• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/dmi.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
12 
13 #include <asm/hpet.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
16 #include <asm/time.h>
17 #include <asm/delay.h>
18 #include <asm/hypervisor.h>
19 
20 unsigned int cpu_khz;           /* TSC clocks / usec, not used here */
21 EXPORT_SYMBOL(cpu_khz);
22 unsigned int tsc_khz;
23 EXPORT_SYMBOL(tsc_khz);
24 
25 /*
26  * TSC can be unstable due to cpufreq or due to unsynced TSCs
27  */
28 static int tsc_unstable;
29 
30 /* native_sched_clock() is called before tsc_init(), so
31    we must start with the TSC soft disabled to prevent
32    erroneous rdtsc usage on !cpu_has_tsc processors */
33 static int tsc_disabled = -1;
34 
35 static int tsc_clocksource_reliable;
36 /*
37  * Scheduler clock - returns current time in nanosec units.
38  */
native_sched_clock(void)39 u64 native_sched_clock(void)
40 {
41 	u64 this_offset;
42 
43 	/*
44 	 * Fall back to jiffies if there's no TSC available:
45 	 * ( But note that we still use it if the TSC is marked
46 	 *   unstable. We do this because unlike Time Of Day,
47 	 *   the scheduler clock tolerates small errors and it's
48 	 *   very important for it to be as fast as the platform
49 	 *   can achive it. )
50 	 */
51 	if (unlikely(tsc_disabled)) {
52 		/* No locking but a rare wrong value is not a big deal: */
53 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
54 	}
55 
56 	/* read the Time Stamp Counter: */
57 	rdtscll(this_offset);
58 
59 	/* return the value in ns */
60 	return __cycles_2_ns(this_offset);
61 }
62 
63 /* We need to define a real function for sched_clock, to override the
64    weak default version */
65 #ifdef CONFIG_PARAVIRT
sched_clock(void)66 unsigned long long sched_clock(void)
67 {
68 	return paravirt_sched_clock();
69 }
70 #else
71 unsigned long long
72 sched_clock(void) __attribute__((alias("native_sched_clock")));
73 #endif
74 
check_tsc_unstable(void)75 int check_tsc_unstable(void)
76 {
77 	return tsc_unstable;
78 }
79 EXPORT_SYMBOL_GPL(check_tsc_unstable);
80 
81 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)82 int __init notsc_setup(char *str)
83 {
84 	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
85 			"cannot disable TSC completely.\n");
86 	tsc_disabled = 1;
87 	return 1;
88 }
89 #else
90 /*
91  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
92  * in cpu/common.c
93  */
notsc_setup(char * str)94 int __init notsc_setup(char *str)
95 {
96 	setup_clear_cpu_cap(X86_FEATURE_TSC);
97 	return 1;
98 }
99 #endif
100 
101 __setup("notsc", notsc_setup);
102 
tsc_setup(char * str)103 static int __init tsc_setup(char *str)
104 {
105 	if (!strcmp(str, "reliable"))
106 		tsc_clocksource_reliable = 1;
107 	return 1;
108 }
109 
110 __setup("tsc=", tsc_setup);
111 
112 #define MAX_RETRIES     5
113 #define SMI_TRESHOLD    50000
114 
115 /*
116  * Read TSC and the reference counters. Take care of SMI disturbance
117  */
tsc_read_refs(u64 * p,int hpet)118 static u64 tsc_read_refs(u64 *p, int hpet)
119 {
120 	u64 t1, t2;
121 	int i;
122 
123 	for (i = 0; i < MAX_RETRIES; i++) {
124 		t1 = get_cycles();
125 		if (hpet)
126 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
127 		else
128 			*p = acpi_pm_read_early();
129 		t2 = get_cycles();
130 		if ((t2 - t1) < SMI_TRESHOLD)
131 			return t2;
132 	}
133 	return ULLONG_MAX;
134 }
135 
136 /*
137  * Calculate the TSC frequency from HPET reference
138  */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)139 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
140 {
141 	u64 tmp;
