• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * alloc.c
5  *
6  * Extent allocs and frees
7  *
8  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35 
36 #include "ocfs2.h"
37 
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 
53 #include "buffer_head_io.h"
54 
55 
56 /*
57  * Operations for a specific extent tree type.
58  *
59  * To implement an on-disk btree (extent tree) type in ocfs2, add
60  * an ocfs2_extent_tree_operations structure and the matching
61  * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
62  * for the allocation portion of the extent tree.
63  */
64 struct ocfs2_extent_tree_operations {
65 	/*
66 	 * last_eb_blk is the block number of the right most leaf extent
67 	 * block.  Most on-disk structures containing an extent tree store
68 	 * this value for fast access.  The ->eo_set_last_eb_blk() and
69 	 * ->eo_get_last_eb_blk() operations access this value.  They are
70 	 *  both required.
71 	 */
72 	void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73 				   u64 blkno);
74 	u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75 
76 	/*
77 	 * The on-disk structure usually keeps track of how many total
78 	 * clusters are stored in this extent tree.  This function updates
79 	 * that value.  new_clusters is the delta, and must be
80 	 * added to the total.  Required.
81 	 */
82 	void (*eo_update_clusters)(struct inode *inode,
83 				   struct ocfs2_extent_tree *et,
84 				   u32 new_clusters);
85 
86 	/*
87 	 * If ->eo_insert_check() exists, it is called before rec is
88 	 * inserted into the extent tree.  It is optional.
89 	 */
90 	int (*eo_insert_check)(struct inode *inode,
91 			       struct ocfs2_extent_tree *et,
92 			       struct ocfs2_extent_rec *rec);
93 	int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94 
95 	/*
96 	 * --------------------------------------------------------------
97 	 * The remaining are internal to ocfs2_extent_tree and don't have
98 	 * accessor functions
99 	 */
100 
101 	/*
102 	 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103 	 * It is required.
104 	 */
105 	void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106 
107 	/*
108 	 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109 	 * it exists.  If it does not, et->et_max_leaf_clusters is set
110 	 * to 0 (unlimited).  Optional.
111 	 */
112 	void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113 					  struct ocfs2_extent_tree *et);
114 };
115 
116 
117 /*
118  * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119  * in the methods.
120  */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123 					 u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125 					 struct ocfs2_extent_tree *et,
126 					 u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128 				     struct ocfs2_extent_tree *et,
129 				     struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131 				     struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134 	.eo_set_last_eb_blk	= ocfs2_dinode_set_last_eb_blk,
135 	.eo_get_last_eb_blk	= ocfs2_dinode_get_last_eb_blk,
136 	.eo_update_clusters	= ocfs2_dinode_update_clusters,
137 	.eo_insert_check	= ocfs2_dinode_insert_check,
138 	.eo_sanity_check	= ocfs2_dinode_sanity_check,
139 	.eo_fill_root_el	= ocfs2_dinode_fill_root_el,
140 };
141 
ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree * et,u64 blkno)142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 					 u64 blkno)
144 {
145 	struct ocfs2_dinode *di = et->et_object;
146 
147 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148 	di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150 
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree * et)151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153 	struct ocfs2_dinode *di = et->et_object;
154 
155 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156 	return le64_to_cpu(di->i_last_eb_blk);
157 }
158 
ocfs2_dinode_update_clusters(struct inode * inode,struct ocfs2_extent_tree * et,u32 clusters)159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160 					 struct ocfs2_extent_tree *et,
161 					 u32 clusters)
162 {
163 	struct ocfs2_dinode *di = et->et_object;
164 
165 	le32_add_cpu(&di->i_clusters, clusters);
166 	spin_lock(&OCFS2_I(inode)->ip_lock);
167 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168 	spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170 
ocfs2_dinode_insert_check(struct inode * inode,struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * rec)171 static int ocfs2_dinode_insert_check(struct inode *inode,
172 				     struct ocfs2_extent_tree *et,
173 				     struct ocfs2_extent_rec *rec)
174 {
175 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176 
177 	BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178 	mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179 			(OCFS2_I(inode)->ip_clusters !=
180 			 le32_to_cpu(rec->e_cpos)),
181 			"Device %s, asking for sparse allocation: inode %llu, "
182 			"cpos %u, clusters %u\n",
183 			osb->dev_str,
184 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
185 			rec->e_cpos,
186 			OCFS2_I(inode)->ip_clusters);
187 
188 	return 0;
189 }
190 
ocfs2_dinode_sanity_check(struct inode * inode,struct ocfs2_extent_tree * et)191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192 				     struct ocfs2_extent_tree *et)
193 {
194 	struct ocfs2_dinode *di = et->et_object;
195 
196 	BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198 
199 	return 0;
200 }
201 
ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree * et)202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204 	struct ocfs2_dinode *di = et->et_object;
205 
206 	et->et_root_el = &di->id2.i_list;
207 }
208 
209 
ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree * et)210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212 	struct ocfs2_xattr_value_buf *vb = et->et_object;
213 
214 	et->et_root_el = &vb->vb_xv->xr_list;
215 }
216 
ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree * et,u64 blkno)217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218 					      u64 blkno)
219 {
220 	struct ocfs2_xattr_value_buf *vb = et->et_object;
221 
222 	vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224 
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree * et)225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227 	struct ocfs2_xattr_value_buf *vb = et->et_object;
228 
229 	return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231 
ocfs2_xattr_value_update_clusters(struct inode * inode,struct ocfs2_extent_tree * et,u32 clusters)232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233 					      struct ocfs2_extent_tree *et,
234 					      u32 clusters)
235 {
236 	struct ocfs2_xattr_value_buf *vb = et->et_object;
237 
238 	le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240 
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242 	.eo_set_last_eb_blk	= ocfs2_xattr_value_set_last_eb_blk,
243 	.eo_get_last_eb_blk	= ocfs2_xattr_value_get_last_eb_blk,
244 	.eo_update_clusters	= ocfs2_xattr_value_update_clusters,
245 	.eo_fill_root_el	= ocfs2_xattr_value_fill_root_el,
246 };
247 
ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree * et)248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250 	struct ocfs2_xattr_block *xb = et->et_object;
251 
252 	et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254 
ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode * inode,struct ocfs2_extent_tree * et)255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256 						    struct ocfs2_extent_tree *et)
257 {
258 	et->et_max_leaf_clusters =
259 		ocfs2_clusters_for_bytes(inode->i_sb,
260 					 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262 
ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree * et,u64 blkno)263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264 					     u64 blkno)
265 {
266 	struct ocfs2_xattr_block *xb = et->et_object;
267 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268 
269 	xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271 
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree * et)272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274 	struct ocfs2_xattr_block *xb = et->et_object;
275 	struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276 
277 	return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279 
ocfs2_xattr_tree_update_clusters(struct inode * inode,struct ocfs2_extent_tree * et,u32 clusters)280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281 					     struct ocfs2_extent_tree *et,
282 					     u32 clusters)
283 {
284 	struct ocfs2_xattr_block *xb = et->et_object;
285 
286 	le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288 
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290 	.eo_set_last_eb_blk	= ocfs2_xattr_tree_set_last_eb_blk,
291 	.eo_get_last_eb_blk	= ocfs2_xattr_tree_get_last_eb_blk,
292 	.eo_update_clusters	= ocfs2_xattr_tree_update_clusters,
293 	.eo_fill_root_el	= ocfs2_xattr_tree_fill_root_el,
294 	.eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296 
__ocfs2_init_extent_tree(struct ocfs2_extent_tree * et,struct inode * inode,struct buffer_head * bh,ocfs2_journal_access_func access,void * obj,struct ocfs2_extent_tree_operations * ops)297 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
298 				     struct inode *inode,
299 				     struct buffer_head *bh,
300 				     ocfs2_journal_access_func access,
301 				     void *obj,
302 				     struct ocfs2_extent_tree_operations *ops)
303 {
304 	et->et_ops = ops;
305 	et->et_root_bh = bh;
306 	et->et_root_journal_access = access;
307 	if (!obj)
308 		obj = (void *)bh->b_data;
309 	et->et_object = obj;
310 
311 	et->et_ops->eo_fill_root_el(et);
312 	if (!et->et_ops->eo_fill_max_leaf_clusters)
313 		et->et_max_leaf_clusters = 0;
314 	else
315 		et->et_ops->eo_fill_max_leaf_clusters(inode, et);
316 }
317 
ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree * et,struct inode * inode,struct buffer_head * bh)318 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
319 				   struct inode *inode,
320 				   struct buffer_head *bh)
321 {
322 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
323 				 NULL, &ocfs2_dinode_et_ops);
324 }
325 
ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree * et,struct inode * inode,struct buffer_head * bh)326 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
327 				       struct inode *inode,
328 				       struct buffer_head *bh)
329 {
330 	__ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
331 				 NULL, &ocfs2_xattr_tree_et_ops);
332 }
333 
ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree * et,struct inode * inode,struct ocfs2_xattr_value_buf * vb)334 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
335 					struct inode *inode,
336 					struct ocfs2_xattr_value_buf *vb)
337 {
338 	__ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
339 				 &ocfs2_xattr_value_et_ops);
340 }
341 
ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree * et,u64 new_last_eb_blk)342 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
343 					    u64 new_last_eb_blk)
344 {
345 	et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
346 }
347 
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree * et)348 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
349 {
350 	return et->et_ops->eo_get_last_eb_blk(et);
351 }
352 
ocfs2_et_update_clusters(struct inode * inode,struct ocfs2_extent_tree * et,u32 clusters)353 static inline void ocfs2_et_update_clusters(struct inode *inode,
354 					    struct ocfs2_extent_tree *et,
355 					    u32 clusters)
356 {
357 	et->et_ops->eo_update_clusters(inode, et, clusters);
358 }
359 
ocfs2_et_root_journal_access(handle_t * handle,struct inode * inode,struct ocfs2_extent_tree * et,int type)360 static inline int ocfs2_et_root_journal_access(handle_t *handle,
361 					       struct inode *inode,
362 					       struct ocfs2_extent_tree *et,
363 					       int type)
364 {
365 	return et->et_root_journal_access(handle, inode, et->et_root_bh,
366 					  type);
367 }
368 
ocfs2_et_insert_check(struct inode * inode,struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * rec)369 static inline int ocfs2_et_insert_check(struct inode *inode,
370 					struct ocfs2_extent_tree *et,
371 					struct ocfs2_extent_rec *rec)
372 {
373 	int ret = 0;
374 
375 	if (et->et_ops->eo_insert_check)
376 		ret = et->et_ops->eo_insert_check(inode, et, rec);
377 	return ret;
378 }
379 
ocfs2_et_sanity_check(struct inode * inode,struct ocfs2_extent_tree * et)380 static inline int ocfs2_et_sanity_check(struct inode *inode,
381 					struct ocfs2_extent_tree *et)
382 {
383 	int ret = 0;
384 
385 	if (et->et_ops->eo_sanity_check)
386 		ret = et->et_ops->eo_sanity_check(inode, et);
387 	return ret;
388 }
389 
390 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
391 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
392 					 struct ocfs2_extent_block *eb);
393 
394 /*
395  * Structures which describe a path through a btree, and functions to
396  * manipulate them.
397  *
398  * The idea here is to be as generic as possible with the tree
399  * manipulation code.
400  */
401 struct ocfs2_path_item {
402 	struct buffer_head		*bh;
403 	struct ocfs2_extent_list	*el;
404 };
405 
406 #define OCFS2_MAX_PATH_DEPTH	5
407 
408 struct ocfs2_path {
409 	int				p_tree_depth;
410 	ocfs2_journal_access_func	p_root_access;
411 	struct ocfs2_path_item		p_node[OCFS2_MAX_PATH_DEPTH];
412 };
413 
414 #define path_root_bh(_path) ((_path)->p_node[0].bh)
415 #define path_root_el(_path) ((_path)->p_node[0].el)
416 #define path_root_access(_path)((_path)->p_root_access)
417 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
418 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
419 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
420 
421 /*
422  * Reset the actual path elements so that we can re-use the structure
423  * to build another path. Generally, this involves freeing the buffer
424  * heads.
425  */
ocfs2_reinit_path(struct ocfs2_path * path,int keep_root)426 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
427 {
428 	int i, start = 0, depth = 0;
429 	struct ocfs2_path_item *node;
430 
431 	if (keep_root)
432 		start = 1;
433 
434 	for(i = start; i < path_num_items(path); i++) {
435 		node = &path->p_node[i];
436 
437 		brelse(node->bh);
438 		node->bh = NULL;
439 		node->el = NULL;
440 	}
441 
442 	/*
443 	 * Tree depth may change during truncate, or insert. If we're
444 	 * keeping the root extent list, then make sure that our path
445 	 * structure reflects the proper depth.
446 	 */
447 	if (keep_root)
448 		depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
449 	else
450 		path_root_access(path) = NULL;
451 
452 	path->p_tree_depth = depth;
453 }
454 
ocfs2_free_path(struct ocfs2_path * path)455 static void ocfs2_free_path(struct ocfs2_path *path)
456 {
457 	if (path) {
458 		ocfs2_reinit_path(path, 0);
459 		kfree(path);
460 	}
461 }
462 
463 /*
464  * All the elements of src into dest. After this call, src could be freed
465  * without affecting dest.
466  *
467  * Both paths should have the same root. Any non-root elements of dest
468  * will be freed.
469  */
ocfs2_cp_path(struct ocfs2_path * dest,struct ocfs2_path * src)470 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
471 {
472 	int i;
473 
474 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
475 	BUG_ON(path_root_el(dest) != path_root_el(src));
476 	BUG_ON(path_root_access(dest) != path_root_access(src));
477 
478 	ocfs2_reinit_path(dest, 1);
479 
480 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
481 		dest->p_node[i].bh = src->p_node[i].bh;
482 		dest->p_node[i].el = src->p_node[i].el;
483 
484 		if (dest->p_node[i].bh)
485 			get_bh(dest->p_node[i].bh);
486 	}
487 }
488 
489 /*
490  * Make the *dest path the same as src and re-initialize src path to
491  * have a root only.
492  */
ocfs2_mv_path(struct ocfs2_path * dest,struct ocfs2_path * src)493 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
494 {
495 	int i;
496 
497 	BUG_ON(path_root_bh(dest) != path_root_bh(src));
498 	BUG_ON(path_root_access(dest) != path_root_access(src));
499 
500 	for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
501 		brelse(dest->p_node[i].bh);
502 
503 		dest->p_node[i].bh = src->p_node[i].bh;
504 		dest->p_node[i].el = src->p_node[i].el;
505 
506 		src->p_node[i].bh = NULL;
507 		src->p_node[i].el = NULL;
508 	}
509 }
510 
511 /*
512  * Insert an extent block at given index.
513  *
514  * This will not take an additional reference on eb_bh.
515  */
ocfs2_path_insert_eb(struct ocfs2_path * path,int index,struct buffer_head * eb_bh)516 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
517 					struct buffer_head *eb_bh)
518 {
519 	struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
520 
521 	/*
522 	 * Right now, no root bh is an extent block, so this helps
523 	 * catch code errors with dinode trees. The assertion can be
524 	 * safely removed if we ever need to insert extent block
525 	 * structures at the root.
526 	 */
527 	BUG_ON(index == 0);
528 
529 	path->p_node[index].bh = eb_bh;
530 	path->p_node[index].el = &eb->h_list;
531 }
532 
ocfs2_new_path(struct buffer_head * root_bh,struct ocfs2_extent_list * root_el,ocfs2_journal_access_func access)533 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
534 					 struct ocfs2_extent_list *root_el,
535 					 ocfs2_journal_access_func access)
536 {
537 	struct ocfs2_path *path;
538 
539 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
540 
541 	path = kzalloc(sizeof(*path), GFP_NOFS);
542 	if (path) {
543 		path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
544 		get_bh(root_bh);
545 		path_root_bh(path) = root_bh;
546 		path_root_el(path) = root_el;
547 		path_root_access(path) = access;
548 	}
549 
550 	return path;
551 }
552 
ocfs2_new_path_from_path(struct ocfs2_path * path)553 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
554 {
555 	return ocfs2_new_path(path_root_bh(path), path_root_el(path),
556 			      path_root_access(path));
557 }
558 
ocfs2_new_path_from_et(struct ocfs2_extent_tree * et)559 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
560 {
561 	return ocfs2_new_path(et->et_root_bh, et->et_root_el,
562 			      et->et_root_journal_access);
563 }
564 
565 /*
566  * Journal the buffer at depth idx.  All idx>0 are extent_blocks,
567  * otherwise it's the root_access function.
568  *
569  * I don't like the way this function's name looks next to
570  * ocfs2_journal_access_path(), but I don't have a better one.
571  */
ocfs2_path_bh_journal_access(handle_t * handle,struct inode * inode,struct ocfs2_path * path,int idx)572 static int ocfs2_path_bh_journal_access(handle_t *handle,
573 					struct inode *inode,
574 					struct ocfs2_path *path,
575 					int idx)
576 {
577 	ocfs2_journal_access_func access = path_root_access(path);
578 
579 	if (!access)
580 		access = ocfs2_journal_access;
581 
582 	if (idx)
583 		access = ocfs2_journal_access_eb;
584 
585 	return access(handle, inode, path->p_node[idx].bh,
586 		      OCFS2_JOURNAL_ACCESS_WRITE);
587 }
588 
589 /*
590  * Convenience function to journal all components in a path.
591  */
ocfs2_journal_access_path(struct inode * inode,handle_t * handle,struct ocfs2_path * path)592 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
593 				     struct ocfs2_path *path)
594 {
595 	int i, ret = 0;
596 
597 	if (!path)
598 		goto out;
599 
600 	for(i = 0; i < path_num_items(path); i++) {
601 		ret = ocfs2_path_bh_journal_access(handle, inode, path, i);
602 		if (ret < 0) {
603 			mlog_errno(ret);
604 			goto out;
605 		}
606 	}
607 
608 out:
609 	return ret;
610 }
611 
612 /*
613  * Return the index of the extent record which contains cluster #v_cluster.
614  * -1 is returned if it was not found.
