• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34 
35 #include "ocfs2.h"
36 
37 #include "alloc.h"
38 #include "blockcheck.h"
39 #include "dir.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "heartbeat.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "slot_map.h"
47 #include "super.h"
48 #include "sysfile.h"
49 #include "quota.h"
50 
51 #include "buffer_head_io.h"
52 
53 DEFINE_SPINLOCK(trans_inc_lock);
54 
55 static int ocfs2_force_read_journal(struct inode *inode);
56 static int ocfs2_recover_node(struct ocfs2_super *osb,
57 			      int node_num, int slot_num);
58 static int __ocfs2_recovery_thread(void *arg);
59 static int ocfs2_commit_cache(struct ocfs2_super *osb);
60 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
61 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
62 				      int dirty, int replayed);
63 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
64 				 int slot_num);
65 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
66 				 int slot);
67 static int ocfs2_commit_thread(void *arg);
68 
ocfs2_wait_on_mount(struct ocfs2_super * osb)69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71 	return __ocfs2_wait_on_mount(osb, 0);
72 }
73 
ocfs2_wait_on_quotas(struct ocfs2_super * osb)74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76 	return __ocfs2_wait_on_mount(osb, 1);
77 }
78 
79 
80 
81 /*
82  * The recovery_list is a simple linked list of node numbers to recover.
83  * It is protected by the recovery_lock.
84  */
85 
86 struct ocfs2_recovery_map {
87 	unsigned int rm_used;
88 	unsigned int *rm_entries;
89 };
90 
ocfs2_recovery_init(struct ocfs2_super * osb)91 int ocfs2_recovery_init(struct ocfs2_super *osb)
92 {
93 	struct ocfs2_recovery_map *rm;
94 
95 	mutex_init(&osb->recovery_lock);
96 	osb->disable_recovery = 0;
97 	osb->recovery_thread_task = NULL;
98 	init_waitqueue_head(&osb->recovery_event);
99 
100 	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
101 		     osb->max_slots * sizeof(unsigned int),
102 		     GFP_KERNEL);
103 	if (!rm) {
104 		mlog_errno(-ENOMEM);
105 		return -ENOMEM;
106 	}
107 
108 	rm->rm_entries = (unsigned int *)((char *)rm +
109 					  sizeof(struct ocfs2_recovery_map));
110 	osb->recovery_map = rm;
111 
112 	return 0;
113 }
114 
115 /* we can't grab the goofy sem lock from inside wait_event, so we use
116  * memory barriers to make sure that we'll see the null task before
117  * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)118 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
119 {
120 	mb();
121 	return osb->recovery_thread_task != NULL;
122 }
123 
ocfs2_recovery_exit(struct ocfs2_super * osb)124 void ocfs2_recovery_exit(struct ocfs2_super *osb)
125 {
126 	struct ocfs2_recovery_map *rm;
127 
128 	/* disable any new recovery threads and wait for any currently
129 	 * running ones to exit. Do this before setting the vol_state. */
130 	mutex_lock(&osb->recovery_lock);
131 	osb->disable_recovery = 1;
132 	mutex_unlock(&osb->recovery_lock);
133 	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
134 
135 	/* At this point, we know that no more recovery threads can be
136 	 * launched, so wait for any recovery completion work to
137 	 * complete. */
138 	flush_workqueue(ocfs2_wq);
139 
140 	/*
141 	 * Now that recovery is shut down, and the osb is about to be
142 	 * freed,  the osb_lock is not taken here.
143 	 */
144 	rm = osb->recovery_map;
145 	/* XXX: Should we bug if there are dirty entries? */
146 
147 	kfree(rm);
148 }
149 
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)150 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
151 				     unsigned int node_num)
152 {
153 	int i;
154 	struct ocfs2_recovery_map *rm = osb->recovery_map;
155 
156 	assert_spin_locked(&osb->osb_lock);
157 
158 	for (i = 0; i < rm->rm_used; i++) {
159 		if (rm->rm_entries[i] == node_num)
160 			return 1;
161 	}
162 
163 	return 0;
164 }
165 
166 /* Behaves like test-and-set.  Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)167 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
168 				  unsigned int node_num)
169 {
170 	struct ocfs2_recovery_map *rm = osb->recovery_map;
171 
172 	spin_lock(&osb->osb_lock);
173 	if (__ocfs2_recovery_map_test(osb, node_num)) {
174 		spin_unlock(&osb->osb_lock);
175 		return 1;
176 	}
177 
178 	/* XXX: Can this be exploited? Not from o2dlm... */
179 	BUG_ON(rm->rm_used >= osb->max_slots);
180 
181 	rm->rm_entries[rm->rm_used] = node_num;
182 	rm->rm_used++;
183 	spin_unlock(&osb->osb_lock);
184 
185 	return 0;
186 }
187 
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)188 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
189 				     unsigned int node_num)
190 {
191 	int i;
192 	struct ocfs2_recovery_map *rm = osb->recovery_map;
193 
194 	spin_lock(&osb->osb_lock);
195 
196 	for (i = 0; i < rm->rm_used; i++) {
197 		if (rm->rm_entries[i] == node_num)
198 			break;
199 	}
200 
201 	if (i < rm->rm_used) {
202 		/* XXX: be careful with the pointer math */
203 		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
204 			(rm->rm_used - i - 1) * sizeof(unsigned int));
205 		rm->rm_used--;
206 	}
207 
208 	spin_unlock(&osb->osb_lock);
209 }
210 
ocfs2_commit_cache(struct ocfs2_super * osb)211 static int ocfs2_commit_cache(struct ocfs2_super *osb)
212 {
213 	int status = 0;
214 	unsigned int flushed;
215 	unsigned long old_id;
216 	struct ocfs2_journal *journal = NULL;
217 
218 	mlog_entry_void();
219 
220 	journal = osb->journal;
221 
222 	/* Flush all pending commits and checkpoint the journal. */
223 	down_write(&journal->j_trans_barrier);
224 
225 	if (atomic_read(&journal->j_num_trans) == 0) {
226 		up_write(&journal->j_trans_barrier);
227 		mlog(0, "No transactions for me to flush!\n");
228 		goto finally;
229 	}
230 
231 	jbd2_journal_lock_updates(journal->j_journal);
232 	status = jbd2_journal_flush(journal->j_journal);
233 	jbd2_journal_unlock_updates(journal->j_journal);
234 	if (status < 0) {
235 		up_write(&journal->j_trans_barrier);
236 		mlog_errno(status);
237 		goto finally;
238 	}
239 
240 	old_id = ocfs2_inc_trans_id(journal);
241 
242 	flushed = atomic_read(&journal->j_num_trans);
243 	atomic_set(&journal->j_num_trans, 0);
244 	up_write(&journal->j_trans_barrier);
245 
246 	mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
247 	     journal->j_trans_id, flushed);
248 
249 	ocfs2_wake_downconvert_thread(osb);
250 	wake_up(&journal->j_checkpointed);
251 finally:
252 	mlog_exit(status);
253 	return status;
254 }
255 
256 /* pass it NULL and it will allocate a new handle object for you.  If
257  * you pass it a handle however, it may still return error, in which
258  * case it has free'd the passed handle for you. */
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)259 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
260 {
261 	journal_t *journal = osb->journal->j_journal;
262 	handle_t *handle;
263 
264 	BUG_ON(!osb || !osb->journal->j_journal);
265 
266 	if (ocfs2_is_hard_readonly(osb))
267 		return ERR_PTR(-EROFS);
268 
269 	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
270 	BUG_ON(max_buffs <= 0);
271 
272 	/* Nested transaction? Just return the handle... */
273 	if (journal_current_handle())
274 		return jbd2_journal_start(journal, max_buffs);
275 
276 	down_read(&osb->journal->j_trans_barrier);
277 
278 	handle = jbd2_journal_start(journal, max_buffs);
279 	if (IS_ERR(handle)) {
280 		up_read(&osb->journal->j_trans_barrier);
281 
282 		mlog_errno(PTR_ERR(handle));
283 
284 		if (is_journal_aborted(journal)) {
285 			ocfs2_abort(osb->sb, "Detected aborted journal");
286 			handle = ERR_PTR(-EROFS);
287 		}
288 	} else {
289 		if (!ocfs2_mount_local(osb))
290 			atomic_inc(&(osb->journal->j_num_trans));
291 	}
292 
293 	return handle;
294 }
295 
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)296 int ocfs2_commit_trans(struct ocfs2_super *osb,
297 		       handle_t *handle)
298 {
299 	int ret, nested;
300 	struct ocfs2_journal *journal = osb->journal;
301 
302 	BUG_ON(!handle);
303 
304 	nested = handle->h_ref > 1;
305 	ret = jbd2_journal_stop(handle);
306 	if (ret < 0)
307 		mlog_errno(ret);
308 
309 	if (!nested)
310 		up_read(&journal->j_trans_barrier);
311 
312 	return ret;
313 }
314 
315 /*
316  * 'nblocks' is what you want to add to the current
317  * transaction. extend_trans will either extend the current handle by
318  * nblocks, or commit it and start a new one with nblocks credits.
