• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Common time routines among all ppc machines.
3  *
4  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5  * Paul Mackerras' version and mine for PReP and Pmac.
6  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8  *
9  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10  * to make clock more stable (2.4.0-test5). The only thing
11  * that this code assumes is that the timebases have been synchronized
12  * by firmware on SMP and are never stopped (never do sleep
13  * on SMP then, nap and doze are OK).
14  *
15  * Speeded up do_gettimeofday by getting rid of references to
16  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17  *
18  * TODO (not necessarily in this file):
19  * - improve precision and reproducibility of timebase frequency
20  * measurement at boot time. (for iSeries, we calibrate the timebase
21  * against the Titan chip's clock.)
22  * - for astronomical applications: add a new function to get
23  * non ambiguous timestamps even around leap seconds. This needs
24  * a new timestamp format and a good name.
25  *
26  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28  *
29  *      This program is free software; you can redistribute it and/or
30  *      modify it under the terms of the GNU General Public License
31  *      as published by the Free Software Foundation; either version
32  *      2 of the License, or (at your option) any later version.
33  */
34 
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #include <asm/cputime.h>
70 #ifdef CONFIG_PPC_ISERIES
71 #include <asm/iseries/it_lp_queue.h>
72 #include <asm/iseries/hv_call_xm.h>
73 #endif
74 
75 /* powerpc clocksource/clockevent code */
76 
77 #include <linux/clockchips.h>
78 #include <linux/clocksource.h>
79 
80 static cycle_t rtc_read(void);
81 static struct clocksource clocksource_rtc = {
82 	.name         = "rtc",
83 	.rating       = 400,
84 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
85 	.mask         = CLOCKSOURCE_MASK(64),
86 	.shift        = 22,
87 	.mult         = 0,	/* To be filled in */
88 	.read         = rtc_read,
89 };
90 
91 static cycle_t timebase_read(void);
92 static struct clocksource clocksource_timebase = {
93 	.name         = "timebase",
94 	.rating       = 400,
95 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
96 	.mask         = CLOCKSOURCE_MASK(64),
97 	.shift        = 22,
98 	.mult         = 0,	/* To be filled in */
99 	.read         = timebase_read,
100 };
101 
102 #define DECREMENTER_MAX	0x7fffffff
103 
104 static int decrementer_set_next_event(unsigned long evt,
105 				      struct clock_event_device *dev);
106 static void decrementer_set_mode(enum clock_event_mode mode,
107 				 struct clock_event_device *dev);
108 
109 static struct clock_event_device decrementer_clockevent = {
110        .name           = "decrementer",
111        .rating         = 200,
112        .shift          = 16,
113        .mult           = 0,	/* To be filled in */
114        .irq            = 0,
115        .set_next_event = decrementer_set_next_event,
116        .set_mode       = decrementer_set_mode,
117        .features       = CLOCK_EVT_FEAT_ONESHOT,
118 };
119 
120 struct decrementer_clock {
121 	struct clock_event_device event;
122 	u64 next_tb;
123 };
124 
125 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
126 
127 #ifdef CONFIG_PPC_ISERIES
128 static unsigned long __initdata iSeries_recal_titan;
129 static signed long __initdata iSeries_recal_tb;
130 
131 /* Forward declaration is only needed for iSereis compiles */
132 static void __init clocksource_init(void);
133 #endif
134 
135 #define XSEC_PER_SEC (1024*1024)
136 
137 #ifdef CONFIG_PPC64
138 #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
139 #else
140 /* compute ((xsec << 12) * max) >> 32 */
141 #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
142 #endif
143 
144 unsigned long tb_ticks_per_jiffy;
145 unsigned long tb_ticks_per_usec = 100; /* sane default */
146 EXPORT_SYMBOL(tb_ticks_per_usec);
147 unsigned long tb_ticks_per_sec;
148 EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
149 u64 tb_to_xs;
150 unsigned tb_to_us;
151 
152 #define TICKLEN_SCALE	NTP_SCALE_SHIFT
153 static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
154 static u64 ticklen_to_xs;	/* 0.64 fraction */
155 
156 /* If last_tick_len corresponds to about 1/HZ seconds, then
157    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
158 #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
159 
160 DEFINE_SPINLOCK(rtc_lock);
161 EXPORT_SYMBOL_GPL(rtc_lock);
162 
163 static u64 tb_to_ns_scale __read_mostly;
164 static unsigned tb_to_ns_shift __read_mostly;
165 static unsigned long boot_tb __read_mostly;
166 
167 extern struct timezone sys_tz;
168 static long timezone_offset;
169 
170 unsigned long ppc_proc_freq;
171 EXPORT_SYMBOL(ppc_proc_freq);
172 unsigned long ppc_tb_freq;
173 
174 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
175 static DEFINE_PER_CPU(u64, last_jiffy);
176 
177 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
178 /*
179  * Factors for converting from cputime_t (timebase ticks) to
180  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
181  * These are all stored as 0.64 fixed-point binary fractions.
