
125 	case _PAGE_CACHE_UC_MINUS:	return "uncached-minus";
126 	case _PAGE_CACHE_WB:		return "write-back";
127 	case _PAGE_CACHE_WC:		return "write-combining";
128 	default:			return "broken";
129 	}
130 }
131 
132 /*
133  * The global memtype list keeps track of memory type for specific
134  * physical memory areas. Conflicting memory types in different
135  * mappings can cause CPU cache corruption. To avoid this we keep track.
136  *
137  * The list is sorted based on starting address and can contain multiple
138  * entries for each address (this allows reference counting for overlapping
139  * areas). All the aliases have the same cache attributes of course.
140  * Zero attributes are represented as holes.
141  *
142  * Currently the data structure is a list because the number of mappings
143  * are expected to be relatively small. If this should be a problem
144  * it could be changed to a rbtree or similar.
145  *
146  * memtype_lock protects the whole list.
147  */
148 
149 struct memtype {
150 	u64			start;
151 	u64			end;
152 	unsigned long		type;
153 	struct list_head	nd;
154 };
155 
156 static LIST_HEAD(memtype_list);
157 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype list */
158 
159 /*
160  * Does intersection of PAT memory type and MTRR memory type and returns
161  * the resulting memory type as PAT understands it.
162  * (Type in pat and mtrr will not have same value)
163  * The intersection is based on "Effective Memory Type" tables in IA-32
164  * SDM vol 3a
165  */
pat_x_mtrr_type(u64 start,u64 end,unsigned long req_type)166 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
167 {
168 	/*
169 	 * Look for MTRR hint to get the effective type in case where PAT
170 	 * request is for WB.
171 	 */
172 	if (req_type == _PAGE_CACHE_WB) {
173 		u8 mtrr_type;
174 
175 		mtrr_type = mtrr_type_lookup(start, end);
176 		if (mtrr_type == MTRR_TYPE_UNCACHABLE)
177 			return _PAGE_CACHE_UC;
178 		if (mtrr_type == MTRR_TYPE_WRCOMB)
179 			return _PAGE_CACHE_WC;
180 	}
181 
182 	return req_type;
183 }
184 
185 static int
chk_conflict(struct memtype * new,struct memtype * entry,unsigned long * type)186 chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
187 {
188 	if (new->type != entry->type) {
189 		if (type) {
190 			new->type = entry->type;
191 			*type = entry->type;
192 		} else
193 			goto conflict;
194 	}
195 
196 	 /* check overlaps with more than one entry in the list */
197 	list_for_each_entry_continue(entry, &memtype_list, nd) {
198 		if (new->end <= entry->start)
199 			break;
200 		else if (new->type != entry->type)
201 			goto conflict;
202 	}
203 	return 0;
204 
205  conflict:
206 	printk(KERN_INFO "%s:%d conflicting memory types "
207 	       "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
208 	       new->end, cattr_name(new->type), cattr_name(entry->type));
209 	return -EBUSY;
210 }
211 
212 static struct memtype *cached_entry;
213 static u64 cached_start;
214 
pat_pagerange_is_ram(unsigned long start,unsigned long end)215 static int pat_pagerange_is_ram(unsigned long start, unsigned long end)
216 {
217 	int ram_page = 0, not_rampage = 0;
218 	unsigned long page_nr;
219 
220 	for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
221 	     ++page_nr) {
222 		/*
223 		 * For legacy reasons, physical address range in the legacy ISA
224 		 * region is tracked as non-RAM. This will allow users of
225 		 * /dev/mem to map portions of legacy ISA region, even when
226 		 * some of those portions are listed(or not even listed) with
227 		 * different e820 types(RAM/reserved/..)
228 		 */
229 		if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
230 		    page_is_ram(page_nr))
231 			ram_page = 1;
232 		else
233 			not_rampage = 1;
234 
235 		if (ram_page == not_rampage)
236 			return -1;
237 	}
238 
239 	return ram_page;
240 }
241 
242 /*
243  * For RAM pages, mark the pages as non WB memory type using
244  * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
245  * set_memory_wc() on a RAM page at a time before marking it as WB again.
