1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
14 #include <linux/sched.h>
15
16 #include <asm/e820.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h>
19 #include <asm/numa.h>
20 #include <asm/acpi.h>
21 #include <asm/k8.h>
22
23 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
24 EXPORT_SYMBOL(node_data);
25
26 struct memnode memnode;
27
28 s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
29 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
30 };
31
32 int numa_off __initdata;
33 static unsigned long __initdata nodemap_addr;
34 static unsigned long __initdata nodemap_size;
35
36 /*
37 * Given a shift value, try to populate memnodemap[]
38 * Returns :
39 * 1 if OK
40 * 0 if memnodmap[] too small (of shift too small)
41 * -1 if node overlap or lost ram (shift too big)
42 */
populate_memnodemap(const struct bootnode * nodes,int numnodes,int shift,int * nodeids)43 static int __init populate_memnodemap(const struct bootnode *nodes,
44 int numnodes, int shift, int *nodeids)
45 {
46 unsigned long addr, end;
47 int i, res = -1;
48
49 memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
50 for (i = 0; i < numnodes; i++) {
51 addr = nodes[i].start;
52 end = nodes[i].end;
53 if (addr >= end)
54 continue;
55 if ((end >> shift) >= memnodemapsize)
56 return 0;
57 do {
58 if (memnodemap[addr >> shift] != NUMA_NO_NODE)
59 return -1;
60
61 if (!nodeids)
62 memnodemap[addr >> shift] = i;
63 else
64 memnodemap[addr >> shift] = nodeids[i];
65
66 addr += (1UL << shift);
67 } while (addr < end);
68 res = 1;
69 }
70 return res;
71 }
72
allocate_cachealigned_memnodemap(void)73 static int __init allocate_cachealigned_memnodemap(void)
74 {
75 unsigned long addr;
76
77 memnodemap = memnode.embedded_map;
78 if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
79 return 0;
80
81 addr = 0x8000;
82 nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
83 nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
84 nodemap_size, L1_CACHE_BYTES);
85 if (nodemap_addr == -1UL) {
86 printk(KERN_ERR
87 "NUMA: Unable to allocate Memory to Node hash map\n");
88 nodemap_addr = nodemap_size = 0;
89 return -1;
90 }
91 memnodemap = phys_to_virt(nodemap_addr);
92 reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
93
94 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
95 nodemap_addr, nodemap_addr + nodemap_size);
96 return 0;
97 }
98
99 /*
100 * The LSB of all start and end addresses in the node map is the value of the
101 * maximum possible shift.
102 */
extract_lsb_from_nodes(const struct bootnode * nodes,int numnodes)103 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
104 int numnodes)
105 {
106 int i, nodes_used = 0;
107 unsigned long start, end;
108 unsigned long bitfield = 0, memtop = 0;
109
110 for (i = 0; i < numnodes; i++) {
111 start = nodes[i].start;
112 end = nodes[i].end;
113 if (start >= end)
114 continue;
115 bitfield |= start;
116 nodes_used++;
117 if (end > memtop)
118 memtop = end;
119 }
120 if (nodes_used <= 1)
121 i = 63;
122 else
123 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
124 memnodemapsize = (memtop >> i)+1;
125 return i;
126 }
127
compute_hash_shift(struct bootnode * nodes,int numnodes,int * nodeids)128 int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
129 int *nodeids)
130 {
131 int shift;
132
133 shift = extract_lsb_from_nodes(nodes, numnodes);
134 if (allocate_cachealigned_memnodemap())
135 return -1;
136 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
137 shift);
138
139 if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
140 printk(KERN_INFO "Your memory is not aligned you need to "
141 "rebuild your kernel with a bigger NODEMAPSIZE "
142 "shift=%d\n", shift);
143 return -1;
144 }
145 return shift;
146 }
147
__early_pfn_to_nid(unsigned long pfn)148 int __meminit __early_pfn_to_nid(unsigned long pfn)
149 {
150 return phys_to_nid(pfn << PAGE_SHIFT);
151 }
152
early_node_mem(int nodeid,unsigned long start,unsigned long end,unsigned long size,unsigned long align)153 static void * __init early_node_mem(int nodeid, unsigned long start,