319  *
320  * This might call jbd2_journal_restart() which will commit dirty buffers
321  * and then restart the transaction. Before calling
322  * ocfs2_extend_trans(), any changed blocks should have been
323  * dirtied. After calling it, all blocks which need to be changed must
324  * go through another set of journal_access/journal_dirty calls.
325  *
326  * WARNING: This will not release any semaphores or disk locks taken
327  * during the transaction, so make sure they were taken *before*
328  * start_trans or we'll have ordering deadlocks.
329  *
330  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
331  * good because transaction ids haven't yet been recorded on the
332  * cluster locks associated with this handle.
333  */
ocfs2_extend_trans(handle_t * handle,int nblocks)334 int ocfs2_extend_trans(handle_t *handle, int nblocks)
335 {
336 	int status;
337 
338 	BUG_ON(!handle);
339 	BUG_ON(!nblocks);
340 
341 	mlog_entry_void();
342 
343 	mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
344 
345 #ifdef CONFIG_OCFS2_DEBUG_FS
346 	status = 1;
347 #else
348 	status = jbd2_journal_extend(handle, nblocks);
349 	if (status < 0) {
350 		mlog_errno(status);
351 		goto bail;
352 	}
353 #endif
354 
355 	if (status > 0) {
356 		mlog(0,
357 		     "jbd2_journal_extend failed, trying "
358 		     "jbd2_journal_restart\n");
359 		status = jbd2_journal_restart(handle, nblocks);
360 		if (status < 0) {
361 			mlog_errno(status);
362 			goto bail;
363 		}
364 	}
365 
366 	status = 0;
367 bail:
368 
369 	mlog_exit(status);
370 	return status;
371 }
372 
373 struct ocfs2_triggers {
374 	struct jbd2_buffer_trigger_type	ot_triggers;
375 	int				ot_offset;
376 };
377 
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)378 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
379 {
380 	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
381 }
382 
ocfs2_commit_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)383 static void ocfs2_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
384 				 struct buffer_head *bh,
385 				 void *data, size_t size)
386 {
387 	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
388 
389 	/*
390 	 * We aren't guaranteed to have the superblock here, so we
391 	 * must unconditionally compute the ecc data.
392 	 * __ocfs2_journal_access() will only set the triggers if
393 	 * metaecc is enabled.
394 	 */
395 	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
396 }
397 
398 /*
399  * Quota blocks have their own trigger because the struct ocfs2_block_check
400  * offset depends on the blocksize.
401  */
ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)402 static void ocfs2_dq_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
403 				 struct buffer_head *bh,
404 				 void *data, size_t size)
405 {
406 	struct ocfs2_disk_dqtrailer *dqt =
407 		ocfs2_block_dqtrailer(size, data);
408 
409 	/*
410 	 * We aren't guaranteed to have the superblock here, so we
411 	 * must unconditionally compute the ecc data.
412 	 * __ocfs2_journal_access() will only set the triggers if
413 	 * metaecc is enabled.
414 	 */
415 	ocfs2_block_check_compute(data, size, &dqt->dq_check);
416 }
417 
418 /*
419  * Directory blocks also have their own trigger because the
420  * struct ocfs2_block_check offset depends on the blocksize.
421  */
ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)422 static void ocfs2_db_commit_trigger(struct jbd2_buffer_trigger_type *triggers,
423 				 struct buffer_head *bh,
424 				 void *data, size_t size)
425 {
426 	struct ocfs2_dir_block_trailer *trailer =
427 		ocfs2_dir_trailer_from_size(size, data);
428 
429 	/*
430 	 * We aren't guaranteed to have the superblock here, so we
431 	 * must unconditionally compute the ecc data.
432 	 * __ocfs2_journal_access() will only set the triggers if
433 	 * metaecc is enabled.
434 	 */
435 	ocfs2_block_check_compute(data, size, &trailer->db_check);
436 }
437 
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)438 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
439 				struct buffer_head *bh)
440 {
441 	mlog(ML_ERROR,
442 	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
443 	     "bh->b_blocknr = %llu\n",
444 	     (unsigned long)bh,
445 	     (unsigned long long)bh->b_blocknr);
446 
447 	/* We aren't guaranteed to have the superblock here - but if we
448 	 * don't, it'll just crash. */
449 	ocfs2_error(bh->b_assoc_map->host->i_sb,
450 		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
451 }
452 
453 static struct ocfs2_triggers di_triggers = {
454 	.ot_triggers = {
455 		.t_commit = ocfs2_commit_trigger,
456 		.t_abort = ocfs2_abort_trigger,
457 	},
458 	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
459 };
460 
461 static struct ocfs2_triggers eb_triggers = {
462 	.ot_triggers = {
463 		.t_commit = ocfs2_commit_trigger,
464 		.t_abort = ocfs2_abort_trigger,
465 	},
466 	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
467 };
468 
469 static struct ocfs2_triggers gd_triggers = {
470 	.ot_triggers = {
471 		.t_commit = ocfs2_commit_trigger,
472 		.t_abort = ocfs2_abort_trigger,
473 	},
474 	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
475 };
476 
477 static struct ocfs2_triggers db_triggers = {
478 	.ot_triggers = {
479 		.t_commit = ocfs2_db_commit_trigger,
480 		.t_abort = ocfs2_abort_trigger,
481 	},
482 };
483 
484 static struct ocfs2_triggers xb_triggers = {
485 	.ot_triggers = {
486 		.t_commit = ocfs2_commit_trigger,
487 		.t_abort = ocfs2_abort_trigger,
488 	},
489 	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
490 };
491 
492 static struct ocfs2_triggers dq_triggers = {
493 	.ot_triggers = {
494 		.t_commit = ocfs2_dq_commit_trigger,
495 		.t_abort = ocfs2_abort_trigger,
496 	},
497 };
498 
__ocfs2_journal_access(handle_t * handle,struct inode * inode,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)499 static int __ocfs2_journal_access(handle_t *handle,
500 				  struct inode *inode,
501 				  struct buffer_head *bh,
502 				  struct ocfs2_triggers *triggers,
503 				  int type)
504 {
505 	int status;
506 
507 	BUG_ON(!inode);
508 	BUG_ON(!handle);
509 	BUG_ON(!bh);
510 
511 	mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
512 		   (unsigned long long)bh->b_blocknr, type,
513 		   (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
514 		   "OCFS2_JOURNAL_ACCESS_CREATE" :
515 		   "OCFS2_JOURNAL_ACCESS_WRITE",
516 		   bh->b_size);
517 
518 	/* we can safely remove this assertion after testing. */
519 	if (!buffer_uptodate(bh)) {
520 		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
521 		mlog(ML_ERROR, "b_blocknr=%llu\n",
522 		     (unsigned long long)bh->b_blocknr);
523 		BUG();
524 	}
525 
526 	/* Set the current transaction information on the inode so
527 	 * that the locking code knows whether it can drop it's locks
528 	 * on this inode or not. We're protected from the commit
529 	 * thread updating the current transaction id until
530 	 * ocfs2_commit_trans() because ocfs2_start_trans() took
531 	 * j_trans_barrier for us. */
532 	ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
533 
534 	mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
535 	switch (type) {
536 	case OCFS2_JOURNAL_ACCESS_CREATE:
537 	case OCFS2_JOURNAL_ACCESS_WRITE:
538 		status = jbd2_journal_get_write_access(handle, bh);
539 		break;
540 
541 	case OCFS2_JOURNAL_ACCESS_UNDO:
542 		status = jbd2_journal_get_undo_access(handle, bh);
543 		break;
544 
545 	default:
546 		status = -EINVAL;
547 		mlog(ML_ERROR, "Uknown access type!\n");
548 	}
549 	if (!status && ocfs2_meta_ecc(OCFS2_SB(inode->i_sb)) && triggers)
550 		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
551 	mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
552 
553 	if (status < 0)
554 		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
555 		     status, type);
