1 /*
2 * Handle caching attributes in page tables (PAT)
3 *
4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5 * Suresh B Siddha <suresh.b.siddha@intel.com>
6 *
7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8 */
9
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/gfp.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/pgtable.h>
23 #include <asm/fcntl.h>
24 #include <asm/e820.h>
25 #include <asm/mtrr.h>
26 #include <asm/page.h>
27 #include <asm/msr.h>
28 #include <asm/pat.h>
29 #include <asm/io.h>
30
31 #ifdef CONFIG_X86_PAT
32 int __read_mostly pat_enabled = 1;
33
pat_disable(char * reason)34 void __cpuinit pat_disable(char *reason)
35 {
36 pat_enabled = 0;
37 printk(KERN_INFO "%s\n", reason);
38 }
39
nopat(char * str)40 static int __init nopat(char *str)
41 {
42 pat_disable("PAT support disabled.");
43 return 0;
44 }
45 early_param("nopat", nopat);
46 #endif
47
48
49 static int debug_enable;
50
pat_debug_setup(char * str)51 static int __init pat_debug_setup(char *str)
52 {
53 debug_enable = 1;
54 return 0;
55 }
56 __setup("debugpat", pat_debug_setup);
57
58 #define dprintk(fmt, arg...) \
59 do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
60
61
62 static u64 __read_mostly boot_pat_state;
63
64 enum {
65 PAT_UC = 0, /* uncached */
66 PAT_WC = 1, /* Write combining */
67 PAT_WT = 4, /* Write Through */
68 PAT_WP = 5, /* Write Protected */
69 PAT_WB = 6, /* Write Back (default) */
70 PAT_UC_MINUS = 7, /* UC, but can be overriden by MTRR */
71 };
72
73 #define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
74
pat_init(void)75 void pat_init(void)
76 {
77 u64 pat;
78
79 if (!pat_enabled)
80 return;
81
82 /* Paranoia check. */
83 if (!cpu_has_pat && boot_pat_state) {
84 /*
85 * If this happens we are on a secondary CPU, but
86 * switched to PAT on the boot CPU. We have no way to
87 * undo PAT.
88 */
89 printk(KERN_ERR "PAT enabled, "
90 "but not supported by secondary CPU\n");
91 BUG();
92 }
93
94 /* Set PWT to Write-Combining. All other bits stay the same */
95 /*
96 * PTE encoding used in Linux:
97 * PAT
98 * |PCD
99 * ||PWT
100 * |||
101 * 000 WB _PAGE_CACHE_WB
102 * 001 WC _PAGE_CACHE_WC
103 * 010 UC- _PAGE_CACHE_UC_MINUS
104 * 011 UC _PAGE_CACHE_UC
105 * PAT bit unused
106 */
107 pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
108 PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
109
110 /* Boot CPU check */
111 if (!boot_pat_state)
112 rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
113
114 wrmsrl(MSR_IA32_CR_PAT, pat);
115 printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
116 smp_processor_id(), boot_pat_state, pat);
117 }
118
119 #undef PAT
120
cattr_name(unsigned long flags)121 static char *cattr_name(unsigned long flags)
122 {
123 switch (flags & _PAGE_CACHE_MASK) {
124 case _PAGE_CACHE_UC: return "uncached";
125 case _PAGE_CACHE_UC_MINUS: return "uncached-minus";
126 case _PAGE_CACHE_WB: return "write-back";
127 case _PAGE_CACHE_WC: return "write-combining";
128 default: return "broken";
129 }
130 }
131
132 /*
133 * The global memtype list keeps track of memory type for specific
134 * physical memory areas. Conflicting memory types in different
135 * mappings can cause CPU cache corruption. To avoid this we keep track.
136 *
137 * The list is sorted based on starting address and can contain multiple
138 * entries for each address (this allows reference counting for overlapping
139 * areas). All the aliases have the same cache attributes of course.
140 * Zero attributes are represented as holes.
141 *
142 * Currently the data structure is a list because the number of mappings
143 * are expected to be relatively small. If this should be a problem
144 * it could be changed to a rbtree or similar.
145 *
146 * memtype_lock protects the whole list.
