• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	Andrew Morton
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/bio.h>
20 #include <linux/fs.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/highmem.h>
24 #include <linux/prefetch.h>
25 #include <linux/mpage.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 
30 /*
31  * I/O completion handler for multipage BIOs.
32  *
33  * The mpage code never puts partial pages into a BIO (except for end-of-file).
34  * If a page does not map to a contiguous run of blocks then it simply falls
35  * back to block_read_full_page().
36  *
37  * Why is this?  If a page's completion depends on a number of different BIOs
38  * which can complete in any order (or at the same time) then determining the
39  * status of that page is hard.  See end_buffer_async_read() for the details.
40  * There is no point in duplicating all that complexity.
41  */
mpage_end_io_read(struct bio * bio,int err)42 static void mpage_end_io_read(struct bio *bio, int err)
43 {
44 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
45 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
46 
47 	do {
48 		struct page *page = bvec->bv_page;
49 
50 		if (--bvec >= bio->bi_io_vec)
51 			prefetchw(&bvec->bv_page->flags);
52 
53 		if (uptodate) {
54 			SetPageUptodate(page);
55 		} else {
56 			ClearPageUptodate(page);
57 			SetPageError(page);
58 		}
59 		unlock_page(page);
60 	} while (bvec >= bio->bi_io_vec);
61 	bio_put(bio);
62 }
63 
mpage_end_io_write(struct bio * bio,int err)64 static void mpage_end_io_write(struct bio *bio, int err)
65 {
66 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
67 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
68 
69 	do {
70 		struct page *page = bvec->bv_page;
71 
72 		if (--bvec >= bio->bi_io_vec)
73 			prefetchw(&bvec->bv_page->flags);
74 
75 		if (!uptodate){
76 			SetPageError(page);
77 			if (page->mapping)
78 				set_bit(AS_EIO, &page->mapping->flags);
79 		}
80 		end_page_writeback(page);
81 	} while (bvec >= bio->bi_io_vec);
82 	bio_put(bio);
83 }
84 
mpage_bio_submit(int rw,struct bio * bio)85 struct bio *mpage_bio_submit(int rw, struct bio *bio)
86 {
87 	bio->bi_end_io = mpage_end_io_read;
88 	if (rw == WRITE)
89 		bio->bi_end_io = mpage_end_io_write;
90 	submit_bio(rw, bio);
91 	return NULL;
92 }
93 EXPORT_SYMBOL(mpage_bio_submit);
94 
95 static struct bio *
mpage_alloc(struct block_device * bdev,sector_t first_sector,int nr_vecs,gfp_t gfp_flags)96 mpage_alloc(struct block_device *bdev,
97 		sector_t first_sector, int nr_vecs,
98 		gfp_t gfp_flags)
99 {
100 	struct bio *bio;
101 
102 	bio = bio_alloc(gfp_flags, nr_vecs);
103 
104 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
105 		while (!bio && (nr_vecs /= 2))
106 			bio = bio_alloc(gfp_flags, nr_vecs);
107 	}
108 
109 	if (bio) {
110 		bio->bi_bdev = bdev;
111 		bio->bi_sector = first_sector;
112 	}
113 	return bio;
114 }
115 
116 /*
117  * support function for mpage_readpages.  The fs supplied get_block might
118  * return an up to date buffer.  This is used to map that buffer into
119  * the page, which allows readpage to avoid triggering a duplicate call
120  * to get_block.
121  *
122  * The idea is to avoid adding buffers to pages that don't already have
123  * them.  So when the buffer is up to date and the page size == block size,
124  * this marks the page up to date instead of adding new buffers.