142 
143 	if (hpet2 < hpet1)
144 		hpet2 += 0x100000000ULL;
145 	hpet2 -= hpet1;
146 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
147 	do_div(tmp, 1000000);
148 	do_div(deltatsc, tmp);
149 
150 	return (unsigned long) deltatsc;
151 }
152 
153 /*
154  * Calculate the TSC frequency from PMTimer reference
155  */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)156 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
157 {
158 	u64 tmp;
159 
160 	if (!pm1 && !pm2)
161 		return ULONG_MAX;
162 
163 	if (pm2 < pm1)
164 		pm2 += (u64)ACPI_PM_OVRRUN;
165 	pm2 -= pm1;
166 	tmp = pm2 * 1000000000LL;
167 	do_div(tmp, PMTMR_TICKS_PER_SEC);
168 	do_div(deltatsc, tmp);
169 
170 	return (unsigned long) deltatsc;
171 }
172 
173 #define CAL_MS		10
174 #define CAL_LATCH	(CLOCK_TICK_RATE / (1000 / CAL_MS))
175 #define CAL_PIT_LOOPS	1000
176 
177 #define CAL2_MS		50
178 #define CAL2_LATCH	(CLOCK_TICK_RATE / (1000 / CAL2_MS))
179 #define CAL2_PIT_LOOPS	5000
180 
181 
182 /*
183  * Try to calibrate the TSC against the Programmable
184  * Interrupt Timer and return the frequency of the TSC
185  * in kHz.
186  *
187  * Return ULONG_MAX on failure to calibrate.
188  */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)189 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
190 {
191 	u64 tsc, t1, t2, delta;
192 	unsigned long tscmin, tscmax;
193 	int pitcnt;
194 
195 	/* Set the Gate high, disable speaker */
196 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
197 
198 	/*
199 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
200 	 * count mode), binary count. Set the latch register to 50ms
201 	 * (LSB then MSB) to begin countdown.
202 	 */
203 	outb(0xb0, 0x43);
204 	outb(latch & 0xff, 0x42);
205 	outb(latch >> 8, 0x42);
206 
207 	tsc = t1 = t2 = get_cycles();
208 
209 	pitcnt = 0;
210 	tscmax = 0;
211 	tscmin = ULONG_MAX;
212 	while ((inb(0x61) & 0x20) == 0) {
213 		t2 = get_cycles();
214 		delta = t2 - tsc;
215 		tsc = t2;
216 		if ((unsigned long) delta < tscmin)
217 			tscmin = (unsigned int) delta;
218 		if ((unsigned long) delta > tscmax)
219 			tscmax = (unsigned int) delta;
220 		pitcnt++;
221 	}
222 
223 	/*
224 	 * Sanity checks:
225 	 *
226 	 * If we were not able to read the PIT more than loopmin
227 	 * times, then we have been hit by a massive SMI
228 	 *
229 	 * If the maximum is 10 times larger than the minimum,
230 	 * then we got hit by an SMI as well.
231 	 */
232 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
233 		return ULONG_MAX;
234 
235 	/* Calculate the PIT value */
236 	delta = t2 - t1;
237 	do_div(delta, ms);
238 	return delta;
239 }
240 
241 /*
242  * This reads the current MSB of the PIT counter, and
243  * checks if we are running on sufficiently fast and
244  * non-virtualized hardware.
245  *
246  * Our expectations are:
247  *
248  *  - the PIT is running at roughly 1.19MHz
249  *
250  *  - each IO is going to take about 1us on real hardware,
251  *    but we allow it to be much faster (by a factor of 10) or
252  *    _slightly_ slower (ie we allow up to a 2us read+counter
253  *    update - anything else implies a unacceptably slow CPU
254  *    or PIT for the fast calibration to work.
255  *
256  *  - with 256 PIT ticks to read the value, we have 214us to
257  *    see the same MSB (and overhead like doing a single TSC
258  *    read per MSB value etc).
259  *
260  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
261  *    them each to take about a microsecond on real hardware.
262  *    So we expect a count value of around 100. But we'll be
263  *    generous, and accept anything over 50.