556 
557 	mlog_exit(status);
558 	return status;
559 }
560 
ocfs2_journal_access_di(handle_t * handle,struct inode * inode,struct buffer_head * bh,int type)561 int ocfs2_journal_access_di(handle_t *handle, struct inode *inode,
562 			       struct buffer_head *bh, int type)
563 {
564 	return __ocfs2_journal_access(handle, inode, bh, &di_triggers,
565 				      type);
566 }
567 
ocfs2_journal_access_eb(handle_t * handle,struct inode * inode,struct buffer_head * bh,int type)568 int ocfs2_journal_access_eb(handle_t *handle, struct inode *inode,
569 			    struct buffer_head *bh, int type)
570 {
571 	return __ocfs2_journal_access(handle, inode, bh, &eb_triggers,
572 				      type);
573 }
574 
ocfs2_journal_access_gd(handle_t * handle,struct inode * inode,struct buffer_head * bh,int type)575 int ocfs2_journal_access_gd(handle_t *handle, struct inode *inode,
576 			    struct buffer_head *bh, int type)
577 {
578 	return __ocfs2_journal_access(handle, inode, bh, &gd_triggers,
579 				      type);
580 }
581 
ocfs2_journal_access_db(handle_t * handle,struct inode * inode,struct buffer_head * bh,int type)582 int ocfs2_journal_access_db(handle_t *handle, struct inode *inode,
583 			    struct buffer_head *bh, int type)
584 {
585 	return __ocfs2_journal_access(handle, inode, bh, &db_triggers,
586 				      type);
587 }
588 
ocfs2_journal_access_xb(handle_t * handle,struct inode * inode,struct buffer_head * bh,int type)589 int ocfs2_journal_access_xb(handle_t *handle, struct inode *inode,
590 			    struct buffer_head *bh, int type)
591 {
592 	return __ocfs2_journal_access(handle, inode, bh, &xb_triggers,
593 				      type);
594 }
595 
ocfs2_journal_access_dq(handle_t * handle,struct inode * inode,struct buffer_head * bh,int type)596 int ocfs2_journal_access_dq(handle_t *handle, struct inode *inode,
597 			    struct buffer_head *bh, int type)
598 {
599 	return __ocfs2_journal_access(handle, inode, bh, &dq_triggers,
600 				      type);
601 }
602 
ocfs2_journal_access(handle_t * handle,struct inode * inode,struct buffer_head * bh,int type)603 int ocfs2_journal_access(handle_t *handle, struct inode *inode,
604 			 struct buffer_head *bh, int type)
605 {
606 	return __ocfs2_journal_access(handle, inode, bh, NULL, type);
607 }
608 
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)609 int ocfs2_journal_dirty(handle_t *handle,
610 			struct buffer_head *bh)
611 {
612 	int status;
613 
614 	mlog_entry("(bh->b_blocknr=%llu)\n",
615 		   (unsigned long long)bh->b_blocknr);
616 
617 	status = jbd2_journal_dirty_metadata(handle, bh);
618 	if (status < 0)
619 		mlog(ML_ERROR, "Could not dirty metadata buffer. "
620 		     "(bh->b_blocknr=%llu)\n",
621 		     (unsigned long long)bh->b_blocknr);
622 
623 	mlog_exit(status);
624 	return status;
625 }
626 
627 #define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
628 
ocfs2_set_journal_params(struct ocfs2_super * osb)629 void ocfs2_set_journal_params(struct ocfs2_super *osb)
630 {
631 	journal_t *journal = osb->journal->j_journal;
632 	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
633 
634 	if (osb->osb_commit_interval)
635 		commit_interval = osb->osb_commit_interval;
636 
637 	spin_lock(&journal->j_state_lock);
638 	journal->j_commit_interval = commit_interval;
639 	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
640 		journal->j_flags |= JBD2_BARRIER;
641 	else
642 		journal->j_flags &= ~JBD2_BARRIER;
643 	spin_unlock(&journal->j_state_lock);
644 }
645 
ocfs2_journal_init(struct ocfs2_journal * journal,int * dirty)646 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
647 {
648 	int status = -1;
649 	struct inode *inode = NULL; /* the journal inode */
650 	journal_t *j_journal = NULL;
651 	struct ocfs2_dinode *di = NULL;
652 	struct buffer_head *bh = NULL;
653 	struct ocfs2_super *osb;
654 	int inode_lock = 0;
655 
656 	mlog_entry_void();
657 
658 	BUG_ON(!journal);
659 
660 	osb = journal->j_osb;
661 
662 	/* already have the inode for our journal */
663 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
664 					    osb->slot_num);
665 	if (inode == NULL) {
666 		status = -EACCES;
667 		mlog_errno(status);
668 		goto done;
669 	}
670 	if (is_bad_inode(inode)) {
671 		mlog(ML_ERROR, "access error (bad inode)\n");
672 		iput(inode);
673 		inode = NULL;
674 		status = -EACCES;
675 		goto done;
676 	}
677 
678 	SET_INODE_JOURNAL(inode);
679 	OCFS2_I(inode)->ip_open_count++;
680 
681 	/* Skip recovery waits here - journal inode metadata never
682 	 * changes in a live cluster so it can be considered an
683 	 * exception to the rule. */
684 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
685 	if (status < 0) {
686 		if (status != -ERESTARTSYS)
687 			mlog(ML_ERROR, "Could not get lock on journal!\n");
688 		goto done;
689 	}
690 
691 	inode_lock = 1;
692 	di = (struct ocfs2_dinode *)bh->b_data;
693 
694 	if (inode->i_size <  OCFS2_MIN_JOURNAL_SIZE) {
695 		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
696 		     inode->i_size);
697 		status = -EINVAL;
698 		goto done;
699 	}
700 
701 	mlog(0, "inode->i_size = %lld\n", inode->i_size);
702 	mlog(0, "inode->i_blocks = %llu\n",
703 			(unsigned long long)inode->i_blocks);
704 	mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
705 
706 	/* call the kernels journal init function now */
707 	j_journal = jbd2_journal_init_inode(inode);
708 	if (j_journal == NULL) {
709 		mlog(ML_ERROR, "Linux journal layer error\n");
710 		status = -EINVAL;
711 		goto done;
712 	}
713 
714 	mlog(0, "Returned from jbd2_journal_init_inode\n");
715 	mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
716 
717 	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
718 		  OCFS2_JOURNAL_DIRTY_FL);
719 
720 	journal->j_journal = j_journal;
721 	journal->j_inode = inode;
722 	journal->j_bh = bh;
723 
724 	ocfs2_set_journal_params(osb);
725 
726 	journal->j_state = OCFS2_JOURNAL_LOADED;
727 
728 	status = 0;
729 done:
730 	if (status < 0) {
731 		if (inode_lock)
732 			ocfs2_inode_unlock(inode, 1);
733 		brelse(bh);
734 		if (inode) {
735 			OCFS2_I(inode)->ip_open_count--;
736 			iput(inode);
737 		}
738 	}
739 
740 	mlog_exit(status);
741 	return status;
742 }
743 
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)744 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
745 {
746 	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
747 }
748 
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)749 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
750 {
751 	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
752 }
753 
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)754 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
755 				      int dirty, int replayed)
756 {
757 	int status;
758 	unsigned int flags;
759 	struct ocfs2_journal *journal = osb->journal;
760 	struct buffer_head *bh = journal->j_bh;
761 	struct ocfs2_dinode *fe;
762 
763 	mlog_entry_void();
764 
765 	fe = (struct ocfs2_dinode *)bh->b_data;
766 
767 	/* The journal bh on the osb always comes from ocfs2_journal_init()
768 	 * and was validated there inside ocfs2_inode_lock_full().  It's a
769 	 * code bug if we mess it up. */
770 	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
771 
772 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
773 	if (dirty)
774 		flags |= OCFS2_JOURNAL_DIRTY_FL;
775 	else
776 		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
777 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
778 
779 	if (replayed)
780 		ocfs2_bump_recovery_generation(fe);
781 
782 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
783 	status = ocfs2_write_block(osb, bh, journal->j_inode);
784 	if (status < 0)
785 		mlog_errno(status);
786 
787 	mlog_exit(status);
788 	return status;
789 }
790 
791 /*
792  * If the journal has been kmalloc'd it needs to be freed after this
793  * call.