125  */
126 static void
map_buffer_to_page(struct page * page,struct buffer_head * bh,int page_block)127 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
128 {
129 	struct inode *inode = page->mapping->host;
130 	struct buffer_head *page_bh, *head;
131 	int block = 0;
132 
133 	if (!page_has_buffers(page)) {
134 		/*
135 		 * don't make any buffers if there is only one buffer on
136 		 * the page and the page just needs to be set up to date
137 		 */
138 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
139 		    buffer_uptodate(bh)) {
140 			SetPageUptodate(page);
141 			return;
142 		}
143 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
144 	}
145 	head = page_buffers(page);
146 	page_bh = head;
147 	do {
148 		if (block == page_block) {
149 			page_bh->b_state = bh->b_state;
150 			page_bh->b_bdev = bh->b_bdev;
151 			page_bh->b_blocknr = bh->b_blocknr;
152 			break;
153 		}
154 		page_bh = page_bh->b_this_page;
155 		block++;
156 	} while (page_bh != head);
157 }
158 
159 /*
160  * This is the worker routine which does all the work of mapping the disk
161  * blocks and constructs largest possible bios, submits them for IO if the
162  * blocks are not contiguous on the disk.
163  *
164  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
165  * represent the validity of its disk mapping and to decide when to do the next
166  * get_block() call.
167  */
168 static struct bio *
do_mpage_readpage(struct bio * bio,struct page * page,unsigned nr_pages,sector_t * last_block_in_bio,struct buffer_head * map_bh,unsigned long * first_logical_block,get_block_t get_block)169 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
170 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
171 		unsigned long *first_logical_block, get_block_t get_block)
172 {
173 	struct inode *inode = page->mapping->host;
174 	const unsigned blkbits = inode->i_blkbits;
175 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
176 	const unsigned blocksize = 1 << blkbits;
177 	sector_t block_in_file;
178 	sector_t last_block;
179 	sector_t last_block_in_file;
180 	sector_t blocks[MAX_BUF_PER_PAGE];
181 	unsigned page_block;
182 	unsigned first_hole = blocks_per_page;
183 	struct block_device *bdev = NULL;
184 	int length;
185 	int fully_mapped = 1;
186 	unsigned nblocks;
187 	unsigned relative_block;
188 
189 	if (page_has_buffers(page))
190 		goto confused;
191 
192 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
193 	last_block = block_in_file + nr_pages * blocks_per_page;
194 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
195 	if (last_block > last_block_in_file)
196 		last_block = last_block_in_file;
197 	page_block = 0;
198 
199 	/*
200 	 * Map blocks using the result from the previous get_blocks call first.
201 	 */
202 	nblocks = map_bh->b_size >> blkbits;
203 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
204 			block_in_file < (*first_logical_block + nblocks)) {
205 		unsigned map_offset = block_in_file - *first_logical_block;
206 		unsigned last = nblocks - map_offset;
207 
208 		for (relative_block = 0; ; relative_block++) {
209 			if (relative_block == last) {
210 				clear_buffer_mapped(map_bh);
211 				break;
212 			}
213 			if (page_block == blocks_per_page)
214 				break;
215 			blocks[page_block] = map_bh->b_blocknr + map_offset +
216 						relative_block;
217 			page_block++;
218 			block_in_file++;
219 		}
220 		bdev = map_bh->b_bdev;
221 	}
222 
223 	/*
224 	 * Then do more get_blocks calls until we are done with this page.