246  * This is ok, because only one driver will be owning the page and
247  * doing set_memory_*() calls.
248  *
249  * For now, we use PageNonWB to track that the RAM page is being mapped
250  * as non WB. In future, we will have to use one more flag
251  * (or some other mechanism in page_struct) to distinguish between
252  * UC and WC mapping.
253  */
reserve_ram_pages_type(u64 start,u64 end,unsigned long req_type,unsigned long * new_type)254 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
255 				  unsigned long *new_type)
256 {
257 	struct page *page;
258 	u64 pfn, end_pfn;
259 
260 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
261 		page = pfn_to_page(pfn);
262 		if (page_mapped(page) || PageNonWB(page))
263 			goto out;
264 
265 		SetPageNonWB(page);
266 	}
267 	return 0;
268 
269 out:
270 	end_pfn = pfn;
271 	for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
272 		page = pfn_to_page(pfn);
273 		ClearPageNonWB(page);
274 	}
275 
276 	return -EINVAL;
277 }
278 
free_ram_pages_type(u64 start,u64 end)279 static int free_ram_pages_type(u64 start, u64 end)
280 {
281 	struct page *page;
282 	u64 pfn, end_pfn;
283 
284 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
285 		page = pfn_to_page(pfn);
286 		if (page_mapped(page) || !PageNonWB(page))
287 			goto out;
288 
289 		ClearPageNonWB(page);
290 	}
291 	return 0;
292 
293 out:
294 	end_pfn = pfn;
295 	for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
296 		page = pfn_to_page(pfn);
297 		SetPageNonWB(page);
298 	}
299 	return -EINVAL;
300 }
301 
302 /*
303  * req_type typically has one of the:
304  * - _PAGE_CACHE_WB
305  * - _PAGE_CACHE_WC
306  * - _PAGE_CACHE_UC_MINUS
307  * - _PAGE_CACHE_UC
308  *
309  * req_type will have a special case value '-1', when requester want to inherit
310  * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
311  *
312  * If new_type is NULL, function will return an error if it cannot reserve the
313  * region with req_type. If new_type is non-NULL, function will return
314  * available type in new_type in case of no error. In case of any error
315  * it will return a negative return value.
316  */
reserve_memtype(u64 start,u64 end,unsigned long req_type,unsigned long * new_type)317 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
318 		    unsigned long *new_type)
319 {
320 	struct memtype *new, *entry;
321 	unsigned long actual_type;
322 	struct list_head *where;
323 	int is_range_ram;
324 	int err = 0;
325 
326 	BUG_ON(start >= end); /* end is exclusive */
327 
328 	if (!pat_enabled) {
329 		/* This is identical to page table setting without PAT */
330 		if (new_type) {
331 			if (req_type == -1)
332 				*new_type = _PAGE_CACHE_WB;
333 			else
334 				*new_type = req_type & _PAGE_CACHE_MASK;
335 		}
336 		return 0;
337 	}
338 
339 	/* Low ISA region is always mapped WB in page table. No need to track */
340 	if (is_ISA_range(start, end - 1)) {
341 		if (new_type)
342 			*new_type = _PAGE_CACHE_WB;
343 		return 0;
344 	}
345 
346 	if (req_type == -1) {
347 		/*
348 		 * Call mtrr_lookup to get the type hint. This is an
349 		 * optimization for /dev/mem mmap'ers into WB memory (BIOS
350 		 * tools and ACPI tools). Use WB request for WB memory and use
351 		 * UC_MINUS otherwise.