794  */
ocfs2_journal_shutdown(struct ocfs2_super * osb)795 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
796 {
797 	struct ocfs2_journal *journal = NULL;
798 	int status = 0;
799 	struct inode *inode = NULL;
800 	int num_running_trans = 0;
801 
802 	mlog_entry_void();
803 
804 	BUG_ON(!osb);
805 
806 	journal = osb->journal;
807 	if (!journal)
808 		goto done;
809 
810 	inode = journal->j_inode;
811 
812 	if (journal->j_state != OCFS2_JOURNAL_LOADED)
813 		goto done;
814 
815 	/* need to inc inode use count - jbd2_journal_destroy will iput. */
816 	if (!igrab(inode))
817 		BUG();
818 
819 	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
820 	if (num_running_trans > 0)
821 		mlog(0, "Shutting down journal: must wait on %d "
822 		     "running transactions!\n",
823 		     num_running_trans);
824 
825 	/* Do a commit_cache here. It will flush our journal, *and*
826 	 * release any locks that are still held.
827 	 * set the SHUTDOWN flag and release the trans lock.
828 	 * the commit thread will take the trans lock for us below. */
829 	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
830 
831 	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
832 	 * drop the trans_lock (which we want to hold until we
833 	 * completely destroy the journal. */
834 	if (osb->commit_task) {
835 		/* Wait for the commit thread */
836 		mlog(0, "Waiting for ocfs2commit to exit....\n");
837 		kthread_stop(osb->commit_task);
838 		osb->commit_task = NULL;
839 	}
840 
841 	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
842 
843 	if (ocfs2_mount_local(osb)) {
844 		jbd2_journal_lock_updates(journal->j_journal);
845 		status = jbd2_journal_flush(journal->j_journal);
846 		jbd2_journal_unlock_updates(journal->j_journal);
847 		if (status < 0)
848 			mlog_errno(status);
849 	}
850 
851 	if (status == 0) {
852 		/*
853 		 * Do not toggle if flush was unsuccessful otherwise
854 		 * will leave dirty metadata in a "clean" journal
855 		 */
856 		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
857 		if (status < 0)
858 			mlog_errno(status);
859 	}
860 
861 	/* Shutdown the kernel journal system */
862 	jbd2_journal_destroy(journal->j_journal);
863 	journal->j_journal = NULL;
864 
865 	OCFS2_I(inode)->ip_open_count--;
866 
867 	/* unlock our journal */
868 	ocfs2_inode_unlock(inode, 1);
869 
870 	brelse(journal->j_bh);
871 	journal->j_bh = NULL;
872 
873 	journal->j_state = OCFS2_JOURNAL_FREE;
874 
875 //	up_write(&journal->j_trans_barrier);
876 done:
877 	if (inode)
878 		iput(inode);
879 	mlog_exit_void();
880 }
881 
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)882 static void ocfs2_clear_journal_error(struct super_block *sb,
883 				      journal_t *journal,
884 				      int slot)
885 {
886 	int olderr;
887 
888 	olderr = jbd2_journal_errno(journal);
889 	if (olderr) {
890 		mlog(ML_ERROR, "File system error %d recorded in "
891 		     "journal %u.\n", olderr, slot);
892 		mlog(ML_ERROR, "File system on device %s needs checking.\n",
893 		     sb->s_id);
894 
895 		jbd2_journal_ack_err(journal);
896 		jbd2_journal_clear_err(journal);
897 	}
898 }
899 
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)900 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
901 {
902 	int status = 0;
903 	struct ocfs2_super *osb;
904 
905 	mlog_entry_void();
906 
907 	BUG_ON(!journal);
908 
909 	osb = journal->j_osb;
910 
911 	status = jbd2_journal_load(journal->j_journal);
912 	if (status < 0) {
913 		mlog(ML_ERROR, "Failed to load journal!\n");
914 		goto done;
915 	}
916 
917 	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
918 
919 	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
920 	if (status < 0) {
921 		mlog_errno(status);
922 		goto done;
923 	}
924 
925 	/* Launch the commit thread */
926 	if (!local) {
927 		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
928 					       "ocfs2cmt");
929 		if (IS_ERR(osb->commit_task)) {
930 			status = PTR_ERR(osb->commit_task);
931 			osb->commit_task = NULL;
932 			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
933 			     "error=%d", status);
934 			goto done;
935 		}
936 	} else
937 		osb->commit_task = NULL;
938 
939 done:
940 	mlog_exit(status);
941 	return status;
942 }
943 
944 
945 /* 'full' flag tells us whether we clear out all blocks or if we just
946  * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)947 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
948 {
949 	int status;
950 
951 	mlog_entry_void();
952 
953 	BUG_ON(!journal);
954 
955 	status = jbd2_journal_wipe(journal->j_journal, full);
956 	if (status < 0) {
957 		mlog_errno(status);
958 		goto bail;
959 	}
960 
961 	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
962 	if (status < 0)
963 		mlog_errno(status);
964 
965 bail:
966 	mlog_exit(status);
967 	return status;
968 }
969 
ocfs2_recovery_completed(struct ocfs2_super * osb)970 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
971 {
972 	int empty;
973 	struct ocfs2_recovery_map *rm = osb->recovery_map;
974 
975 	spin_lock(&osb->osb_lock);
976 	empty = (rm->rm_used == 0);
977 	spin_unlock(&osb->osb_lock);
978 
979 	return empty;
980 }
981 
ocfs2_wait_for_recovery(struct ocfs2_super * osb)982 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
983 {
984 	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
985 }
986 
987 /*
988  * JBD Might read a cached version of another nodes journal file. We
989  * don't want this as this file changes often and we get no
990  * notification on those changes. The only way to be sure that we've
991  * got the most up to date version of those blocks then is to force
992  * read them off disk. Just searching through the buffer cache won't
993  * work as there may be pages backing this file which are still marked
994  * up to date. We know things can't change on this file underneath us
995  * as we have the lock by now :)
996  */
ocfs2_force_read_journal(struct inode * inode)997 static int ocfs2_force_read_journal(struct inode *inode)
998 {
999 	int status = 0;
1000 	int i;
1001 	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1002 #define CONCURRENT_JOURNAL_FILL 32ULL
1003 	struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1004 
1005 	mlog_entry_void();
1006 
1007 	memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1008 
1009 	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1010 	v_blkno = 0;
1011 	while (v_blkno < num_blocks) {
1012 		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1013 						     &p_blkno, &p_blocks, NULL);
1014 		if (status < 0) {
1015 			mlog_errno(status);
1016 			goto bail;
1017 		}
1018 
1019 		if (p_blocks > CONCURRENT_JOURNAL_FILL)
1020 			p_blocks = CONCURRENT_JOURNAL_FILL;
1021 
1022 		/* We are reading journal data which should not
1023 		 * be put in the uptodate cache */
1024 		status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1025 						p_blkno, p_blocks, bhs);
1026 		if (status < 0) {
1027 			mlog_errno(status);
1028 			goto bail;
1029 		}
1030 
1031 		for(i = 0; i < p_blocks; i++) {
1032 			brelse(bhs[i]);
1033 			bhs[i] = NULL;
1034 		}
1035 
1036 		v_blkno += p_blocks;
1037 	}
1038 
1039 bail:
1040 	for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1041 		brelse(bhs[i]);
1042 	mlog_exit(status);
1043 	return status;
1044 }
1045 
1046 struct ocfs2_la_recovery_item {
1047 	struct list_head	lri_list;
1048 	int			lri_slot;
1049 	struct ocfs2_dinode	*lri_la_dinode;
1050 	struct ocfs2_dinode	*lri_tl_dinode;
1051 	struct ocfs2_quota_recovery *lri_qrec;
1052 };
1053 
1054 /* Does the second half of the recovery process. By this point, the
1055  * node is marked clean and can actually be considered recovered,
1056  * hence it's no longer in the recovery map, but there's still some
1057  * cleanup we can do which shouldn't happen within the recovery thread
1058  * as locking in that context becomes very difficult if we are to take
1059  * recovering nodes into account.