225 	 */
226 	map_bh->b_page = page;
227 	while (page_block < blocks_per_page) {
228 		map_bh->b_state = 0;
229 		map_bh->b_size = 0;
230 
231 		if (block_in_file < last_block) {
232 			map_bh->b_size = (last_block-block_in_file) << blkbits;
233 			if (get_block(inode, block_in_file, map_bh, 0))
234 				goto confused;
235 			*first_logical_block = block_in_file;
236 		}
237 
238 		if (!buffer_mapped(map_bh)) {
239 			fully_mapped = 0;
240 			if (first_hole == blocks_per_page)
241 				first_hole = page_block;
242 			page_block++;
243 			block_in_file++;
244 			continue;
245 		}
246 
247 		/* some filesystems will copy data into the page during
248 		 * the get_block call, in which case we don't want to
249 		 * read it again.  map_buffer_to_page copies the data
250 		 * we just collected from get_block into the page's buffers
251 		 * so readpage doesn't have to repeat the get_block call
252 		 */
253 		if (buffer_uptodate(map_bh)) {
254 			map_buffer_to_page(page, map_bh, page_block);
255 			goto confused;
256 		}
257 
258 		if (first_hole != blocks_per_page)
259 			goto confused;		/* hole -> non-hole */
260 
261 		/* Contiguous blocks? */
262 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
263 			goto confused;
264 		nblocks = map_bh->b_size >> blkbits;
265 		for (relative_block = 0; ; relative_block++) {
266 			if (relative_block == nblocks) {
267 				clear_buffer_mapped(map_bh);
268 				break;
269 			} else if (page_block == blocks_per_page)
270 				break;
271 			blocks[page_block] = map_bh->b_blocknr+relative_block;
272 			page_block++;
273 			block_in_file++;
274 		}
275 		bdev = map_bh->b_bdev;
276 	}
277 
278 	if (first_hole != blocks_per_page) {
279 		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
280 		if (first_hole == 0) {
281 			SetPageUptodate(page);
282 			unlock_page(page);
283 			goto out;
284 		}
285 	} else if (fully_mapped) {
286 		SetPageMappedToDisk(page);
287 	}
288 
289 	/*
290 	 * This page will go to BIO.  Do we need to send this BIO off first?
291 	 */
292 	if (bio && (*last_block_in_bio != blocks[0] - 1))
293 		bio = mpage_bio_submit(READ, bio);
294 
295 alloc_new:
296 	if (bio == NULL) {
297 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
298 			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
299 				GFP_KERNEL);
300 		if (bio == NULL)
301 			goto confused;
302 	}
303 
304 	length = first_hole << blkbits;
305 	if (bio_add_page(bio, page, length, 0) < length) {
306 		bio = mpage_bio_submit(READ, bio);
307 		goto alloc_new;
308 	}
309 
310 	relative_block = block_in_file - *first_logical_block;
311 	nblocks = map_bh->b_size >> blkbits;
312 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
313 	    (first_hole != blocks_per_page))
314 		bio = mpage_bio_submit(READ, bio);
315 	else
316 		*last_block_in_bio = blocks[blocks_per_page - 1];
317 out:
318 	return bio;
319 
320 confused:
321 	if (bio)
322 		bio = mpage_bio_submit(READ, bio);
323 	if (!PageUptodate(page))
324 	        block_read_full_page(page, get_block);
325 	else
326 		unlock_page(page);
327 	goto out;
328 }
329 
330 /**
331  * mpage_readpages - populate an address space with some pages & start reads against them
332  * @mapping: the address_space
333  * @pages: The address of a list_head which contains the target pages.  These
334  *   pages have their ->index populated and are otherwise uninitialised.
335  *   The page at @pages->prev has the lowest file offset, and reads should be
336  *   issued in @pages->prev to @pages->next order.
337  * @nr_pages: The number of pages at *@pages
338  * @get_block: The filesystem's block mapper function.
339  *
340  * This function walks the pages and the blocks within each page, building and
341  * emitting large BIOs.
342  *
343  * If anything unusual happens, such as:
344  *
345  * - encountering a page which has buffers
346  * - encountering a page which has a non-hole after a hole
347  * - encountering a page with non-contiguous blocks
348  *
349  * then this code just gives up and calls the buffer_head-based read function.
350  * It does handle a page which has holes at the end - that is a common case:
351  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
352  *
353  * BH_Boundary explanation:
354  *
355  * There is a problem.  The mpage read code assembles several pages, gets all
356  * their disk mappings, and then submits them all.  That's fine, but obtaining
357  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
358  *
359  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
360  * submitted in the following order:
361  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
362  *
363  * because the indirect block has to be read to get the mappings of blocks
364  * 13,14,15,16.  Obviously, this impacts performance.
365  *
366  * So what we do it to allow the filesystem's get_block() function to set
367  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
368  * after this one will require I/O against a block which is probably close to
369  * this one.  So you should push what I/O you have currently accumulated.