147 */
148
149 struct memtype {
150 u64 start;
151 u64 end;
152 unsigned long type;
153 struct list_head nd;
154 };
155
156 static LIST_HEAD(memtype_list);
157 static DEFINE_SPINLOCK(memtype_lock); /* protects memtype list */
158
159 /*
160 * Does intersection of PAT memory type and MTRR memory type and returns
161 * the resulting memory type as PAT understands it.
162 * (Type in pat and mtrr will not have same value)
163 * The intersection is based on "Effective Memory Type" tables in IA-32
164 * SDM vol 3a
165 */
pat_x_mtrr_type(u64 start,u64 end,unsigned long req_type)166 static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
167 {
168 /*
169 * Look for MTRR hint to get the effective type in case where PAT
170 * request is for WB.
171 */
172 if (req_type == _PAGE_CACHE_WB) {
173 u8 mtrr_type;
174
175 mtrr_type = mtrr_type_lookup(start, end);
176 if (mtrr_type == MTRR_TYPE_UNCACHABLE)
177 return _PAGE_CACHE_UC;
178 if (mtrr_type == MTRR_TYPE_WRCOMB)
179 return _PAGE_CACHE_WC;
180 }
181
182 return req_type;
183 }
184
185 static int
chk_conflict(struct memtype * new,struct memtype * entry,unsigned long * type)186 chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
187 {
188 if (new->type != entry->type) {
189 if (type) {
190 new->type = entry->type;
191 *type = entry->type;
192 } else
193 goto conflict;
194 }
195
196 /* check overlaps with more than one entry in the list */
197 list_for_each_entry_continue(entry, &memtype_list, nd) {
198 if (new->end <= entry->start)
199 break;
200 else if (new->type != entry->type)
201 goto conflict;
202 }
203 return 0;
204
205 conflict:
206 printk(KERN_INFO "%s:%d conflicting memory types "
207 "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
208 new->end, cattr_name(new->type), cattr_name(entry->type));
209 return -EBUSY;
210 }
211
212 static struct memtype *cached_entry;
213 static u64 cached_start;
214
pat_pagerange_is_ram(unsigned long start,unsigned long end)215 static int pat_pagerange_is_ram(unsigned long start, unsigned long end)
216 {
217 int ram_page = 0, not_rampage = 0;
218 unsigned long page_nr;
219
220 for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
221 ++page_nr) {
222 /*
223 * For legacy reasons, physical address range in the legacy ISA
224 * region is tracked as non-RAM. This will allow users of
225 * /dev/mem to map portions of legacy ISA region, even when
226 * some of those portions are listed(or not even listed) with
227 * different e820 types(RAM/reserved/..)
228 */
229 if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
230 page_is_ram(page_nr))
231 ram_page = 1;
232 else
233 not_rampage = 1;
234
235 if (ram_page == not_rampage)
236 return -1;
237 }
238
239 return ram_page;
240 }
241
242 /*
243 * For RAM pages, mark the pages as non WB memory type using
244 * PageNonWB (PG_arch_1). We allow only one set_memory_uc() or
245 * set_memory_wc() on a RAM page at a time before marking it as WB again.
246 * This is ok, because only one driver will be owning the page and
247 * doing set_memory_*() calls.
248 *
249 * For now, we use PageNonWB to track that the RAM page is being mapped
250 * as non WB. In future, we will have to use one more flag
251 * (or some other mechanism in page_struct) to distinguish between
252 * UC and WC mapping.
253 */
reserve_ram_pages_type(u64 start,u64 end,unsigned long req_type,unsigned long * new_type)254 static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
255 unsigned long *new_type)
256 {
257 struct page *page;
258 u64 pfn, end_pfn;
259
260 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
261 page = pfn_to_page(pfn);
262 if (page_mapped(page) || PageNonWB(page))
263 goto out;
264
265 SetPageNonWB(page);
266 }
267 return 0;
268
269 out:
270 end_pfn = pfn;
271 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
272 page = pfn_to_page(pfn);
273 ClearPageNonWB(page);
274 }
275
276 return -EINVAL;
277 }
278
free_ram_pages_type(u64 start,u64 end)279 static int free_ram_pages_type(u64 start, u64 end)
280 {
281 struct page *page;
282 u64 pfn, end_pfn;
283
284 for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
285 page = pfn_to_page(pfn);
286 if (page_mapped(page) || !PageNonWB(page))
287 goto out;
288
289 ClearPageNonWB(page);
290 }
291 return 0;
292
293 out:
294 end_pfn = pfn;
295 for (pfn = (start >> PAGE_SHIFT); pfn < end_pfn; ++pfn) {
296 page = pfn_to_page(pfn);
297 SetPageNonWB(page);
298 }
299 return -EINVAL;
300 }
301
302 /*
303 * req_type typically has one of the:
304 * - _PAGE_CACHE_WB
305 * - _PAGE_CACHE_WC
306 * - _PAGE_CACHE_UC_MINUS
307 * - _PAGE_CACHE_UC
308 *
309 * req_type will have a special case value '-1', when requester want to inherit
310 * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
311 *
312 * If new_type is NULL, function will return an error if it cannot reserve the
313 * region with req_type. If new_type is non-NULL, function will return
314 * available type in new_type in case of no error. In case of any error
315 * it will return a negative return value.