182  */
183 u64 __cputime_jiffies_factor;
184 EXPORT_SYMBOL(__cputime_jiffies_factor);
185 u64 __cputime_msec_factor;
186 EXPORT_SYMBOL(__cputime_msec_factor);
187 u64 __cputime_sec_factor;
188 EXPORT_SYMBOL(__cputime_sec_factor);
189 u64 __cputime_clockt_factor;
190 EXPORT_SYMBOL(__cputime_clockt_factor);
191 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
192 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
193 
calc_cputime_factors(void)194 static void calc_cputime_factors(void)
195 {
196 	struct div_result res;
197 
198 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
199 	__cputime_jiffies_factor = res.result_low;
200 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
201 	__cputime_msec_factor = res.result_low;
202 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
203 	__cputime_sec_factor = res.result_low;
204 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
205 	__cputime_clockt_factor = res.result_low;
206 }
207 
208 /*
209  * Read the PURR on systems that have it, otherwise the timebase.
210  */
read_purr(void)211 static u64 read_purr(void)
212 {
213 	if (cpu_has_feature(CPU_FTR_PURR))
214 		return mfspr(SPRN_PURR);
215 	return mftb();
216 }
217 
218 /*
219  * Read the SPURR on systems that have it, otherwise the purr
220  */
read_spurr(u64 purr)221 static u64 read_spurr(u64 purr)
222 {
223 	/*
224 	 * cpus without PURR won't have a SPURR
225 	 * We already know the former when we use this, so tell gcc
226 	 */
227 	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
228 		return mfspr(SPRN_SPURR);
229 	return purr;
230 }
231 
232 /*
233  * Account time for a transition between system, hard irq
234  * or soft irq state.
235  */
account_system_vtime(struct task_struct * tsk)236 void account_system_vtime(struct task_struct *tsk)
237 {
238 	u64 now, nowscaled, delta, deltascaled, sys_time;
239 	unsigned long flags;
240 
241 	local_irq_save(flags);
242 	now = read_purr();
243 	nowscaled = read_spurr(now);
244 	delta = now - get_paca()->startpurr;
245 	deltascaled = nowscaled - get_paca()->startspurr;
246 	get_paca()->startpurr = now;
247 	get_paca()->startspurr = nowscaled;
248 	if (!in_interrupt()) {
249 		/* deltascaled includes both user and system time.
250 		 * Hence scale it based on the purr ratio to estimate
251 		 * the system time */
252 		sys_time = get_paca()->system_time;
253 		if (get_paca()->user_time)
254 			deltascaled = deltascaled * sys_time /
255 			     (sys_time + get_paca()->user_time);
256 		delta += sys_time;
257 		get_paca()->system_time = 0;
258 	}
259 	if (in_irq() || idle_task(smp_processor_id()) != tsk)
260 		account_system_time(tsk, 0, delta, deltascaled);
261 	else
262 		account_idle_time(delta);
263 	per_cpu(cputime_last_delta, smp_processor_id()) = delta;
264 	per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
265 	local_irq_restore(flags);
266 }
267 
268 /*
269  * Transfer the user and system times accumulated in the paca
270  * by the exception entry and exit code to the generic process
271  * user and system time records.
272  * Must be called with interrupts disabled.
273  */
account_process_tick(struct task_struct * tsk,int user_tick)274 void account_process_tick(struct task_struct *tsk, int user_tick)
275 {
276 	cputime_t utime, utimescaled;
277 
278 	utime = get_paca()->user_time;
279 	get_paca()->user_time = 0;
280 	utimescaled = cputime_to_scaled(utime);
281 	account_user_time(tsk, utime, utimescaled);
282 }
283 
284 /*
285  * Stuff for accounting stolen time.