370  *
371  * This all causes the disk requests to be issued in the correct order.
372  */
373 int
mpage_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages,get_block_t get_block)374 mpage_readpages(struct address_space *mapping, struct list_head *pages,
375 				unsigned nr_pages, get_block_t get_block)
376 {
377 	struct bio *bio = NULL;
378 	unsigned page_idx;
379 	sector_t last_block_in_bio = 0;
380 	struct buffer_head map_bh;
381 	unsigned long first_logical_block = 0;
382 
383 	clear_buffer_mapped(&map_bh);
384 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
385 		struct page *page = list_entry(pages->prev, struct page, lru);
386 
387 		prefetchw(&page->flags);
388 		list_del(&page->lru);
389 		if (!add_to_page_cache_lru(page, mapping,
390 					page->index, GFP_KERNEL)) {
391 			bio = do_mpage_readpage(bio, page,
392 					nr_pages - page_idx,
393 					&last_block_in_bio, &map_bh,
394 					&first_logical_block,
395 					get_block);
396 		}
397 		page_cache_release(page);
398 	}
399 	BUG_ON(!list_empty(pages));
400 	if (bio)
401 		mpage_bio_submit(READ, bio);
402 	return 0;
403 }
404 EXPORT_SYMBOL(mpage_readpages);
405 
406 /*
407  * This isn't called much at all
408  */
mpage_readpage(struct page * page,get_block_t get_block)409 int mpage_readpage(struct page *page, get_block_t get_block)
410 {
411 	struct bio *bio = NULL;
412 	sector_t last_block_in_bio = 0;
413 	struct buffer_head map_bh;
414 	unsigned long first_logical_block = 0;
415 
416 	clear_buffer_mapped(&map_bh);
417 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
418 			&map_bh, &first_logical_block, get_block);
419 	if (bio)
420 		mpage_bio_submit(READ, bio);
421 	return 0;
422 }
423 EXPORT_SYMBOL(mpage_readpage);
424 
425 /*
426  * Writing is not so simple.
427  *
428  * If the page has buffers then they will be used for obtaining the disk
429  * mapping.  We only support pages which are fully mapped-and-dirty, with a
430  * special case for pages which are unmapped at the end: end-of-file.
431  *
432  * If the page has no buffers (preferred) then the page is mapped here.
433  *
434  * If all blocks are found to be contiguous then the page can go into the
435  * BIO.  Otherwise fall back to the mapping's writepage().
436  *
437  * FIXME: This code wants an estimate of how many pages are still to be
438  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
439  * just allocate full-size (16-page) BIOs.
440  */
441 
__mpage_writepage(struct page * page,struct writeback_control * wbc,void * data)442 int __mpage_writepage(struct page *page, struct writeback_control *wbc,
443 		      void *data)
444 {
445 	struct mpage_data *mpd = data;
446 	struct bio *bio = mpd->bio;
447 	struct address_space *mapping = page->mapping;
448 	struct inode *inode = page->mapping->host;
449 	const unsigned blkbits = inode->i_blkbits;
450 	unsigned long end_index;
451 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
452 	sector_t last_block;
453 	sector_t block_in_file;
454 	sector_t blocks[MAX_BUF_PER_PAGE];
455 	unsigned page_block;
456 	unsigned first_unmapped = blocks_per_page;
457 	struct block_device *bdev = NULL;
458 	int boundary = 0;
459 	sector_t boundary_block = 0;
460 	struct block_device *boundary_bdev = NULL;
461 	int length;
462 	struct buffer_head map_bh;
463 	loff_t i_size = i_size_read(inode);
464 	int ret = 0;
465 
466 	if (page_has_buffers(page)) {
467 		struct buffer_head *head = page_buffers(page);
468 		struct buffer_head *bh = head;
469 
470 		/* If they're all mapped and dirty, do it */
471 		page_block = 0;
472 		do {
473 			BUG_ON(buffer_locked(bh));
474 			if (!buffer_mapped(bh)) {
475 				/*
476 				 * unmapped dirty buffers are created by
477 				 * __set_page_dirty_buffers -> mmapped data
478 				 */
479 				if (buffer_dirty(bh))