1060  *
1061  * NOTE: This function can and will sleep on recovery of other nodes
1062  * during cluster locking, just like any other ocfs2 process.
1063  */
ocfs2_complete_recovery(struct work_struct * work)1064 void ocfs2_complete_recovery(struct work_struct *work)
1065 {
1066 	int ret;
1067 	struct ocfs2_journal *journal =
1068 		container_of(work, struct ocfs2_journal, j_recovery_work);
1069 	struct ocfs2_super *osb = journal->j_osb;
1070 	struct ocfs2_dinode *la_dinode, *tl_dinode;
1071 	struct ocfs2_la_recovery_item *item, *n;
1072 	struct ocfs2_quota_recovery *qrec;
1073 	LIST_HEAD(tmp_la_list);
1074 
1075 	mlog_entry_void();
1076 
1077 	mlog(0, "completing recovery from keventd\n");
1078 
1079 	spin_lock(&journal->j_lock);
1080 	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1081 	spin_unlock(&journal->j_lock);
1082 
1083 	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1084 		list_del_init(&item->lri_list);
1085 
1086 		mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1087 
1088 		ocfs2_wait_on_quotas(osb);
1089 
1090 		la_dinode = item->lri_la_dinode;
1091 		if (la_dinode) {
1092 			mlog(0, "Clean up local alloc %llu\n",
1093 			     (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1094 
1095 			ret = ocfs2_complete_local_alloc_recovery(osb,
1096 								  la_dinode);
1097 			if (ret < 0)
1098 				mlog_errno(ret);
1099 
1100 			kfree(la_dinode);
1101 		}
1102 
1103 		tl_dinode = item->lri_tl_dinode;
1104 		if (tl_dinode) {
1105 			mlog(0, "Clean up truncate log %llu\n",
1106 			     (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1107 
1108 			ret = ocfs2_complete_truncate_log_recovery(osb,
1109 								   tl_dinode);
1110 			if (ret < 0)
1111 				mlog_errno(ret);
1112 
1113 			kfree(tl_dinode);
1114 		}
1115 
1116 		ret = ocfs2_recover_orphans(osb, item->lri_slot);
1117 		if (ret < 0)
1118 			mlog_errno(ret);
1119 
1120 		qrec = item->lri_qrec;
1121 		if (qrec) {
1122 			mlog(0, "Recovering quota files");
1123 			ret = ocfs2_finish_quota_recovery(osb, qrec,
1124 							  item->lri_slot);
1125 			if (ret < 0)
1126 				mlog_errno(ret);
1127 			/* Recovery info is already freed now */
1128 		}
1129 
1130 		kfree(item);
1131 	}
1132 
1133 	mlog(0, "Recovery completion\n");
1134 	mlog_exit_void();
1135 }
1136 
1137 /* NOTE: This function always eats your references to la_dinode and
1138  * tl_dinode, either manually on error, or by passing them to
1139  * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec)1140 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1141 					    int slot_num,
1142 					    struct ocfs2_dinode *la_dinode,
1143 					    struct ocfs2_dinode *tl_dinode,
1144 					    struct ocfs2_quota_recovery *qrec)
1145 {
1146 	struct ocfs2_la_recovery_item *item;
1147 
1148 	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1149 	if (!item) {
1150 		/* Though we wish to avoid it, we are in fact safe in
1151 		 * skipping local alloc cleanup as fsck.ocfs2 is more
1152 		 * than capable of reclaiming unused space. */
1153 		if (la_dinode)
1154 			kfree(la_dinode);
1155 
1156 		if (tl_dinode)
1157 			kfree(tl_dinode);
1158 
1159 		if (qrec)
1160 			ocfs2_free_quota_recovery(qrec);
1161 
1162 		mlog_errno(-ENOMEM);
1163 		return;
1164 	}
1165 
1166 	INIT_LIST_HEAD(&item->lri_list);
1167 	item->lri_la_dinode = la_dinode;
1168 	item->lri_slot = slot_num;
1169 	item->lri_tl_dinode = tl_dinode;
1170 	item->lri_qrec = qrec;
1171 
1172 	spin_lock(&journal->j_lock);
1173 	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1174 	queue_work(ocfs2_wq, &journal->j_recovery_work);
1175 	spin_unlock(&journal->j_lock);
1176 }
1177 
1178 /* Called by the mount code to queue recovery the last part of
1179  * recovery for it's own slot. */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1180 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1181 {
1182 	struct ocfs2_journal *journal = osb->journal;
1183 
1184 	if (osb->dirty) {
1185 		/* No need to queue up our truncate_log as regular
1186 		 * cleanup will catch that. */
1187 		ocfs2_queue_recovery_completion(journal,
1188 						osb->slot_num,
1189 						osb->local_alloc_copy,
1190 						NULL,
1191 						NULL);
1192 		ocfs2_schedule_truncate_log_flush(osb, 0);
1193 
1194 		osb->local_alloc_copy = NULL;
1195 		osb->dirty = 0;
1196 	}
1197 }
1198 
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1199 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1200 {
1201 	if (osb->quota_rec) {
1202 		ocfs2_queue_recovery_completion(osb->journal,
1203 						osb->slot_num,
1204 						NULL,
1205 						NULL,
1206 						osb->quota_rec);
1207 		osb->quota_rec = NULL;
1208 	}
1209 }
1210 
__ocfs2_recovery_thread(void * arg)1211 static int __ocfs2_recovery_thread(void *arg)
1212 {
1213 	int status, node_num, slot_num;
1214 	struct ocfs2_super *osb = arg;
1215 	struct ocfs2_recovery_map *rm = osb->recovery_map;
1216 	int *rm_quota = NULL;
1217 	int rm_quota_used = 0, i;
1218 	struct ocfs2_quota_recovery *qrec;
1219 
1220 	mlog_entry_void();
1221 
1222 	status = ocfs2_wait_on_mount(osb);
1223 	if (status < 0) {
1224 		goto bail;
1225 	}
1226 
1227 	rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1228 	if (!rm_quota) {
1229 		status = -ENOMEM;
1230 		goto bail;
1231 	}
1232 restart:
1233 	status = ocfs2_super_lock(osb, 1);
1234 	if (status < 0) {
1235 		mlog_errno(status);
1236 		goto bail;
1237 	}
1238 
1239 	spin_lock(&osb->osb_lock);
1240 	while (rm->rm_used) {
1241 		/* It's always safe to remove entry zero, as we won't
1242 		 * clear it until ocfs2_recover_node() has succeeded. */
1243 		node_num = rm->rm_entries[0];
1244 		spin_unlock(&osb->osb_lock);
1245 		mlog(0, "checking node %d\n", node_num);
1246 		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1247 		if (slot_num == -ENOENT) {
1248 			status = 0;
1249 			mlog(0, "no slot for this node, so no recovery"
1250 			     "required.\n");
1251 			goto skip_recovery;
1252 		}
1253 		mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1254 
1255 		/* It is a bit subtle with quota recovery. We cannot do it
1256 		 * immediately because we have to obtain cluster locks from
1257 		 * quota files and we also don't want to just skip it because
1258 		 * then quota usage would be out of sync until some node takes
1259 		 * the slot. So we remember which nodes need quota recovery
1260 		 * and when everything else is done, we recover quotas. */
1261 		for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1262 		if (i == rm_quota_used)
1263 			rm_quota[rm_quota_used++] = slot_num;
1264 
1265 		status = ocfs2_recover_node(osb, node_num, slot_num);
1266 skip_recovery:
1267 		if (!status) {
1268 			ocfs2_recovery_map_clear(osb, node_num);
1269 		} else {
1270 			mlog(ML_ERROR,
1271 			     "Error %d recovering node %d on device (%u,%u)!\n",
1272 			     status, node_num,
1273 			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1274 			mlog(ML_ERROR, "Volume requires unmount.\n");
1275 		}
1276 
1277 		spin_lock(&osb->osb_lock);
1278 	}
1279 	spin_unlock(&osb->osb_lock);
1280 	mlog(0, "All nodes recovered\n");
1281 
1282 	/* Refresh all journal recovery generations from disk */
1283 	status = ocfs2_check_journals_nolocks(osb);
1284 	status = (status == -EROFS) ? 0 : status;
1285 	if (status < 0)
1286 		mlog_errno(status);
1287 
1288 	/* Now it is right time to recover quotas... We have to do this under
1289 	 * superblock lock so that noone can start using the slot (and crash)
1290 	 * before we recover it */
1291 	for (i = 0; i < rm_quota_used; i++) {
1292 		qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1293 		if (IS_ERR(qrec)) {
1294 			status = PTR_ERR(qrec);
1295 			mlog_errno(status);
1296 			continue;
1297 		}
1298 		ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1299 						NULL, NULL, qrec);