264  *
265  *  - if the PIT is stuck, and we see *many* more reads, we
266  *    return early (and the next caller of pit_expect_msb()
267  *    then consider it a failure when they don't see the
268  *    next expected value).
269  *
270  * These expectations mean that we know that we have seen the
271  * transition from one expected value to another with a fairly
272  * high accuracy, and we didn't miss any events. We can thus
273  * use the TSC value at the transitions to calculate a pretty
274  * good value for the TSC frequencty.
275  */
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)276 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
277 {
278 	int count;
279 	u64 tsc = 0;
280 
281 	for (count = 0; count < 50000; count++) {
282 		/* Ignore LSB */
283 		inb(0x42);
284 		if (inb(0x42) != val)
285 			break;
286 		tsc = get_cycles();
287 	}
288 	*deltap = get_cycles() - tsc;
289 	*tscp = tsc;
290 
291 	/*
292 	 * We require _some_ success, but the quality control
293 	 * will be based on the error terms on the TSC values.
294 	 */
295 	return count > 5;
296 }
297 
298 /*
299  * How many MSB values do we want to see? We aim for
300  * a maximum error rate of 500ppm (in practice the
301  * real error is much smaller), but refuse to spend
302  * more than 25ms on it.
303  */
304 #define MAX_QUICK_PIT_MS 25
305 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
306 
quick_pit_calibrate(void)307 static unsigned long quick_pit_calibrate(void)
308 {
309 	int i;
310 	u64 tsc, delta;
311 	unsigned long d1, d2;
312 
313 	/* Set the Gate high, disable speaker */
314 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
315 
316 	/*
317 	 * Counter 2, mode 0 (one-shot), binary count
318 	 *
319 	 * NOTE! Mode 2 decrements by two (and then the
320 	 * output is flipped each time, giving the same
321 	 * final output frequency as a decrement-by-one),
322 	 * so mode 0 is much better when looking at the
323 	 * individual counts.
324 	 */
325 	outb(0xb0, 0x43);
326 
327 	/* Start at 0xffff */
328 	outb(0xff, 0x42);
329 	outb(0xff, 0x42);
330 
331 	/*
332 	 * The PIT starts counting at the next edge, so we
333 	 * need to delay for a microsecond. The easiest way
334 	 * to do that is to just read back the 16-bit counter
335 	 * once from the PIT.
336 	 */
337 	inb(0x42);
338 	inb(0x42);
339 
340 	if (pit_expect_msb(0xff, &tsc, &d1)) {
341 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
342 			if (!pit_expect_msb(0xff-i, &delta, &d2))
343 				break;
344 
345 			/*
346 			 * Iterate until the error is less than 500 ppm
347 			 */
348 			delta -= tsc;
349 			if (d1+d2 < delta >> 11)
350 				goto success;
351 		}
352 	}
353 	printk("Fast TSC calibration failed\n");
354 	return 0;
355 
356 success:
357 	/*
358 	 * Ok, if we get here, then we've seen the
359 	 * MSB of the PIT decrement 'i' times, and the
360 	 * error has shrunk to less than 500 ppm.
361 	 *
362 	 * As a result, we can depend on there not being
363 	 * any odd delays anywhere, and the TSC reads are
364 	 * reliable (within the error). We also adjust the
365 	 * delta to the middle of the error bars, just
366 	 * because it looks nicer.