480 					goto confused;
481 				if (first_unmapped == blocks_per_page)
482 					first_unmapped = page_block;
483 				continue;
484 			}
485 
486 			if (first_unmapped != blocks_per_page)
487 				goto confused;	/* hole -> non-hole */
488 
489 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
490 				goto confused;
491 			if (page_block) {
492 				if (bh->b_blocknr != blocks[page_block-1] + 1)
493 					goto confused;
494 			}
495 			blocks[page_block++] = bh->b_blocknr;
496 			boundary = buffer_boundary(bh);
497 			if (boundary) {
498 				boundary_block = bh->b_blocknr;
499 				boundary_bdev = bh->b_bdev;
500 			}
501 			bdev = bh->b_bdev;
502 		} while ((bh = bh->b_this_page) != head);
503 
504 		if (first_unmapped)
505 			goto page_is_mapped;
506 
507 		/*
508 		 * Page has buffers, but they are all unmapped. The page was
509 		 * created by pagein or read over a hole which was handled by
510 		 * block_read_full_page().  If this address_space is also
511 		 * using mpage_readpages then this can rarely happen.
512 		 */
513 		goto confused;
514 	}
515 
516 	/*
517 	 * The page has no buffers: map it to disk
518 	 */
519 	BUG_ON(!PageUptodate(page));
520 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
521 	last_block = (i_size - 1) >> blkbits;
522 	map_bh.b_page = page;
523 	for (page_block = 0; page_block < blocks_per_page; ) {
524 
525 		map_bh.b_state = 0;
526 		map_bh.b_size = 1 << blkbits;
527 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
528 			goto confused;
529 		if (buffer_new(&map_bh))
530 			unmap_underlying_metadata(map_bh.b_bdev,
531 						map_bh.b_blocknr);
532 		if (buffer_boundary(&map_bh)) {
533 			boundary_block = map_bh.b_blocknr;
534 			boundary_bdev = map_bh.b_bdev;
535 		}
536 		if (page_block) {
537 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
538 				goto confused;
539 		}
540 		blocks[page_block++] = map_bh.b_blocknr;
541 		boundary = buffer_boundary(&map_bh);
542 		bdev = map_bh.b_bdev;
543 		if (block_in_file == last_block)
544 			break;
545 		block_in_file++;
546 	}
547 	BUG_ON(page_block == 0);
548 
549 	first_unmapped = page_block;
550 
551 page_is_mapped:
552 	end_index = i_size >> PAGE_CACHE_SHIFT;
553 	if (page->index >= end_index) {
554 		/*
555 		 * The page straddles i_size.  It must be zeroed out on each
556 		 * and every writepage invokation because it may be mmapped.
557 		 * "A file is mapped in multiples of the page size.  For a file
558 		 * that is not a multiple of the page size, the remaining memory
559 		 * is zeroed when mapped, and writes to that region are not
560 		 * written out to the file."
561 		 */
562 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
563 
564 		if (page->index > end_index || !offset)
565 			goto confused;
566 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
567 	}
568 
569 	/*
570 	 * This page will go to BIO.  Do we need to send this BIO off first?
571 	 */
572 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
573 		bio = mpage_bio_submit(WRITE, bio);
574 
575 alloc_new:
576 	if (bio == NULL) {
577 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
578 				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
579 		if (bio == NULL)
580 			goto confused;
581 	}
582 
583 	/*
584 	 * Must try to add the page before marking the buffer clean or
585 	 * the confused fail path above (OOM) will be very confused when
586 	 * it finds all bh marked clean (i.e. it will not write anything)
587 	 */
588 	length = first_unmapped << blkbits;
589 	if (bio_add_page(bio, page, length, 0) < length) {
590 		bio = mpage_bio_submit(WRITE, bio);
591 		goto alloc_new;
592 	}
593 
594 	/*
595 	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
596 	 * sure to only clean buffers which we know we'll be writing.