352 		 */
353 		u8 mtrr_type = mtrr_type_lookup(start, end);
354 
355 		if (mtrr_type == MTRR_TYPE_WRBACK)
356 			actual_type = _PAGE_CACHE_WB;
357 		else
358 			actual_type = _PAGE_CACHE_UC_MINUS;
359 	} else {
360 		actual_type = pat_x_mtrr_type(start, end,
361 					      req_type & _PAGE_CACHE_MASK);
362 	}
363 
364 	if (new_type)
365 		*new_type = actual_type;
366 
367 	is_range_ram = pat_pagerange_is_ram(start, end);
368 	if (is_range_ram == 1)
369 		return reserve_ram_pages_type(start, end, req_type,
370 					      new_type);
371 	else if (is_range_ram < 0)
372 		return -EINVAL;
373 
374 	new  = kmalloc(sizeof(struct memtype), GFP_KERNEL);
375 	if (!new)
376 		return -ENOMEM;
377 
378 	new->start	= start;
379 	new->end	= end;
380 	new->type	= actual_type;
381 
382 	spin_lock(&memtype_lock);
383 
384 	if (cached_entry && start >= cached_start)
385 		entry = cached_entry;
386 	else
387 		entry = list_entry(&memtype_list, struct memtype, nd);
388 
389 	/* Search for existing mapping that overlaps the current range */
390 	where = NULL;
391 	list_for_each_entry_continue(entry, &memtype_list, nd) {
392 		if (end <= entry->start) {
393 			where = entry->nd.prev;
394 			cached_entry = list_entry(where, struct memtype, nd);
395 			break;
396 		} else if (start <= entry->start) { /* end > entry->start */
397 			err = chk_conflict(new, entry, new_type);
398 			if (!err) {
399 				dprintk("Overlap at 0x%Lx-0x%Lx\n",
400 					entry->start, entry->end);
401 				where = entry->nd.prev;
402 				cached_entry = list_entry(where,
403 							struct memtype, nd);
404 			}
405 			break;
406 		} else if (start < entry->end) { /* start > entry->start */
407 			err = chk_conflict(new, entry, new_type);
408 			if (!err) {
409 				dprintk("Overlap at 0x%Lx-0x%Lx\n",
410 					entry->start, entry->end);
411 				cached_entry = list_entry(entry->nd.prev,
412 							struct memtype, nd);
413 
414 				/*
415 				 * Move to right position in the linked
416 				 * list to add this new entry
417 				 */
418 				list_for_each_entry_continue(entry,
419 							&memtype_list, nd) {
420 					if (start <= entry->start) {
421 						where = entry->nd.prev;
422 						break;
423 					}
424 				}
425 			}
426 			break;
427 		}
428 	}
429 
430 	if (err) {
431 		printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
432 		       "track %s, req %s\n",
433 		       start, end, cattr_name(new->type), cattr_name(req_type));
434 		kfree(new);
435 		spin_unlock(&memtype_lock);
436 
437 		return err;
438 	}
439 
440 	cached_start = start;
441 
442 	if (where)
443 		list_add(&new->nd, where);
444 	else
445 		list_add_tail(&new->nd, &memtype_list);
446 
447 	spin_unlock(&memtype_lock);
448 
449 	dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
450 		start, end, cattr_name(new->type), cattr_name(req_type),
451 		new_type ? cattr_name(*new_type) : "-");
452 
453 	return err;
454 }
455 
free_memtype(u64 start,u64 end)456 int free_memtype(u64 start, u64 end)
457 {
458 	struct memtype *entry;
459 	int err = -EINVAL;
460 	int is_range_ram;
461 
462 	if (!pat_enabled)
463 		return 0;
464 
465 	/* Low ISA region is always mapped WB. No need to track */
466 	if (is_ISA_range(start, end - 1))
467 		return 0;
468 
469 	is_range_ram = pat_pagerange_is_ram(start, end);
470 	if (is_range_ram == 1)
471 		return free_ram_pages_type(start, end);
472 	else if (is_range_ram < 0)
473 		return -EINVAL;
474 
475 	spin_lock(&memtype_lock);
476 	list_for_each_entry(entry, &memtype_list, nd) {
477 		if (entry->start == start && entry->end == end) {
478 			if (cached_entry == entry || cached_start == start)
479 				cached_entry = NULL;
480 
481 			list_del(&entry->nd);
482 			kfree(entry);
483 			err = 0;
484 			break;
485 		}
486 	}
487 	spin_unlock(&memtype_lock);
488 
489 	if (err) {
490 		printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
491 			current->comm, current->pid, start, end);
492 	}
493 
494 	dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
495 
496 	return err;
497 }
498 
499 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)500 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