154 unsigned long end, unsigned long size,
155 unsigned long align)
156 {
157 unsigned long mem = find_e820_area(start, end, size, align);
158 void *ptr;
159
160 if (mem != -1L)
161 return __va(mem);
162
163 ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
164 if (ptr == NULL) {
165 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
166 size, nodeid);
167 return NULL;
168 }
169 return ptr;
170 }
171
172 /* Initialize bootmem allocator for a node */
setup_node_bootmem(int nodeid,unsigned long start,unsigned long end)173 void __init setup_node_bootmem(int nodeid, unsigned long start,
174 unsigned long end)
175 {
176 unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size;
177 unsigned long bootmap_start, nodedata_phys;
178 void *bootmap;
179 const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
180 int nid;
181
182 start = roundup(start, ZONE_ALIGN);
183
184 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
185 start, end);
186
187 start_pfn = start >> PAGE_SHIFT;
188 last_pfn = end >> PAGE_SHIFT;
189
190 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
191 SMP_CACHE_BYTES);
192 if (node_data[nodeid] == NULL)
193 return;
194 nodedata_phys = __pa(node_data[nodeid]);
195 printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
196 nodedata_phys + pgdat_size - 1);
197
198 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
199 NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
200 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
201 NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
202
203 /*
204 * Find a place for the bootmem map
205 * nodedata_phys could be on other nodes by alloc_bootmem,
206 * so need to sure bootmap_start not to be small, otherwise
207 * early_node_mem will get that with find_e820_area instead
208 * of alloc_bootmem, that could clash with reserved range
209 */
210 bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
211 nid = phys_to_nid(nodedata_phys);
212 if (nid == nodeid)
213 bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
214 else
215 bootmap_start = roundup(start, PAGE_SIZE);
216 /*
217 * SMP_CACHE_BYTES could be enough, but init_bootmem_node like
218 * to use that to align to PAGE_SIZE
219 */
220 bootmap = early_node_mem(nodeid, bootmap_start, end,
221 bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
222 if (bootmap == NULL) {
223 if (nodedata_phys < start || nodedata_phys >= end)
224 free_bootmem(nodedata_phys, pgdat_size);
225 node_data[nodeid] = NULL;
226 return;
227 }
228 bootmap_start = __pa(bootmap);
229
230 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
231 bootmap_start >> PAGE_SHIFT,
232 start_pfn, last_pfn);
233
234 printk(KERN_INFO " bootmap [%016lx - %016lx] pages %lx\n",
235 bootmap_start, bootmap_start + bootmap_size - 1,
236 bootmap_pages);
237
238 free_bootmem_with_active_regions(nodeid, end);
239
240 /*
241 * convert early reserve to bootmem reserve earlier
242 * otherwise early_node_mem could use early reserved mem
243 * on previous node
244 */
245 early_res_to_bootmem(start, end);
246
247 /*
248 * in some case early_node_mem could use alloc_bootmem
249 * to get range on other node, don't reserve that again
250 */
251 if (nid != nodeid)
252 printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
253 else
254 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys,
255 pgdat_size, BOOTMEM_DEFAULT);
256 nid = phys_to_nid(bootmap_start);
257 if (nid != nodeid)
258 printk(KERN_INFO " bootmap(%d) on node %d\n", nodeid, nid);
259 else
260 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
261 bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT);
262
263 #ifdef CONFIG_ACPI_NUMA
264 srat_reserve_add_area(nodeid);
265 #endif
266 node_set_online(nodeid);
267 }
268
269 /*
270 * There are unfortunately some poorly designed mainboards around that
271 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
272 * mapping. To avoid this fill in the mapping for all possible CPUs,
273 * as the number of CPUs is not known yet. We round robin the existing
274 * nodes.