286  */
287 struct cpu_purr_data {
288 	int	initialized;			/* thread is running */
289 	u64	tb;			/* last TB value read */
290 	u64	purr;			/* last PURR value read */
291 	u64	spurr;			/* last SPURR value read */
292 };
293 
294 /*
295  * Each entry in the cpu_purr_data array is manipulated only by its
296  * "owner" cpu -- usually in the timer interrupt but also occasionally
297  * in process context for cpu online.  As long as cpus do not touch
298  * each others' cpu_purr_data, disabling local interrupts is
299  * sufficient to serialize accesses.
300  */
301 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
302 
snapshot_tb_and_purr(void * data)303 static void snapshot_tb_and_purr(void *data)
304 {
305 	unsigned long flags;
306 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
307 
308 	local_irq_save(flags);
309 	p->tb = get_tb_or_rtc();
310 	p->purr = mfspr(SPRN_PURR);
311 	wmb();
312 	p->initialized = 1;
313 	local_irq_restore(flags);
314 }
315 
316 /*
317  * Called during boot when all cpus have come up.
318  */
snapshot_timebases(void)319 void snapshot_timebases(void)
320 {
321 	if (!cpu_has_feature(CPU_FTR_PURR))
322 		return;
323 	on_each_cpu(snapshot_tb_and_purr, NULL, 1);
324 }
325 
326 /*
327  * Must be called with interrupts disabled.
328  */
calculate_steal_time(void)329 void calculate_steal_time(void)
330 {
331 	u64 tb, purr;
332 	s64 stolen;
333 	struct cpu_purr_data *pme;
334 
335 	pme = &__get_cpu_var(cpu_purr_data);
336 	if (!pme->initialized)
337 		return;		/* !CPU_FTR_PURR or early in early boot */
338 	tb = mftb();
339 	purr = mfspr(SPRN_PURR);
340 	stolen = (tb - pme->tb) - (purr - pme->purr);
341 	if (stolen > 0) {
342 		if (idle_task(smp_processor_id()) != current)
343 			account_steal_time(stolen);
344 		else
345 			account_idle_time(stolen);
346 	}
347 	pme->tb = tb;
348 	pme->purr = purr;
349 }
350 
351 #ifdef CONFIG_PPC_SPLPAR
352 /*
353  * Must be called before the cpu is added to the online map when
354  * a cpu is being brought up at runtime.
355  */
snapshot_purr(void)356 static void snapshot_purr(void)
357 {
358 	struct cpu_purr_data *pme;
359 	unsigned long flags;
360 
361 	if (!cpu_has_feature(CPU_FTR_PURR))
362 		return;
363 	local_irq_save(flags);
364 	pme = &__get_cpu_var(cpu_purr_data);
365 	pme->tb = mftb();
366 	pme->purr = mfspr(SPRN_PURR);
367 	pme->initialized = 1;
368 	local_irq_restore(flags);
369 }
370 
371 #endif /* CONFIG_PPC_SPLPAR */
372 
373 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
374 #define calc_cputime_factors()
375 #define calculate_steal_time()		do { } while (0)
376 #endif
377 
378 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
379 #define snapshot_purr()			do { } while (0)
380 #endif
381 
382 /*
383  * Called when a cpu comes up after the system has finished booting,
384  * i.e. as a result of a hotplug cpu action.
385  */
snapshot_timebase(void)386 void snapshot_timebase(void)
387 {
388 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
389 	snapshot_purr();
390 }
391 
__delay(unsigned long loops)392 void __delay(unsigned long loops)
393 {
394 	unsigned long start;
395 	int diff;
396 
397 	if (__USE_RTC()) {
398 		start = get_rtcl();
399 		do {
400 			/* the RTCL register wraps at 1000000000 */
401 			diff = get_rtcl() - start;
402 			if (diff < 0)
403 				diff += 1000000000;
404 		} while (diff < loops);
405 	} else {
406 		start = get_tbl();
407 		while (get_tbl() - start < loops)
408 			HMT_low();
409 		HMT_medium();
410 	}
411 }
412 EXPORT_SYMBOL(__delay);
413 
udelay(unsigned long usecs)414 void udelay(unsigned long usecs)
415 {
416 	__delay(tb_ticks_per_usec * usecs);
417 }
418 EXPORT_SYMBOL(udelay);
419 
update_gtod(u64 new_tb_stamp,u64 new_stamp_xsec,u64 new_tb_to_xs)420 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
421 			       u64 new_tb_to_xs)
422 {
423 	/*
424 	 * tb_update_count is used to allow the userspace gettimeofday code
425 	 * to assure itself that it sees a consistent view of the tb_to_xs and
426 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
427 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
428 	 * the two values of tb_update_count match and are even then the
429 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
430 	 * loops back and reads them again until this criteria is met.