316 */
reserve_memtype(u64 start,u64 end,unsigned long req_type,unsigned long * new_type)317 int reserve_memtype(u64 start, u64 end, unsigned long req_type,
318 unsigned long *new_type)
319 {
320 struct memtype *new, *entry;
321 unsigned long actual_type;
322 struct list_head *where;
323 int is_range_ram;
324 int err = 0;
325
326 BUG_ON(start >= end); /* end is exclusive */
327
328 if (!pat_enabled) {
329 /* This is identical to page table setting without PAT */
330 if (new_type) {
331 if (req_type == -1)
332 *new_type = _PAGE_CACHE_WB;
333 else
334 *new_type = req_type & _PAGE_CACHE_MASK;
335 }
336 return 0;
337 }
338
339 /* Low ISA region is always mapped WB in page table. No need to track */
340 if (is_ISA_range(start, end - 1)) {
341 if (new_type)
342 *new_type = _PAGE_CACHE_WB;
343 return 0;
344 }
345
346 if (req_type == -1) {
347 /*
348 * Call mtrr_lookup to get the type hint. This is an
349 * optimization for /dev/mem mmap'ers into WB memory (BIOS
350 * tools and ACPI tools). Use WB request for WB memory and use
351 * UC_MINUS otherwise.
352 */
353 u8 mtrr_type = mtrr_type_lookup(start, end);
354
355 if (mtrr_type == MTRR_TYPE_WRBACK)
356 actual_type = _PAGE_CACHE_WB;
357 else
358 actual_type = _PAGE_CACHE_UC_MINUS;
359 } else {
360 actual_type = pat_x_mtrr_type(start, end,
361 req_type & _PAGE_CACHE_MASK);
362 }
363
364 if (new_type)
365 *new_type = actual_type;
366
367 is_range_ram = pat_pagerange_is_ram(start, end);
368 if (is_range_ram == 1)
369 return reserve_ram_pages_type(start, end, req_type,
370 new_type);
371 else if (is_range_ram < 0)
372 return -EINVAL;
373
374 new = kmalloc(sizeof(struct memtype), GFP_KERNEL);
375 if (!new)
376 return -ENOMEM;
377
378 new->start = start;
379 new->end = end;
380 new->type = actual_type;
381
382 spin_lock(&memtype_lock);
383
384 if (cached_entry && start >= cached_start)
385 entry = cached_entry;
386 else
387 entry = list_entry(&memtype_list, struct memtype, nd);
388
389 /* Search for existing mapping that overlaps the current range */
390 where = NULL;
391 list_for_each_entry_continue(entry, &memtype_list, nd) {
392 if (end <= entry->start) {
393 where = entry->nd.prev;
394 cached_entry = list_entry(where, struct memtype, nd);
395 break;
396 } else if (start <= entry->start) { /* end > entry->start */
397 err = chk_conflict(new, entry, new_type);
398 if (!err) {
399 dprintk("Overlap at 0x%Lx-0x%Lx\n",
400 entry->start, entry->end);
401 where = entry->nd.prev;
402 cached_entry = list_entry(where,
403 struct memtype, nd);
404 }
405 break;
406 } else if (start < entry->end) { /* start > entry->start */
407 err = chk_conflict(new, entry, new_type);
408 if (!err) {
409 dprintk("Overlap at 0x%Lx-0x%Lx\n",
410 entry->start, entry->end);
411 cached_entry = list_entry(entry->nd.prev,
412 struct memtype, nd);
413
414 /*
415 * Move to right position in the linked
416 * list to add this new entry
417 */
418 list_for_each_entry_continue(entry,
419 &memtype_list, nd) {
420 if (start <= entry->start) {
421 where = entry->nd.prev;
422 break;
423 }
424 }
425 }
426 break;
427 }
428 }
429
430 if (err) {
431 printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
432 "track %s, req %s\n",
433 start, end, cattr_name(new->type), cattr_name(req_type));
434 kfree(new);
435 spin_unlock(&memtype_lock);
436
437 return err;
438 }
439
440 cached_start = start;
441
442 if (where)
443 list_add(&new->nd, where);
444 else
445 list_add_tail(&new->nd, &memtype_list);
446