501 				unsigned long size, pgprot_t vma_prot)
502 {
503 	return vma_prot;
504 }
505 
506 #ifdef CONFIG_STRICT_DEVMEM
507 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
range_is_allowed(unsigned long pfn,unsigned long size)508 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
509 {
510 	return 1;
511 }
512 #else
513 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)514 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
515 {
516 	u64 from = ((u64)pfn) << PAGE_SHIFT;
517 	u64 to = from + size;
518 	u64 cursor = from;
519 
520 	if (!pat_enabled)
521 		return 1;
522 
523 	while (cursor < to) {
524 		if (!devmem_is_allowed(pfn)) {
525 			printk(KERN_INFO
526 		"Program %s tried to access /dev/mem between %Lx->%Lx.\n",
527 				current->comm, from, to);
528 			return 0;
529 		}
530 		cursor += PAGE_SIZE;
531 		pfn++;
532 	}
533 	return 1;
534 }
535 #endif /* CONFIG_STRICT_DEVMEM */
536 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)537 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
538 				unsigned long size, pgprot_t *vma_prot)
539 {
540 	u64 offset = ((u64) pfn) << PAGE_SHIFT;
541 	unsigned long flags = -1;
542 	int retval;
543 
544 	if (!range_is_allowed(pfn, size))
545 		return 0;
546 
547 	if (file->f_flags & O_SYNC) {
548 		flags = _PAGE_CACHE_UC_MINUS;
549 	}
550 
551 #ifdef CONFIG_X86_32
552 	/*
553 	 * On the PPro and successors, the MTRRs are used to set
554 	 * memory types for physical addresses outside main memory,
555 	 * so blindly setting UC or PWT on those pages is wrong.
556 	 * For Pentiums and earlier, the surround logic should disable
557 	 * caching for the high addresses through the KEN pin, but
558 	 * we maintain the tradition of paranoia in this code.
559 	 */
560 	if (!pat_enabled &&
561 	    !(boot_cpu_has(X86_FEATURE_MTRR) ||
562 	      boot_cpu_has(X86_FEATURE_K6_MTRR) ||
563 	      boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
564 	      boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
565 	    (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
566 		flags = _PAGE_CACHE_UC;
567 	}
568 #endif
569 
570 	/*
571 	 * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
572 	 *
573 	 * Without O_SYNC, we want to get
574 	 * - WB for WB-able memory and no other conflicting mappings
575 	 * - UC_MINUS for non-WB-able memory with no other conflicting mappings
576 	 * - Inherit from confliting mappings otherwise
577 	 */
578 	if (flags != -1) {
579 		retval = reserve_memtype(offset, offset + size, flags, NULL);
580 	} else {
581 		retval = reserve_memtype(offset, offset + size, -1, &flags);
582 	}
583 
584 	if (retval < 0)
585 		return 0;
586 
587 	if (((pfn < max_low_pfn_mapped) ||
588 	     (pfn >= (1UL<<(32 - PAGE_SHIFT)) && pfn < max_pfn_mapped)) &&
589 	    ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) {
590 		free_memtype(offset, offset + size);
591 		printk(KERN_INFO
592 		"%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
593 			current->comm, current->pid,
594 			cattr_name(flags),
595 			offset, (unsigned long long)(offset + size));
596 		return 0;
597 	}
598 
599 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
600 			     flags);
601 	return 1;
602 }
603 
map_devmem(unsigned long pfn,unsigned long size,pgprot_t vma_prot)604 void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
605 {
606 	unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
607 	u64 addr = (u64)pfn << PAGE_SHIFT;
608 	unsigned long flags;
609 
610 	reserve_memtype(addr, addr + size, want_flags, &flags);
611 	if (flags != want_flags) {
612 		printk(KERN_INFO
613 		"%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
614 			current->comm, current->pid,
615 			cattr_name(want_flags),
616 			addr, (unsigned long long)(addr + size),
617 			cattr_name(flags));
618 	}
619 }
620 
unmap_devmem(unsigned long pfn,unsigned long size,pgprot_t vma_prot)621 void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
622 {
623 	u64 addr = (u64)pfn << PAGE_SHIFT;
624 
625 	free_memtype(addr, addr + size);
626 }
627 
628 /*
629  * Internal interface to reserve a range of physical memory with prot.