275 */
numa_init_array(void)276 void __init numa_init_array(void)
277 {
278 int rr, i;
279
280 rr = first_node(node_online_map);
281 for (i = 0; i < nr_cpu_ids; i++) {
282 if (early_cpu_to_node(i) != NUMA_NO_NODE)
283 continue;
284 numa_set_node(i, rr);
285 rr = next_node(rr, node_online_map);
286 if (rr == MAX_NUMNODES)
287 rr = first_node(node_online_map);
288 }
289 }
290
291 #ifdef CONFIG_NUMA_EMU
292 /* Numa emulation */
293 static char *cmdline __initdata;
294
295 /*
296 * Setups up nid to range from addr to addr + size. If the end
297 * boundary is greater than max_addr, then max_addr is used instead.
298 * The return value is 0 if there is additional memory left for
299 * allocation past addr and -1 otherwise. addr is adjusted to be at
300 * the end of the node.
301 */
setup_node_range(int nid,struct bootnode * nodes,u64 * addr,u64 size,u64 max_addr)302 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
303 u64 size, u64 max_addr)
304 {
305 int ret = 0;
306
307 nodes[nid].start = *addr;
308 *addr += size;
309 if (*addr >= max_addr) {
310 *addr = max_addr;
311 ret = -1;
312 }
313 nodes[nid].end = *addr;
314 node_set(nid, node_possible_map);
315 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
316 nodes[nid].start, nodes[nid].end,
317 (nodes[nid].end - nodes[nid].start) >> 20);
318 return ret;
319 }
320
321 /*
322 * Splits num_nodes nodes up equally starting at node_start. The return value
323 * is the number of nodes split up and addr is adjusted to be at the end of the
324 * last node allocated.
325 */
split_nodes_equally(struct bootnode * nodes,u64 * addr,u64 max_addr,int node_start,int num_nodes)326 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
327 u64 max_addr, int node_start,
328 int num_nodes)
329 {
330 unsigned int big;
331 u64 size;
332 int i;
333
334 if (num_nodes <= 0)
335 return -1;
336 if (num_nodes > MAX_NUMNODES)
337 num_nodes = MAX_NUMNODES;
338 size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
339 num_nodes;
340 /*
341 * Calculate the number of big nodes that can be allocated as a result
342 * of consolidating the leftovers.
343 */
344 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
345 FAKE_NODE_MIN_SIZE;
346
347 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
348 size &= FAKE_NODE_MIN_HASH_MASK;
349 if (!size) {
350 printk(KERN_ERR "Not enough memory for each node. "
351 "NUMA emulation disabled.\n");
352 return -1;
353 }
354
355 for (i = node_start; i < num_nodes + node_start; i++) {
356 u64 end = *addr + size;
357
358 if (i < big)
359 end += FAKE_NODE_MIN_SIZE;
360 /*
361 * The final node can have the remaining system RAM. Other
362 * nodes receive roughly the same amount of available pages.
363 */
364 if (i == num_nodes + node_start - 1)
365 end = max_addr;
366 else
367 while (end - *addr - e820_hole_size(*addr, end) <
368 size) {
369 end += FAKE_NODE_MIN_SIZE;
370 if (end > max_addr) {
371 end = max_addr;
372 break;
373 }
374 }
375 if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
376 break;
377 }
378 return i - node_start + 1;
379 }
380
381 /*
382 * Splits the remaining system RAM into chunks of size. The remaining memory is
383 * always assigned to a final node and can be asymmetric. Returns the number of
384 * nodes split.