447 spin_unlock(&memtype_lock);
448
449 dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
450 start, end, cattr_name(new->type), cattr_name(req_type),
451 new_type ? cattr_name(*new_type) : "-");
452
453 return err;
454 }
455
free_memtype(u64 start,u64 end)456 int free_memtype(u64 start, u64 end)
457 {
458 struct memtype *entry;
459 int err = -EINVAL;
460 int is_range_ram;
461
462 if (!pat_enabled)
463 return 0;
464
465 /* Low ISA region is always mapped WB. No need to track */
466 if (is_ISA_range(start, end - 1))
467 return 0;
468
469 is_range_ram = pat_pagerange_is_ram(start, end);
470 if (is_range_ram == 1)
471 return free_ram_pages_type(start, end);
472 else if (is_range_ram < 0)
473 return -EINVAL;
474
475 spin_lock(&memtype_lock);
476 list_for_each_entry(entry, &memtype_list, nd) {
477 if (entry->start == start && entry->end == end) {
478 if (cached_entry == entry || cached_start == start)
479 cached_entry = NULL;
480
481 list_del(&entry->nd);
482 kfree(entry);
483 err = 0;
484 break;
485 }
486 }
487 spin_unlock(&memtype_lock);
488
489 if (err) {
490 printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
491 current->comm, current->pid, start, end);
492 }
493
494 dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
495
496 return err;
497 }
498
499
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)500 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
501 unsigned long size, pgprot_t vma_prot)
502 {
503 return vma_prot;
504 }
505
506 #ifdef CONFIG_STRICT_DEVMEM
507 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
range_is_allowed(unsigned long pfn,unsigned long size)508 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
509 {
510 return 1;
511 }
512 #else
513 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)514 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
515 {
516 u64 from = ((u64)pfn) << PAGE_SHIFT;
517 u64 to = from + size;
518 u64 cursor = from;
519
520 if (!pat_enabled)
521 return 1;
522
523 while (cursor < to) {
524 if (!devmem_is_allowed(pfn)) {
525 printk(KERN_INFO
526 "Program %s tried to access /dev/mem between %Lx->%Lx.\n",
527 current->comm, from, to);
528 return 0;
529 }
530 cursor += PAGE_SIZE;
531 pfn++;
532 }
533 return 1;
534 }
535 #endif /* CONFIG_STRICT_DEVMEM */
536
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)537 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
538 unsigned long size, pgprot_t *vma_prot)
539 {
540 u64 offset = ((u64) pfn) << PAGE_SHIFT;
541 unsigned long flags = -1;
542 int retval;
543
544 if (!range_is_allowed(pfn, size))
545 return 0;
546
547 if (file->f_flags & O_SYNC) {
548 flags = _PAGE_CACHE_UC_MINUS;
549 }
550
551 #ifdef CONFIG_X86_32
552 /*
553 * On the PPro and successors, the MTRRs are used to set
554 * memory types for physical addresses outside main memory,
555 * so blindly setting UC or PWT on those pages is wrong.
556 * For Pentiums and earlier, the surround logic should disable
557 * caching for the high addresses through the KEN pin, but
558 * we maintain the tradition of paranoia in this code.
559 */
560 if (!pat_enabled &&
561 !(boot_cpu_has(X86_FEATURE_MTRR) ||
562 boot_cpu_has(X86_FEATURE_K6_MTRR) ||
563 boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
564 boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
565 (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
566 flags = _PAGE_CACHE_UC;
567 }
568 #endif
569
570 /*
571 * With O_SYNC, we can only take UC_MINUS mapping. Fail if we cannot.