630  * Reserved non RAM regions only and after successful reserve_memtype,
631  * this func also keeps identity mapping (if any) in sync with this new prot.
632  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)633 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
634 				int strict_prot)
635 {
636 	int is_ram = 0;
637 	int id_sz, ret;
638 	unsigned long flags;
639 	unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
640 
641 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
642 
643 	/*
644 	 * reserve_pfn_range() doesn't support RAM pages.
645 	 */
646 	if (is_ram != 0)
647 		return -EINVAL;
648 
649 	ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
650 	if (ret)
651 		return ret;
652 
653 	if (flags != want_flags) {
654 		if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
655 			free_memtype(paddr, paddr + size);
656 			printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
657 				" for %Lx-%Lx, got %s\n",
658 				current->comm, current->pid,
659 				cattr_name(want_flags),
660 				(unsigned long long)paddr,
661 				(unsigned long long)(paddr + size),
662 				cattr_name(flags));
663 			return -EINVAL;
664 		}
665 		/*
666 		 * We allow returning different type than the one requested in
667 		 * non strict case.
668 		 */
669 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
670 				      (~_PAGE_CACHE_MASK)) |
671 				     flags);
672 	}
673 
674 	/* Need to keep identity mapping in sync */
675 	if (paddr >= __pa(high_memory))
676 		return 0;
677 
678 	id_sz = (__pa(high_memory) < paddr + size) ?
679 				__pa(high_memory) - paddr :
680 				size;
681 
682 	if (ioremap_change_attr((unsigned long)__va(paddr), id_sz, flags) < 0) {
683 		free_memtype(paddr, paddr + size);
684 		printk(KERN_ERR
685 			"%s:%d reserve_pfn_range ioremap_change_attr failed %s "
686 			"for %Lx-%Lx\n",
687 			current->comm, current->pid,
688 			cattr_name(flags),
689 			(unsigned long long)paddr,
690 			(unsigned long long)(paddr + size));
691 		return -EINVAL;
692 	}
693 	return 0;
694 }
695 
696 /*
697  * Internal interface to free a range of physical memory.
698  * Frees non RAM regions only.
699  */
free_pfn_range(u64 paddr,unsigned long size)700 static void free_pfn_range(u64 paddr, unsigned long size)
701 {
702 	int is_ram;
703 
704 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
705 	if (is_ram == 0)
706 		free_memtype(paddr, paddr + size);
707 }
708 
709 /*
710  * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
711  * copied through copy_page_range().
712  *
713  * If the vma has a linear pfn mapping for the entire range, we get the prot
714  * from pte and reserve the entire vma range with single reserve_pfn_range call.
715  * Otherwise, we reserve the entire vma range, my ging through the PTEs page
716  * by page to get physical address and protection.