1300 	}
1301 
1302 	ocfs2_super_unlock(osb, 1);
1303 
1304 	/* We always run recovery on our own orphan dir - the dead
1305 	 * node(s) may have disallowd a previos inode delete. Re-processing
1306 	 * is therefore required. */
1307 	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1308 					NULL, NULL);
1309 
1310 bail:
1311 	mutex_lock(&osb->recovery_lock);
1312 	if (!status && !ocfs2_recovery_completed(osb)) {
1313 		mutex_unlock(&osb->recovery_lock);
1314 		goto restart;
1315 	}
1316 
1317 	osb->recovery_thread_task = NULL;
1318 	mb(); /* sync with ocfs2_recovery_thread_running */
1319 	wake_up(&osb->recovery_event);
1320 
1321 	mutex_unlock(&osb->recovery_lock);
1322 
1323 	if (rm_quota)
1324 		kfree(rm_quota);
1325 
1326 	mlog_exit(status);
1327 	/* no one is callint kthread_stop() for us so the kthread() api
1328 	 * requires that we call do_exit().  And it isn't exported, but
1329 	 * complete_and_exit() seems to be a minimal wrapper around it. */
1330 	complete_and_exit(NULL, status);
1331 	return status;
1332 }
1333 
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1334 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1335 {
1336 	mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1337 		   node_num, osb->node_num);
1338 
1339 	mutex_lock(&osb->recovery_lock);
1340 	if (osb->disable_recovery)
1341 		goto out;
1342 
1343 	/* People waiting on recovery will wait on
1344 	 * the recovery map to empty. */
1345 	if (ocfs2_recovery_map_set(osb, node_num))
1346 		mlog(0, "node %d already in recovery map.\n", node_num);
1347 
1348 	mlog(0, "starting recovery thread...\n");
1349 
1350 	if (osb->recovery_thread_task)
1351 		goto out;
1352 
1353 	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1354 						 "ocfs2rec");
1355 	if (IS_ERR(osb->recovery_thread_task)) {
1356 		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1357 		osb->recovery_thread_task = NULL;
1358 	}
1359 
1360 out:
1361 	mutex_unlock(&osb->recovery_lock);
1362 	wake_up(&osb->recovery_event);
1363 
1364 	mlog_exit_void();
1365 }
1366 
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1367 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1368 				    int slot_num,
1369 				    struct buffer_head **bh,
1370 				    struct inode **ret_inode)
1371 {
1372 	int status = -EACCES;
1373 	struct inode *inode = NULL;
1374 
1375 	BUG_ON(slot_num >= osb->max_slots);
1376 
1377 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1378 					    slot_num);
1379 	if (!inode || is_bad_inode(inode)) {
1380 		mlog_errno(status);
1381 		goto bail;
1382 	}
1383 	SET_INODE_JOURNAL(inode);
1384 
1385 	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1386 	if (status < 0) {
1387 		mlog_errno(status);
1388 		goto bail;
1389 	}
1390 
1391 	status = 0;
1392 
1393 bail:
1394 	if (inode) {
1395 		if (status || !ret_inode)
1396 			iput(inode);
1397 		else
1398 			*ret_inode = inode;
1399 	}
1400 	return status;
1401 }
1402 
1403 /* Does the actual journal replay and marks the journal inode as
1404  * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1405 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1406 				int node_num,
1407 				int slot_num)
1408 {
1409 	int status;
1410 	int got_lock = 0;
1411 	unsigned int flags;
1412 	struct inode *inode = NULL;
1413 	struct ocfs2_dinode *fe;
1414 	journal_t *journal = NULL;
1415 	struct buffer_head *bh = NULL;
1416 	u32 slot_reco_gen;
1417 
1418 	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1419 	if (status) {
1420 		mlog_errno(status);
1421 		goto done;
1422 	}
1423 
1424 	fe = (struct ocfs2_dinode *)bh->b_data;
1425 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1426 	brelse(bh);
1427 	bh = NULL;
1428 
1429 	/*
1430 	 * As the fs recovery is asynchronous, there is a small chance that
1431 	 * another node mounted (and recovered) the slot before the recovery
1432 	 * thread could get the lock. To handle that, we dirty read the journal
1433 	 * inode for that slot to get the recovery generation. If it is
1434 	 * different than what we expected, the slot has been recovered.
1435 	 * If not, it needs recovery.
1436 	 */
1437 	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1438 		mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1439 		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1440 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1441 		status = -EBUSY;
1442 		goto done;
1443 	}
1444 
1445 	/* Continue with recovery as the journal has not yet been recovered */
1446 
1447 	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1448 	if (status < 0) {
1449 		mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1450 		if (status != -ERESTARTSYS)
1451 			mlog(ML_ERROR, "Could not lock journal!\n");
1452 		goto done;
1453 	}
1454 	got_lock = 1;
1455 
1456 	fe = (struct ocfs2_dinode *) bh->b_data;
1457 
1458 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1459 	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1460 
1461 	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1462 		mlog(0, "No recovery required for node %d\n", node_num);
1463 		/* Refresh recovery generation for the slot */
1464 		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1465 		goto done;
1466 	}
1467 
1468 	mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1469 	     node_num, slot_num,
1470 	     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1471 
1472 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1473 
1474 	status = ocfs2_force_read_journal(inode);
1475 	if (status < 0) {
1476 		mlog_errno(status);
1477 		goto done;
1478 	}
1479 
1480 	mlog(0, "calling journal_init_inode\n");
1481 	journal = jbd2_journal_init_inode(inode);
1482 	if (journal == NULL) {
1483 		mlog(ML_ERROR, "Linux journal layer error\n");
1484 		status = -EIO;
1485 		goto done;
1486 	}
1487 
1488 	status = jbd2_journal_load(journal);
1489 	if (status < 0) {
1490 		mlog_errno(status);
1491 		if (!igrab(inode))
1492 			BUG();
1493 		jbd2_journal_destroy(journal);
1494 		goto done;
1495 	}
1496 
1497 	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1498 
1499 	/* wipe the journal */
1500 	mlog(0, "flushing the journal.\n");
1501 	jbd2_journal_lock_updates(journal);
1502 	status = jbd2_journal_flush(journal);
1503 	jbd2_journal_unlock_updates(journal);
1504 	if (status < 0)
1505 		mlog_errno(status);
1506 
1507 	/* This will mark the node clean */
1508 	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1509 	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1510 	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1511 
1512 	/* Increment recovery generation to indicate successful recovery */
1513 	ocfs2_bump_recovery_generation(fe);
1514 	osb->slot_recovery_generations[slot_num] =
1515 					ocfs2_get_recovery_generation(fe);
1516 
1517 	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1518 	status = ocfs2_write_block(osb, bh, inode);
1519 	if (status < 0)
1520 		mlog_errno(status);
1521 
1522 	if (!igrab(inode))
1523 		BUG();
1524 
1525 	jbd2_journal_destroy(journal);
1526 
1527 done:
1528 	/* drop the lock on this nodes journal */
1529 	if (got_lock)
1530 		ocfs2_inode_unlock(inode, 1);
1531 
1532 	if (inode)
1533 		iput(inode);
1534 
1535 	brelse(bh);
1536 
1537 	mlog_exit(status);
1538 	return status;
1539 }
1540 
1541 /*
1542  * Do the most important parts of node recovery:
1543  *  - Replay it's journal
1544  *  - Stamp a clean local allocator file
1545  *  - Stamp a clean truncate log
1546  *  - Mark the node clean
1547  *
1548  * If this function completes without error, a node in OCFS2 can be
1549  * said to have been safely recovered. As a result, failure during the
1550  * second part of a nodes recovery process (local alloc recovery) is
1551  * far less concerning.