572 *
573 * Without O_SYNC, we want to get
574 * - WB for WB-able memory and no other conflicting mappings
575 * - UC_MINUS for non-WB-able memory with no other conflicting mappings
576 * - Inherit from confliting mappings otherwise
577 */
578 if (flags != -1) {
579 retval = reserve_memtype(offset, offset + size, flags, NULL);
580 } else {
581 retval = reserve_memtype(offset, offset + size, -1, &flags);
582 }
583
584 if (retval < 0)
585 return 0;
586
587 if (((pfn < max_low_pfn_mapped) ||
588 (pfn >= (1UL<<(32 - PAGE_SHIFT)) && pfn < max_pfn_mapped)) &&
589 ioremap_change_attr((unsigned long)__va(offset), size, flags) < 0) {
590 free_memtype(offset, offset + size);
591 printk(KERN_INFO
592 "%s:%d /dev/mem ioremap_change_attr failed %s for %Lx-%Lx\n",
593 current->comm, current->pid,
594 cattr_name(flags),
595 offset, (unsigned long long)(offset + size));
596 return 0;
597 }
598
599 *vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
600 flags);
601 return 1;
602 }
603
map_devmem(unsigned long pfn,unsigned long size,pgprot_t vma_prot)604 void map_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
605 {
606 unsigned long want_flags = (pgprot_val(vma_prot) & _PAGE_CACHE_MASK);
607 u64 addr = (u64)pfn << PAGE_SHIFT;
608 unsigned long flags;
609
610 reserve_memtype(addr, addr + size, want_flags, &flags);
611 if (flags != want_flags) {
612 printk(KERN_INFO
613 "%s:%d /dev/mem expected mapping type %s for %Lx-%Lx, got %s\n",
614 current->comm, current->pid,
615 cattr_name(want_flags),
616 addr, (unsigned long long)(addr + size),
617 cattr_name(flags));
618 }
619 }
620
unmap_devmem(unsigned long pfn,unsigned long size,pgprot_t vma_prot)621 void unmap_devmem(unsigned long pfn, unsigned long size, pgprot_t vma_prot)
622 {
623 u64 addr = (u64)pfn << PAGE_SHIFT;
624
625 free_memtype(addr, addr + size);
626 }
627
628 /*
629 * Internal interface to reserve a range of physical memory with prot.
630 * Reserved non RAM regions only and after successful reserve_memtype,
631 * this func also keeps identity mapping (if any) in sync with this new prot.
632 */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)633 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
634 int strict_prot)
635 {
636 int is_ram = 0;
637 int id_sz, ret;
638 unsigned long flags;
639 unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
640
641 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
642
643 /*
644 * reserve_pfn_range() doesn't support RAM pages.
645 */
646 if (is_ram != 0)
647 return -EINVAL;
648
649 ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
650 if (ret)
651 return ret;
652
653 if (flags != want_flags) {
654 if (strict_prot || !is_new_memtype_allowed(want_flags, flags)) {
655 free_memtype(paddr, paddr + size);
656 printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
657 " for %Lx-%Lx, got %s\n",
658 current->comm, current->pid,
659 cattr_name(want_flags),
660 (unsigned long long)paddr,
661 (unsigned long long)(paddr + size),
662 cattr_name(flags));
663 return -EINVAL;
664 }
665 /*
666 * We allow returning different type than the one requested in
667 * non strict case.
668 */
669 *vma_prot = __pgprot((pgprot_val(*vma_prot) &
670 (~_PAGE_CACHE_MASK)) |
671 flags);
672 }
673
674 /* Need to keep identity mapping in sync */
675 if (paddr >= __pa(high_memory))
676 return 0;
677
678 id_sz = (__pa(high_memory) < paddr + size) ?
679 __pa(high_memory) - paddr :
680 size;
681
682 if (ioremap_change_attr((unsigned long)__va(paddr), id_sz, flags) < 0) {
683 free_memtype(paddr, paddr + size);
684 printk(KERN_ERR
685 "%s:%d reserve_pfn_range ioremap_change_attr failed %s "
686 "for %Lx-%Lx\n",
687 current->comm, current->pid,
688 cattr_name(flags),
689 (unsigned long long)paddr,
690 (unsigned long long)(paddr + size));
691 return -EINVAL;
692 }
693 return 0;
694 }
695
696 /*
697 * Internal interface to free a range of physical memory.