367 	 *
368 	 * kHz = ticks / time-in-seconds / 1000;
369 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
370 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
371 	 */
372 	delta += (long)(d2 - d1)/2;
373 	delta *= PIT_TICK_RATE;
374 	do_div(delta, i*256*1000);
375 	printk("Fast TSC calibration using PIT\n");
376 	return delta;
377 }
378 
379 /**
380  * native_calibrate_tsc - calibrate the tsc on boot
381  */
native_calibrate_tsc(void)382 unsigned long native_calibrate_tsc(void)
383 {
384 	u64 tsc1, tsc2, delta, ref1, ref2;
385 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
386 	unsigned long flags, latch, ms, fast_calibrate, tsc_khz;
387 	int hpet = is_hpet_enabled(), i, loopmin;
388 
389 	tsc_khz = get_hypervisor_tsc_freq();
390 	if (tsc_khz) {
391 		printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
392 		return tsc_khz;
393 	}
394 
395 	local_irq_save(flags);
396 	fast_calibrate = quick_pit_calibrate();
397 	local_irq_restore(flags);
398 	if (fast_calibrate)
399 		return fast_calibrate;
400 
401 	/*
402 	 * Run 5 calibration loops to get the lowest frequency value
403 	 * (the best estimate). We use two different calibration modes
404 	 * here:
405 	 *
406 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
407 	 * load a timeout of 50ms. We read the time right after we
408 	 * started the timer and wait until the PIT count down reaches
409 	 * zero. In each wait loop iteration we read the TSC and check
410 	 * the delta to the previous read. We keep track of the min
411 	 * and max values of that delta. The delta is mostly defined
412 	 * by the IO time of the PIT access, so we can detect when a
413 	 * SMI/SMM disturbance happend between the two reads. If the
414 	 * maximum time is significantly larger than the minimum time,
415 	 * then we discard the result and have another try.
416 	 *
417 	 * 2) Reference counter. If available we use the HPET or the
418 	 * PMTIMER as a reference to check the sanity of that value.
419 	 * We use separate TSC readouts and check inside of the
420 	 * reference read for a SMI/SMM disturbance. We dicard
421 	 * disturbed values here as well. We do that around the PIT
422 	 * calibration delay loop as we have to wait for a certain
423 	 * amount of time anyway.
424 	 */
425 
426 	/* Preset PIT loop values */
427 	latch = CAL_LATCH;
428 	ms = CAL_MS;
429 	loopmin = CAL_PIT_LOOPS;
430 
431 	for (i = 0; i < 3; i++) {
432 		unsigned long tsc_pit_khz;
433 
434 		/*
435 		 * Read the start value and the reference count of
436 		 * hpet/pmtimer when available. Then do the PIT
437 		 * calibration, which will take at least 50ms, and
438 		 * read the end value.
439 		 */
440 		local_irq_save(flags);
441 		tsc1 = tsc_read_refs(&ref1, hpet);
442 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
443 		tsc2 = tsc_read_refs(&ref2, hpet);
444 		local_irq_restore(flags);
445 
446 		/* Pick the lowest PIT TSC calibration so far */
447 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
448 
449 		/* hpet or pmtimer available ? */
450 		if (!hpet && !ref1 && !ref2)
451 			continue;
452 
453 		/* Check, whether the sampling was disturbed by an SMI */
454 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
455 			continue;
456 
457 		tsc2 = (tsc2 - tsc1) * 1000000LL;
458 		if (hpet)
459 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
460 		else
461 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
462 
463 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
464 
465 		/* Check the reference deviation */
466 		delta = ((u64) tsc_pit_min) * 100;
467 		do_div(delta, tsc_ref_min);
468 
469 		/*
470 		 * If both calibration results are inside a 10% window
471 		 * then we can be sure, that the calibration
472 		 * succeeded. We break out of the loop right away. We
473 		 * use the reference value, as it is more precise.
474 		 */
475 		if (delta >= 90 && delta <= 110) {
476 			printk(KERN_INFO
477 			       "TSC: PIT calibration matches %s. %d loops\n",
478 			       hpet ? "HPET" : "PMTIMER", i + 1);
479 			return tsc_ref_min;
480 		}
481 
482 		/*
483 		 * Check whether PIT failed more than once. This
484 		 * happens in virtualized environments. We need to
485 		 * give the virtual PC a slightly longer timeframe for
486 		 * the HPET/PMTIMER to make the result precise.
487 		 */
488 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
489 			latch = CAL2_LATCH;
490 			ms = CAL2_MS;
491 			loopmin = CAL2_PIT_LOOPS;
492 		}
493 	}
494 
495 	/*
496 	 * Now check the results.