431 	 * We expect the caller to have done the first increment of
432 	 * vdso_data->tb_update_count already.
433 	 */
434 	vdso_data->tb_orig_stamp = new_tb_stamp;
435 	vdso_data->stamp_xsec = new_stamp_xsec;
436 	vdso_data->tb_to_xs = new_tb_to_xs;
437 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
438 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
439 	vdso_data->stamp_xtime = xtime;
440 	smp_wmb();
441 	++(vdso_data->tb_update_count);
442 }
443 
444 #ifdef CONFIG_SMP
profile_pc(struct pt_regs * regs)445 unsigned long profile_pc(struct pt_regs *regs)
446 {
447 	unsigned long pc = instruction_pointer(regs);
448 
449 	if (in_lock_functions(pc))
450 		return regs->link;
451 
452 	return pc;
453 }
454 EXPORT_SYMBOL(profile_pc);
455 #endif
456 
457 #ifdef CONFIG_PPC_ISERIES
458 
459 /*
460  * This function recalibrates the timebase based on the 49-bit time-of-day
461  * value in the Titan chip.  The Titan is much more accurate than the value
462  * returned by the service processor for the timebase frequency.
463  */
464 
iSeries_tb_recal(void)465 static int __init iSeries_tb_recal(void)
466 {
467 	struct div_result divres;
468 	unsigned long titan, tb;
469 
470 	/* Make sure we only run on iSeries */
471 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
472 		return -ENODEV;
473 
474 	tb = get_tb();
475 	titan = HvCallXm_loadTod();
476 	if ( iSeries_recal_titan ) {
477 		unsigned long tb_ticks = tb - iSeries_recal_tb;
478 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
479 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
480 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
481 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
482 		char sign = '+';
483 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
484 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
485 
486 		if ( tick_diff < 0 ) {
487 			tick_diff = -tick_diff;
488 			sign = '-';
489 		}
490 		if ( tick_diff ) {
491 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
492 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
493 						new_tb_ticks_per_jiffy, sign, tick_diff );
494 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
495 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
496 				calc_cputime_factors();
497 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
498 				tb_to_xs = divres.result_low;
499 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
500 				vdso_data->tb_to_xs = tb_to_xs;
501 			}
502 			else {
503 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
504 					"                   new tb_ticks_per_jiffy = %lu\n"
505 					"                   old tb_ticks_per_jiffy = %lu\n",
506 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
507 			}
508 		}
509 	}
510 	iSeries_recal_titan = titan;
511 	iSeries_recal_tb = tb;
512 
513 	/* Called here as now we know accurate values for the timebase */
514 	clocksource_init();
515 	return 0;
516 }
517 late_initcall(iSeries_tb_recal);
518 
519 /* Called from platform early init */
iSeries_time_init_early(void)520 void __init iSeries_time_init_early(void)
521 {
522 	iSeries_recal_tb = get_tb();
523 	iSeries_recal_titan = HvCallXm_loadTod();
524 }
525 #endif /* CONFIG_PPC_ISERIES */
526 
527 /*
528  * For iSeries shared processors, we have to let the hypervisor
529  * set the hardware decrementer.  We set a virtual decrementer
530  * in the lppaca and call the hypervisor if the virtual
531  * decrementer is less than the current value in the hardware
532  * decrementer. (almost always the new decrementer value will
533  * be greater than the current hardware decementer so the hypervisor
534  * call will not be needed)
535  */
536 
537 /*
538  * timer_interrupt - gets called when the decrementer overflows,
539  * with interrupts disabled.