717  */
track_pfn_vma_copy(struct vm_area_struct * vma)718 int track_pfn_vma_copy(struct vm_area_struct *vma)
719 {
720 	int retval = 0;
721 	unsigned long i, j;
722 	resource_size_t paddr;
723 	unsigned long prot;
724 	unsigned long vma_start = vma->vm_start;
725 	unsigned long vma_end = vma->vm_end;
726 	unsigned long vma_size = vma_end - vma_start;
727 	pgprot_t pgprot;
728 
729 	if (!pat_enabled)
730 		return 0;
731 
732 	if (is_linear_pfn_mapping(vma)) {
733 		/*
734 		 * reserve the whole chunk covered by vma. We need the
735 		 * starting address and protection from pte.
736 		 */
737 		if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
738 			WARN_ON_ONCE(1);
739 			return -EINVAL;
740 		}
741 		pgprot = __pgprot(prot);
742 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
743 	}
744 
745 	/* reserve entire vma page by page, using pfn and prot from pte */
746 	for (i = 0; i < vma_size; i += PAGE_SIZE) {
747 		if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
748 			continue;
749 
750 		pgprot = __pgprot(prot);
751 		retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
752 		if (retval)
753 			goto cleanup_ret;
754 	}
755 	return 0;
756 
757 cleanup_ret:
758 	/* Reserve error: Cleanup partial reservation and return error */
759 	for (j = 0; j < i; j += PAGE_SIZE) {
760 		if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
761 			continue;
762 
763 		free_pfn_range(paddr, PAGE_SIZE);
764 	}
765 
766 	return retval;
767 }
768 
769 /*
770  * track_pfn_vma_new is called when a _new_ pfn mapping is being established
771  * for physical range indicated by pfn and size.
772  *
773  * prot is passed in as a parameter for the new mapping. If the vma has a
774  * linear pfn mapping for the entire range reserve the entire vma range with
775  * single reserve_pfn_range call.
776  * Otherwise, we look t the pfn and size and reserve only the specified range
777  * page by page.
778  *
779  * Note that this function can be called with caller trying to map only a
780  * subrange/page inside the vma.
781  */
track_pfn_vma_new(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long size)782 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
783 			unsigned long pfn, unsigned long size)
784 {
785 	int retval = 0;
786 	unsigned long i, j;
787 	resource_size_t base_paddr;
788 	resource_size_t paddr;
789 	unsigned long vma_start = vma->vm_start;
790 	unsigned long vma_end = vma->vm_end;
791 	unsigned long vma_size = vma_end - vma_start;
792 
793 	if (!pat_enabled)
794 		return 0;
795 
796 	if (is_linear_pfn_mapping(vma)) {
797 		/* reserve the whole chunk starting from vm_pgoff */
798 		paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
799 		return reserve_pfn_range(paddr, vma_size, prot, 0);
800 	}
801 
802 	/* reserve page by page using pfn and size */
803 	base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
804 	for (i = 0; i < size; i += PAGE_SIZE) {
805 		paddr = base_paddr + i;
806 		retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
807 		if (retval)
808 			goto cleanup_ret;
809 	}
810 	return 0;
811 
812 cleanup_ret:
813 	/* Reserve error: Cleanup partial reservation and return error */
814 	for (j = 0; j < i; j += PAGE_SIZE) {
815 		paddr = base_paddr + j;
816 		free_pfn_range(paddr, PAGE_SIZE);
817 	}
818 
819 	return retval;
820 }
821 
822 /*
823  * untrack_pfn_vma is called while unmapping a pfnmap for a region.
824  * untrack can be called for a specific region indicated by pfn and size or
825  * can be for the entire vma (in which case size can be zero).