615  *
616  * Should work fine on interior and exterior nodes.
617  */
ocfs2_search_extent_list(struct ocfs2_extent_list * el,u32 v_cluster)618 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
619 {
620 	int ret = -1;
621 	int i;
622 	struct ocfs2_extent_rec *rec;
623 	u32 rec_end, rec_start, clusters;
624 
625 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
626 		rec = &el->l_recs[i];
627 
628 		rec_start = le32_to_cpu(rec->e_cpos);
629 		clusters = ocfs2_rec_clusters(el, rec);
630 
631 		rec_end = rec_start + clusters;
632 
633 		if (v_cluster >= rec_start && v_cluster < rec_end) {
634 			ret = i;
635 			break;
636 		}
637 	}
638 
639 	return ret;
640 }
641 
642 enum ocfs2_contig_type {
643 	CONTIG_NONE = 0,
644 	CONTIG_LEFT,
645 	CONTIG_RIGHT,
646 	CONTIG_LEFTRIGHT,
647 };
648 
649 
650 /*
651  * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
652  * ocfs2_extent_contig only work properly against leaf nodes!
653  */
ocfs2_block_extent_contig(struct super_block * sb,struct ocfs2_extent_rec * ext,u64 blkno)654 static int ocfs2_block_extent_contig(struct super_block *sb,
655 				     struct ocfs2_extent_rec *ext,
656 				     u64 blkno)
657 {
658 	u64 blk_end = le64_to_cpu(ext->e_blkno);
659 
660 	blk_end += ocfs2_clusters_to_blocks(sb,
661 				    le16_to_cpu(ext->e_leaf_clusters));
662 
663 	return blkno == blk_end;
664 }
665 
ocfs2_extents_adjacent(struct ocfs2_extent_rec * left,struct ocfs2_extent_rec * right)666 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
667 				  struct ocfs2_extent_rec *right)
668 {
669 	u32 left_range;
670 
671 	left_range = le32_to_cpu(left->e_cpos) +
672 		le16_to_cpu(left->e_leaf_clusters);
673 
674 	return (left_range == le32_to_cpu(right->e_cpos));
675 }
676 
677 static enum ocfs2_contig_type
ocfs2_extent_contig(struct inode * inode,struct ocfs2_extent_rec * ext,struct ocfs2_extent_rec * insert_rec)678 	ocfs2_extent_contig(struct inode *inode,
679 			    struct ocfs2_extent_rec *ext,
680 			    struct ocfs2_extent_rec *insert_rec)
681 {
682 	u64 blkno = le64_to_cpu(insert_rec->e_blkno);
683 
684 	/*
685 	 * Refuse to coalesce extent records with different flag
686 	 * fields - we don't want to mix unwritten extents with user
687 	 * data.
688 	 */
689 	if (ext->e_flags != insert_rec->e_flags)
690 		return CONTIG_NONE;
691 
692 	if (ocfs2_extents_adjacent(ext, insert_rec) &&
693 	    ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
694 			return CONTIG_RIGHT;
695 
696 	blkno = le64_to_cpu(ext->e_blkno);
697 	if (ocfs2_extents_adjacent(insert_rec, ext) &&
698 	    ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
699 		return CONTIG_LEFT;
700 
701 	return CONTIG_NONE;
702 }
703 
704 /*
705  * NOTE: We can have pretty much any combination of contiguousness and
706  * appending.
707  *
708  * The usefulness of APPEND_TAIL is more in that it lets us know that
709  * we'll have to update the path to that leaf.
710  */
711 enum ocfs2_append_type {
712 	APPEND_NONE = 0,
713 	APPEND_TAIL,
714 };
715 
716 enum ocfs2_split_type {
717 	SPLIT_NONE = 0,
718 	SPLIT_LEFT,
719 	SPLIT_RIGHT,
720 };
721 
722 struct ocfs2_insert_type {
723 	enum ocfs2_split_type	ins_split;
724 	enum ocfs2_append_type	ins_appending;
725 	enum ocfs2_contig_type	ins_contig;
726 	int			ins_contig_index;
727 	int			ins_tree_depth;
728 };
729 
730 struct ocfs2_merge_ctxt {
731 	enum ocfs2_contig_type	c_contig_type;
732 	int			c_has_empty_extent;
733 	int			c_split_covers_rec;
734 };
735 
ocfs2_validate_extent_block(struct super_block * sb,struct buffer_head * bh)736 static int ocfs2_validate_extent_block(struct super_block *sb,
737 				       struct buffer_head *bh)
738 {
739 	int rc;
740 	struct ocfs2_extent_block *eb =
741 		(struct ocfs2_extent_block *)bh->b_data;
742 
743 	mlog(0, "Validating extent block %llu\n",
744 	     (unsigned long long)bh->b_blocknr);
745 
746 	BUG_ON(!buffer_uptodate(bh));
747 
748 	/*
749 	 * If the ecc fails, we return the error but otherwise
750 	 * leave the filesystem running.  We know any error is
751 	 * local to this block.
752 	 */
753 	rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
754 	if (rc) {
755 		mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
756 		     (unsigned long long)bh->b_blocknr);
757 		return rc;
758 	}
759 
760 	/*
761 	 * Errors after here are fatal.
762 	 */
763 
764 	if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
765 		ocfs2_error(sb,
766 			    "Extent block #%llu has bad signature %.*s",
767 			    (unsigned long long)bh->b_blocknr, 7,
768 			    eb->h_signature);
769 		return -EINVAL;
770 	}
771 
772 	if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
773 		ocfs2_error(sb,
774 			    "Extent block #%llu has an invalid h_blkno "
775 			    "of %llu",
776 			    (unsigned long long)bh->b_blocknr,
777 			    (unsigned long long)le64_to_cpu(eb->h_blkno));
778 		return -EINVAL;
779 	}
780 
781 	if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
782 		ocfs2_error(sb,
783 			    "Extent block #%llu has an invalid "
784 			    "h_fs_generation of #%u",
785 			    (unsigned long long)bh->b_blocknr,
786 			    le32_to_cpu(eb->h_fs_generation));
787 		return -EINVAL;
788 	}
789 
790 	return 0;
791 }
792 
ocfs2_read_extent_block(struct inode * inode,u64 eb_blkno,struct buffer_head ** bh)793 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
794 			    struct buffer_head **bh)
795 {
796 	int rc;
797 	struct buffer_head *tmp = *bh;
798 
799 	rc = ocfs2_read_block(inode, eb_blkno, &tmp,
800 			      ocfs2_validate_extent_block);
801 
802 	/* If ocfs2_read_block() got us a new bh, pass it up. */
803 	if (!rc && !*bh)
804 		*bh = tmp;
805 
806 	return rc;
807 }
808 
809 
810 /*
811  * How many free extents have we got before we need more meta data?
812  */
ocfs2_num_free_extents(struct ocfs2_super * osb,struct inode * inode,struct ocfs2_extent_tree * et)813 int ocfs2_num_free_extents(struct ocfs2_super *osb,
814 			   struct inode *inode,
815 			   struct ocfs2_extent_tree *et)
816 {
817 	int retval;
818 	struct ocfs2_extent_list *el = NULL;
819 	struct ocfs2_extent_block *eb;
820 	struct buffer_head *eb_bh = NULL;
821 	u64 last_eb_blk = 0;
822 
823 	mlog_entry_void();
824 
825 	el = et->et_root_el;
826 	last_eb_blk = ocfs2_et_get_last_eb_blk(et);
827 
828 	if (last_eb_blk) {
829 		retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
830 		if (retval < 0) {
831 			mlog_errno(retval);
832 			goto bail;
833 		}
834 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
835 		el = &eb->h_list;
836 	}
837 
838 	BUG_ON(el->l_tree_depth != 0);
839 
840 	retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
841 bail:
842 	brelse(eb_bh);
843 
844 	mlog_exit(retval);
845 	return retval;
846 }
847 
848 /* expects array to already be allocated
849  *
850  * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
851  * l_count for you
852  */
ocfs2_create_new_meta_bhs(struct ocfs2_super * osb,handle_t * handle,struct inode * inode,int wanted,struct ocfs2_alloc_context * meta_ac,struct buffer_head * bhs[])853 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
854 				     handle_t *handle,
855 				     struct inode *inode,
856 				     int wanted,
857 				     struct ocfs2_alloc_context *meta_ac,
858 				     struct buffer_head *bhs[])
859 {
860 	int count, status, i;
861 	u16 suballoc_bit_start;
862 	u32 num_got;
863 	u64 first_blkno;
864 	struct ocfs2_extent_block *eb;
865 
866 	mlog_entry_void();
867 
868 	count = 0;
869 	while (count < wanted) {
870 		status = ocfs2_claim_metadata(osb,
871 					      handle,
872 					      meta_ac,
873 					      wanted - count,
874 					      &suballoc_bit_start,
875 					      &num_got,
876 					      &first_blkno);
877 		if (status < 0) {
878 			mlog_errno(status);
879 			goto bail;
880 		}
881 
882 		for(i = count;  i < (num_got + count); i++) {
883 			bhs[i] = sb_getblk(osb->sb, first_blkno);
884 			if (bhs[i] == NULL) {
885 				status = -EIO;
886 				mlog_errno(status);
887 				goto bail;
888 			}
889 			ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
890 
891 			status = ocfs2_journal_access_eb(handle, inode, bhs[i],
892 							 OCFS2_JOURNAL_ACCESS_CREATE);
893 			if (status < 0) {
894 				mlog_errno(status);
895 				goto bail;
896 			}
897 
898 			memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
899 			eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
900 			/* Ok, setup the minimal stuff here. */
901 			strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
902 			eb->h_blkno = cpu_to_le64(first_blkno);
903 			eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
904 			eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
905 			eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
906 			eb->h_list.l_count =
907 				cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
908 
909 			suballoc_bit_start++;
910 			first_blkno++;
911 
912 			/* We'll also be dirtied by the caller, so
913 			 * this isn't absolutely necessary. */
914 			status = ocfs2_journal_dirty(handle, bhs[i]);
915 			if (status < 0) {
916 				mlog_errno(status);
917 				goto bail;
918 			}
919 		}
920 
921 		count += num_got;
922 	}
923 
924 	status = 0;
925 bail:
926 	if (status < 0) {
927 		for(i = 0; i < wanted; i++) {
928 			brelse(bhs[i]);
929 			bhs[i] = NULL;
930 		}
931 	}
932 	mlog_exit(status);
933 	return status;
934 }
935 
936 /*
937  * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
938  *
939  * Returns the sum of the rightmost extent rec logical offset and
940  * cluster count.
941  *
942  * ocfs2_add_branch() uses this to determine what logical cluster
943  * value should be populated into the leftmost new branch records.
944  *
945  * ocfs2_shift_tree_depth() uses this to determine the # clusters
946  * value for the new topmost tree record.
947  */
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list * el)948 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
949 {
950 	int i;
951 
952 	i = le16_to_cpu(el->l_next_free_rec) - 1;
953 
954 	return le32_to_cpu(el->l_recs[i].e_cpos) +
955 		ocfs2_rec_clusters(el, &el->l_recs[i]);
956 }
957 
958 /*
959  * Add an entire tree branch to our inode. eb_bh is the extent block
960  * to start at, if we don't want to start the branch at the dinode
961  * structure.
962  *
963  * last_eb_bh is required as we have to update it's next_leaf pointer
964  * for the new last extent block.
965  *
966  * the new branch will be 'empty' in the sense that every block will
967  * contain a single record with cluster count == 0.
968  */
ocfs2_add_branch(struct ocfs2_super * osb,handle_t * handle,struct inode * inode,struct ocfs2_extent_tree * et,struct buffer_head * eb_bh,struct buffer_head ** last_eb_bh,struct ocfs2_alloc_context * meta_ac)969 static int ocfs2_add_branch(struct ocfs2_super *osb,
970 			    handle_t *handle,
971 			    struct inode *inode,
972 			    struct ocfs2_extent_tree *et,
973 			    struct buffer_head *eb_bh,
974 			    struct buffer_head **last_eb_bh,
975 			    struct ocfs2_alloc_context *meta_ac)
976 {
977 	int status, new_blocks, i;
978 	u64 next_blkno, new_last_eb_blk;
979 	struct buffer_head *bh;
980 	struct buffer_head **new_eb_bhs = NULL;
981 	struct ocfs2_extent_block *eb;
982 	struct ocfs2_extent_list  *eb_el;
983 	struct ocfs2_extent_list  *el;
984 	u32 new_cpos;
985 
986 	mlog_entry_void();
987 
988 	BUG_ON(!last_eb_bh || !*last_eb_bh);
989 
990 	if (eb_bh) {
991 		eb = (struct ocfs2_extent_block *) eb_bh->b_data;
992 		el = &eb->h_list;
993 	} else
994 		el = et->et_root_el;
995 
996 	/* we never add a branch to a leaf. */
997 	BUG_ON(!el->l_tree_depth);
998 
999 	new_blocks = le16_to_cpu(el->l_tree_depth);
1000 
1001 	/* allocate the number of new eb blocks we need */
1002 	new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1003 			     GFP_KERNEL);
1004 	if (!new_eb_bhs) {
1005 		status = -ENOMEM;
1006 		mlog_errno(status);
1007 		goto bail;
1008 	}
1009 
1010 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1011 					   meta_ac, new_eb_bhs);
1012 	if (status < 0) {
1013 		mlog_errno(status);
1014 		goto bail;
1015 	}
1016 
1017 	eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1018 	new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1019 
1020 	/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1021 	 * linked with the rest of the tree.
1022 	 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1023 	 *
1024 	 * when we leave the loop, new_last_eb_blk will point to the
1025 	 * newest leaf, and next_blkno will point to the topmost extent
1026 	 * block. */
1027 	next_blkno = new_last_eb_blk = 0;
1028 	for(i = 0; i < new_blocks; i++) {
1029 		bh = new_eb_bhs[i];
1030 		eb = (struct ocfs2_extent_block *) bh->b_data;
1031 		/* ocfs2_create_new_meta_bhs() should create it right! */
1032 		BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1033 		eb_el = &eb->h_list;
1034 
1035 		status = ocfs2_journal_access_eb(handle, inode, bh,
1036 						 OCFS2_JOURNAL_ACCESS_CREATE);
1037 		if (status < 0) {
1038 			mlog_errno(status);
1039 			goto bail;
1040 		}
1041 
1042 		eb->h_next_leaf_blk = 0;
1043 		eb_el->l_tree_depth = cpu_to_le16(i);
1044 		eb_el->l_next_free_rec = cpu_to_le16(1);
1045 		/*
1046 		 * This actually counts as an empty extent as
1047 		 * c_clusters == 0
1048 		 */
1049 		eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1050 		eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1051 		/*
1052 		 * eb_el isn't always an interior node, but even leaf
1053 		 * nodes want a zero'd flags and reserved field so
1054 		 * this gets the whole 32 bits regardless of use.
1055 		 */
1056 		eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1057 		if (!eb_el->l_tree_depth)
1058 			new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1059 
1060 		status = ocfs2_journal_dirty(handle, bh);
1061 		if (status < 0) {
1062 			mlog_errno(status);
1063 			goto bail;
1064 		}
1065 
1066 		next_blkno = le64_to_cpu(eb->h_blkno);
1067 	}
1068 
1069 	/* This is a bit hairy. We want to update up to three blocks
1070 	 * here without leaving any of them in an inconsistent state
1071 	 * in case of error. We don't have to worry about
1072 	 * journal_dirty erroring as it won't unless we've aborted the
1073 	 * handle (in which case we would never be here) so reserving
1074 	 * the write with journal_access is all we need to do. */
1075 	status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh,
1076 					 OCFS2_JOURNAL_ACCESS_WRITE);
1077 	if (status < 0) {
1078 		mlog_errno(status);
1079 		goto bail;
1080 	}
1081 	status = ocfs2_et_root_journal_access(handle, inode, et,
1082 					      OCFS2_JOURNAL_ACCESS_WRITE);
1083 	if (status < 0) {
1084 		mlog_errno(status);
1085 		goto bail;
1086 	}
1087 	if (eb_bh) {
1088 		status = ocfs2_journal_access_eb(handle, inode, eb_bh,
1089 						 OCFS2_JOURNAL_ACCESS_WRITE);
1090 		if (status < 0) {
1091 			mlog_errno(status);
1092 			goto bail;
1093 		}
1094 	}
1095 
1096 	/* Link the new branch into the rest of the tree (el will
1097 	 * either be on the root_bh, or the extent block passed in. */
1098 	i = le16_to_cpu(el->l_next_free_rec);
1099 	el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1100 	el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1101 	el->l_recs[i].e_int_clusters = 0;
1102 	le16_add_cpu(&el->l_next_free_rec, 1);
1103 
1104 	/* fe needs a new last extent block pointer, as does the
1105 	 * next_leaf on the previously last-extent-block. */
1106 	ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1107 
1108 	eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1109 	eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1110 
1111 	status = ocfs2_journal_dirty(handle, *last_eb_bh);
1112 	if (status < 0)
1113 		mlog_errno(status);
1114 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1115 	if (status < 0)
1116 		mlog_errno(status);
1117 	if (eb_bh) {
1118 		status = ocfs2_journal_dirty(handle, eb_bh);
1119 		if (status < 0)
1120 			mlog_errno(status);
1121 	}
1122 
1123 	/*
1124 	 * Some callers want to track the rightmost leaf so pass it
1125 	 * back here.
1126 	 */
1127 	brelse(*last_eb_bh);
1128 	get_bh(new_eb_bhs[0]);
1129 	*last_eb_bh = new_eb_bhs[0];
1130 
1131 	status = 0;
1132 bail:
1133 	if (new_eb_bhs) {
1134 		for (i = 0; i < new_blocks; i++)
1135 			brelse(new_eb_bhs[i]);
1136 		kfree(new_eb_bhs);
1137 	}
1138 
1139 	mlog_exit(status);
1140 	return status;
1141 }
1142 
1143 /*
1144  * adds another level to the allocation tree.
1145  * returns back the new extent block so you can add a branch to it
1146  * after this call.