1552  */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1553 static int ocfs2_recover_node(struct ocfs2_super *osb,
1554 			      int node_num, int slot_num)
1555 {
1556 	int status = 0;
1557 	struct ocfs2_dinode *la_copy = NULL;
1558 	struct ocfs2_dinode *tl_copy = NULL;
1559 
1560 	mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1561 		   node_num, slot_num, osb->node_num);
1562 
1563 	/* Should not ever be called to recover ourselves -- in that
1564 	 * case we should've called ocfs2_journal_load instead. */
1565 	BUG_ON(osb->node_num == node_num);
1566 
1567 	status = ocfs2_replay_journal(osb, node_num, slot_num);
1568 	if (status < 0) {
1569 		if (status == -EBUSY) {
1570 			mlog(0, "Skipping recovery for slot %u (node %u) "
1571 			     "as another node has recovered it\n", slot_num,
1572 			     node_num);
1573 			status = 0;
1574 			goto done;
1575 		}
1576 		mlog_errno(status);
1577 		goto done;
1578 	}
1579 
1580 	/* Stamp a clean local alloc file AFTER recovering the journal... */
1581 	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1582 	if (status < 0) {
1583 		mlog_errno(status);
1584 		goto done;
1585 	}
1586 
1587 	/* An error from begin_truncate_log_recovery is not
1588 	 * serious enough to warrant halting the rest of
1589 	 * recovery. */
1590 	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1591 	if (status < 0)
1592 		mlog_errno(status);
1593 
1594 	/* Likewise, this would be a strange but ultimately not so
1595 	 * harmful place to get an error... */
1596 	status = ocfs2_clear_slot(osb, slot_num);
1597 	if (status < 0)
1598 		mlog_errno(status);
1599 
1600 	/* This will kfree the memory pointed to by la_copy and tl_copy */
1601 	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1602 					tl_copy, NULL);
1603 
1604 	status = 0;
1605 done:
1606 
1607 	mlog_exit(status);
1608 	return status;
1609 }
1610 
1611 /* Test node liveness by trylocking his journal. If we get the lock,
1612  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1613  * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1614 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1615 				 int slot_num)
1616 {
1617 	int status, flags;
1618 	struct inode *inode = NULL;
1619 
1620 	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1621 					    slot_num);
1622 	if (inode == NULL) {
1623 		mlog(ML_ERROR, "access error\n");
1624 		status = -EACCES;
1625 		goto bail;
1626 	}
1627 	if (is_bad_inode(inode)) {
1628 		mlog(ML_ERROR, "access error (bad inode)\n");
1629 		iput(inode);
1630 		inode = NULL;
1631 		status = -EACCES;
1632 		goto bail;
1633 	}
1634 	SET_INODE_JOURNAL(inode);
1635 
1636 	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1637 	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1638 	if (status < 0) {
1639 		if (status != -EAGAIN)
1640 			mlog_errno(status);
1641 		goto bail;
1642 	}
1643 
1644 	ocfs2_inode_unlock(inode, 1);
1645 bail:
1646 	if (inode)
1647 		iput(inode);
1648 
1649 	return status;
1650 }
1651 
1652 /* Call this underneath ocfs2_super_lock. It also assumes that the
1653  * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1654 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1655 {
1656 	unsigned int node_num;
1657 	int status, i;
1658 	u32 gen;
1659 	struct buffer_head *bh = NULL;
1660 	struct ocfs2_dinode *di;
1661 
1662 	/* This is called with the super block cluster lock, so we
1663 	 * know that the slot map can't change underneath us. */
1664 
1665 	for (i = 0; i < osb->max_slots; i++) {
1666 		/* Read journal inode to get the recovery generation */
1667 		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1668 		if (status) {
1669 			mlog_errno(status);
1670 			goto bail;
1671 		}
1672 		di = (struct ocfs2_dinode *)bh->b_data;
1673 		gen = ocfs2_get_recovery_generation(di);
1674 		brelse(bh);
1675 		bh = NULL;
1676 
1677 		spin_lock(&osb->osb_lock);
1678 		osb->slot_recovery_generations[i] = gen;
1679 
1680 		mlog(0, "Slot %u recovery generation is %u\n", i,
1681 		     osb->slot_recovery_generations[i]);
1682 
1683 		if (i == osb->slot_num) {
1684 			spin_unlock(&osb->osb_lock);
1685 			continue;
1686 		}
1687 
1688 		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1689 		if (status == -ENOENT) {
1690 			spin_unlock(&osb->osb_lock);
1691 			continue;
1692 		}
1693 
1694 		if (__ocfs2_recovery_map_test(osb, node_num)) {
1695 			spin_unlock(&osb->osb_lock);
1696 			continue;
1697 		}
1698 		spin_unlock(&osb->osb_lock);
1699 
1700 		/* Ok, we have a slot occupied by another node which
1701 		 * is not in the recovery map. We trylock his journal
1702 		 * file here to test if he's alive. */
1703 		status = ocfs2_trylock_journal(osb, i);
1704 		if (!status) {
1705 			/* Since we're called from mount, we know that
1706 			 * the recovery thread can't race us on
1707 			 * setting / checking the recovery bits. */
1708 			ocfs2_recovery_thread(osb, node_num);
1709 		} else if ((status < 0) && (status != -EAGAIN)) {
1710 			mlog_errno(status);
1711 			goto bail;
1712 		}
1713 	}
1714 
1715 	status = 0;
1716 bail:
1717 	mlog_exit(status);
1718 	return status;
1719 }
1720 
1721 struct ocfs2_orphan_filldir_priv {
1722 	struct inode		*head;
1723 	struct ocfs2_super	*osb;
1724 };
1725 
ocfs2_orphan_filldir(void * priv,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)1726 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1727 				loff_t pos, u64 ino, unsigned type)
1728 {
1729 	struct ocfs2_orphan_filldir_priv *p = priv;
1730 	struct inode *iter;
1731 
1732 	if (name_len == 1 && !strncmp(".", name, 1))
1733 		return 0;
1734 	if (name_len == 2 && !strncmp("..", name, 2))
1735 		return 0;
1736 
1737 	/* Skip bad inodes so that recovery can continue */
1738 	iter = ocfs2_iget(p->osb, ino,
1739 			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1740 	if (IS_ERR(iter))
1741 		return 0;
1742 
1743 	mlog(0, "queue orphan %llu\n",
1744 	     (unsigned long long)OCFS2_I(iter)->ip_blkno);
1745 	/* No locking is required for the next_orphan queue as there
1746 	 * is only ever a single process doing orphan recovery. */
1747 	OCFS2_I(iter)->ip_next_orphan = p->head;
1748 	p->head = iter;
1749 
1750 	return 0;
1751 }
1752 
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head)1753 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1754 			       int slot,
1755 			       struct inode **head)
1756 {
1757 	int status;
1758 	struct inode *orphan_dir_inode = NULL;
1759 	struct ocfs2_orphan_filldir_priv priv;
1760 	loff_t pos = 0;
1761 
1762 	priv.osb = osb;
1763 	priv.head = *head;
1764 
1765 	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1766 						       ORPHAN_DIR_SYSTEM_INODE,
1767 						       slot);
1768 	if  (!orphan_dir_inode) {
1769 		status = -ENOENT;
1770 		mlog_errno(status);
1771 		return status;
1772 	}
1773 
1774 	mutex_lock(&orphan_dir_inode->i_mutex);
1775 	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1776 	if (status < 0) {
1777 		mlog_errno(status);
1778 		goto out;
1779 	}
1780 
1781 	status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1782 				   ocfs2_orphan_filldir);