540  */
timer_interrupt(struct pt_regs * regs)541 void timer_interrupt(struct pt_regs * regs)
542 {
543 	struct pt_regs *old_regs;
544 	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
545 	struct clock_event_device *evt = &decrementer->event;
546 	u64 now;
547 
548 	/* Ensure a positive value is written to the decrementer, or else
549 	 * some CPUs will continuue to take decrementer exceptions */
550 	set_dec(DECREMENTER_MAX);
551 
552 #ifdef CONFIG_PPC32
553 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
554 		do_IRQ(regs);
555 #endif
556 
557 	now = get_tb_or_rtc();
558 	if (now < decrementer->next_tb) {
559 		/* not time for this event yet */
560 		now = decrementer->next_tb - now;
561 		if (now <= DECREMENTER_MAX)
562 			set_dec((int)now);
563 		return;
564 	}
565 	old_regs = set_irq_regs(regs);
566 	irq_enter();
567 
568 	calculate_steal_time();
569 
570 #ifdef CONFIG_PPC_ISERIES
571 	if (firmware_has_feature(FW_FEATURE_ISERIES))
572 		get_lppaca()->int_dword.fields.decr_int = 0;
573 #endif
574 
575 	if (evt->event_handler)
576 		evt->event_handler(evt);
577 
578 #ifdef CONFIG_PPC_ISERIES
579 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
580 		process_hvlpevents();
581 #endif
582 
583 #ifdef CONFIG_PPC64
584 	/* collect purr register values often, for accurate calculations */
585 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
586 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
587 		cu->current_tb = mfspr(SPRN_PURR);
588 	}
589 #endif
590 
591 	irq_exit();
592 	set_irq_regs(old_regs);
593 }
594 
wakeup_decrementer(void)595 void wakeup_decrementer(void)
596 {
597 	unsigned long ticks;
598 
599 	/*
600 	 * The timebase gets saved on sleep and restored on wakeup,
601 	 * so all we need to do is to reset the decrementer.
602 	 */
603 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
604 	if (ticks < tb_ticks_per_jiffy)
605 		ticks = tb_ticks_per_jiffy - ticks;
606 	else
607 		ticks = 1;
608 	set_dec(ticks);
609 }
610 
611 #ifdef CONFIG_SUSPEND
generic_suspend_disable_irqs(void)612 void generic_suspend_disable_irqs(void)
613 {
614 	preempt_disable();
615 
616 	/* Disable the decrementer, so that it doesn't interfere
617 	 * with suspending.
618 	 */
619 
620 	set_dec(0x7fffffff);
621 	local_irq_disable();
622 	set_dec(0x7fffffff);
623 }
624 
generic_suspend_enable_irqs(void)625 void generic_suspend_enable_irqs(void)
626 {
627 	wakeup_decrementer();
628 
629 	local_irq_enable();
630 	preempt_enable();
631 }
632 
633 /* Overrides the weak version in kernel/power/main.c */
arch_suspend_disable_irqs(void)634 void arch_suspend_disable_irqs(void)
635 {
636 	if (ppc_md.suspend_disable_irqs)
637 		ppc_md.suspend_disable_irqs();
638 	generic_suspend_disable_irqs();
639 }
640 
641 /* Overrides the weak version in kernel/power/main.c */
arch_suspend_enable_irqs(void)642 void arch_suspend_enable_irqs(void)
643 {
644 	generic_suspend_enable_irqs();
645 	if (ppc_md.suspend_enable_irqs)
646 		ppc_md.suspend_enable_irqs();
647 }
648 #endif
649 
650 #ifdef CONFIG_SMP
smp_space_timers(unsigned int max_cpus)651 void __init smp_space_timers(unsigned int max_cpus)
652 {
653 	int i;
654 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
655 
656 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
657 	previous_tb -= tb_ticks_per_jiffy;
658 
659 	for_each_possible_cpu(i) {
660 		if (i == boot_cpuid)
661 			continue;
662 		per_cpu(last_jiffy, i) = previous_tb;
663 	}
664 }
665 #endif
666 
667 /*
668  * Scheduler clock - returns current time in nanosec units.
669  *
670  * Note: mulhdu(a, b) (multiply high double unsigned) returns
671  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
672  * are 64-bit unsigned numbers.