597 	 */
598 	if (page_has_buffers(page)) {
599 		struct buffer_head *head = page_buffers(page);
600 		struct buffer_head *bh = head;
601 		unsigned buffer_counter = 0;
602 
603 		do {
604 			if (buffer_counter++ == first_unmapped)
605 				break;
606 			clear_buffer_dirty(bh);
607 			bh = bh->b_this_page;
608 		} while (bh != head);
609 
610 		/*
611 		 * we cannot drop the bh if the page is not uptodate
612 		 * or a concurrent readpage would fail to serialize with the bh
613 		 * and it would read from disk before we reach the platter.
614 		 */
615 		if (buffer_heads_over_limit && PageUptodate(page))
616 			try_to_free_buffers(page);
617 	}
618 
619 	BUG_ON(PageWriteback(page));
620 	set_page_writeback(page);
621 	unlock_page(page);
622 	if (boundary || (first_unmapped != blocks_per_page)) {
623 		bio = mpage_bio_submit(WRITE, bio);
624 		if (boundary_block) {
625 			write_boundary_block(boundary_bdev,
626 					boundary_block, 1 << blkbits);
627 		}
628 	} else {
629 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
630 	}
631 	goto out;
632 
633 confused:
634 	if (bio)
635 		bio = mpage_bio_submit(WRITE, bio);
636 
637 	if (mpd->use_writepage) {
638 		ret = mapping->a_ops->writepage(page, wbc);
639 	} else {
640 		ret = -EAGAIN;
641 		goto out;
642 	}
643 	/*
644 	 * The caller has a ref on the inode, so *mapping is stable
645 	 */
646 	mapping_set_error(mapping, ret);
647 out:
648 	mpd->bio = bio;
649 	return ret;
650 }
651 EXPORT_SYMBOL(__mpage_writepage);
652 
653 /**
654  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
655  * @mapping: address space structure to write
656  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
657  * @get_block: the filesystem's block mapper function.
658  *             If this is NULL then use a_ops->writepage.  Otherwise, go
659  *             direct-to-BIO.
660  *
661  * This is a library function, which implements the writepages()
662  * address_space_operation.
663  *
664  * If a page is already under I/O, generic_writepages() skips it, even
665  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
666  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
667  * and msync() need to guarantee that all the data which was dirty at the time
668  * the call was made get new I/O started against them.  If wbc->sync_mode is
669  * WB_SYNC_ALL then we were called for data integrity and we must wait for
670  * existing IO to complete.
671  */
672 int
mpage_writepages(struct address_space * mapping,struct writeback_control * wbc,get_block_t get_block)673 mpage_writepages(struct address_space *mapping,
674 		struct writeback_control *wbc, get_block_t get_block)
675 {
676 	int ret;
677 
678 	if (!get_block)
679 		ret = generic_writepages(mapping, wbc);
680 	else {
681 		struct mpage_data mpd = {
682 			.bio = NULL,
683 			.last_block_in_bio = 0,
684 			.get_block = get_block,
685 			.use_writepage = 1,
686 		};
687 
688 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
689 		if (mpd.bio)
690 			mpage_bio_submit(WRITE, mpd.bio);
691 	}
692 	return ret;
693 }
694 EXPORT_SYMBOL(mpage_writepages);
695 
mpage_writepage(struct page * page,get_block_t get_block,struct writeback_control * wbc)696 int mpage_writepage(struct page *page, get_block_t get_block,
697 	struct writeback_control *wbc)
698 {
699 	struct mpage_data mpd = {
700 		.bio = NULL,
701 		.last_block_in_bio = 0,
702 		.get_block = get_block,
703 		.use_writepage = 0,
704 	};
705 	int ret = __mpage_writepage(page, wbc, &mpd);
706 	if (mpd.bio)
707 		mpage_bio_submit(WRITE, mpd.bio);
708 	return ret;
709 }
710 EXPORT_SYMBOL(mpage_writepage);
711