497 	 */
498 	if (tsc_pit_min == ULONG_MAX) {
499 		/* PIT gave no useful value */
500 		printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
501 
502 		/* We don't have an alternative source, disable TSC */
503 		if (!hpet && !ref1 && !ref2) {
504 			printk("TSC: No reference (HPET/PMTIMER) available\n");
505 			return 0;
506 		}
507 
508 		/* The alternative source failed as well, disable TSC */
509 		if (tsc_ref_min == ULONG_MAX) {
510 			printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
511 			       "failed.\n");
512 			return 0;
513 		}
514 
515 		/* Use the alternative source */
516 		printk(KERN_INFO "TSC: using %s reference calibration\n",
517 		       hpet ? "HPET" : "PMTIMER");
518 
519 		return tsc_ref_min;
520 	}
521 
522 	/* We don't have an alternative source, use the PIT calibration value */
523 	if (!hpet && !ref1 && !ref2) {
524 		printk(KERN_INFO "TSC: Using PIT calibration value\n");
525 		return tsc_pit_min;
526 	}
527 
528 	/* The alternative source failed, use the PIT calibration value */
529 	if (tsc_ref_min == ULONG_MAX) {
530 		printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
531 		       "Using PIT calibration\n");
532 		return tsc_pit_min;
533 	}
534 
535 	/*
536 	 * The calibration values differ too much. In doubt, we use
537 	 * the PIT value as we know that there are PMTIMERs around
538 	 * running at double speed. At least we let the user know:
539 	 */
540 	printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
541 	       hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
542 	printk(KERN_INFO "TSC: Using PIT calibration value\n");
543 	return tsc_pit_min;
544 }
545 
546 #ifdef CONFIG_X86_32
547 /* Only called from the Powernow K7 cpu freq driver */
recalibrate_cpu_khz(void)548 int recalibrate_cpu_khz(void)
549 {
550 #ifndef CONFIG_SMP
551 	unsigned long cpu_khz_old = cpu_khz;
552 
553 	if (cpu_has_tsc) {
554 		tsc_khz = calibrate_tsc();
555 		cpu_khz = tsc_khz;
556 		cpu_data(0).loops_per_jiffy =
557 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
558 					cpu_khz_old, cpu_khz);
559 		return 0;
560 	} else
561 		return -ENODEV;
562 #else
563 	return -ENODEV;
564 #endif
565 }
566 
567 EXPORT_SYMBOL(recalibrate_cpu_khz);
568 
569 #endif /* CONFIG_X86_32 */
570 
571 /* Accelerators for sched_clock()
572  * convert from cycles(64bits) => nanoseconds (64bits)
573  *  basic equation:
574  *              ns = cycles / (freq / ns_per_sec)
575  *              ns = cycles * (ns_per_sec / freq)
576  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
577  *              ns = cycles * (10^6 / cpu_khz)
578  *
579  *      Then we use scaling math (suggested by george@mvista.com) to get:
580  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
581  *              ns = cycles * cyc2ns_scale / SC
582  *
583  *      And since SC is a constant power of two, we can convert the div
584  *  into a shift.
585  *
586  *  We can use khz divisor instead of mhz to keep a better precision, since
587  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
588  *  (mathieu.desnoyers@polymtl.ca)
589  *
590  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
591  */
592 
593 DEFINE_PER_CPU(unsigned long, cyc2ns);
594 
set_cyc2ns_scale(unsigned long cpu_khz,int cpu)595 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
596 {
597 	unsigned long long tsc_now, ns_now;
598 	unsigned long flags, *scale;
599 
600 	local_irq_save(flags);
601 	sched_clock_idle_sleep_event();
602 
603 	scale = &per_cpu(cyc2ns, cpu);
604 
605 	rdtscll(tsc_now);
606 	ns_now = __cycles_2_ns(tsc_now);
607 
608 	if (cpu_khz)
609 		*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
610 
611 	sched_clock_idle_wakeup_event(0);
612 	local_irq_restore(flags);
613 }
614 
615 #ifdef CONFIG_CPU_FREQ
616 
617 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
618  * changes.
619  *
620  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
621  * not that important because current Opteron setups do not support
622  * scaling on SMP anyroads.