673  */
sched_clock(void)674 unsigned long long sched_clock(void)
675 {
676 	if (__USE_RTC())
677 		return get_rtc();
678 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
679 }
680 
get_freq(char * name,int cells,unsigned long * val)681 static int __init get_freq(char *name, int cells, unsigned long *val)
682 {
683 	struct device_node *cpu;
684 	const unsigned int *fp;
685 	int found = 0;
686 
687 	/* The cpu node should have timebase and clock frequency properties */
688 	cpu = of_find_node_by_type(NULL, "cpu");
689 
690 	if (cpu) {
691 		fp = of_get_property(cpu, name, NULL);
692 		if (fp) {
693 			found = 1;
694 			*val = of_read_ulong(fp, cells);
695 		}
696 
697 		of_node_put(cpu);
698 	}
699 
700 	return found;
701 }
702 
generic_calibrate_decr(void)703 void __init generic_calibrate_decr(void)
704 {
705 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
706 
707 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
708 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
709 
710 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
711 				"(not found)\n");
712 	}
713 
714 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
715 
716 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
717 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
718 
719 		printk(KERN_ERR "WARNING: Estimating processor frequency "
720 				"(not found)\n");
721 	}
722 
723 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
724 	/* Clear any pending timer interrupts */
725 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
726 
727 	/* Enable decrementer interrupt */
728 	mtspr(SPRN_TCR, TCR_DIE);
729 #endif
730 }
731 
update_persistent_clock(struct timespec now)732 int update_persistent_clock(struct timespec now)
733 {
734 	struct rtc_time tm;
735 
736 	if (!ppc_md.set_rtc_time)
737 		return 0;
738 
739 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
740 	tm.tm_year -= 1900;
741 	tm.tm_mon -= 1;
742 
743 	return ppc_md.set_rtc_time(&tm);
744 }
745 
read_persistent_clock(void)746 unsigned long read_persistent_clock(void)
747 {
748 	struct rtc_time tm;
749 	static int first = 1;
750 
751 	/* XXX this is a litle fragile but will work okay in the short term */
752 	if (first) {
753 		first = 0;
754 		if (ppc_md.time_init)
755 			timezone_offset = ppc_md.time_init();
756 
757 		/* get_boot_time() isn't guaranteed to be safe to call late */
758 		if (ppc_md.get_boot_time)
759 			return ppc_md.get_boot_time() -timezone_offset;
760 	}
761 	if (!ppc_md.get_rtc_time)
762 		return 0;
763 	ppc_md.get_rtc_time(&tm);
764 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
765 		      tm.tm_hour, tm.tm_min, tm.tm_sec);
766 }
767 
768 /* clocksource code */
rtc_read(void)769 static cycle_t rtc_read(void)
770 {
771 	return (cycle_t)get_rtc();
772 }
773 
timebase_read(void)774 static cycle_t timebase_read(void)
775 {
776 	return (cycle_t)get_tb();
777 }
778 
update_vsyscall(struct timespec * wall_time,struct clocksource * clock)779 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
780 {
781 	u64 t2x, stamp_xsec;
782 
783 	if (clock != &clocksource_timebase)
784 		return;
785 
786 	/* Make userspace gettimeofday spin until we're done. */
787 	++vdso_data->tb_update_count;
788 	smp_mb();
789 
790 	/* XXX this assumes clock->shift == 22 */
791 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
792 	t2x = (u64) clock->mult * 4611686018ULL;
793 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
794 	do_div(stamp_xsec, 1000000000);
795 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
796 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
797 }
798 
update_vsyscall_tz(void)799 void update_vsyscall_tz(void)
800 {
801 	/* Make userspace gettimeofday spin until we're done. */
802 	++vdso_data->tb_update_count;
803 	smp_mb();
804 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
805 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
806 	smp_mb();
807 	++vdso_data->tb_update_count;
808 }
809 
clocksource_init(void)810 static void __init clocksource_init(void)
811 {
812 	struct clocksource *clock;
813 
814 	if (__USE_RTC())
815 		clock = &clocksource_rtc;
816 	else
817 		clock = &clocksource_timebase;
818 
819 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
820 
821 	if (clocksource_register(clock)) {
822 		printk(KERN_ERR "clocksource: %s is already registered\n",
823 		       clock->name);
824 		return;
825 	}
826 
827 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
828 	       clock->name, clock->mult, clock->shift);
829 }
830 
decrementer_set_next_event(unsigned long evt,struct clock_event_device * dev)831 static int decrementer_set_next_event(unsigned long evt,
832 				      struct clock_event_device *dev)
833 {
834 	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
835 	set_dec(evt);
836 	return 0;
837 }
838 
decrementer_set_mode(enum clock_event_mode mode,struct clock_event_device * dev)839 static void decrementer_set_mode(enum clock_event_mode mode,