385 */
split_nodes_by_size(struct bootnode * nodes,u64 * addr,u64 max_addr,int node_start,u64 size)386 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
387 u64 max_addr, int node_start, u64 size)
388 {
389 int i = node_start;
390 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
391 while (!setup_node_range(i++, nodes, addr, size, max_addr))
392 ;
393 return i - node_start;
394 }
395
396 /*
397 * Sets up the system RAM area from start_pfn to last_pfn according to the
398 * numa=fake command-line option.
399 */
400 static struct bootnode nodes[MAX_NUMNODES] __initdata;
401
numa_emulation(unsigned long start_pfn,unsigned long last_pfn)402 static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn)
403 {
404 u64 size, addr = start_pfn << PAGE_SHIFT;
405 u64 max_addr = last_pfn << PAGE_SHIFT;
406 int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
407
408 memset(&nodes, 0, sizeof(nodes));
409 /*
410 * If the numa=fake command-line is just a single number N, split the
411 * system RAM into N fake nodes.
412 */
413 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
414 long n = simple_strtol(cmdline, NULL, 0);
415
416 num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
417 if (num_nodes < 0)
418 return num_nodes;
419 goto out;
420 }
421
422 /* Parse the command line. */
423 for (coeff_flag = 0; ; cmdline++) {
424 if (*cmdline && isdigit(*cmdline)) {
425 num = num * 10 + *cmdline - '0';
426 continue;
427 }
428 if (*cmdline == '*') {
429 if (num > 0)
430 coeff = num;
431 coeff_flag = 1;
432 }
433 if (!*cmdline || *cmdline == ',') {
434 if (!coeff_flag)
435 coeff = 1;
436 /*
437 * Round down to the nearest FAKE_NODE_MIN_SIZE.
438 * Command-line coefficients are in megabytes.
439 */
440 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
441 if (size)
442 for (i = 0; i < coeff; i++, num_nodes++)
443 if (setup_node_range(num_nodes, nodes,
444 &addr, size, max_addr) < 0)
445 goto done;
446 if (!*cmdline)
447 break;
448 coeff_flag = 0;
449 coeff = -1;
450 }
451 num = 0;
452 }
453 done:
454 if (!num_nodes)
455 return -1;
456 /* Fill remainder of system RAM, if appropriate. */
457 if (addr < max_addr) {
458 if (coeff_flag && coeff < 0) {
459 /* Split remaining nodes into num-sized chunks */
460 num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
461 num_nodes, num);
462 goto out;
463 }
464 switch (*(cmdline - 1)) {
465 case '*':
466 /* Split remaining nodes into coeff chunks */
467 if (coeff <= 0)
468 break;
469 num_nodes += split_nodes_equally(nodes, &addr, max_addr,
470 num_nodes, coeff);
471 break;
472 case ',':
473 /* Do not allocate remaining system RAM */
474 break;
475 default:
476 /* Give one final node */
477 setup_node_range(num_nodes, nodes, &addr,
478 max_addr - addr, max_addr);
479 num_nodes++;
480 }
481 }
482 out:
483 memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
484 if (memnode_shift < 0) {
485 memnode_shift = 0;
486 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
487 "disabled.\n");
488 return -1;
489 }
490
491 /*
492 * We need to vacate all active ranges that may have been registered by
493 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
494 * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
495 */
496 remove_all_active_ranges();
497 #ifdef CONFIG_ACPI_NUMA
498 acpi_numa = -1;
499 #endif
500 for_each_node_mask(i, node_possible_map) {
501 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
502 nodes[i].end >> PAGE_SHIFT);
503 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
504 }
505 acpi_fake_nodes(nodes, num_nodes);
506 numa_init_array();
507 return 0;
508 }
509 #endif /* CONFIG_NUMA_EMU */
510
