1 #ifndef __PARISC_SYSTEM_H
2 #define __PARISC_SYSTEM_H
3
4 #include <asm/psw.h>
5
6 /* The program status word as bitfields. */
7 struct pa_psw {
8 unsigned int y:1;
9 unsigned int z:1;
10 unsigned int rv:2;
11 unsigned int w:1;
12 unsigned int e:1;
13 unsigned int s:1;
14 unsigned int t:1;
15
16 unsigned int h:1;
17 unsigned int l:1;
18 unsigned int n:1;
19 unsigned int x:1;
20 unsigned int b:1;
21 unsigned int c:1;
22 unsigned int v:1;
23 unsigned int m:1;
24
25 unsigned int cb:8;
26
27 unsigned int o:1;
28 unsigned int g:1;
29 unsigned int f:1;
30 unsigned int r:1;
31 unsigned int q:1;
32 unsigned int p:1;
33 unsigned int d:1;
34 unsigned int i:1;
35 };
36
37 #ifdef CONFIG_64BIT
38 #define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW + 4))
39 #else
40 #define pa_psw(task) ((struct pa_psw *) ((char *) (task) + TASK_PT_PSW))
41 #endif
42
43 struct task_struct;
44
45 extern struct task_struct *_switch_to(struct task_struct *, struct task_struct *);
46
47 #define switch_to(prev, next, last) do { \
48 (last) = _switch_to(prev, next); \
49 } while(0)
50
51 /* interrupt control */
52 #define local_save_flags(x) __asm__ __volatile__("ssm 0, %0" : "=r" (x) : : "memory")
53 #define local_irq_disable() __asm__ __volatile__("rsm %0,%%r0\n" : : "i" (PSW_I) : "memory" )
54 #define local_irq_enable() __asm__ __volatile__("ssm %0,%%r0\n" : : "i" (PSW_I) : "memory" )
55
56 #define local_irq_save(x) \
57 __asm__ __volatile__("rsm %1,%0" : "=r" (x) :"i" (PSW_I) : "memory" )
58 #define local_irq_restore(x) \
59 __asm__ __volatile__("mtsm %0" : : "r" (x) : "memory" )
60
61 #define irqs_disabled() \
62 ({ \
63 unsigned long flags; \
64 local_save_flags(flags); \
65 (flags & PSW_I) == 0; \
66 })
67
68 #define mfctl(reg) ({ \
69 unsigned long cr; \
70 __asm__ __volatile__( \
71 "mfctl " #reg ",%0" : \
72 "=r" (cr) \
73 ); \
74 cr; \
75 })
76
77 #define mtctl(gr, cr) \
78 __asm__ __volatile__("mtctl %0,%1" \
79 : /* no outputs */ \
80 : "r" (gr), "i" (cr) : "memory")
81
82 /* these are here to de-mystefy the calling code, and to provide hooks */
83 /* which I needed for debugging EIEM problems -PB */
84 #define get_eiem() mfctl(15)
set_eiem(unsigned long val)85 static inline void set_eiem(unsigned long val)
86 {
87 mtctl(val, 15);
88 }
89
90 #define mfsp(reg) ({ \
91 unsigned long cr; \
92 __asm__ __volatile__( \
93 "mfsp " #reg ",%0" : \
94 "=r" (cr) \
95 ); \
96 cr; \
97 })
98
99 #define mtsp(gr, cr) \
100 __asm__ __volatile__("mtsp %0,%1" \
101 : /* no outputs */ \
102 : "r" (gr), "i" (cr) : "memory")
103
104
105 /*
106 ** This is simply the barrier() macro from linux/kernel.h but when serial.c
107 ** uses tqueue.h uses smp_mb() defined using barrier(), linux/kernel.h
108 ** hasn't yet been included yet so it fails, thus repeating the macro here.
109 **
110 ** PA-RISC architecture allows for weakly ordered memory accesses although
111 ** none of the processors use it. There is a strong ordered bit that is
112 ** set in the O-bit of the page directory entry. Operating systems that
113 ** can not tolerate out of order accesses should set this bit when mapping
114 ** pages. The O-bit of the PSW should also be set to 1 (I don't believe any
115 ** of the processor implemented the PSW O-bit). The PCX-W ERS states that
116 ** the TLB O-bit is not implemented so the page directory does not need to
117 ** have the O-bit set when mapping pages (section 3.1). This section also
118 ** states that the PSW Y, Z, G, and O bits are not implemented.
119 ** So it looks like nothing needs to be done for parisc-linux (yet).
120 ** (thanks to chada for the above comment -ggg)
121 **
122 ** The __asm__ op below simple prevents gcc/ld from reordering
123 ** instructions across the mb() "call".
124 */
125 #define mb() __asm__ __volatile__("":::"memory") /* barrier() */
126 #define rmb() mb()
127 #define wmb() mb()
128 #define smp_mb() mb()
129 #define smp_rmb() mb()
130 #define smp_wmb() mb()
131 #define smp_read_barrier_depends() do { } while(0)
132 #define read_barrier_depends() do { } while(0)
133
134 #define set_mb(var, value) do { var = value; mb(); } while (0)
135
136 #ifndef CONFIG_PA20
137 /* Because kmalloc only guarantees 8-byte alignment for kmalloc'd data,
138 and GCC only guarantees 8-byte alignment for stack locals, we can't
139 be assured of 16-byte alignment for atomic lock data even if we
140 specify "__attribute ((aligned(16)))" in the type declaration. So,
141 we use a struct containing an array of four ints for the atomic lock
142 type and dynamically select the 16-byte aligned int from the array
143 for the semaphore. */
144
145 #define __PA_LDCW_ALIGNMENT 16
146 #define __ldcw_align(a) ({ \
147 unsigned long __ret = (unsigned long) &(a)->lock[0]; \
148 __ret = (__ret + __PA_LDCW_ALIGNMENT - 1) \
149 & ~(__PA_LDCW_ALIGNMENT - 1); \
150 (volatile unsigned int *) __ret; \
151 })
152 #define __LDCW "ldcw"
153
154 #else /*CONFIG_PA20*/
155 /* From: "Jim Hull" <jim.hull of hp.com>
156 I've attached a summary of the change, but basically, for PA 2.0, as
157 long as the ",CO" (coherent operation) completer is specified, then the
158 16-byte alignment requirement for ldcw and ldcd is relaxed, and instead
159 they only require "natural" alignment (4-byte for ldcw, 8-byte for
160 ldcd). */
161
162 #define __PA_LDCW_ALIGNMENT 4
163 #define __ldcw_align(a) ((volatile unsigned int *)a)
164 #define __LDCW "ldcw,co"
165
166 #endif /*!CONFIG_PA20*/
167
168 /* LDCW, the only atomic read-write operation PA-RISC has. *sigh*. */
169 #define __ldcw(a) ({ \
170 unsigned __ret; \
171 __asm__ __volatile__(__LDCW " 0(%1),%0" \
172 : "=r" (__ret) : "r" (a)); \
173 __ret; \
174 })
175
176 #ifdef CONFIG_SMP
177 # define __lock_aligned __attribute__((__section__(".data.lock_aligned")))
178 #endif
179
180 #define arch_align_stack(x) (x)
181
182 #endif
183