1147  */
ocfs2_shift_tree_depth(struct ocfs2_super * osb,handle_t * handle,struct inode * inode,struct ocfs2_extent_tree * et,struct ocfs2_alloc_context * meta_ac,struct buffer_head ** ret_new_eb_bh)1148 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1149 				  handle_t *handle,
1150 				  struct inode *inode,
1151 				  struct ocfs2_extent_tree *et,
1152 				  struct ocfs2_alloc_context *meta_ac,
1153 				  struct buffer_head **ret_new_eb_bh)
1154 {
1155 	int status, i;
1156 	u32 new_clusters;
1157 	struct buffer_head *new_eb_bh = NULL;
1158 	struct ocfs2_extent_block *eb;
1159 	struct ocfs2_extent_list  *root_el;
1160 	struct ocfs2_extent_list  *eb_el;
1161 
1162 	mlog_entry_void();
1163 
1164 	status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1165 					   &new_eb_bh);
1166 	if (status < 0) {
1167 		mlog_errno(status);
1168 		goto bail;
1169 	}
1170 
1171 	eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1172 	/* ocfs2_create_new_meta_bhs() should create it right! */
1173 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1174 
1175 	eb_el = &eb->h_list;
1176 	root_el = et->et_root_el;
1177 
1178 	status = ocfs2_journal_access_eb(handle, inode, new_eb_bh,
1179 					 OCFS2_JOURNAL_ACCESS_CREATE);
1180 	if (status < 0) {
1181 		mlog_errno(status);
1182 		goto bail;
1183 	}
1184 
1185 	/* copy the root extent list data into the new extent block */
1186 	eb_el->l_tree_depth = root_el->l_tree_depth;
1187 	eb_el->l_next_free_rec = root_el->l_next_free_rec;
1188 	for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1189 		eb_el->l_recs[i] = root_el->l_recs[i];
1190 
1191 	status = ocfs2_journal_dirty(handle, new_eb_bh);
1192 	if (status < 0) {
1193 		mlog_errno(status);
1194 		goto bail;
1195 	}
1196 
1197 	status = ocfs2_et_root_journal_access(handle, inode, et,
1198 					      OCFS2_JOURNAL_ACCESS_WRITE);
1199 	if (status < 0) {
1200 		mlog_errno(status);
1201 		goto bail;
1202 	}
1203 
1204 	new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1205 
1206 	/* update root_bh now */
1207 	le16_add_cpu(&root_el->l_tree_depth, 1);
1208 	root_el->l_recs[0].e_cpos = 0;
1209 	root_el->l_recs[0].e_blkno = eb->h_blkno;
1210 	root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1211 	for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1212 		memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1213 	root_el->l_next_free_rec = cpu_to_le16(1);
1214 
1215 	/* If this is our 1st tree depth shift, then last_eb_blk
1216 	 * becomes the allocated extent block */
1217 	if (root_el->l_tree_depth == cpu_to_le16(1))
1218 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1219 
1220 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
1221 	if (status < 0) {
1222 		mlog_errno(status);
1223 		goto bail;
1224 	}
1225 
1226 	*ret_new_eb_bh = new_eb_bh;
1227 	new_eb_bh = NULL;
1228 	status = 0;
1229 bail:
1230 	brelse(new_eb_bh);
1231 
1232 	mlog_exit(status);
1233 	return status;
1234 }
1235 
1236 /*
1237  * Should only be called when there is no space left in any of the
1238  * leaf nodes. What we want to do is find the lowest tree depth
1239  * non-leaf extent block with room for new records. There are three
1240  * valid results of this search:
1241  *
1242  * 1) a lowest extent block is found, then we pass it back in
1243  *    *lowest_eb_bh and return '0'
1244  *
1245  * 2) the search fails to find anything, but the root_el has room. We
1246  *    pass NULL back in *lowest_eb_bh, but still return '0'
1247  *
1248  * 3) the search fails to find anything AND the root_el is full, in
1249  *    which case we return > 0
1250  *
1251  * return status < 0 indicates an error.
1252  */
ocfs2_find_branch_target(struct ocfs2_super * osb,struct inode * inode,struct ocfs2_extent_tree * et,struct buffer_head ** target_bh)1253 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1254 				    struct inode *inode,
1255 				    struct ocfs2_extent_tree *et,
1256 				    struct buffer_head **target_bh)
1257 {
1258 	int status = 0, i;
1259 	u64 blkno;
1260 	struct ocfs2_extent_block *eb;
1261 	struct ocfs2_extent_list  *el;
1262 	struct buffer_head *bh = NULL;
1263 	struct buffer_head *lowest_bh = NULL;
1264 
1265 	mlog_entry_void();
1266 
1267 	*target_bh = NULL;
1268 
1269 	el = et->et_root_el;
1270 
1271 	while(le16_to_cpu(el->l_tree_depth) > 1) {
1272 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1273 			ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1274 				    "extent list (next_free_rec == 0)",
1275 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
1276 			status = -EIO;
1277 			goto bail;
1278 		}
1279 		i = le16_to_cpu(el->l_next_free_rec) - 1;
1280 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1281 		if (!blkno) {
1282 			ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1283 				    "list where extent # %d has no physical "
1284 				    "block start",
1285 				    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1286 			status = -EIO;
1287 			goto bail;
1288 		}
1289 
1290 		brelse(bh);
1291 		bh = NULL;
1292 
1293 		status = ocfs2_read_extent_block(inode, blkno, &bh);
1294 		if (status < 0) {
1295 			mlog_errno(status);
1296 			goto bail;
1297 		}
1298 
1299 		eb = (struct ocfs2_extent_block *) bh->b_data;
1300 		el = &eb->h_list;
1301 
1302 		if (le16_to_cpu(el->l_next_free_rec) <
1303 		    le16_to_cpu(el->l_count)) {
1304 			brelse(lowest_bh);
1305 			lowest_bh = bh;
1306 			get_bh(lowest_bh);
1307 		}
1308 	}
1309 
1310 	/* If we didn't find one and the fe doesn't have any room,
1311 	 * then return '1' */
1312 	el = et->et_root_el;
1313 	if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1314 		status = 1;
1315 
1316 	*target_bh = lowest_bh;
1317 bail:
1318 	brelse(bh);
1319 
1320 	mlog_exit(status);
1321 	return status;
1322 }
1323 
1324 /*
1325  * Grow a b-tree so that it has more records.
1326  *
1327  * We might shift the tree depth in which case existing paths should
1328  * be considered invalid.
1329  *
1330  * Tree depth after the grow is returned via *final_depth.
1331  *
1332  * *last_eb_bh will be updated by ocfs2_add_branch().
1333  */
ocfs2_grow_tree(struct inode * inode,handle_t * handle,struct ocfs2_extent_tree * et,int * final_depth,struct buffer_head ** last_eb_bh,struct ocfs2_alloc_context * meta_ac)1334 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1335 			   struct ocfs2_extent_tree *et, int *final_depth,
1336 			   struct buffer_head **last_eb_bh,
1337 			   struct ocfs2_alloc_context *meta_ac)
1338 {
1339 	int ret, shift;
1340 	struct ocfs2_extent_list *el = et->et_root_el;
1341 	int depth = le16_to_cpu(el->l_tree_depth);
1342 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1343 	struct buffer_head *bh = NULL;
1344 
1345 	BUG_ON(meta_ac == NULL);
1346 
1347 	shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1348 	if (shift < 0) {
1349 		ret = shift;
1350 		mlog_errno(ret);
1351 		goto out;
1352 	}
1353 
1354 	/* We traveled all the way to the bottom of the allocation tree
1355 	 * and didn't find room for any more extents - we need to add
1356 	 * another tree level */
1357 	if (shift) {
1358 		BUG_ON(bh);
1359 		mlog(0, "need to shift tree depth (current = %d)\n", depth);
1360 
1361 		/* ocfs2_shift_tree_depth will return us a buffer with
1362 		 * the new extent block (so we can pass that to
1363 		 * ocfs2_add_branch). */
1364 		ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1365 					     meta_ac, &bh);
1366 		if (ret < 0) {
1367 			mlog_errno(ret);
1368 			goto out;
1369 		}
1370 		depth++;
1371 		if (depth == 1) {
1372 			/*
1373 			 * Special case: we have room now if we shifted from
1374 			 * tree_depth 0, so no more work needs to be done.
1375 			 *
1376 			 * We won't be calling add_branch, so pass
1377 			 * back *last_eb_bh as the new leaf. At depth
1378 			 * zero, it should always be null so there's
1379 			 * no reason to brelse.
1380 			 */
1381 			BUG_ON(*last_eb_bh);
1382 			get_bh(bh);
1383 			*last_eb_bh = bh;
1384 			goto out;
1385 		}
1386 	}
1387 
1388 	/* call ocfs2_add_branch to add the final part of the tree with
1389 	 * the new data. */
1390 	mlog(0, "add branch. bh = %p\n", bh);
1391 	ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1392 			       meta_ac);
1393 	if (ret < 0) {
1394 		mlog_errno(ret);
1395 		goto out;
1396 	}
1397 
1398 out:
1399 	if (final_depth)
1400 		*final_depth = depth;
1401 	brelse(bh);
1402 	return ret;
1403 }
1404 
1405 /*
1406  * This function will discard the rightmost extent record.
1407  */
ocfs2_shift_records_right(struct ocfs2_extent_list * el)1408 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1409 {
1410 	int next_free = le16_to_cpu(el->l_next_free_rec);
1411 	int count = le16_to_cpu(el->l_count);
1412 	unsigned int num_bytes;
1413 
1414 	BUG_ON(!next_free);
1415 	/* This will cause us to go off the end of our extent list. */
1416 	BUG_ON(next_free >= count);
1417 
1418 	num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1419 
1420 	memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1421 }
1422 
ocfs2_rotate_leaf(struct ocfs2_extent_list * el,struct ocfs2_extent_rec * insert_rec)1423 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1424 			      struct ocfs2_extent_rec *insert_rec)
1425 {
1426 	int i, insert_index, next_free, has_empty, num_bytes;
1427 	u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1428 	struct ocfs2_extent_rec *rec;
1429 
1430 	next_free = le16_to_cpu(el->l_next_free_rec);
1431 	has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1432 
1433 	BUG_ON(!next_free);
1434 
1435 	/* The tree code before us didn't allow enough room in the leaf. */
1436 	BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1437 
1438 	/*
1439 	 * The easiest way to approach this is to just remove the
1440 	 * empty extent and temporarily decrement next_free.
1441 	 */
1442 	if (has_empty) {
1443 		/*
1444 		 * If next_free was 1 (only an empty extent), this
1445 		 * loop won't execute, which is fine. We still want
1446 		 * the decrement above to happen.
1447 		 */
1448 		for(i = 0; i < (next_free - 1); i++)
1449 			el->l_recs[i] = el->l_recs[i+1];
1450 
1451 		next_free--;
1452 	}
1453 
1454 	/*
1455 	 * Figure out what the new record index should be.
1456 	 */
1457 	for(i = 0; i < next_free; i++) {
1458 		rec = &el->l_recs[i];
1459 
1460 		if (insert_cpos < le32_to_cpu(rec->e_cpos))
1461 			break;
1462 	}
1463 	insert_index = i;
1464 
1465 	mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1466 	     insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1467 
1468 	BUG_ON(insert_index < 0);
1469 	BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1470 	BUG_ON(insert_index > next_free);
1471 
1472 	/*
1473 	 * No need to memmove if we're just adding to the tail.
1474 	 */
1475 	if (insert_index != next_free) {
1476 		BUG_ON(next_free >= le16_to_cpu(el->l_count));
1477 
1478 		num_bytes = next_free - insert_index;
1479 		num_bytes *= sizeof(struct ocfs2_extent_rec);
1480 		memmove(&el->l_recs[insert_index + 1],
1481 			&el->l_recs[insert_index],
1482 			num_bytes);
1483 	}
1484 
1485 	/*
1486 	 * Either we had an empty extent, and need to re-increment or
1487 	 * there was no empty extent on a non full rightmost leaf node,
1488 	 * in which case we still need to increment.
1489 	 */
1490 	next_free++;
1491 	el->l_next_free_rec = cpu_to_le16(next_free);
1492 	/*
1493 	 * Make sure none of the math above just messed up our tree.
1494 	 */
1495 	BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1496 
1497 	el->l_recs[insert_index] = *insert_rec;
1498 
1499 }
1500 
ocfs2_remove_empty_extent(struct ocfs2_extent_list * el)1501 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1502 {
1503 	int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1504 
1505 	BUG_ON(num_recs == 0);
1506 
1507 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1508 		num_recs--;
1509 		size = num_recs * sizeof(struct ocfs2_extent_rec);
1510 		memmove(&el->l_recs[0], &el->l_recs[1], size);
1511 		memset(&el->l_recs[num_recs], 0,
1512 		       sizeof(struct ocfs2_extent_rec));
1513 		el->l_next_free_rec = cpu_to_le16(num_recs);
1514 	}
1515 }
1516 
1517 /*
1518  * Create an empty extent record .
1519  *
1520  * l_next_free_rec may be updated.
1521  *
1522  * If an empty extent already exists do nothing.
1523  */
ocfs2_create_empty_extent(struct ocfs2_extent_list * el)1524 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1525 {
1526 	int next_free = le16_to_cpu(el->l_next_free_rec);
1527 
1528 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1529 
1530 	if (next_free == 0)
1531 		goto set_and_inc;
1532 
1533 	if (ocfs2_is_empty_extent(&el->l_recs[0]))
1534 		return;
1535 
1536 	mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1537 			"Asked to create an empty extent in a full list:\n"
1538 			"count = %u, tree depth = %u",
1539 			le16_to_cpu(el->l_count),
1540 			le16_to_cpu(el->l_tree_depth));
1541 
1542 	ocfs2_shift_records_right(el);
1543 
1544 set_and_inc:
1545 	le16_add_cpu(&el->l_next_free_rec, 1);
1546 	memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1547 }
1548 
1549 /*
1550  * For a rotation which involves two leaf nodes, the "root node" is
1551  * the lowest level tree node which contains a path to both leafs. This
1552  * resulting set of information can be used to form a complete "subtree"
1553  *
1554  * This function is passed two full paths from the dinode down to a
1555  * pair of adjacent leaves. It's task is to figure out which path
1556  * index contains the subtree root - this can be the root index itself
1557  * in a worst-case rotation.
1558  *
1559  * The array index of the subtree root is passed back.
1560  */
ocfs2_find_subtree_root(struct inode * inode,struct ocfs2_path * left,struct ocfs2_path * right)1561 static int ocfs2_find_subtree_root(struct inode *inode,
1562 				   struct ocfs2_path *left,
1563 				   struct ocfs2_path *right)
1564 {
1565 	int i = 0;
1566 
1567 	/*
1568 	 * Check that the caller passed in two paths from the same tree.
1569 	 */
1570 	BUG_ON(path_root_bh(left) != path_root_bh(right));
1571 
1572 	do {
1573 		i++;
1574 
1575 		/*
1576 		 * The caller didn't pass two adjacent paths.
1577 		 */
1578 		mlog_bug_on_msg(i > left->p_tree_depth,
1579 				"Inode %lu, left depth %u, right depth %u\n"
1580 				"left leaf blk %llu, right leaf blk %llu\n",
1581 				inode->i_ino, left->p_tree_depth,
1582 				right->p_tree_depth,
1583 				(unsigned long long)path_leaf_bh(left)->b_blocknr,
1584 				(unsigned long long)path_leaf_bh(right)->b_blocknr);
1585 	} while (left->p_node[i].bh->b_blocknr ==
1586 		 right->p_node[i].bh->b_blocknr);
1587 
1588 	return i - 1;
1589 }
1590 
1591 typedef void (path_insert_t)(void *, struct buffer_head *);
1592 
1593 /*
1594  * Traverse a btree path in search of cpos, starting at root_el.
1595  *
1596  * This code can be called with a cpos larger than the tree, in which
1597  * case it will return the rightmost path.
1598  */
__ocfs2_find_path(struct inode * inode,struct ocfs2_extent_list * root_el,u32 cpos,path_insert_t * func,void * data)1599 static int __ocfs2_find_path(struct inode *inode,
1600 			     struct ocfs2_extent_list *root_el, u32 cpos,
1601 			     path_insert_t *func, void *data)
1602 {
1603 	int i, ret = 0;
1604 	u32 range;
1605 	u64 blkno;
1606 	struct buffer_head *bh = NULL;
1607 	struct ocfs2_extent_block *eb;
1608 	struct ocfs2_extent_list *el;
1609 	struct ocfs2_extent_rec *rec;
1610 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1611 
1612 	el = root_el;
1613 	while (el->l_tree_depth) {
1614 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
1615 			ocfs2_error(inode->i_sb,
1616 				    "Inode %llu has empty extent list at "
1617 				    "depth %u\n",
1618 				    (unsigned long long)oi->ip_blkno,
1619 				    le16_to_cpu(el->l_tree_depth));
1620 			ret = -EROFS;
1621 			goto out;
1622 
1623 		}
1624 
1625 		for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1626 			rec = &el->l_recs[i];
1627 
1628 			/*
1629 			 * In the case that cpos is off the allocation
1630 			 * tree, this should just wind up returning the
1631 			 * rightmost record.
1632 			 */
1633 			range = le32_to_cpu(rec->e_cpos) +
1634 				ocfs2_rec_clusters(el, rec);
1635 			if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1636 			    break;
1637 		}
1638 
1639 		blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1640 		if (blkno == 0) {
1641 			ocfs2_error(inode->i_sb,
1642 				    "Inode %llu has bad blkno in extent list "
1643 				    "at depth %u (index %d)\n",
1644 				    (unsigned long long)oi->ip_blkno,
1645 				    le16_to_cpu(el->l_tree_depth), i);
1646 			ret = -EROFS;
1647 			goto out;
1648 		}
1649 
1650 		brelse(bh);
1651 		bh = NULL;
1652 		ret = ocfs2_read_extent_block(inode, blkno, &bh);
1653 		if (ret) {
1654 			mlog_errno(ret);
1655 			goto out;
1656 		}
1657 
1658 		eb = (struct ocfs2_extent_block *) bh->b_data;
1659 		el = &eb->h_list;
1660 
1661 		if (le16_to_cpu(el->l_next_free_rec) >
1662 		    le16_to_cpu(el->l_count)) {
1663 			ocfs2_error(inode->i_sb,
1664 				    "Inode %llu has bad count in extent list "
1665 				    "at block %llu (next free=%u, count=%u)\n",
1666 				    (unsigned long long)oi->ip_blkno,
1667 				    (unsigned long long)bh->b_blocknr,
1668 				    le16_to_cpu(el->l_next_free_rec),
1669 				    le16_to_cpu(el->l_count));
1670 			ret = -EROFS;
1671 			goto out;
1672 		}
1673 
1674 		if (func)
1675 			func(data, bh);
1676 	}
1677 
1678 out:
1679 	/*
1680 	 * Catch any trailing bh that the loop didn't handle.