840 				 struct clock_event_device *dev)
841 {
842 	if (mode != CLOCK_EVT_MODE_ONESHOT)
843 		decrementer_set_next_event(DECREMENTER_MAX, dev);
844 }
845 
register_decrementer_clockevent(int cpu)846 static void register_decrementer_clockevent(int cpu)
847 {
848 	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
849 
850 	*dec = decrementer_clockevent;
851 	dec->cpumask = cpumask_of(cpu);
852 
853 	printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
854 	       dec->name, dec->mult, dec->shift, cpu);
855 
856 	clockevents_register_device(dec);
857 }
858 
init_decrementer_clockevent(void)859 static void __init init_decrementer_clockevent(void)
860 {
861 	int cpu = smp_processor_id();
862 
863 	decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
864 					     decrementer_clockevent.shift);
865 	decrementer_clockevent.max_delta_ns =
866 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
867 	decrementer_clockevent.min_delta_ns =
868 		clockevent_delta2ns(2, &decrementer_clockevent);
869 
870 	register_decrementer_clockevent(cpu);
871 }
872 
secondary_cpu_time_init(void)873 void secondary_cpu_time_init(void)
874 {
875 	/* FIME: Should make unrelatred change to move snapshot_timebase
876 	 * call here ! */
877 	register_decrementer_clockevent(smp_processor_id());
878 }
879 
880 /* This function is only called on the boot processor */
time_init(void)881 void __init time_init(void)
882 {
883 	unsigned long flags;
884 	struct div_result res;
885 	u64 scale, x;
886 	unsigned shift;
887 
888 	if (__USE_RTC()) {
889 		/* 601 processor: dec counts down by 128 every 128ns */
890 		ppc_tb_freq = 1000000000;
891 		tb_last_jiffy = get_rtcl();
892 	} else {
893 		/* Normal PowerPC with timebase register */
894 		ppc_md.calibrate_decr();
895 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
896 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
897 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
898 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
899 		tb_last_jiffy = get_tb();
900 	}
901 
902 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
903 	tb_ticks_per_sec = ppc_tb_freq;
904 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
905 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
906 	calc_cputime_factors();
907 
908 	/*
909 	 * Calculate the length of each tick in ns.  It will not be
910 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
911 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
912 	 * rounded up.
913 	 */
914 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
915 	do_div(x, ppc_tb_freq);
916 	tick_nsec = x;
917 	last_tick_len = x << TICKLEN_SCALE;
918 
919 	/*
920 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
921 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
922 	 * It is computed as:
923 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
924 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
925 	 * which turns out to be N = 51 - SHIFT_HZ.
926 	 * This gives the result as a 0.64 fixed-point fraction.
927 	 * That value is reduced by an offset amounting to 1 xsec per
928 	 * 2^31 timebase ticks to avoid problems with time going backwards
929 	 * by 1 xsec when we do timer_recalc_offset due to losing the
930 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
931 	 * since there are 2^20 xsec in a second.
932 	 */
933 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
934 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
935 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
936 	ticklen_to_xs = res.result_low;
937 
938 	/* Compute tb_to_xs from tick_nsec */
939 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
940 
941 	/*
942 	 * Compute scale factor for sched_clock.
943 	 * The calibrate_decr() function has set tb_ticks_per_sec,
944 	 * which is the timebase frequency.
945 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
946 	 * the 128-bit result as a 64.64 fixed-point number.
947 	 * We then shift that number right until it is less than 1.0,
948 	 * giving us the scale factor and shift count to use in
949 	 * sched_clock().
950 	 */
951 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
952 	scale = res.result_low;
953 	for (shift = 0; res.result_high != 0; ++shift) {
954 		scale = (scale >> 1) | (res.result_high << 63);
955 		res.result_high >>= 1;
956 	}
957 	tb_to_ns_scale = scale;
958 	tb_to_ns_shift = shift;
959 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
960 	boot_tb = get_tb_or_rtc();
961 
962 	write_seqlock_irqsave(&xtime_lock, flags);
963 
964 	/* If platform provided a timezone (pmac), we correct the time */
965         if (timezone_offset) {
966 		sys_tz.tz_minuteswest = -timezone_offset / 60;
967 		sys_tz.tz_dsttime = 0;
968         }
969 
970 	vdso_data->tb_orig_stamp = tb_last_jiffy;
971 	vdso_data->tb_update_count = 0;
972 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
973 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