826  */
untrack_pfn_vma(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)827 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
828 			unsigned long size)
829 {
830 	unsigned long i;
831 	resource_size_t paddr;
832 	unsigned long prot;
833 	unsigned long vma_start = vma->vm_start;
834 	unsigned long vma_end = vma->vm_end;
835 	unsigned long vma_size = vma_end - vma_start;
836 
837 	if (!pat_enabled)
838 		return;
839 
840 	if (is_linear_pfn_mapping(vma)) {
841 		/* free the whole chunk starting from vm_pgoff */
842 		paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
843 		free_pfn_range(paddr, vma_size);
844 		return;
845 	}
846 
847 	if (size != 0 && size != vma_size) {
848 		/* free page by page, using pfn and size */
849 		paddr = (resource_size_t)pfn << PAGE_SHIFT;
850 		for (i = 0; i < size; i += PAGE_SIZE) {
851 			paddr = paddr + i;
852 			free_pfn_range(paddr, PAGE_SIZE);
853 		}
854 	} else {
855 		/* free entire vma, page by page, using the pfn from pte */
856 		for (i = 0; i < vma_size; i += PAGE_SIZE) {
857 			if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
858 				continue;
859 
860 			free_pfn_range(paddr, PAGE_SIZE);
861 		}
862 	}
863 }
864 
pgprot_writecombine(pgprot_t prot)865 pgprot_t pgprot_writecombine(pgprot_t prot)
866 {
867 	if (pat_enabled)
868 		return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
869 	else
870 		return pgprot_noncached(prot);
871 }
872 EXPORT_SYMBOL_GPL(pgprot_writecombine);
873 
874 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
875 
876 /* get Nth element of the linked list */
memtype_get_idx(loff_t pos)877 static struct memtype *memtype_get_idx(loff_t pos)
878 {
879 	struct memtype *list_node, *print_entry;
880 	int i = 1;
881 
882 	print_entry  = kmalloc(sizeof(struct memtype), GFP_KERNEL);
883 	if (!print_entry)
884 		return NULL;
885 
886 	spin_lock(&memtype_lock);
887 	list_for_each_entry(list_node, &memtype_list, nd) {
888 		if (pos == i) {
889 			*print_entry = *list_node;
890 			spin_unlock(&memtype_lock);
891 			return print_entry;
892 		}
893 		++i;
894 	}
895 	spin_unlock(&memtype_lock);
896 	kfree(print_entry);
897 
898 	return NULL;
899 }
900 
memtype_seq_start(struct seq_file * seq,loff_t * pos)901 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
902 {
903 	if (*pos == 0) {
904 		++*pos;
905 		seq_printf(seq, "PAT memtype list:\n");
906 	}
907 
908 	return memtype_get_idx(*pos);
909 }
910 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)911 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
912 {
913 	++*pos;
914 	return memtype_get_idx(*pos);
915 }
916 
memtype_seq_stop(struct seq_file * seq,void * v)917 static void memtype_seq_stop(struct seq_file *seq, void *v)
918 {
919 }
920 
memtype_seq_show(struct seq_file * seq,void * v)921 static int memtype_seq_show(struct seq_file *seq, void *v)
922 {
923 	struct memtype *print_entry = (struct memtype *)v;
924 
925 	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
926 			print_entry->start, print_entry->end);
927 	kfree(print_entry);
928 
929 	return 0;
930 }
931 
932 static struct seq_operations memtype_seq_ops = {
933 	.start = memtype_seq_start,
934 	.next  = memtype_seq_next,
935 	.stop  = memtype_seq_stop,
936 	.show  = memtype_seq_show,
937 };
938 
memtype_seq_open(struct inode * inode,struct file * file)939 static int memtype_seq_open(struct inode *inode, struct file *file)
940 {
941 	return seq_open(file, &memtype_seq_ops);
942 }
943 
944 static const struct file_operations memtype_fops = {
945 	.open    = memtype_seq_open,
946 	.read    = seq_read,
947 	.llseek  = seq_lseek,
948 	.release = seq_release,
949 };
950 
pat_memtype_list_init(void)951 static int __init pat_memtype_list_init(void)
952 {
953 	debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
954 				NULL, &memtype_fops);
955 	return 0;
956 }
957 
958 late_initcall(pat_memtype_list_init);
959 
960 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
961