1681 	 */
1682 	brelse(bh);
1683 
1684 	return ret;
1685 }
1686 
1687 /*
1688  * Given an initialized path (that is, it has a valid root extent
1689  * list), this function will traverse the btree in search of the path
1690  * which would contain cpos.
1691  *
1692  * The path traveled is recorded in the path structure.
1693  *
1694  * Note that this will not do any comparisons on leaf node extent
1695  * records, so it will work fine in the case that we just added a tree
1696  * branch.
1697  */
1698 struct find_path_data {
1699 	int index;
1700 	struct ocfs2_path *path;
1701 };
find_path_ins(void * data,struct buffer_head * bh)1702 static void find_path_ins(void *data, struct buffer_head *bh)
1703 {
1704 	struct find_path_data *fp = data;
1705 
1706 	get_bh(bh);
1707 	ocfs2_path_insert_eb(fp->path, fp->index, bh);
1708 	fp->index++;
1709 }
ocfs2_find_path(struct inode * inode,struct ocfs2_path * path,u32 cpos)1710 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1711 			   u32 cpos)
1712 {
1713 	struct find_path_data data;
1714 
1715 	data.index = 1;
1716 	data.path = path;
1717 	return __ocfs2_find_path(inode, path_root_el(path), cpos,
1718 				 find_path_ins, &data);
1719 }
1720 
find_leaf_ins(void * data,struct buffer_head * bh)1721 static void find_leaf_ins(void *data, struct buffer_head *bh)
1722 {
1723 	struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1724 	struct ocfs2_extent_list *el = &eb->h_list;
1725 	struct buffer_head **ret = data;
1726 
1727 	/* We want to retain only the leaf block. */
1728 	if (le16_to_cpu(el->l_tree_depth) == 0) {
1729 		get_bh(bh);
1730 		*ret = bh;
1731 	}
1732 }
1733 /*
1734  * Find the leaf block in the tree which would contain cpos. No
1735  * checking of the actual leaf is done.
1736  *
1737  * Some paths want to call this instead of allocating a path structure
1738  * and calling ocfs2_find_path().
1739  *
1740  * This function doesn't handle non btree extent lists.
1741  */
ocfs2_find_leaf(struct inode * inode,struct ocfs2_extent_list * root_el,u32 cpos,struct buffer_head ** leaf_bh)1742 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1743 		    u32 cpos, struct buffer_head **leaf_bh)
1744 {
1745 	int ret;
1746 	struct buffer_head *bh = NULL;
1747 
1748 	ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1749 	if (ret) {
1750 		mlog_errno(ret);
1751 		goto out;
1752 	}
1753 
1754 	*leaf_bh = bh;
1755 out:
1756 	return ret;
1757 }
1758 
1759 /*
1760  * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1761  *
1762  * Basically, we've moved stuff around at the bottom of the tree and
1763  * we need to fix up the extent records above the changes to reflect
1764  * the new changes.
1765  *
1766  * left_rec: the record on the left.
1767  * left_child_el: is the child list pointed to by left_rec
1768  * right_rec: the record to the right of left_rec
1769  * right_child_el: is the child list pointed to by right_rec
1770  *
1771  * By definition, this only works on interior nodes.
1772  */
ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec * left_rec,struct ocfs2_extent_list * left_child_el,struct ocfs2_extent_rec * right_rec,struct ocfs2_extent_list * right_child_el)1773 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1774 				  struct ocfs2_extent_list *left_child_el,
1775 				  struct ocfs2_extent_rec *right_rec,
1776 				  struct ocfs2_extent_list *right_child_el)
1777 {
1778 	u32 left_clusters, right_end;
1779 
1780 	/*
1781 	 * Interior nodes never have holes. Their cpos is the cpos of
1782 	 * the leftmost record in their child list. Their cluster
1783 	 * count covers the full theoretical range of their child list
1784 	 * - the range between their cpos and the cpos of the record
1785 	 * immediately to their right.
1786 	 */
1787 	left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1788 	if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1789 		BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1790 		left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1791 	}
1792 	left_clusters -= le32_to_cpu(left_rec->e_cpos);
1793 	left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1794 
1795 	/*
1796 	 * Calculate the rightmost cluster count boundary before
1797 	 * moving cpos - we will need to adjust clusters after
1798 	 * updating e_cpos to keep the same highest cluster count.
1799 	 */
1800 	right_end = le32_to_cpu(right_rec->e_cpos);
1801 	right_end += le32_to_cpu(right_rec->e_int_clusters);
1802 
1803 	right_rec->e_cpos = left_rec->e_cpos;
1804 	le32_add_cpu(&right_rec->e_cpos, left_clusters);
1805 
1806 	right_end -= le32_to_cpu(right_rec->e_cpos);
1807 	right_rec->e_int_clusters = cpu_to_le32(right_end);
1808 }
1809 
1810 /*
1811  * Adjust the adjacent root node records involved in a
1812  * rotation. left_el_blkno is passed in as a key so that we can easily
1813  * find it's index in the root list.
1814  */
ocfs2_adjust_root_records(struct ocfs2_extent_list * root_el,struct ocfs2_extent_list * left_el,struct ocfs2_extent_list * right_el,u64 left_el_blkno)1815 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1816 				      struct ocfs2_extent_list *left_el,
1817 				      struct ocfs2_extent_list *right_el,
1818 				      u64 left_el_blkno)
1819 {
1820 	int i;
1821 
1822 	BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1823 	       le16_to_cpu(left_el->l_tree_depth));
1824 
1825 	for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1826 		if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1827 			break;
1828 	}
1829 
1830 	/*
1831 	 * The path walking code should have never returned a root and
1832 	 * two paths which are not adjacent.
1833 	 */
1834 	BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1835 
1836 	ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1837 				      &root_el->l_recs[i + 1], right_el);
1838 }
1839 
1840 /*
1841  * We've changed a leaf block (in right_path) and need to reflect that
1842  * change back up the subtree.
1843  *
1844  * This happens in multiple places:
1845  *   - When we've moved an extent record from the left path leaf to the right
1846  *     path leaf to make room for an empty extent in the left path leaf.
1847  *   - When our insert into the right path leaf is at the leftmost edge
1848  *     and requires an update of the path immediately to it's left. This
1849  *     can occur at the end of some types of rotation and appending inserts.
1850  *   - When we've adjusted the last extent record in the left path leaf and the
1851  *     1st extent record in the right path leaf during cross extent block merge.
1852  */
ocfs2_complete_edge_insert(struct inode * inode,handle_t * handle,struct ocfs2_path * left_path,struct ocfs2_path * right_path,int subtree_index)1853 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1854 				       struct ocfs2_path *left_path,
1855 				       struct ocfs2_path *right_path,
1856 				       int subtree_index)
1857 {
1858 	int ret, i, idx;
1859 	struct ocfs2_extent_list *el, *left_el, *right_el;
1860 	struct ocfs2_extent_rec *left_rec, *right_rec;
1861 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1862 
1863 	/*
1864 	 * Update the counts and position values within all the
1865 	 * interior nodes to reflect the leaf rotation we just did.
1866 	 *
1867 	 * The root node is handled below the loop.
1868 	 *
1869 	 * We begin the loop with right_el and left_el pointing to the
1870 	 * leaf lists and work our way up.
1871 	 *
1872 	 * NOTE: within this loop, left_el and right_el always refer
1873 	 * to the *child* lists.
1874 	 */
1875 	left_el = path_leaf_el(left_path);
1876 	right_el = path_leaf_el(right_path);
1877 	for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1878 		mlog(0, "Adjust records at index %u\n", i);
1879 
1880 		/*
1881 		 * One nice property of knowing that all of these
1882 		 * nodes are below the root is that we only deal with
1883 		 * the leftmost right node record and the rightmost
1884 		 * left node record.
1885 		 */
1886 		el = left_path->p_node[i].el;
1887 		idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1888 		left_rec = &el->l_recs[idx];
1889 
1890 		el = right_path->p_node[i].el;
1891 		right_rec = &el->l_recs[0];
1892 
1893 		ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1894 					      right_el);
1895 
1896 		ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1897 		if (ret)
1898 			mlog_errno(ret);
1899 
1900 		ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1901 		if (ret)
1902 			mlog_errno(ret);
1903 
1904 		/*
1905 		 * Setup our list pointers now so that the current
1906 		 * parents become children in the next iteration.
1907 		 */
1908 		left_el = left_path->p_node[i].el;
1909 		right_el = right_path->p_node[i].el;
1910 	}
1911 
1912 	/*
1913 	 * At the root node, adjust the two adjacent records which
1914 	 * begin our path to the leaves.
1915 	 */
1916 
1917 	el = left_path->p_node[subtree_index].el;
1918 	left_el = left_path->p_node[subtree_index + 1].el;
1919 	right_el = right_path->p_node[subtree_index + 1].el;
1920 
1921 	ocfs2_adjust_root_records(el, left_el, right_el,
1922 				  left_path->p_node[subtree_index + 1].bh->b_blocknr);
1923 
1924 	root_bh = left_path->p_node[subtree_index].bh;
1925 
1926 	ret = ocfs2_journal_dirty(handle, root_bh);
1927 	if (ret)
1928 		mlog_errno(ret);
1929 }
1930 
ocfs2_rotate_subtree_right(struct inode * inode,handle_t * handle,struct ocfs2_path * left_path,struct ocfs2_path * right_path,int subtree_index)1931 static int ocfs2_rotate_subtree_right(struct inode *inode,
1932 				      handle_t *handle,
1933 				      struct ocfs2_path *left_path,
1934 				      struct ocfs2_path *right_path,
1935 				      int subtree_index)
1936 {
1937 	int ret, i;
1938 	struct buffer_head *right_leaf_bh;
1939 	struct buffer_head *left_leaf_bh = NULL;
1940 	struct buffer_head *root_bh;
1941 	struct ocfs2_extent_list *right_el, *left_el;
1942 	struct ocfs2_extent_rec move_rec;
1943 
1944 	left_leaf_bh = path_leaf_bh(left_path);
1945 	left_el = path_leaf_el(left_path);
1946 
1947 	if (left_el->l_next_free_rec != left_el->l_count) {
1948 		ocfs2_error(inode->i_sb,
1949 			    "Inode %llu has non-full interior leaf node %llu"
1950 			    "(next free = %u)",
1951 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1952 			    (unsigned long long)left_leaf_bh->b_blocknr,
1953 			    le16_to_cpu(left_el->l_next_free_rec));
1954 		return -EROFS;
1955 	}
1956 
1957 	/*
1958 	 * This extent block may already have an empty record, so we
1959 	 * return early if so.
1960 	 */
1961 	if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1962 		return 0;
1963 
1964 	root_bh = left_path->p_node[subtree_index].bh;
1965 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1966 
1967 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
1968 					   subtree_index);
1969 	if (ret) {
1970 		mlog_errno(ret);
1971 		goto out;
1972 	}
1973 
1974 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1975 		ret = ocfs2_path_bh_journal_access(handle, inode,
1976 						   right_path, i);
1977 		if (ret) {
1978 			mlog_errno(ret);
1979 			goto out;
1980 		}
1981 
1982 		ret = ocfs2_path_bh_journal_access(handle, inode,
1983 						   left_path, i);
1984 		if (ret) {
1985 			mlog_errno(ret);
1986 			goto out;
1987 		}
1988 	}
1989 
1990 	right_leaf_bh = path_leaf_bh(right_path);
1991 	right_el = path_leaf_el(right_path);
1992 
1993 	/* This is a code error, not a disk corruption. */
1994 	mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1995 			"because rightmost leaf block %llu is empty\n",
1996 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1997 			(unsigned long long)right_leaf_bh->b_blocknr);
1998 
1999 	ocfs2_create_empty_extent(right_el);
2000 
2001 	ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2002 	if (ret) {
2003 		mlog_errno(ret);
2004 		goto out;
2005 	}
2006 
2007 	/* Do the copy now. */
2008 	i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2009 	move_rec = left_el->l_recs[i];
2010 	right_el->l_recs[0] = move_rec;
2011 
2012 	/*
2013 	 * Clear out the record we just copied and shift everything
2014 	 * over, leaving an empty extent in the left leaf.
2015 	 *
2016 	 * We temporarily subtract from next_free_rec so that the
2017 	 * shift will lose the tail record (which is now defunct).
2018 	 */
2019 	le16_add_cpu(&left_el->l_next_free_rec, -1);
2020 	ocfs2_shift_records_right(left_el);
2021 	memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2022 	le16_add_cpu(&left_el->l_next_free_rec, 1);
2023 
2024 	ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2025 	if (ret) {
2026 		mlog_errno(ret);
2027 		goto out;
2028 	}
2029 
2030 	ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2031 				subtree_index);
2032 
2033 out:
2034 	return ret;
2035 }
2036 
2037 /*
2038  * Given a full path, determine what cpos value would return us a path
2039  * containing the leaf immediately to the left of the current one.
2040  *
2041  * Will return zero if the path passed in is already the leftmost path.
2042  */
ocfs2_find_cpos_for_left_leaf(struct super_block * sb,struct ocfs2_path * path,u32 * cpos)2043 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2044 					 struct ocfs2_path *path, u32 *cpos)
2045 {
2046 	int i, j, ret = 0;
2047 	u64 blkno;
2048 	struct ocfs2_extent_list *el;
2049 
2050 	BUG_ON(path->p_tree_depth == 0);
2051 
2052 	*cpos = 0;
2053 
2054 	blkno = path_leaf_bh(path)->b_blocknr;
2055 
2056 	/* Start at the tree node just above the leaf and work our way up. */
2057 	i = path->p_tree_depth - 1;
2058 	while (i >= 0) {
2059 		el = path->p_node[i].el;
2060 
2061 		/*
2062 		 * Find the extent record just before the one in our
2063 		 * path.
2064 		 */
2065 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2066 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2067 				if (j == 0) {
2068 					if (i == 0) {
2069 						/*
2070 						 * We've determined that the
2071 						 * path specified is already
2072 						 * the leftmost one - return a
2073 						 * cpos of zero.
2074 						 */
2075 						goto out;
2076 					}
2077 					/*
2078 					 * The leftmost record points to our
2079 					 * leaf - we need to travel up the
2080 					 * tree one level.
2081 					 */
2082 					goto next_node;
2083 				}
2084 
2085 				*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2086 				*cpos = *cpos + ocfs2_rec_clusters(el,
2087 							   &el->l_recs[j - 1]);
2088 				*cpos = *cpos - 1;
2089 				goto out;
2090 			}
2091 		}
2092 
2093 		/*
2094 		 * If we got here, we never found a valid node where
2095 		 * the tree indicated one should be.
2096 		 */
2097 		ocfs2_error(sb,
2098 			    "Invalid extent tree at extent block %llu\n",
2099 			    (unsigned long long)blkno);
2100 		ret = -EROFS;
2101 		goto out;
2102 
2103 next_node:
2104 		blkno = path->p_node[i].bh->b_blocknr;
2105 		i--;
2106 	}
2107 
2108 out:
2109 	return ret;
2110 }
2111 
2112 /*
2113  * Extend the transaction by enough credits to complete the rotation,
2114  * and still leave at least the original number of credits allocated
2115  * to this transaction.
2116  */
ocfs2_extend_rotate_transaction(handle_t * handle,int subtree_depth,int op_credits,struct ocfs2_path * path)2117 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2118 					   int op_credits,
2119 					   struct ocfs2_path *path)
2120 {
2121 	int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2122 
2123 	if (handle->h_buffer_credits < credits)
2124 		return ocfs2_extend_trans(handle, credits);
2125 
2126 	return 0;
2127 }
2128 
2129 /*
2130  * Trap the case where we're inserting into the theoretical range past
2131  * the _actual_ left leaf range. Otherwise, we'll rotate a record
2132  * whose cpos is less than ours into the right leaf.
2133  *
2134  * It's only necessary to look at the rightmost record of the left
2135  * leaf because the logic that calls us should ensure that the
2136  * theoretical ranges in the path components above the leaves are
2137  * correct.
2138  */
ocfs2_rotate_requires_path_adjustment(struct ocfs2_path * left_path,u32 insert_cpos)2139 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2140 						 u32 insert_cpos)
2141 {
2142 	struct ocfs2_extent_list *left_el;
2143 	struct ocfs2_extent_rec *rec;
2144 	int next_free;
2145 
2146 	left_el = path_leaf_el(left_path);
2147 	next_free = le16_to_cpu(left_el->l_next_free_rec);
2148 	rec = &left_el->l_recs[next_free - 1];
2149 
2150 	if (insert_cpos > le32_to_cpu(rec->e_cpos))
2151 		return 1;
2152 	return 0;
2153 }
2154 
ocfs2_leftmost_rec_contains(struct ocfs2_extent_list * el,u32 cpos)2155 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2156 {
2157 	int next_free = le16_to_cpu(el->l_next_free_rec);
2158 	unsigned int range;
2159 	struct ocfs2_extent_rec *rec;
2160 
2161 	if (next_free == 0)
2162 		return 0;
2163 
2164 	rec = &el->l_recs[0];
2165 	if (ocfs2_is_empty_extent(rec)) {
2166 		/* Empty list. */
2167 		if (next_free == 1)
2168 			return 0;
2169 		rec = &el->l_recs[1];
2170 	}
2171 
2172 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2173 	if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2174 		return 1;
2175 	return 0;
2176 }
2177 
2178 /*
2179  * Rotate all the records in a btree right one record, starting at insert_cpos.