623  *
624  * Should fix up last_tsc too. Currently gettimeofday in the
625  * first tick after the change will be slightly wrong.
626  */
627 
628 static unsigned int  ref_freq;
629 static unsigned long loops_per_jiffy_ref;
630 static unsigned long tsc_khz_ref;
631 
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)632 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
633 				void *data)
634 {
635 	struct cpufreq_freqs *freq = data;
636 	unsigned long *lpj, dummy;
637 
638 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
639 		return 0;
640 
641 	lpj = &dummy;
642 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
643 #ifdef CONFIG_SMP
644 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
645 #else
646 	lpj = &boot_cpu_data.loops_per_jiffy;
647 #endif
648 
649 	if (!ref_freq) {
650 		ref_freq = freq->old;
651 		loops_per_jiffy_ref = *lpj;
652 		tsc_khz_ref = tsc_khz;
653 	}
654 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
655 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
656 			(val == CPUFREQ_RESUMECHANGE)) {
657 		*lpj = 	cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
658 
659 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
660 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
661 			mark_tsc_unstable("cpufreq changes");
662 	}
663 
664 	set_cyc2ns_scale(tsc_khz, freq->cpu);
665 
666 	return 0;
667 }
668 
669 static struct notifier_block time_cpufreq_notifier_block = {
670 	.notifier_call  = time_cpufreq_notifier
671 };
672 
cpufreq_tsc(void)673 static int __init cpufreq_tsc(void)
674 {
675 	if (!cpu_has_tsc)
676 		return 0;
677 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
678 		return 0;
679 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
680 				CPUFREQ_TRANSITION_NOTIFIER);
681 	return 0;
682 }
683 
684 core_initcall(cpufreq_tsc);
685 
686 #endif /* CONFIG_CPU_FREQ */
687 
688 /* clocksource code */
689 
690 static struct clocksource clocksource_tsc;
691 
692 /*
693  * We compare the TSC to the cycle_last value in the clocksource
694  * structure to avoid a nasty time-warp. This can be observed in a
695  * very small window right after one CPU updated cycle_last under
696  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
697  * is smaller than the cycle_last reference value due to a TSC which
698  * is slighty behind. This delta is nowhere else observable, but in
699  * that case it results in a forward time jump in the range of hours
700  * due to the unsigned delta calculation of the time keeping core
701  * code, which is necessary to support wrapping clocksources like pm
702  * timer.
703  */
read_tsc(void)704 static cycle_t read_tsc(void)
705 {
706 	cycle_t ret = (cycle_t)get_cycles();
707 
708 	return ret >= clocksource_tsc.cycle_last ?
709 		ret : clocksource_tsc.cycle_last;
710 }
711 
712 #ifdef CONFIG_X86_64
vread_tsc(void)713 static cycle_t __vsyscall_fn vread_tsc(void)
714 {
715 	cycle_t ret = (cycle_t)vget_cycles();
716 
717 	return ret >= __vsyscall_gtod_data.clock.cycle_last ?