1783 	if (status) {
1784 		mlog_errno(status);
1785 		goto out_cluster;
1786 	}
1787 
1788 	*head = priv.head;
1789 
1790 out_cluster:
1791 	ocfs2_inode_unlock(orphan_dir_inode, 0);
1792 out:
1793 	mutex_unlock(&orphan_dir_inode->i_mutex);
1794 	iput(orphan_dir_inode);
1795 	return status;
1796 }
1797 
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)1798 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1799 					      int slot)
1800 {
1801 	int ret;
1802 
1803 	spin_lock(&osb->osb_lock);
1804 	ret = !osb->osb_orphan_wipes[slot];
1805 	spin_unlock(&osb->osb_lock);
1806 	return ret;
1807 }
1808 
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)1809 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1810 					     int slot)
1811 {
1812 	spin_lock(&osb->osb_lock);
1813 	/* Mark ourselves such that new processes in delete_inode()
1814 	 * know to quit early. */
1815 	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1816 	while (osb->osb_orphan_wipes[slot]) {
1817 		/* If any processes are already in the middle of an
1818 		 * orphan wipe on this dir, then we need to wait for
1819 		 * them. */
1820 		spin_unlock(&osb->osb_lock);
1821 		wait_event_interruptible(osb->osb_wipe_event,
1822 					 ocfs2_orphan_recovery_can_continue(osb, slot));
1823 		spin_lock(&osb->osb_lock);
1824 	}
1825 	spin_unlock(&osb->osb_lock);
1826 }
1827 
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)1828 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1829 					      int slot)
1830 {
1831 	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1832 }
1833 
1834 /*
1835  * Orphan recovery. Each mounted node has it's own orphan dir which we
1836  * must run during recovery. Our strategy here is to build a list of
1837  * the inodes in the orphan dir and iget/iput them. The VFS does
1838  * (most) of the rest of the work.
1839  *
1840  * Orphan recovery can happen at any time, not just mount so we have a
1841  * couple of extra considerations.
1842  *
1843  * - We grab as many inodes as we can under the orphan dir lock -
1844  *   doing iget() outside the orphan dir risks getting a reference on
1845  *   an invalid inode.
1846  * - We must be sure not to deadlock with other processes on the
1847  *   system wanting to run delete_inode(). This can happen when they go
1848  *   to lock the orphan dir and the orphan recovery process attempts to
1849  *   iget() inside the orphan dir lock. This can be avoided by
1850  *   advertising our state to ocfs2_delete_inode().
1851  */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot)1852 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1853 				 int slot)
1854 {
1855 	int ret = 0;
1856 	struct inode *inode = NULL;
1857 	struct inode *iter;
1858 	struct ocfs2_inode_info *oi;
1859 
1860 	mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1861 
1862 	ocfs2_mark_recovering_orphan_dir(osb, slot);
1863 	ret = ocfs2_queue_orphans(osb, slot, &inode);
1864 	ocfs2_clear_recovering_orphan_dir(osb, slot);
1865 
1866 	/* Error here should be noted, but we want to continue with as
1867 	 * many queued inodes as we've got. */
1868 	if (ret)
1869 		mlog_errno(ret);
1870 
1871 	while (inode) {
1872 		oi = OCFS2_I(inode);
1873 		mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1874 
1875 		iter = oi->ip_next_orphan;
1876 
1877 		spin_lock(&oi->ip_lock);
1878 		/* The remote delete code may have set these on the
1879 		 * assumption that the other node would wipe them
1880 		 * successfully.  If they are still in the node's
1881 		 * orphan dir, we need to reset that state. */
1882 		oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1883 
1884 		/* Set the proper information to get us going into
1885 		 * ocfs2_delete_inode. */
1886 		oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1887 		spin_unlock(&oi->ip_lock);
1888 
1889 		iput(inode);
1890 
1891 		inode = iter;
1892 	}
1893 
1894 	return ret;
1895 }
1896 
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)1897 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
1898 {
1899 	/* This check is good because ocfs2 will wait on our recovery
1900 	 * thread before changing it to something other than MOUNTED
1901 	 * or DISABLED. */
1902 	wait_event(osb->osb_mount_event,
1903 		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
1904 		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
1905 		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1906 
1907 	/* If there's an error on mount, then we may never get to the
1908 	 * MOUNTED flag, but this is set right before
1909 	 * dismount_volume() so we can trust it. */
1910 	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1911 		mlog(0, "mount error, exiting!\n");
1912 		return -EBUSY;
1913 	}
1914 
1915 	return 0;
1916 }
1917 
ocfs2_commit_thread(void * arg)1918 static int ocfs2_commit_thread(void *arg)
1919 {
1920 	int status;
1921 	struct ocfs2_super *osb = arg;
1922 	struct ocfs2_journal *journal = osb->journal;
1923 
1924 	/* we can trust j_num_trans here because _should_stop() is only set in
1925 	 * shutdown and nobody other than ourselves should be able to start
1926 	 * transactions.  committing on shutdown might take a few iterations
1927 	 * as final transactions put deleted inodes on the list */
1928 	while (!(kthread_should_stop() &&
1929 		 atomic_read(&journal->j_num_trans) == 0)) {
1930 
1931 		wait_event_interruptible(osb->checkpoint_event,
1932 					 atomic_read(&journal->j_num_trans)
1933 					 || kthread_should_stop());
1934 
1935 		status = ocfs2_commit_cache(osb);
1936 		if (status < 0)
1937 			mlog_errno(status);
1938 
1939 		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1940 			mlog(ML_KTHREAD,
1941 			     "commit_thread: %u transactions pending on "
1942 			     "shutdown\n",
1943 			     atomic_read(&journal->j_num_trans));
1944 		}
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 /* Reads all the journal inodes without taking any cluster locks. Used
1951  * for hard readonly access to determine whether any journal requires
1952  * recovery. Also used to refresh the recovery generation numbers after
1953  * a journal has been recovered by another node.
1954  */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)1955 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1956 {
1957 	int ret = 0;
1958 	unsigned int slot;
1959 	struct buffer_head *di_bh = NULL;
1960 	struct ocfs2_dinode *di;
1961 	int journal_dirty = 0;
1962 
1963 	for(slot = 0; slot < osb->max_slots; slot++) {
1964 		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
1965 		if (ret) {
1966 			mlog_errno(ret);
1967 			goto out;
1968 		}
1969 
1970 		di = (struct ocfs2_dinode *) di_bh->b_data;
1971 
1972 		osb->slot_recovery_generations[slot] =
1973 					ocfs2_get_recovery_generation(di);
1974 
1975 		if (le32_to_cpu(di->id1.journal1.ij_flags) &
1976 		    OCFS2_JOURNAL_DIRTY_FL)
1977 			journal_dirty = 1;
1978 
1979 		brelse(di_bh);
1980 		di_bh = NULL;
1981 	}
1982 
1983 out:
1984 	if (journal_dirty)
1985 		ret = -EROFS;
1986 	return ret;
1987 }
1988