2180  *
2181  * The path to the rightmost leaf should be passed in.
2182  *
2183  * The array is assumed to be large enough to hold an entire path (tree depth).
2184  *
2185  * Upon succesful return from this function:
2186  *
2187  * - The 'right_path' array will contain a path to the leaf block
2188  *   whose range contains e_cpos.
2189  * - That leaf block will have a single empty extent in list index 0.
2190  * - In the case that the rotation requires a post-insert update,
2191  *   *ret_left_path will contain a valid path which can be passed to
2192  *   ocfs2_insert_path().
2193  */
ocfs2_rotate_tree_right(struct inode * inode,handle_t * handle,enum ocfs2_split_type split,u32 insert_cpos,struct ocfs2_path * right_path,struct ocfs2_path ** ret_left_path)2194 static int ocfs2_rotate_tree_right(struct inode *inode,
2195 				   handle_t *handle,
2196 				   enum ocfs2_split_type split,
2197 				   u32 insert_cpos,
2198 				   struct ocfs2_path *right_path,
2199 				   struct ocfs2_path **ret_left_path)
2200 {
2201 	int ret, start, orig_credits = handle->h_buffer_credits;
2202 	u32 cpos;
2203 	struct ocfs2_path *left_path = NULL;
2204 
2205 	*ret_left_path = NULL;
2206 
2207 	left_path = ocfs2_new_path_from_path(right_path);
2208 	if (!left_path) {
2209 		ret = -ENOMEM;
2210 		mlog_errno(ret);
2211 		goto out;
2212 	}
2213 
2214 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2215 	if (ret) {
2216 		mlog_errno(ret);
2217 		goto out;
2218 	}
2219 
2220 	mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2221 
2222 	/*
2223 	 * What we want to do here is:
2224 	 *
2225 	 * 1) Start with the rightmost path.
2226 	 *
2227 	 * 2) Determine a path to the leaf block directly to the left
2228 	 *    of that leaf.
2229 	 *
2230 	 * 3) Determine the 'subtree root' - the lowest level tree node
2231 	 *    which contains a path to both leaves.
2232 	 *
2233 	 * 4) Rotate the subtree.
2234 	 *
2235 	 * 5) Find the next subtree by considering the left path to be
2236 	 *    the new right path.
2237 	 *
2238 	 * The check at the top of this while loop also accepts
2239 	 * insert_cpos == cpos because cpos is only a _theoretical_
2240 	 * value to get us the left path - insert_cpos might very well
2241 	 * be filling that hole.
2242 	 *
2243 	 * Stop at a cpos of '0' because we either started at the
2244 	 * leftmost branch (i.e., a tree with one branch and a
2245 	 * rotation inside of it), or we've gone as far as we can in
2246 	 * rotating subtrees.
2247 	 */
2248 	while (cpos && insert_cpos <= cpos) {
2249 		mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2250 		     insert_cpos, cpos);
2251 
2252 		ret = ocfs2_find_path(inode, left_path, cpos);
2253 		if (ret) {
2254 			mlog_errno(ret);
2255 			goto out;
2256 		}
2257 
2258 		mlog_bug_on_msg(path_leaf_bh(left_path) ==
2259 				path_leaf_bh(right_path),
2260 				"Inode %lu: error during insert of %u "
2261 				"(left path cpos %u) results in two identical "
2262 				"paths ending at %llu\n",
2263 				inode->i_ino, insert_cpos, cpos,
2264 				(unsigned long long)
2265 				path_leaf_bh(left_path)->b_blocknr);
2266 
2267 		if (split == SPLIT_NONE &&
2268 		    ocfs2_rotate_requires_path_adjustment(left_path,
2269 							  insert_cpos)) {
2270 
2271 			/*
2272 			 * We've rotated the tree as much as we
2273 			 * should. The rest is up to
2274 			 * ocfs2_insert_path() to complete, after the
2275 			 * record insertion. We indicate this
2276 			 * situation by returning the left path.
2277 			 *
2278 			 * The reason we don't adjust the records here
2279 			 * before the record insert is that an error
2280 			 * later might break the rule where a parent
2281 			 * record e_cpos will reflect the actual
2282 			 * e_cpos of the 1st nonempty record of the
2283 			 * child list.
2284 			 */
2285 			*ret_left_path = left_path;
2286 			goto out_ret_path;
2287 		}
2288 
2289 		start = ocfs2_find_subtree_root(inode, left_path, right_path);
2290 
2291 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2292 		     start,
2293 		     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2294 		     right_path->p_tree_depth);
2295 
2296 		ret = ocfs2_extend_rotate_transaction(handle, start,
2297 						      orig_credits, right_path);
2298 		if (ret) {
2299 			mlog_errno(ret);
2300 			goto out;
2301 		}
2302 
2303 		ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2304 						 right_path, start);
2305 		if (ret) {
2306 			mlog_errno(ret);
2307 			goto out;
2308 		}
2309 
2310 		if (split != SPLIT_NONE &&
2311 		    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2312 						insert_cpos)) {
2313 			/*
2314 			 * A rotate moves the rightmost left leaf
2315 			 * record over to the leftmost right leaf
2316 			 * slot. If we're doing an extent split
2317 			 * instead of a real insert, then we have to
2318 			 * check that the extent to be split wasn't
2319 			 * just moved over. If it was, then we can
2320 			 * exit here, passing left_path back -
2321 			 * ocfs2_split_extent() is smart enough to
2322 			 * search both leaves.
2323 			 */
2324 			*ret_left_path = left_path;
2325 			goto out_ret_path;
2326 		}
2327 
2328 		/*
2329 		 * There is no need to re-read the next right path
2330 		 * as we know that it'll be our current left
2331 		 * path. Optimize by copying values instead.
2332 		 */
2333 		ocfs2_mv_path(right_path, left_path);
2334 
2335 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2336 						    &cpos);
2337 		if (ret) {
2338 			mlog_errno(ret);
2339 			goto out;
2340 		}
2341 	}
2342 
2343 out:
2344 	ocfs2_free_path(left_path);
2345 
2346 out_ret_path:
2347 	return ret;
2348 }
2349 
ocfs2_update_edge_lengths(struct inode * inode,handle_t * handle,struct ocfs2_path * path)2350 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2351 				      struct ocfs2_path *path)
2352 {
2353 	int i, idx;
2354 	struct ocfs2_extent_rec *rec;
2355 	struct ocfs2_extent_list *el;
2356 	struct ocfs2_extent_block *eb;
2357 	u32 range;
2358 
2359 	/* Path should always be rightmost. */
2360 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2361 	BUG_ON(eb->h_next_leaf_blk != 0ULL);
2362 
2363 	el = &eb->h_list;
2364 	BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2365 	idx = le16_to_cpu(el->l_next_free_rec) - 1;
2366 	rec = &el->l_recs[idx];
2367 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2368 
2369 	for (i = 0; i < path->p_tree_depth; i++) {
2370 		el = path->p_node[i].el;
2371 		idx = le16_to_cpu(el->l_next_free_rec) - 1;
2372 		rec = &el->l_recs[idx];
2373 
2374 		rec->e_int_clusters = cpu_to_le32(range);
2375 		le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2376 
2377 		ocfs2_journal_dirty(handle, path->p_node[i].bh);
2378 	}
2379 }
2380 
ocfs2_unlink_path(struct inode * inode,handle_t * handle,struct ocfs2_cached_dealloc_ctxt * dealloc,struct ocfs2_path * path,int unlink_start)2381 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2382 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
2383 			      struct ocfs2_path *path, int unlink_start)
2384 {
2385 	int ret, i;
2386 	struct ocfs2_extent_block *eb;
2387 	struct ocfs2_extent_list *el;
2388 	struct buffer_head *bh;
2389 
2390 	for(i = unlink_start; i < path_num_items(path); i++) {
2391 		bh = path->p_node[i].bh;
2392 
2393 		eb = (struct ocfs2_extent_block *)bh->b_data;
2394 		/*
2395 		 * Not all nodes might have had their final count
2396 		 * decremented by the caller - handle this here.
2397 		 */
2398 		el = &eb->h_list;
2399 		if (le16_to_cpu(el->l_next_free_rec) > 1) {
2400 			mlog(ML_ERROR,
2401 			     "Inode %llu, attempted to remove extent block "
2402 			     "%llu with %u records\n",
2403 			     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2404 			     (unsigned long long)le64_to_cpu(eb->h_blkno),
2405 			     le16_to_cpu(el->l_next_free_rec));
2406 
2407 			ocfs2_journal_dirty(handle, bh);
2408 			ocfs2_remove_from_cache(inode, bh);
2409 			continue;
2410 		}
2411 
2412 		el->l_next_free_rec = 0;
2413 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2414 
2415 		ocfs2_journal_dirty(handle, bh);
2416 
2417 		ret = ocfs2_cache_extent_block_free(dealloc, eb);
2418 		if (ret)
2419 			mlog_errno(ret);
2420 
2421 		ocfs2_remove_from_cache(inode, bh);
2422 	}
2423 }
2424 
ocfs2_unlink_subtree(struct inode * inode,handle_t * handle,struct ocfs2_path * left_path,struct ocfs2_path * right_path,int subtree_index,struct ocfs2_cached_dealloc_ctxt * dealloc)2425 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2426 				 struct ocfs2_path *left_path,
2427 				 struct ocfs2_path *right_path,
2428 				 int subtree_index,
2429 				 struct ocfs2_cached_dealloc_ctxt *dealloc)
2430 {
2431 	int i;
2432 	struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2433 	struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2434 	struct ocfs2_extent_list *el;
2435 	struct ocfs2_extent_block *eb;
2436 
2437 	el = path_leaf_el(left_path);
2438 
2439 	eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2440 
2441 	for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2442 		if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2443 			break;
2444 
2445 	BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2446 
2447 	memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2448 	le16_add_cpu(&root_el->l_next_free_rec, -1);
2449 
2450 	eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2451 	eb->h_next_leaf_blk = 0;
2452 
2453 	ocfs2_journal_dirty(handle, root_bh);
2454 	ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2455 
2456 	ocfs2_unlink_path(inode, handle, dealloc, right_path,
2457 			  subtree_index + 1);
2458 }
2459 
ocfs2_rotate_subtree_left(struct inode * inode,handle_t * handle,struct ocfs2_path * left_path,struct ocfs2_path * right_path,int subtree_index,struct ocfs2_cached_dealloc_ctxt * dealloc,int * deleted,struct ocfs2_extent_tree * et)2460 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2461 				     struct ocfs2_path *left_path,
2462 				     struct ocfs2_path *right_path,
2463 				     int subtree_index,
2464 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
2465 				     int *deleted,
2466 				     struct ocfs2_extent_tree *et)
2467 {
2468 	int ret, i, del_right_subtree = 0, right_has_empty = 0;
2469 	struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2470 	struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2471 	struct ocfs2_extent_block *eb;
2472 
2473 	*deleted = 0;
2474 
2475 	right_leaf_el = path_leaf_el(right_path);
2476 	left_leaf_el = path_leaf_el(left_path);
2477 	root_bh = left_path->p_node[subtree_index].bh;
2478 	BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2479 
2480 	if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2481 		return 0;
2482 
2483 	eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2484 	if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2485 		/*
2486 		 * It's legal for us to proceed if the right leaf is
2487 		 * the rightmost one and it has an empty extent. There
2488 		 * are two cases to handle - whether the leaf will be
2489 		 * empty after removal or not. If the leaf isn't empty
2490 		 * then just remove the empty extent up front. The
2491 		 * next block will handle empty leaves by flagging
2492 		 * them for unlink.
2493 		 *
2494 		 * Non rightmost leaves will throw -EAGAIN and the
2495 		 * caller can manually move the subtree and retry.
2496 		 */
2497 
2498 		if (eb->h_next_leaf_blk != 0ULL)
2499 			return -EAGAIN;
2500 
2501 		if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2502 			ret = ocfs2_journal_access_eb(handle, inode,
2503 						      path_leaf_bh(right_path),
2504 						      OCFS2_JOURNAL_ACCESS_WRITE);
2505 			if (ret) {
2506 				mlog_errno(ret);
2507 				goto out;
2508 			}
2509 
2510 			ocfs2_remove_empty_extent(right_leaf_el);
2511 		} else
2512 			right_has_empty = 1;
2513 	}
2514 
2515 	if (eb->h_next_leaf_blk == 0ULL &&
2516 	    le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2517 		/*
2518 		 * We have to update i_last_eb_blk during the meta
2519 		 * data delete.
2520 		 */
2521 		ret = ocfs2_et_root_journal_access(handle, inode, et,
2522 						   OCFS2_JOURNAL_ACCESS_WRITE);
2523 		if (ret) {
2524 			mlog_errno(ret);
2525 			goto out;
2526 		}
2527 
2528 		del_right_subtree = 1;
2529 	}
2530 
2531 	/*
2532 	 * Getting here with an empty extent in the right path implies
2533 	 * that it's the rightmost path and will be deleted.
2534 	 */
2535 	BUG_ON(right_has_empty && !del_right_subtree);
2536 
2537 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2538 					   subtree_index);
2539 	if (ret) {
2540 		mlog_errno(ret);
2541 		goto out;
2542 	}
2543 
2544 	for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2545 		ret = ocfs2_path_bh_journal_access(handle, inode,
2546 						   right_path, i);
2547 		if (ret) {
2548 			mlog_errno(ret);
2549 			goto out;
2550 		}
2551 
2552 		ret = ocfs2_path_bh_journal_access(handle, inode,
2553 						   left_path, i);
2554 		if (ret) {
2555 			mlog_errno(ret);
2556 			goto out;
2557 		}
2558 	}
2559 
2560 	if (!right_has_empty) {
2561 		/*
2562 		 * Only do this if we're moving a real
2563 		 * record. Otherwise, the action is delayed until
2564 		 * after removal of the right path in which case we
2565 		 * can do a simple shift to remove the empty extent.
2566 		 */
2567 		ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2568 		memset(&right_leaf_el->l_recs[0], 0,
2569 		       sizeof(struct ocfs2_extent_rec));
2570 	}
2571 	if (eb->h_next_leaf_blk == 0ULL) {
2572 		/*
2573 		 * Move recs over to get rid of empty extent, decrease
2574 		 * next_free. This is allowed to remove the last
2575 		 * extent in our leaf (setting l_next_free_rec to
2576 		 * zero) - the delete code below won't care.
2577 		 */
2578 		ocfs2_remove_empty_extent(right_leaf_el);
2579 	}
2580 
2581 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2582 	if (ret)
2583 		mlog_errno(ret);
2584 	ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2585 	if (ret)
2586 		mlog_errno(ret);
2587 
2588 	if (del_right_subtree) {
2589 		ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2590 				     subtree_index, dealloc);
2591 		ocfs2_update_edge_lengths(inode, handle, left_path);
2592 
2593 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2594 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2595 
2596 		/*
2597 		 * Removal of the extent in the left leaf was skipped
2598 		 * above so we could delete the right path
2599 		 * 1st.
2600 		 */
2601 		if (right_has_empty)
2602 			ocfs2_remove_empty_extent(left_leaf_el);
2603 
2604 		ret = ocfs2_journal_dirty(handle, et_root_bh);
2605 		if (ret)
2606 			mlog_errno(ret);
2607 
2608 		*deleted = 1;
2609 	} else
2610 		ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2611 					   subtree_index);
2612 
2613 out:
2614 	return ret;
2615 }
2616 
2617 /*
2618  * Given a full path, determine what cpos value would return us a path
2619  * containing the leaf immediately to the right of the current one.
2620  *
2621  * Will return zero if the path passed in is already the rightmost path.
2622  *
2623  * This looks similar, but is subtly different to
2624  * ocfs2_find_cpos_for_left_leaf().
2625  */
ocfs2_find_cpos_for_right_leaf(struct super_block * sb,struct ocfs2_path * path,u32 * cpos)2626 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2627 					  struct ocfs2_path *path, u32 *cpos)
2628 {
2629 	int i, j, ret = 0;
2630 	u64 blkno;
2631 	struct ocfs2_extent_list *el;
2632 
2633 	*cpos = 0;
2634 
2635 	if (path->p_tree_depth == 0)
2636 		return 0;
2637 
2638 	blkno = path_leaf_bh(path)->b_blocknr;
2639 
2640 	/* Start at the tree node just above the leaf and work our way up. */
2641 	i = path->p_tree_depth - 1;
2642 	while (i >= 0) {
2643 		int next_free;
2644 
2645 		el = path->p_node[i].el;
2646 
2647 		/*
2648 		 * Find the extent record just after the one in our
2649 		 * path.
2650 		 */
2651 		next_free = le16_to_cpu(el->l_next_free_rec);
2652 		for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2653 			if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2654 				if (j == (next_free - 1)) {
2655 					if (i == 0) {
2656 						/*
2657 						 * We've determined that the
2658 						 * path specified is already
2659 						 * the rightmost one - return a
2660 						 * cpos of zero.
2661 						 */
2662 						goto out;
2663 					}
2664 					/*
2665 					 * The rightmost record points to our
2666 					 * leaf - we need to travel up the
2667 					 * tree one level.
2668 					 */
2669 					goto next_node;
2670 				}
2671 
2672 				*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2673 				goto out;
2674 			}
2675 		}
2676 
2677 		/*
2678 		 * If we got here, we never found a valid node where
2679 		 * the tree indicated one should be.