698 * Frees non RAM regions only.
699 */
free_pfn_range(u64 paddr,unsigned long size)700 static void free_pfn_range(u64 paddr, unsigned long size)
701 {
702 int is_ram;
703
704 is_ram = pat_pagerange_is_ram(paddr, paddr + size);
705 if (is_ram == 0)
706 free_memtype(paddr, paddr + size);
707 }
708
709 /*
710 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
711 * copied through copy_page_range().
712 *
713 * If the vma has a linear pfn mapping for the entire range, we get the prot
714 * from pte and reserve the entire vma range with single reserve_pfn_range call.
715 * Otherwise, we reserve the entire vma range, my ging through the PTEs page
716 * by page to get physical address and protection.
717 */
track_pfn_vma_copy(struct vm_area_struct * vma)718 int track_pfn_vma_copy(struct vm_area_struct *vma)
719 {
720 int retval = 0;
721 unsigned long i, j;
722 resource_size_t paddr;
723 unsigned long prot;
724 unsigned long vma_start = vma->vm_start;
725 unsigned long vma_end = vma->vm_end;
726 unsigned long vma_size = vma_end - vma_start;
727 pgprot_t pgprot;
728
729 if (!pat_enabled)
730 return 0;
731
732 if (is_linear_pfn_mapping(vma)) {
733 /*
734 * reserve the whole chunk covered by vma. We need the
735 * starting address and protection from pte.
736 */
737 if (follow_phys(vma, vma_start, 0, &prot, &paddr)) {
738 WARN_ON_ONCE(1);
739 return -EINVAL;
740 }
741 pgprot = __pgprot(prot);
742 return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
743 }
744
745 /* reserve entire vma page by page, using pfn and prot from pte */
746 for (i = 0; i < vma_size; i += PAGE_SIZE) {
747 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
748 continue;
749
750 pgprot = __pgprot(prot);
751 retval = reserve_pfn_range(paddr, PAGE_SIZE, &pgprot, 1);
752 if (retval)
753 goto cleanup_ret;
754 }
755 return 0;
756
757 cleanup_ret:
758 /* Reserve error: Cleanup partial reservation and return error */
759 for (j = 0; j < i; j += PAGE_SIZE) {
760 if (follow_phys(vma, vma_start + j, 0, &prot, &paddr))
761 continue;
762
763 free_pfn_range(paddr, PAGE_SIZE);
764 }
765
766 return retval;
767 }
768
769 /*
770 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
771 * for physical range indicated by pfn and size.
772 *
773 * prot is passed in as a parameter for the new mapping. If the vma has a
774 * linear pfn mapping for the entire range reserve the entire vma range with
775 * single reserve_pfn_range call.
776 * Otherwise, we look t the pfn and size and reserve only the specified range
777 * page by page.
778 *
779 * Note that this function can be called with caller trying to map only a
780 * subrange/page inside the vma.
781 */
track_pfn_vma_new(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long size)782 int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
783 unsigned long pfn, unsigned long size)
784 {
785 int retval = 0;
786 unsigned long i, j;
787 resource_size_t base_paddr;
788 resource_size_t paddr;
789 unsigned long vma_start = vma->vm_start;
790 unsigned long vma_end = vma->vm_end;
791 unsigned long vma_size = vma_end - vma_start;
792
793 if (!pat_enabled)
794 return 0;
795
796 if (is_linear_pfn_mapping(vma)) {
797 /* reserve the whole chunk starting from vm_pgoff */
798 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
799 return reserve_pfn_range(paddr, vma_size, prot, 0);
800 }
801
802 /* reserve page by page using pfn and size */
803 base_paddr = (resource_size_t)pfn << PAGE_SHIFT;
804 for (i = 0; i < size; i += PAGE_SIZE) {
805 paddr = base_paddr + i;
806 retval = reserve_pfn_range(paddr, PAGE_SIZE, prot, 0);
807 if (retval)
808 goto cleanup_ret;
809 }
810 return 0;
811
812 cleanup_ret:
813 /* Reserve error: Cleanup partial reservation and return error */
814 for (j = 0; j < i; j += PAGE_SIZE) {
815 paddr = base_paddr + j;
816 free_pfn_range(paddr, PAGE_SIZE);
817 }
818
819 return retval;
820 }
821
822 /*
823 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
824 * untrack can be called for a specific region indicated by pfn and size or
825 * can be for the entire vma (in which case size can be zero).