974 	vdso_data->tb_to_xs = tb_to_xs;
975 
976 	write_sequnlock_irqrestore(&xtime_lock, flags);
977 
978 	/* Register the clocksource, if we're not running on iSeries */
979 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
980 		clocksource_init();
981 
982 	init_decrementer_clockevent();
983 }
984 
985 
986 #define FEBRUARY	2
987 #define	STARTOFTIME	1970
988 #define SECDAY		86400L
989 #define SECYR		(SECDAY * 365)
990 #define	leapyear(year)		((year) % 4 == 0 && \
991 				 ((year) % 100 != 0 || (year) % 400 == 0))
992 #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
993 #define	days_in_month(a) 	(month_days[(a) - 1])
994 
995 static int month_days[12] = {
996 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
997 };
998 
999 /*
1000  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1001  */
GregorianDay(struct rtc_time * tm)1002 void GregorianDay(struct rtc_time * tm)
1003 {
1004 	int leapsToDate;
1005 	int lastYear;
1006 	int day;
1007 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1008 
1009 	lastYear = tm->tm_year - 1;
1010 
1011 	/*
1012 	 * Number of leap corrections to apply up to end of last year
1013 	 */
1014 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1015 
1016 	/*
1017 	 * This year is a leap year if it is divisible by 4 except when it is
1018 	 * divisible by 100 unless it is divisible by 400
1019 	 *
1020 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1021 	 */
1022 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1023 
1024 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1025 		   tm->tm_mday;
1026 
1027 	tm->tm_wday = day % 7;
1028 }
1029 
to_tm(int tim,struct rtc_time * tm)1030 void to_tm(int tim, struct rtc_time * tm)
1031 {
1032 	register int    i;
1033 	register long   hms, day;
1034 
1035 	day = tim / SECDAY;
1036 	hms = tim % SECDAY;
1037 
1038 	/* Hours, minutes, seconds are easy */
1039 	tm->tm_hour = hms / 3600;
1040 	tm->tm_min = (hms % 3600) / 60;
1041 	tm->tm_sec = (hms % 3600) % 60;
1042 
1043 	/* Number of years in days */
1044 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
1045 		day -= days_in_year(i);
1046 	tm->tm_year = i;
1047 
1048 	/* Number of months in days left */
1049 	if (leapyear(tm->tm_year))
1050 		days_in_month(FEBRUARY) = 29;
1051 	for (i = 1; day >= days_in_month(i); i++)
1052 		day -= days_in_month(i);
1053 	days_in_month(FEBRUARY) = 28;
1054 	tm->tm_mon = i;
1055 
1056 	/* Days are what is left over (+1) from all that. */
1057 	tm->tm_mday = day + 1;
1058 
1059 	/*
1060 	 * Determine the day of week
1061 	 */
1062 	GregorianDay(tm);
1063 }
1064 
1065 /* Auxiliary function to compute scaling factors */
1066 /* Actually the choice of a timebase running at 1/4 the of the bus
1067  * frequency giving resolution of a few tens of nanoseconds is quite nice.
1068  * It makes this computation very precise (27-28 bits typically) which
1069  * is optimistic considering the stability of most processor clock
1070  * oscillators and the precision with which the timebase frequency
1071  * is measured but does not harm.
1072  */
mulhwu_scale_factor(unsigned inscale,unsigned outscale)1073 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1074 {
1075         unsigned mlt=0, tmp, err;
1076         /* No concern for performance, it's done once: use a stupid
1077          * but safe and compact method to find the multiplier.
1078          */
1079 
1080         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1081                 if (mulhwu(inscale, mlt|tmp) < outscale)
1082 			mlt |= tmp;
1083         }
1084 
1085         /* We might still be off by 1 for the best approximation.
1086          * A side effect of this is that if outscale is too large
1087          * the returned value will be zero.
1088          * Many corner cases have been checked and seem to work,
1089          * some might have been forgotten in the test however.
1090          */
1091 
1092         err = inscale * (mlt+1);
1093         if (err <= inscale/2)
1094 		mlt++;
1095         return mlt;
1096 }
1097 
1098 /*
1099  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1100  * result.
1101  */
div128_by_32(u64 dividend_high,u64 dividend_low,unsigned divisor,struct div_result * dr)1102 void div128_by_32(u64 dividend_high, u64 dividend_low,
1103 		  unsigned divisor, struct div_result *dr)
1104 {
1105 	unsigned long a, b, c, d;
1106 	unsigned long w, x, y, z;
1107 	u64 ra, rb, rc;
1108 
1109 	a = dividend_high >> 32;
1110 	b = dividend_high & 0xffffffff;
1111 	c = dividend_low >> 32;
1112 	d = dividend_low & 0xffffffff;
1113 
1114 	w = a / divisor;
1115 	ra = ((u64)(a - (w * divisor)) << 32) + b;
1116 
1117 	rb = ((u64) do_div(ra, divisor) << 32) + c;
1118 	x = ra;
1119 
1120 	rc = ((u64) do_div(rb, divisor) << 32) + d;
1121 	y = rb;
1122 
1123 	do_div(rc, divisor);
1124 	z = rc;
1125 
1126 	dr->result_high = ((u64)w << 32) + x;
1127 	dr->result_low  = ((u64)y << 32) + z;
1128 
1129 }
1130