2680 		 */
2681 		ocfs2_error(sb,
2682 			    "Invalid extent tree at extent block %llu\n",
2683 			    (unsigned long long)blkno);
2684 		ret = -EROFS;
2685 		goto out;
2686 
2687 next_node:
2688 		blkno = path->p_node[i].bh->b_blocknr;
2689 		i--;
2690 	}
2691 
2692 out:
2693 	return ret;
2694 }
2695 
ocfs2_rotate_rightmost_leaf_left(struct inode * inode,handle_t * handle,struct ocfs2_path * path)2696 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2697 					    handle_t *handle,
2698 					    struct ocfs2_path *path)
2699 {
2700 	int ret;
2701 	struct buffer_head *bh = path_leaf_bh(path);
2702 	struct ocfs2_extent_list *el = path_leaf_el(path);
2703 
2704 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2705 		return 0;
2706 
2707 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
2708 					   path_num_items(path) - 1);
2709 	if (ret) {
2710 		mlog_errno(ret);
2711 		goto out;
2712 	}
2713 
2714 	ocfs2_remove_empty_extent(el);
2715 
2716 	ret = ocfs2_journal_dirty(handle, bh);
2717 	if (ret)
2718 		mlog_errno(ret);
2719 
2720 out:
2721 	return ret;
2722 }
2723 
__ocfs2_rotate_tree_left(struct inode * inode,handle_t * handle,int orig_credits,struct ocfs2_path * path,struct ocfs2_cached_dealloc_ctxt * dealloc,struct ocfs2_path ** empty_extent_path,struct ocfs2_extent_tree * et)2724 static int __ocfs2_rotate_tree_left(struct inode *inode,
2725 				    handle_t *handle, int orig_credits,
2726 				    struct ocfs2_path *path,
2727 				    struct ocfs2_cached_dealloc_ctxt *dealloc,
2728 				    struct ocfs2_path **empty_extent_path,
2729 				    struct ocfs2_extent_tree *et)
2730 {
2731 	int ret, subtree_root, deleted;
2732 	u32 right_cpos;
2733 	struct ocfs2_path *left_path = NULL;
2734 	struct ocfs2_path *right_path = NULL;
2735 
2736 	BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2737 
2738 	*empty_extent_path = NULL;
2739 
2740 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2741 					     &right_cpos);
2742 	if (ret) {
2743 		mlog_errno(ret);
2744 		goto out;
2745 	}
2746 
2747 	left_path = ocfs2_new_path_from_path(path);
2748 	if (!left_path) {
2749 		ret = -ENOMEM;
2750 		mlog_errno(ret);
2751 		goto out;
2752 	}
2753 
2754 	ocfs2_cp_path(left_path, path);
2755 
2756 	right_path = ocfs2_new_path_from_path(path);
2757 	if (!right_path) {
2758 		ret = -ENOMEM;
2759 		mlog_errno(ret);
2760 		goto out;
2761 	}
2762 
2763 	while (right_cpos) {
2764 		ret = ocfs2_find_path(inode, right_path, right_cpos);
2765 		if (ret) {
2766 			mlog_errno(ret);
2767 			goto out;
2768 		}
2769 
2770 		subtree_root = ocfs2_find_subtree_root(inode, left_path,
2771 						       right_path);
2772 
2773 		mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2774 		     subtree_root,
2775 		     (unsigned long long)
2776 		     right_path->p_node[subtree_root].bh->b_blocknr,
2777 		     right_path->p_tree_depth);
2778 
2779 		ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2780 						      orig_credits, left_path);
2781 		if (ret) {
2782 			mlog_errno(ret);
2783 			goto out;
2784 		}
2785 
2786 		/*
2787 		 * Caller might still want to make changes to the
2788 		 * tree root, so re-add it to the journal here.
2789 		 */
2790 		ret = ocfs2_path_bh_journal_access(handle, inode,
2791 						   left_path, 0);
2792 		if (ret) {
2793 			mlog_errno(ret);
2794 			goto out;
2795 		}
2796 
2797 		ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2798 						right_path, subtree_root,
2799 						dealloc, &deleted, et);
2800 		if (ret == -EAGAIN) {
2801 			/*
2802 			 * The rotation has to temporarily stop due to
2803 			 * the right subtree having an empty
2804 			 * extent. Pass it back to the caller for a
2805 			 * fixup.
2806 			 */
2807 			*empty_extent_path = right_path;
2808 			right_path = NULL;
2809 			goto out;
2810 		}
2811 		if (ret) {
2812 			mlog_errno(ret);
2813 			goto out;
2814 		}
2815 
2816 		/*
2817 		 * The subtree rotate might have removed records on
2818 		 * the rightmost edge. If so, then rotation is
2819 		 * complete.
2820 		 */
2821 		if (deleted)
2822 			break;
2823 
2824 		ocfs2_mv_path(left_path, right_path);
2825 
2826 		ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2827 						     &right_cpos);
2828 		if (ret) {
2829 			mlog_errno(ret);
2830 			goto out;
2831 		}
2832 	}
2833 
2834 out:
2835 	ocfs2_free_path(right_path);
2836 	ocfs2_free_path(left_path);
2837 
2838 	return ret;
2839 }
2840 
ocfs2_remove_rightmost_path(struct inode * inode,handle_t * handle,struct ocfs2_path * path,struct ocfs2_cached_dealloc_ctxt * dealloc,struct ocfs2_extent_tree * et)2841 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2842 				struct ocfs2_path *path,
2843 				struct ocfs2_cached_dealloc_ctxt *dealloc,
2844 				struct ocfs2_extent_tree *et)
2845 {
2846 	int ret, subtree_index;
2847 	u32 cpos;
2848 	struct ocfs2_path *left_path = NULL;
2849 	struct ocfs2_extent_block *eb;
2850 	struct ocfs2_extent_list *el;
2851 
2852 
2853 	ret = ocfs2_et_sanity_check(inode, et);
2854 	if (ret)
2855 		goto out;
2856 	/*
2857 	 * There's two ways we handle this depending on
2858 	 * whether path is the only existing one.
2859 	 */
2860 	ret = ocfs2_extend_rotate_transaction(handle, 0,
2861 					      handle->h_buffer_credits,
2862 					      path);
2863 	if (ret) {
2864 		mlog_errno(ret);
2865 		goto out;
2866 	}
2867 
2868 	ret = ocfs2_journal_access_path(inode, handle, path);
2869 	if (ret) {
2870 		mlog_errno(ret);
2871 		goto out;
2872 	}
2873 
2874 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2875 	if (ret) {
2876 		mlog_errno(ret);
2877 		goto out;
2878 	}
2879 
2880 	if (cpos) {
2881 		/*
2882 		 * We have a path to the left of this one - it needs
2883 		 * an update too.
2884 		 */
2885 		left_path = ocfs2_new_path_from_path(path);
2886 		if (!left_path) {
2887 			ret = -ENOMEM;
2888 			mlog_errno(ret);
2889 			goto out;
2890 		}
2891 
2892 		ret = ocfs2_find_path(inode, left_path, cpos);
2893 		if (ret) {
2894 			mlog_errno(ret);
2895 			goto out;
2896 		}
2897 
2898 		ret = ocfs2_journal_access_path(inode, handle, left_path);
2899 		if (ret) {
2900 			mlog_errno(ret);
2901 			goto out;
2902 		}
2903 
2904 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2905 
2906 		ocfs2_unlink_subtree(inode, handle, left_path, path,
2907 				     subtree_index, dealloc);
2908 		ocfs2_update_edge_lengths(inode, handle, left_path);
2909 
2910 		eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2911 		ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2912 	} else {
2913 		/*
2914 		 * 'path' is also the leftmost path which
2915 		 * means it must be the only one. This gets
2916 		 * handled differently because we want to
2917 		 * revert the inode back to having extents
2918 		 * in-line.
2919 		 */
2920 		ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2921 
2922 		el = et->et_root_el;
2923 		el->l_tree_depth = 0;
2924 		el->l_next_free_rec = 0;
2925 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2926 
2927 		ocfs2_et_set_last_eb_blk(et, 0);
2928 	}
2929 
2930 	ocfs2_journal_dirty(handle, path_root_bh(path));
2931 
2932 out:
2933 	ocfs2_free_path(left_path);
2934 	return ret;
2935 }
2936 
2937 /*
2938  * Left rotation of btree records.
2939  *
2940  * In many ways, this is (unsurprisingly) the opposite of right
2941  * rotation. We start at some non-rightmost path containing an empty
2942  * extent in the leaf block. The code works its way to the rightmost
2943  * path by rotating records to the left in every subtree.
2944  *
2945  * This is used by any code which reduces the number of extent records
2946  * in a leaf. After removal, an empty record should be placed in the
2947  * leftmost list position.
2948  *
2949  * This won't handle a length update of the rightmost path records if
2950  * the rightmost tree leaf record is removed so the caller is
2951  * responsible for detecting and correcting that.
2952  */
ocfs2_rotate_tree_left(struct inode * inode,handle_t * handle,struct ocfs2_path * path,struct ocfs2_cached_dealloc_ctxt * dealloc,struct ocfs2_extent_tree * et)2953 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2954 				  struct ocfs2_path *path,
2955 				  struct ocfs2_cached_dealloc_ctxt *dealloc,
2956 				  struct ocfs2_extent_tree *et)
2957 {
2958 	int ret, orig_credits = handle->h_buffer_credits;
2959 	struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2960 	struct ocfs2_extent_block *eb;
2961 	struct ocfs2_extent_list *el;
2962 
2963 	el = path_leaf_el(path);
2964 	if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2965 		return 0;
2966 
2967 	if (path->p_tree_depth == 0) {
2968 rightmost_no_delete:
2969 		/*
2970 		 * Inline extents. This is trivially handled, so do
2971 		 * it up front.
2972 		 */
2973 		ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2974 						       path);
2975 		if (ret)
2976 			mlog_errno(ret);
2977 		goto out;
2978 	}
2979 
2980 	/*
2981 	 * Handle rightmost branch now. There's several cases:
2982 	 *  1) simple rotation leaving records in there. That's trivial.
2983 	 *  2) rotation requiring a branch delete - there's no more
2984 	 *     records left. Two cases of this:
2985 	 *     a) There are branches to the left.
2986 	 *     b) This is also the leftmost (the only) branch.
2987 	 *
2988 	 *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
2989 	 *  2a) we need the left branch so that we can update it with the unlink
2990 	 *  2b) we need to bring the inode back to inline extents.
2991 	 */
2992 
2993 	eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2994 	el = &eb->h_list;
2995 	if (eb->h_next_leaf_blk == 0) {
2996 		/*
2997 		 * This gets a bit tricky if we're going to delete the
2998 		 * rightmost path. Get the other cases out of the way
2999 		 * 1st.
3000 		 */
3001 		if (le16_to_cpu(el->l_next_free_rec) > 1)
3002 			goto rightmost_no_delete;
3003 
3004 		if (le16_to_cpu(el->l_next_free_rec) == 0) {
3005 			ret = -EIO;
3006 			ocfs2_error(inode->i_sb,
3007 				    "Inode %llu has empty extent block at %llu",
3008 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
3009 				    (unsigned long long)le64_to_cpu(eb->h_blkno));
3010 			goto out;
3011 		}
3012 
3013 		/*
3014 		 * XXX: The caller can not trust "path" any more after
3015 		 * this as it will have been deleted. What do we do?
3016 		 *
3017 		 * In theory the rotate-for-merge code will never get
3018 		 * here because it'll always ask for a rotate in a
3019 		 * nonempty list.
3020 		 */
3021 
3022 		ret = ocfs2_remove_rightmost_path(inode, handle, path,
3023 						  dealloc, et);
3024 		if (ret)
3025 			mlog_errno(ret);
3026 		goto out;
3027 	}
3028 
3029 	/*
3030 	 * Now we can loop, remembering the path we get from -EAGAIN
3031 	 * and restarting from there.
3032 	 */
3033 try_rotate:
3034 	ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3035 				       dealloc, &restart_path, et);
3036 	if (ret && ret != -EAGAIN) {
3037 		mlog_errno(ret);
3038 		goto out;
3039 	}
3040 
3041 	while (ret == -EAGAIN) {
3042 		tmp_path = restart_path;
3043 		restart_path = NULL;
3044 
3045 		ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3046 					       tmp_path, dealloc,
3047 					       &restart_path, et);
3048 		if (ret && ret != -EAGAIN) {
3049 			mlog_errno(ret);
3050 			goto out;
3051 		}
3052 
3053 		ocfs2_free_path(tmp_path);
3054 		tmp_path = NULL;
3055 
3056 		if (ret == 0)
3057 			goto try_rotate;
3058 	}
3059 
3060 out:
3061 	ocfs2_free_path(tmp_path);
3062 	ocfs2_free_path(restart_path);
3063 	return ret;
3064 }
3065 
ocfs2_cleanup_merge(struct ocfs2_extent_list * el,int index)3066 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3067 				int index)
3068 {
3069 	struct ocfs2_extent_rec *rec = &el->l_recs[index];
3070 	unsigned int size;
3071 
3072 	if (rec->e_leaf_clusters == 0) {
3073 		/*
3074 		 * We consumed all of the merged-from record. An empty
3075 		 * extent cannot exist anywhere but the 1st array
3076 		 * position, so move things over if the merged-from
3077 		 * record doesn't occupy that position.
3078 		 *
3079 		 * This creates a new empty extent so the caller
3080 		 * should be smart enough to have removed any existing
3081 		 * ones.
3082 		 */
3083 		if (index > 0) {
3084 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3085 			size = index * sizeof(struct ocfs2_extent_rec);
3086 			memmove(&el->l_recs[1], &el->l_recs[0], size);
3087 		}
3088 
3089 		/*
3090 		 * Always memset - the caller doesn't check whether it
3091 		 * created an empty extent, so there could be junk in
3092 		 * the other fields.
3093 		 */
3094 		memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3095 	}
3096 }
3097 
ocfs2_get_right_path(struct inode * inode,struct ocfs2_path * left_path,struct ocfs2_path ** ret_right_path)3098 static int ocfs2_get_right_path(struct inode *inode,
3099 				struct ocfs2_path *left_path,
3100 				struct ocfs2_path **ret_right_path)
3101 {
3102 	int ret;
3103 	u32 right_cpos;
3104 	struct ocfs2_path *right_path = NULL;
3105 	struct ocfs2_extent_list *left_el;
3106 
3107 	*ret_right_path = NULL;
3108 
3109 	/* This function shouldn't be called for non-trees. */
3110 	BUG_ON(left_path->p_tree_depth == 0);
3111 
3112 	left_el = path_leaf_el(left_path);
3113 	BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3114 
3115 	ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3116 					     &right_cpos);
3117 	if (ret) {
3118 		mlog_errno(ret);
3119 		goto out;
3120 	}
3121 
3122 	/* This function shouldn't be called for the rightmost leaf. */
3123 	BUG_ON(right_cpos == 0);
3124 
3125 	right_path = ocfs2_new_path_from_path(left_path);
3126 	if (!right_path) {
3127 		ret = -ENOMEM;
3128 		mlog_errno(ret);
3129 		goto out;
3130 	}
3131 
3132 	ret = ocfs2_find_path(inode, right_path, right_cpos);
3133 	if (ret) {
3134 		mlog_errno(ret);
3135 		goto out;
3136 	}
3137 
3138 	*ret_right_path = right_path;
3139 out:
3140 	if (ret)
3141 		ocfs2_free_path(right_path);
3142 	return ret;
3143 }
3144 
3145 /*
3146  * Remove split_rec clusters from the record at index and merge them
3147  * onto the beginning of the record "next" to it.
3148  * For index < l_count - 1, the next means the extent rec at index + 1.
3149  * For index == l_count - 1, the "next" means the 1st extent rec of the
3150  * next extent block.
3151  */
ocfs2_merge_rec_right(struct inode * inode,struct ocfs2_path * left_path,handle_t * handle,struct ocfs2_extent_rec * split_rec,int index)3152 static int ocfs2_merge_rec_right(struct inode *inode,
3153 				 struct ocfs2_path *left_path,
3154 				 handle_t *handle,
3155 				 struct ocfs2_extent_rec *split_rec,
3156 				 int index)
3157 {
3158 	int ret, next_free, i;
3159 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3160 	struct ocfs2_extent_rec *left_rec;
3161 	struct ocfs2_extent_rec *right_rec;
3162 	struct ocfs2_extent_list *right_el;
3163 	struct ocfs2_path *right_path = NULL;
3164 	int subtree_index = 0;
3165 	struct ocfs2_extent_list *el = path_leaf_el(left_path);
3166 	struct buffer_head *bh = path_leaf_bh(left_path);
3167 	struct buffer_head *root_bh = NULL;
3168 
3169 	BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3170 	left_rec = &el->l_recs[index];
3171 
3172 	if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3173 	    le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3174 		/* we meet with a cross extent block merge. */
3175 		ret = ocfs2_get_right_path(inode, left_path, &right_path);
3176 		if (ret) {
3177 			mlog_errno(ret);
3178 			goto out;
3179 		}
3180 
3181 		right_el = path_leaf_el(right_path);
3182 		next_free = le16_to_cpu(right_el->l_next_free_rec);
3183 		BUG_ON(next_free <= 0);
3184 		right_rec = &right_el->l_recs[0];
3185 		if (ocfs2_is_empty_extent(right_rec)) {
3186 			BUG_ON(next_free <= 1);
3187 			right_rec = &right_el->l_recs[1];
3188 		}
3189 
3190 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3191 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3192 		       le32_to_cpu(right_rec->e_cpos));
3193 
3194 		subtree_index = ocfs2_find_subtree_root(inode,
3195 							left_path, right_path);
3196 
3197 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3198 						      handle->h_buffer_credits,
3199 						      right_path);
3200 		if (ret) {
3201 			mlog_errno(ret);
3202 			goto out;
3203 		}
3204 
3205 		root_bh = left_path->p_node[subtree_index].bh;
3206 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3207 
3208 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3209 						   subtree_index);
3210 		if (ret) {
3211 			mlog_errno(ret);
3212 			goto out;
3213 		}
3214 
3215 		for (i = subtree_index + 1;
3216 		     i < path_num_items(right_path); i++) {
3217 			ret = ocfs2_path_bh_journal_access(handle, inode,
3218 							   right_path, i);
3219 			if (ret) {
3220 				mlog_errno(ret);
3221 				goto out;
3222 			}
3223 
3224 			ret = ocfs2_path_bh_journal_access(handle, inode,
3225 							   left_path, i);
3226 			if (ret) {
3227 				mlog_errno(ret);
3228 				goto out;
3229 			}
3230 		}
3231 
3232 	} else {
3233 		BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3234 		right_rec = &el->l_recs[index + 1];
3235 	}
3236 
3237 	ret = ocfs2_path_bh_journal_access(handle, inode, left_path,
3238 					   path_num_items(left_path) - 1);
3239 	if (ret) {
3240 		mlog_errno(ret);
3241 		goto out;
3242 	}
3243 
3244 	le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3245 
3246 	le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3247 	le64_add_cpu(&right_rec->e_blkno,
3248 		     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3249 	le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3250 
3251 	ocfs2_cleanup_merge(el, index);
3252 
3253 	ret = ocfs2_journal_dirty(handle, bh);
3254 	if (ret)
3255 		mlog_errno(ret);
3256 
3257 	if (right_path) {
3258 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3259 		if (ret)
3260 			mlog_errno(ret);
3261 
3262 		ocfs2_complete_edge_insert(inode, handle, left_path,
3263 					   right_path, subtree_index);
3264 	}
3265 out:
3266 	if (right_path)
3267 		ocfs2_free_path(right_path);
3268 	return ret;
3269 }
3270 
ocfs2_get_left_path(struct inode * inode,struct ocfs2_path * right_path,struct ocfs2_path ** ret_left_path)3271 static int ocfs2_get_left_path(struct inode *inode,
3272 			       struct ocfs2_path *right_path,
3273 			       struct ocfs2_path **ret_left_path)
3274 {
3275 	int ret;
3276 	u32 left_cpos;
3277 	struct ocfs2_path *left_path = NULL;
3278 
3279 	*ret_left_path = NULL;
3280 
3281 	/* This function shouldn't be called for non-trees. */
3282 	BUG_ON(right_path->p_tree_depth == 0);
3283 
3284 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3285 					    right_path, &left_cpos);
3286 	if (ret) {
3287 		mlog_errno(ret);
3288 		goto out;
3289 	}
3290 
3291 	/* This function shouldn't be called for the leftmost leaf. */
3292 	BUG_ON(left_cpos == 0);
3293 
3294 	left_path = ocfs2_new_path_from_path(right_path);
3295 	if (!left_path) {
3296 		ret = -ENOMEM;
3297 		mlog_errno(ret);
3298 		goto out;
3299 	}
3300 
3301 	ret = ocfs2_find_path(inode, left_path, left_cpos);
3302 	if (ret) {
3303 		mlog_errno(ret);
3304 		goto out;
3305 	}
3306 
3307 	*ret_left_path = left_path;
3308 out:
3309 	if (ret)
3310 		ocfs2_free_path(left_path);
3311 	return ret;
3312 }
3313 
3314 /*
3315  * Remove split_rec clusters from the record at index and merge them
3316  * onto the tail of the record "before" it.