initmem_init(unsigned long start_pfn,unsigned long last_pfn)511 void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn)
512 {
513 int i;
514
515 nodes_clear(node_possible_map);
516 nodes_clear(node_online_map);
517
518 #ifdef CONFIG_NUMA_EMU
519 if (cmdline && !numa_emulation(start_pfn, last_pfn))
520 return;
521 nodes_clear(node_possible_map);
522 nodes_clear(node_online_map);
523 #endif
524
525 #ifdef CONFIG_ACPI_NUMA
526 if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
527 last_pfn << PAGE_SHIFT))
528 return;
529 nodes_clear(node_possible_map);
530 nodes_clear(node_online_map);
531 #endif
532
533 #ifdef CONFIG_K8_NUMA
534 if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
535 last_pfn<<PAGE_SHIFT))
536 return;
537 nodes_clear(node_possible_map);
538 nodes_clear(node_online_map);
539 #endif
540 printk(KERN_INFO "%s\n",
541 numa_off ? "NUMA turned off" : "No NUMA configuration found");
542
543 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
544 start_pfn << PAGE_SHIFT,
545 last_pfn << PAGE_SHIFT);
546 /* setup dummy node covering all memory */
547 memnode_shift = 63;
548 memnodemap = memnode.embedded_map;
549 memnodemap[0] = 0;
550 node_set_online(0);
551 node_set(0, node_possible_map);
552 for (i = 0; i < nr_cpu_ids; i++)
553 numa_set_node(i, 0);
554 e820_register_active_regions(0, start_pfn, last_pfn);
555 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
556 }
557
numa_free_all_bootmem(void)558 unsigned long __init numa_free_all_bootmem(void)
559 {
560 unsigned long pages = 0;
561 int i;
562
563 for_each_online_node(i)
564 pages += free_all_bootmem_node(NODE_DATA(i));
565
566 return pages;
567 }
568
paging_init(void)569 void __init paging_init(void)
570 {
571 unsigned long max_zone_pfns[MAX_NR_ZONES];
572
573 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
574 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
575 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
576 max_zone_pfns[ZONE_NORMAL] = max_pfn;
577
578 sparse_memory_present_with_active_regions(MAX_NUMNODES);
579 sparse_init();
580
581 free_area_init_nodes(max_zone_pfns);
582 }
583
numa_setup(char * opt)584 static __init int numa_setup(char *opt)
585 {
586 if (!opt)
587 return -EINVAL;
588 if (!strncmp(opt, "off", 3))
589 numa_off = 1;
590 #ifdef CONFIG_NUMA_EMU
591 if (!strncmp(opt, "fake=", 5))
592 cmdline = opt + 5;
593 #endif
594 #ifdef CONFIG_ACPI_NUMA
595 if (!strncmp(opt, "noacpi", 6))
596 acpi_numa = -1;
597 if (!strncmp(opt, "hotadd=", 7))
598 hotadd_percent = simple_strtoul(opt+7, NULL, 10);
599 #endif
600 return 0;
601 }
602 early_param("numa", numa_setup);
603
604 #ifdef CONFIG_NUMA
605 /*
606 * Setup early cpu_to_node.
607 *
608 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
609 * and apicid_to_node[] tables have valid entries for a CPU.
610 * This means we skip cpu_to_node[] initialisation for NUMA
611 * emulation and faking node case (when running a kernel compiled
612 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
613 * is already initialized in a round robin manner at numa_init_array,
614 * prior to this call, and this initialization is good enough
615 * for the fake NUMA cases.
616 *
617 * Called before the per_cpu areas are setup.
618 */
init_cpu_to_node(void)619 void __init init_cpu_to_node(void)
620 {
621 int cpu;
622 u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
623
624 BUG_ON(cpu_to_apicid == NULL);
625
626 for_each_possible_cpu(cpu) {
627 int node;
628 u16 apicid = cpu_to_apicid[cpu];
629
630 if (apicid == BAD_APICID)
631 continue;
632 node = apicid_to_node[apicid];
633 if (node == NUMA_NO_NODE)
634 continue;
635 if (!node_online(node))
636 continue;
637 numa_set_node(cpu, node);
638 }
639 }
640 #endif
641
642
643