718 		ret : __vsyscall_gtod_data.clock.cycle_last;
719 }
720 #endif
721 
722 static struct clocksource clocksource_tsc = {
723 	.name                   = "tsc",
724 	.rating                 = 300,
725 	.read                   = read_tsc,
726 	.mask                   = CLOCKSOURCE_MASK(64),
727 	.shift                  = 22,
728 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
729 				  CLOCK_SOURCE_MUST_VERIFY,
730 #ifdef CONFIG_X86_64
731 	.vread                  = vread_tsc,
732 #endif
733 };
734 
mark_tsc_unstable(char * reason)735 void mark_tsc_unstable(char *reason)
736 {
737 	if (!tsc_unstable) {
738 		tsc_unstable = 1;
739 		printk("Marking TSC unstable due to %s\n", reason);
740 		/* Change only the rating, when not registered */
741 		if (clocksource_tsc.mult)
742 			clocksource_change_rating(&clocksource_tsc, 0);
743 		else
744 			clocksource_tsc.rating = 0;
745 	}
746 }
747 
748 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
749 
dmi_mark_tsc_unstable(const struct dmi_system_id * d)750 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
751 {
752 	printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
753 			d->ident);
754 	tsc_unstable = 1;
755 	return 0;
756 }
757 
758 /* List of systems that have known TSC problems */
759 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
760 	{
761 		.callback = dmi_mark_tsc_unstable,
762 		.ident = "IBM Thinkpad 380XD",
763 		.matches = {
764 			DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
765 			DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
766 		},
767 	},
768 	{}
769 };
770 
check_system_tsc_reliable(void)771 static void __init check_system_tsc_reliable(void)
772 {
773 #ifdef CONFIG_MGEODE_LX
774 	/* RTSC counts during suspend */
775 #define RTSC_SUSP 0x100
776 	unsigned long res_low, res_high;
777 
778 	rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
779 	/* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
780 	if (res_low & RTSC_SUSP)
781 		tsc_clocksource_reliable = 1;
782 #endif
783 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
784 		tsc_clocksource_reliable = 1;
785 }
786 
787 /*
788  * Make an educated guess if the TSC is trustworthy and synchronized
789  * over all CPUs.
790  */
unsynchronized_tsc(void)791 __cpuinit int unsynchronized_tsc(void)
792 {
793 	if (!cpu_has_tsc || tsc_unstable)
794 		return 1;
795 
796 #ifdef CONFIG_X86_SMP
797 	if (apic_is_clustered_box())
798 		return 1;
799 #endif
800 
801 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
802 		return 0;
803 	/*
804 	 * Intel systems are normally all synchronized.
805 	 * Exceptions must mark TSC as unstable:
806 	 */
807 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
808 		/* assume multi socket systems are not synchronized: */
809 		if (num_possible_cpus() > 1)
810 			tsc_unstable = 1;
811 	}
812 
813 	return tsc_unstable;
814 }
815 
init_tsc_clocksource(void)816 static void __init init_tsc_clocksource(void)
817 {
818 	clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
819 			clocksource_tsc.shift);
820 	if (tsc_clocksource_reliable)
821 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
822 	/* lower the rating if we already know its unstable: */
823 	if (check_tsc_unstable()) {
824 		clocksource_tsc.rating = 0;
825 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
826 	}
827 	clocksource_register(&clocksource_tsc);
828 }
829 
tsc_init(void)830 void __init tsc_init(void)
831 {
832 	u64 lpj;
833 	int cpu;
834 
835 	if (!cpu_has_tsc)
836 		return;
837 
838 	tsc_khz = calibrate_tsc();
839 	cpu_khz = tsc_khz;
840 
841 	if (!tsc_khz) {
842 		mark_tsc_unstable("could not calculate TSC khz");
843 		return;
844 	}
845 
846 #ifdef CONFIG_X86_64
847 	if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
848 			(boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
849 		cpu_khz = calibrate_cpu();
850 #endif
851 
852 	printk("Detected %lu.%03lu MHz processor.\n",
853 			(unsigned long)cpu_khz / 1000,
854 			(unsigned long)cpu_khz % 1000);
855 
856 	/*
857 	 * Secondary CPUs do not run through tsc_init(), so set up
858 	 * all the scale factors for all CPUs, assuming the same
859 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
860 	 * up if their speed diverges)
861 	 */
862 	for_each_possible_cpu(cpu)
863 		set_cyc2ns_scale(cpu_khz, cpu);
864 
865 	if (tsc_disabled > 0)
866 		return;
867 
868 	/* now allow native_sched_clock() to use rdtsc */
869 	tsc_disabled = 0;
870 
871 	lpj = ((u64)tsc_khz * 1000);
872 	do_div(lpj, HZ);
873 	lpj_fine = lpj;
874 
875 	use_tsc_delay();
876 	/* Check and install the TSC clocksource */
877 	dmi_check_system(bad_tsc_dmi_table);
878 
879 	if (unsynchronized_tsc())
880 		mark_tsc_unstable("TSCs unsynchronized");
881 
882 	check_system_tsc_reliable();
883 	init_tsc_clocksource();
884 }
885 
886