826 */
untrack_pfn_vma(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)827 void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
828 unsigned long size)
829 {
830 unsigned long i;
831 resource_size_t paddr;
832 unsigned long prot;
833 unsigned long vma_start = vma->vm_start;
834 unsigned long vma_end = vma->vm_end;
835 unsigned long vma_size = vma_end - vma_start;
836
837 if (!pat_enabled)
838 return;
839
840 if (is_linear_pfn_mapping(vma)) {
841 /* free the whole chunk starting from vm_pgoff */
842 paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
843 free_pfn_range(paddr, vma_size);
844 return;
845 }
846
847 if (size != 0 && size != vma_size) {
848 /* free page by page, using pfn and size */
849 paddr = (resource_size_t)pfn << PAGE_SHIFT;
850 for (i = 0; i < size; i += PAGE_SIZE) {
851 paddr = paddr + i;
852 free_pfn_range(paddr, PAGE_SIZE);
853 }
854 } else {
855 /* free entire vma, page by page, using the pfn from pte */
856 for (i = 0; i < vma_size; i += PAGE_SIZE) {
857 if (follow_phys(vma, vma_start + i, 0, &prot, &paddr))
858 continue;
859
860 free_pfn_range(paddr, PAGE_SIZE);
861 }
862 }
863 }
864
pgprot_writecombine(pgprot_t prot)865 pgprot_t pgprot_writecombine(pgprot_t prot)
866 {
867 if (pat_enabled)
868 return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
869 else
870 return pgprot_noncached(prot);
871 }
872 EXPORT_SYMBOL_GPL(pgprot_writecombine);
873
874 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
875
876 /* get Nth element of the linked list */
memtype_get_idx(loff_t pos)877 static struct memtype *memtype_get_idx(loff_t pos)
878 {
879 struct memtype *list_node, *print_entry;
880 int i = 1;
881
882 print_entry = kmalloc(sizeof(struct memtype), GFP_KERNEL);
883 if (!print_entry)
884 return NULL;
885
886 spin_lock(&memtype_lock);
887 list_for_each_entry(list_node, &memtype_list, nd) {
888 if (pos == i) {
889 *print_entry = *list_node;
890 spin_unlock(&memtype_lock);
891 return print_entry;
892 }
893 ++i;
894 }
895 spin_unlock(&memtype_lock);
896 kfree(print_entry);
897
898 return NULL;
899 }
900
memtype_seq_start(struct seq_file * seq,loff_t * pos)901 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
902 {
903 if (*pos == 0) {
904 ++*pos;
905 seq_printf(seq, "PAT memtype list:\n");
906 }
907
908 return memtype_get_idx(*pos);
909 }
910
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)911 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
912 {
913 ++*pos;
914 return memtype_get_idx(*pos);
915 }
916
memtype_seq_stop(struct seq_file * seq,void * v)917 static void memtype_seq_stop(struct seq_file *seq, void *v)
918 {
919 }
920
memtype_seq_show(struct seq_file * seq,void * v)921 static int memtype_seq_show(struct seq_file *seq, void *v)
922 {
923 struct memtype *print_entry = (struct memtype *)v;
924
925 seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
926 print_entry->start, print_entry->end);
927 kfree(print_entry);
928
929 return 0;
930 }
931
932 static struct seq_operations memtype_seq_ops = {
933 .start = memtype_seq_start,
934 .next = memtype_seq_next,
935 .stop = memtype_seq_stop,
936 .show = memtype_seq_show,
937 };
938
memtype_seq_open(struct inode * inode,struct file * file)939 static int memtype_seq_open(struct inode *inode, struct file *file)
940 {
941 return seq_open(file, &memtype_seq_ops);
942 }
943
944 static const struct file_operations memtype_fops = {
945 .open = memtype_seq_open,
946 .read = seq_read,
947 .llseek = seq_lseek,
948 .release = seq_release,
949 };
950
pat_memtype_list_init(void)951 static int __init pat_memtype_list_init(void)
952 {
953 debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
954 NULL, &memtype_fops);
955 return 0;
956 }
957
958 late_initcall(pat_memtype_list_init);
959
960 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
961