3317  * For index > 0, the "before" means the extent rec at index - 1.
3318  *
3319  * For index == 0, the "before" means the last record of the previous
3320  * extent block. And there is also a situation that we may need to
3321  * remove the rightmost leaf extent block in the right_path and change
3322  * the right path to indicate the new rightmost path.
3323  */
ocfs2_merge_rec_left(struct inode * inode,struct ocfs2_path * right_path,handle_t * handle,struct ocfs2_extent_rec * split_rec,struct ocfs2_cached_dealloc_ctxt * dealloc,struct ocfs2_extent_tree * et,int index)3324 static int ocfs2_merge_rec_left(struct inode *inode,
3325 				struct ocfs2_path *right_path,
3326 				handle_t *handle,
3327 				struct ocfs2_extent_rec *split_rec,
3328 				struct ocfs2_cached_dealloc_ctxt *dealloc,
3329 				struct ocfs2_extent_tree *et,
3330 				int index)
3331 {
3332 	int ret, i, subtree_index = 0, has_empty_extent = 0;
3333 	unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3334 	struct ocfs2_extent_rec *left_rec;
3335 	struct ocfs2_extent_rec *right_rec;
3336 	struct ocfs2_extent_list *el = path_leaf_el(right_path);
3337 	struct buffer_head *bh = path_leaf_bh(right_path);
3338 	struct buffer_head *root_bh = NULL;
3339 	struct ocfs2_path *left_path = NULL;
3340 	struct ocfs2_extent_list *left_el;
3341 
3342 	BUG_ON(index < 0);
3343 
3344 	right_rec = &el->l_recs[index];
3345 	if (index == 0) {
3346 		/* we meet with a cross extent block merge. */
3347 		ret = ocfs2_get_left_path(inode, right_path, &left_path);
3348 		if (ret) {
3349 			mlog_errno(ret);
3350 			goto out;
3351 		}
3352 
3353 		left_el = path_leaf_el(left_path);
3354 		BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3355 		       le16_to_cpu(left_el->l_count));
3356 
3357 		left_rec = &left_el->l_recs[
3358 				le16_to_cpu(left_el->l_next_free_rec) - 1];
3359 		BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3360 		       le16_to_cpu(left_rec->e_leaf_clusters) !=
3361 		       le32_to_cpu(split_rec->e_cpos));
3362 
3363 		subtree_index = ocfs2_find_subtree_root(inode,
3364 							left_path, right_path);
3365 
3366 		ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3367 						      handle->h_buffer_credits,
3368 						      left_path);
3369 		if (ret) {
3370 			mlog_errno(ret);
3371 			goto out;
3372 		}
3373 
3374 		root_bh = left_path->p_node[subtree_index].bh;
3375 		BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3376 
3377 		ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3378 						   subtree_index);
3379 		if (ret) {
3380 			mlog_errno(ret);
3381 			goto out;
3382 		}
3383 
3384 		for (i = subtree_index + 1;
3385 		     i < path_num_items(right_path); i++) {
3386 			ret = ocfs2_path_bh_journal_access(handle, inode,
3387 							   right_path, i);
3388 			if (ret) {
3389 				mlog_errno(ret);
3390 				goto out;
3391 			}
3392 
3393 			ret = ocfs2_path_bh_journal_access(handle, inode,
3394 							   left_path, i);
3395 			if (ret) {
3396 				mlog_errno(ret);
3397 				goto out;
3398 			}
3399 		}
3400 	} else {
3401 		left_rec = &el->l_recs[index - 1];
3402 		if (ocfs2_is_empty_extent(&el->l_recs[0]))
3403 			has_empty_extent = 1;
3404 	}
3405 
3406 	ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3407 					   path_num_items(right_path) - 1);
3408 	if (ret) {
3409 		mlog_errno(ret);
3410 		goto out;
3411 	}
3412 
3413 	if (has_empty_extent && index == 1) {
3414 		/*
3415 		 * The easy case - we can just plop the record right in.
3416 		 */
3417 		*left_rec = *split_rec;
3418 
3419 		has_empty_extent = 0;
3420 	} else
3421 		le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3422 
3423 	le32_add_cpu(&right_rec->e_cpos, split_clusters);
3424 	le64_add_cpu(&right_rec->e_blkno,
3425 		     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3426 	le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3427 
3428 	ocfs2_cleanup_merge(el, index);
3429 
3430 	ret = ocfs2_journal_dirty(handle, bh);
3431 	if (ret)
3432 		mlog_errno(ret);
3433 
3434 	if (left_path) {
3435 		ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3436 		if (ret)
3437 			mlog_errno(ret);
3438 
3439 		/*
3440 		 * In the situation that the right_rec is empty and the extent
3441 		 * block is empty also,  ocfs2_complete_edge_insert can't handle
3442 		 * it and we need to delete the right extent block.
3443 		 */
3444 		if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3445 		    le16_to_cpu(el->l_next_free_rec) == 1) {
3446 
3447 			ret = ocfs2_remove_rightmost_path(inode, handle,
3448 							  right_path,
3449 							  dealloc, et);
3450 			if (ret) {
3451 				mlog_errno(ret);
3452 				goto out;
3453 			}
3454 
3455 			/* Now the rightmost extent block has been deleted.
3456 			 * So we use the new rightmost path.
3457 			 */
3458 			ocfs2_mv_path(right_path, left_path);
3459 			left_path = NULL;
3460 		} else
3461 			ocfs2_complete_edge_insert(inode, handle, left_path,
3462 						   right_path, subtree_index);
3463 	}
3464 out:
3465 	if (left_path)
3466 		ocfs2_free_path(left_path);
3467 	return ret;
3468 }
3469 
ocfs2_try_to_merge_extent(struct inode * inode,handle_t * handle,struct ocfs2_path * path,int split_index,struct ocfs2_extent_rec * split_rec,struct ocfs2_cached_dealloc_ctxt * dealloc,struct ocfs2_merge_ctxt * ctxt,struct ocfs2_extent_tree * et)3470 static int ocfs2_try_to_merge_extent(struct inode *inode,
3471 				     handle_t *handle,
3472 				     struct ocfs2_path *path,
3473 				     int split_index,
3474 				     struct ocfs2_extent_rec *split_rec,
3475 				     struct ocfs2_cached_dealloc_ctxt *dealloc,
3476 				     struct ocfs2_merge_ctxt *ctxt,
3477 				     struct ocfs2_extent_tree *et)
3478 
3479 {
3480 	int ret = 0;
3481 	struct ocfs2_extent_list *el = path_leaf_el(path);
3482 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3483 
3484 	BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3485 
3486 	if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3487 		/*
3488 		 * The merge code will need to create an empty
3489 		 * extent to take the place of the newly
3490 		 * emptied slot. Remove any pre-existing empty
3491 		 * extents - having more than one in a leaf is
3492 		 * illegal.
3493 		 */
3494 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3495 					     dealloc, et);
3496 		if (ret) {
3497 			mlog_errno(ret);
3498 			goto out;
3499 		}
3500 		split_index--;
3501 		rec = &el->l_recs[split_index];
3502 	}
3503 
3504 	if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3505 		/*
3506 		 * Left-right contig implies this.
3507 		 */
3508 		BUG_ON(!ctxt->c_split_covers_rec);
3509 
3510 		/*
3511 		 * Since the leftright insert always covers the entire
3512 		 * extent, this call will delete the insert record
3513 		 * entirely, resulting in an empty extent record added to
3514 		 * the extent block.
3515 		 *
3516 		 * Since the adding of an empty extent shifts
3517 		 * everything back to the right, there's no need to
3518 		 * update split_index here.
3519 		 *
3520 		 * When the split_index is zero, we need to merge it to the
3521 		 * prevoius extent block. It is more efficient and easier
3522 		 * if we do merge_right first and merge_left later.
3523 		 */
3524 		ret = ocfs2_merge_rec_right(inode, path,
3525 					    handle, split_rec,
3526 					    split_index);
3527 		if (ret) {
3528 			mlog_errno(ret);
3529 			goto out;
3530 		}
3531 
3532 		/*
3533 		 * We can only get this from logic error above.
3534 		 */
3535 		BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3536 
3537 		/* The merge left us with an empty extent, remove it. */
3538 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3539 					     dealloc, et);
3540 		if (ret) {
3541 			mlog_errno(ret);
3542 			goto out;
3543 		}
3544 
3545 		rec = &el->l_recs[split_index];
3546 
3547 		/*
3548 		 * Note that we don't pass split_rec here on purpose -
3549 		 * we've merged it into the rec already.
3550 		 */
3551 		ret = ocfs2_merge_rec_left(inode, path,
3552 					   handle, rec,
3553 					   dealloc, et,
3554 					   split_index);
3555 
3556 		if (ret) {
3557 			mlog_errno(ret);
3558 			goto out;
3559 		}
3560 
3561 		ret = ocfs2_rotate_tree_left(inode, handle, path,
3562 					     dealloc, et);
3563 		/*
3564 		 * Error from this last rotate is not critical, so
3565 		 * print but don't bubble it up.
3566 		 */
3567 		if (ret)
3568 			mlog_errno(ret);
3569 		ret = 0;
3570 	} else {
3571 		/*
3572 		 * Merge a record to the left or right.
3573 		 *
3574 		 * 'contig_type' is relative to the existing record,
3575 		 * so for example, if we're "right contig", it's to
3576 		 * the record on the left (hence the left merge).
3577 		 */
3578 		if (ctxt->c_contig_type == CONTIG_RIGHT) {
3579 			ret = ocfs2_merge_rec_left(inode,
3580 						   path,
3581 						   handle, split_rec,
3582 						   dealloc, et,
3583 						   split_index);
3584 			if (ret) {
3585 				mlog_errno(ret);
3586 				goto out;
3587 			}
3588 		} else {
3589 			ret = ocfs2_merge_rec_right(inode,
3590 						    path,
3591 						    handle, split_rec,
3592 						    split_index);
3593 			if (ret) {
3594 				mlog_errno(ret);
3595 				goto out;
3596 			}
3597 		}
3598 
3599 		if (ctxt->c_split_covers_rec) {
3600 			/*
3601 			 * The merge may have left an empty extent in
3602 			 * our leaf. Try to rotate it away.
3603 			 */
3604 			ret = ocfs2_rotate_tree_left(inode, handle, path,
3605 						     dealloc, et);
3606 			if (ret)
3607 				mlog_errno(ret);
3608 			ret = 0;
3609 		}
3610 	}
3611 
3612 out:
3613 	return ret;
3614 }
3615 
ocfs2_subtract_from_rec(struct super_block * sb,enum ocfs2_split_type split,struct ocfs2_extent_rec * rec,struct ocfs2_extent_rec * split_rec)3616 static void ocfs2_subtract_from_rec(struct super_block *sb,
3617 				    enum ocfs2_split_type split,
3618 				    struct ocfs2_extent_rec *rec,
3619 				    struct ocfs2_extent_rec *split_rec)
3620 {
3621 	u64 len_blocks;
3622 
3623 	len_blocks = ocfs2_clusters_to_blocks(sb,
3624 				le16_to_cpu(split_rec->e_leaf_clusters));
3625 
3626 	if (split == SPLIT_LEFT) {
3627 		/*
3628 		 * Region is on the left edge of the existing
3629 		 * record.
3630 		 */
3631 		le32_add_cpu(&rec->e_cpos,
3632 			     le16_to_cpu(split_rec->e_leaf_clusters));
3633 		le64_add_cpu(&rec->e_blkno, len_blocks);
3634 		le16_add_cpu(&rec->e_leaf_clusters,
3635 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3636 	} else {
3637 		/*
3638 		 * Region is on the right edge of the existing
3639 		 * record.
3640 		 */
3641 		le16_add_cpu(&rec->e_leaf_clusters,
3642 			     -le16_to_cpu(split_rec->e_leaf_clusters));
3643 	}
3644 }
3645 
3646 /*
3647  * Do the final bits of extent record insertion at the target leaf
3648  * list. If this leaf is part of an allocation tree, it is assumed
3649  * that the tree above has been prepared.
3650  */
ocfs2_insert_at_leaf(struct ocfs2_extent_rec * insert_rec,struct ocfs2_extent_list * el,struct ocfs2_insert_type * insert,struct inode * inode)3651 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3652 				 struct ocfs2_extent_list *el,
3653 				 struct ocfs2_insert_type *insert,
3654 				 struct inode *inode)
3655 {
3656 	int i = insert->ins_contig_index;
3657 	unsigned int range;
3658 	struct ocfs2_extent_rec *rec;
3659 
3660 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3661 
3662 	if (insert->ins_split != SPLIT_NONE) {
3663 		i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3664 		BUG_ON(i == -1);
3665 		rec = &el->l_recs[i];
3666 		ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3667 					insert_rec);
3668 		goto rotate;
3669 	}
3670 
3671 	/*
3672 	 * Contiguous insert - either left or right.
3673 	 */
3674 	if (insert->ins_contig != CONTIG_NONE) {
3675 		rec = &el->l_recs[i];
3676 		if (insert->ins_contig == CONTIG_LEFT) {
3677 			rec->e_blkno = insert_rec->e_blkno;
3678 			rec->e_cpos = insert_rec->e_cpos;
3679 		}
3680 		le16_add_cpu(&rec->e_leaf_clusters,
3681 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3682 		return;
3683 	}
3684 
3685 	/*
3686 	 * Handle insert into an empty leaf.
3687 	 */
3688 	if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3689 	    ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3690 	     ocfs2_is_empty_extent(&el->l_recs[0]))) {
3691 		el->l_recs[0] = *insert_rec;
3692 		el->l_next_free_rec = cpu_to_le16(1);
3693 		return;
3694 	}
3695 
3696 	/*
3697 	 * Appending insert.
3698 	 */
3699 	if (insert->ins_appending == APPEND_TAIL) {
3700 		i = le16_to_cpu(el->l_next_free_rec) - 1;
3701 		rec = &el->l_recs[i];
3702 		range = le32_to_cpu(rec->e_cpos)
3703 			+ le16_to_cpu(rec->e_leaf_clusters);
3704 		BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3705 
3706 		mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3707 				le16_to_cpu(el->l_count),
3708 				"inode %lu, depth %u, count %u, next free %u, "
3709 				"rec.cpos %u, rec.clusters %u, "
3710 				"insert.cpos %u, insert.clusters %u\n",
3711 				inode->i_ino,
3712 				le16_to_cpu(el->l_tree_depth),
3713 				le16_to_cpu(el->l_count),
3714 				le16_to_cpu(el->l_next_free_rec),
3715 				le32_to_cpu(el->l_recs[i].e_cpos),
3716 				le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3717 				le32_to_cpu(insert_rec->e_cpos),
3718 				le16_to_cpu(insert_rec->e_leaf_clusters));
3719 		i++;
3720 		el->l_recs[i] = *insert_rec;
3721 		le16_add_cpu(&el->l_next_free_rec, 1);
3722 		return;
3723 	}
3724 
3725 rotate:
3726 	/*
3727 	 * Ok, we have to rotate.
3728 	 *
3729 	 * At this point, it is safe to assume that inserting into an
3730 	 * empty leaf and appending to a leaf have both been handled
3731 	 * above.
3732 	 *
3733 	 * This leaf needs to have space, either by the empty 1st
3734 	 * extent record, or by virtue of an l_next_rec < l_count.
3735 	 */
3736 	ocfs2_rotate_leaf(el, insert_rec);
3737 }
3738 
ocfs2_adjust_rightmost_records(struct inode * inode,handle_t * handle,struct ocfs2_path * path,struct ocfs2_extent_rec * insert_rec)3739 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3740 					   handle_t *handle,
3741 					   struct ocfs2_path *path,
3742 					   struct ocfs2_extent_rec *insert_rec)
3743 {
3744 	int ret, i, next_free;
3745 	struct buffer_head *bh;
3746 	struct ocfs2_extent_list *el;
3747 	struct ocfs2_extent_rec *rec;
3748 
3749 	/*
3750 	 * Update everything except the leaf block.
3751 	 */
3752 	for (i = 0; i < path->p_tree_depth; i++) {
3753 		bh = path->p_node[i].bh;
3754 		el = path->p_node[i].el;
3755 
3756 		next_free = le16_to_cpu(el->l_next_free_rec);
3757 		if (next_free == 0) {
3758 			ocfs2_error(inode->i_sb,
3759 				    "Dinode %llu has a bad extent list",
3760 				    (unsigned long long)OCFS2_I(inode)->ip_blkno);
3761 			ret = -EIO;
3762 			return;
3763 		}
3764 
3765 		rec = &el->l_recs[next_free - 1];
3766 
3767 		rec->e_int_clusters = insert_rec->e_cpos;
3768 		le32_add_cpu(&rec->e_int_clusters,
3769 			     le16_to_cpu(insert_rec->e_leaf_clusters));
3770 		le32_add_cpu(&rec->e_int_clusters,
3771 			     -le32_to_cpu(rec->e_cpos));
3772 
3773 		ret = ocfs2_journal_dirty(handle, bh);
3774 		if (ret)
3775 			mlog_errno(ret);
3776 
3777 	}
3778 }
3779 
ocfs2_append_rec_to_path(struct inode * inode,handle_t * handle,struct ocfs2_extent_rec * insert_rec,struct ocfs2_path * right_path,struct ocfs2_path ** ret_left_path)3780 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3781 				    struct ocfs2_extent_rec *insert_rec,
3782 				    struct ocfs2_path *right_path,
3783 				    struct ocfs2_path **ret_left_path)
3784 {
3785 	int ret, next_free;
3786 	struct ocfs2_extent_list *el;
3787 	struct ocfs2_path *left_path = NULL;
3788 
3789 	*ret_left_path = NULL;
3790 
3791 	/*
3792 	 * This shouldn't happen for non-trees. The extent rec cluster
3793 	 * count manipulation below only works for interior nodes.
3794 	 */
3795 	BUG_ON(right_path->p_tree_depth == 0);
3796 
3797 	/*
3798 	 * If our appending insert is at the leftmost edge of a leaf,
3799 	 * then we might need to update the rightmost records of the
3800 	 * neighboring path.
3801 	 */
3802 	el = path_leaf_el(right_path);
3803 	next_free = le16_to_cpu(el->l_next_free_rec);
3804 	if (next_free == 0 ||
3805 	    (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3806 		u32 left_cpos;
3807 
3808 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3809 						    &left_cpos);
3810 		if (ret) {
3811 			mlog_errno(ret);
3812 			goto out;
3813 		}
3814 
3815 		mlog(0, "Append may need a left path update. cpos: %u, "
3816 		     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3817 		     left_cpos);
3818 
3819 		/*
3820 		 * No need to worry if the append is already in the
3821 		 * leftmost leaf.
3822 		 */
3823 		if (left_cpos) {
3824 			left_path = ocfs2_new_path_from_path(right_path);
3825 			if (!left_path) {
3826 				ret = -ENOMEM;
3827 				mlog_errno(ret);
3828 				goto out;
3829 			}
3830 
3831 			ret = ocfs2_find_path(inode, left_path, left_cpos);
3832 			if (ret) {
3833 				mlog_errno(ret);
3834 				goto out;
3835 			}
3836 
3837 			/*
3838 			 * ocfs2_insert_path() will pass the left_path to the
3839 			 * journal for us.
3840 			 */
3841 		}
3842 	}
3843 
3844 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3845 	if (ret) {
3846 		mlog_errno(ret);
3847 		goto out;
3848 	}
3849 
3850 	ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3851 
3852 	*ret_left_path = left_path;
3853 	ret = 0;
3854 out:
3855 	if (ret != 0)
3856 		ocfs2_free_path(left_path);
3857 
3858 	return ret;
3859 }
3860 
ocfs2_split_record(struct inode * inode,struct ocfs2_path * left_path,struct ocfs2_path * right_path,struct ocfs2_extent_rec * split_rec,enum ocfs2_split_type split)3861 static void ocfs2_split_record(struct inode *inode,
3862 			       struct ocfs2_path *left_path,
3863 			       struct ocfs2_path *right_path,
3864 			       struct ocfs2_extent_rec *split_rec,
3865 			       enum ocfs2_split_type split)
3866 {
3867 	int index;
3868 	u32 cpos = le32_to_cpu(split_rec->e_cpos);
3869 	struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3870 	struct ocfs2_extent_rec *rec, *tmprec;
3871 
3872 	right_el = path_leaf_el(right_path);
3873 	if (left_path)
3874 		left_el = path_leaf_el(left_path);
3875 
3876 	el = right_el;
3877 	insert_el = right_el;
3878 	index = ocfs2_search_extent_list(el, cpos);
3879 	if (index != -1) {
3880 		if (index == 0 && left_path) {
3881 			BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3882 
3883 			/*
3884 			 * This typically means that the record
3885 			 * started in the left path but moved to the
3886 			 * right as a result of rotation. We either
3887 			 * move the existing record to the left, or we
3888 			 * do the later insert there.
3889 			 *
3890 			 * In this case, the left path should always
3891 			 * exist as the rotate code will have passed
3892 			 * it back for a post-insert update.
3893 			 */
3894 
3895 			if (split == SPLIT_LEFT) {
3896 				/*
3897 				 * It's a left split. Since we know
3898 				 * that the rotate code gave us an
3899 				 * empty extent in the left path, we
3900 				 * can just do the insert there.
3901 				 */
3902 				insert_el = left_el;
3903 			} else {
3904 				/*
3905 				 * Right split - we have to move the
3906 				 * existing record over to the left
3907 				 * leaf. The insert will be into the
3908 				 * newly created empty extent in the
3909 				 * right leaf.
3910 				 */
3911 				tmprec = &right_el->l_recs[index];
3912 				ocfs2_rotate_leaf(left_el, tmprec);
3913 				el = left_el;
3914 
3915 				memset(tmprec, 0, sizeof(*tmprec));
3916 				index = ocfs2_search_extent_list(left_el, cpos);
3917 				BUG_ON(index == -1);
3918 			}
3919 		}
3920 	} else {
3921 		BUG_ON(!left_path);
3922 		BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3923 		/*
3924 		 * Left path is easy - we can just allow the insert to
3925 		 * happen.
3926 		 */
3927 		el = left_el;
3928 		insert_el = left_el;
3929 		index = ocfs2_search_extent_list(el, cpos);
3930 		BUG_ON(index == -1);
3931 	}
3932 
3933 	rec = &el->l_recs[index];
3934 	ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3935 	ocfs2_rotate_leaf(insert_el, split_rec);
3936 }
3937 
3938 /*
3939  * This function only does inserts on an allocation b-tree. For tree
3940  * depth = 0, ocfs2_insert_at_leaf() is called directly.
3941  *
3942  * right_path is the path we want to do the actual insert
3943  * in. left_path should only be passed in if we need to update that
3944  * portion of the tree after an edge insert.
3945  */
ocfs2_insert_path(struct inode * inode,handle_t * handle,struct ocfs2_path * left_path,struct ocfs2_path * right_path,struct ocfs2_extent_rec * insert_rec,struct ocfs2_insert_type * insert)3946 static int ocfs2_insert_path(struct inode *inode,
3947 			     handle_t *handle,
3948 			     struct ocfs2_path *left_path,
3949 			     struct ocfs2_path *right_path,
3950 			     struct ocfs2_extent_rec *insert_rec,
3951 			     struct ocfs2_insert_type *insert)
3952 {
3953 	int ret, subtree_index;
3954 	struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3955 
3956 	if (left_path) {
3957 		int credits = handle->h_buffer_credits;
3958 
3959 		/*
3960 		 * There's a chance that left_path got passed back to
3961 		 * us without being accounted for in the
3962 		 * journal. Extend our transaction here to be sure we
3963 		 * can change those blocks.
3964 		 */
3965 		credits += left_path->p_tree_depth;
3966 
3967 		ret = ocfs2_extend_trans(handle, credits);
3968 		if (ret < 0) {
3969 			mlog_errno(ret);
3970 			goto out;
3971 		}
3972 
3973 		ret = ocfs2_journal_access_path(inode, handle, left_path);
3974 		if (ret < 0) {
3975 			mlog_errno(ret);
3976 			goto out;
3977 		}
3978 	}
3979 
3980 	/*
3981 	 * Pass both paths to the journal. The majority of inserts
3982 	 * will be touching all components anyway.
3983 	 */
3984 	ret = ocfs2_journal_access_path(inode, handle, right_path);
3985 	if (ret < 0) {
3986 		mlog_errno(ret);
3987 		goto out;
3988 	}
3989 
3990 	if (insert->ins_split != SPLIT_NONE) {
3991 		/*
3992 		 * We could call ocfs2_insert_at_leaf() for some types
3993 		 * of splits, but it's easier to just let one separate
3994 		 * function sort it all out.
3995 		 */
3996 		ocfs2_split_record(inode, left_path, right_path,
3997 				   insert_rec, insert->ins_split);
3998 
3999 		/*
4000 		 * Split might have modified either leaf and we don't
4001 		 * have a guarantee that the later edge insert will
4002 		 * dirty this for us.
4003 		 */
4004 		if (left_path)
4005 			ret = ocfs2_journal_dirty(handle,
4006 						  path_leaf_bh(left_path));
4007 			if (ret)
4008 				mlog_errno(ret);
4009 	} else
4010 		ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4011 				     insert, inode);
4012 
4013 	ret = ocfs2_journal_dirty(handle, leaf_bh);
4014 	if (ret)
4015 		mlog_errno(ret);
4016 
4017 	if (left_path) {
4018 		/*
4019 		 * The rotate code has indicated that we need to fix
4020 		 * up portions of the tree after the insert.
4021 		 *
4022 		 * XXX: Should we extend the transaction here?
4023 		 */
4024 		subtree_index = ocfs2_find_subtree_root(inode, left_path,
4025 							right_path);
4026 		ocfs2_complete_edge_insert(inode, handle, left_path,
4027 					   right_path, subtree_index);
4028 	}
4029 
4030 	ret = 0;
4031 out:
4032 	return ret;
4033 }
4034 
ocfs2_do_insert_extent(struct inode * inode,handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * insert_rec,struct ocfs2_insert_type * type)4035 static int ocfs2_do_insert_extent(struct inode *inode,
4036 				  handle_t *handle,
4037 				  struct ocfs2_extent_tree *et,
4038 				  struct ocfs2_extent_rec *insert_rec,
4039 				  struct ocfs2_insert_type *type)
4040 {
4041 	int ret, rotate = 0;
4042 	u32 cpos;
4043 	struct ocfs2_path *right_path = NULL;
4044 	struct ocfs2_path *left_path = NULL;
4045 	struct ocfs2_extent_list *el;
4046 
4047 	el = et->et_root_el;
4048 
4049 	ret = ocfs2_et_root_journal_access(handle, inode, et,
4050 					   OCFS2_JOURNAL_ACCESS_WRITE);
4051 	if (ret) {
4052 		mlog_errno(ret);
4053 		goto out;
4054 	}
4055 
4056 	if (le16_to_cpu(el->l_tree_depth) == 0) {
4057 		ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4058 		goto out_update_clusters;
4059 	}
4060 
4061 	right_path = ocfs2_new_path_from_et(et);
4062 	if (!right_path) {
4063 		ret = -ENOMEM;
4064 		mlog_errno(ret);
4065 		goto out;
4066 	}
4067 
4068 	/*
4069 	 * Determine the path to start with. Rotations need the
4070 	 * rightmost path, everything else can go directly to the
4071 	 * target leaf.
4072 	 */
4073 	cpos = le32_to_cpu(insert_rec->e_cpos);
4074 	if (type->ins_appending == APPEND_NONE &&
4075 	    type->ins_contig == CONTIG_NONE) {
4076 		rotate = 1;
4077 		cpos = UINT_MAX;
4078 	}
4079 
4080 	ret = ocfs2_find_path(inode, right_path, cpos);
4081 	if (ret) {
4082 		mlog_errno(ret);
4083 		goto out;
4084 	}
4085 
4086 	/*
4087 	 * Rotations and appends need special treatment - they modify
4088 	 * parts of the tree's above them.
4089 	 *
4090 	 * Both might pass back a path immediate to the left of the
4091 	 * one being inserted to. This will be cause
4092 	 * ocfs2_insert_path() to modify the rightmost records of
4093 	 * left_path to account for an edge insert.
4094 	 *
4095 	 * XXX: When modifying this code, keep in mind that an insert
4096 	 * can wind up skipping both of these two special cases...
4097 	 */
4098 	if (rotate) {
4099 		ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4100 					      le32_to_cpu(insert_rec->e_cpos),
4101 					      right_path, &left_path);
4102 		if (ret) {
4103 			mlog_errno(ret);
4104 			goto out;
4105 		}
4106 
4107 		/*
4108 		 * ocfs2_rotate_tree_right() might have extended the
4109 		 * transaction without re-journaling our tree root.
4110 		 */
4111 		ret = ocfs2_et_root_journal_access(handle, inode, et,
4112 						   OCFS2_JOURNAL_ACCESS_WRITE);
4113 		if (ret) {
4114 			mlog_errno(ret);
4115 			goto out;
4116 		}
4117 	} else if (type->ins_appending == APPEND_TAIL
4118 		   && type->ins_contig != CONTIG_LEFT) {
4119 		ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4120 					       right_path, &left_path);
4121 		if (ret) {
4122 			mlog_errno(ret);
4123 			goto out;
4124 		}
4125 	}
4126 
4127 	ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4128 				insert_rec, type);
4129 	if (ret) {
4130 		mlog_errno(ret);
4131 		goto out;
4132 	}
4133 
4134 out_update_clusters:
4135 	if (type->ins_split == SPLIT_NONE)
4136 		ocfs2_et_update_clusters(inode, et,
4137 					 le16_to_cpu(insert_rec->e_leaf_clusters));
4138 
4139 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4140 	if (ret)
4141 		mlog_errno(ret);
4142 
4143 out:
4144 	ocfs2_free_path(left_path);
4145 	ocfs2_free_path(right_path);
4146 
4147 	return ret;
4148 }
4149 
4150 static enum ocfs2_contig_type
ocfs2_figure_merge_contig_type(struct inode * inode,struct ocfs2_path * path,struct ocfs2_extent_list * el,int index,struct ocfs2_extent_rec * split_rec)4151 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4152 			       struct ocfs2_extent_list *el, int index,
4153 			       struct ocfs2_extent_rec *split_rec)
4154 {
4155 	int status;
4156 	enum ocfs2_contig_type ret = CONTIG_NONE;
4157 	u32 left_cpos, right_cpos;
4158 	struct ocfs2_extent_rec *rec = NULL;
4159 	struct ocfs2_extent_list *new_el;
4160 	struct ocfs2_path *left_path = NULL, *right_path = NULL;
4161 	struct buffer_head *bh;
4162 	struct ocfs2_extent_block *eb;
4163 
4164 	if (index > 0) {
4165 		rec = &el->l_recs[index - 1];
4166 	} else if (path->p_tree_depth > 0) {
4167 		status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4168 						       path, &left_cpos);
4169 		if (status)
4170 			goto out;
4171 
4172 		if (left_cpos != 0) {
4173 			left_path = ocfs2_new_path_from_path(path);
4174 			if (!left_path)
4175 				goto out;
4176 
4177 			status = ocfs2_find_path(inode, left_path, left_cpos);
4178 			if (status)
4179 				goto out;
4180 
4181 			new_el = path_leaf_el(left_path);
4182 
4183 			if (le16_to_cpu(new_el->l_next_free_rec) !=
4184 			    le16_to_cpu(new_el->l_count)) {
4185 				bh = path_leaf_bh(left_path);
4186 				eb = (struct ocfs2_extent_block *)bh->b_data;
4187 				ocfs2_error(inode->i_sb,
4188 					    "Extent block #%llu has an "
4189 					    "invalid l_next_free_rec of "
4190 					    "%d.  It should have "
4191 					    "matched the l_count of %d",
4192 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4193 					    le16_to_cpu(new_el->l_next_free_rec),
4194 					    le16_to_cpu(new_el->l_count));
4195 				status = -EINVAL;
4196 				goto out;
4197 			}
4198 			rec = &new_el->l_recs[
4199 				le16_to_cpu(new_el->l_next_free_rec) - 1];
4200 		}
4201 	}
4202 
4203 	/*
4204 	 * We're careful to check for an empty extent record here -
4205 	 * the merge code will know what to do if it sees one.
4206 	 */
4207 	if (rec) {
4208 		if (index == 1 && ocfs2_is_empty_extent(rec)) {
4209 			if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4210 				ret = CONTIG_RIGHT;
4211 		} else {
4212 			ret = ocfs2_extent_contig(inode, rec, split_rec);
4213 		}
4214 	}
4215 
4216 	rec = NULL;
4217 	if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4218 		rec = &el->l_recs[index + 1];
4219 	else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4220 		 path->p_tree_depth > 0) {
4221 		status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4222 							path, &right_cpos);
4223 		if (status)
4224 			goto out;
4225 
4226 		if (right_cpos == 0)
4227 			goto out;
4228 
4229 		right_path = ocfs2_new_path_from_path(path);
4230 		if (!right_path)
4231 			goto out;
4232 
4233 		status = ocfs2_find_path(inode, right_path, right_cpos);
4234 		if (status)
4235 			goto out;
4236 
4237 		new_el = path_leaf_el(right_path);
4238 		rec = &new_el->l_recs[0];
4239 		if (ocfs2_is_empty_extent(rec)) {
4240 			if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4241 				bh = path_leaf_bh(right_path);
4242 				eb = (struct ocfs2_extent_block *)bh->b_data;
4243 				ocfs2_error(inode->i_sb,
4244 					    "Extent block #%llu has an "
4245 					    "invalid l_next_free_rec of %d",
4246 					    (unsigned long long)le64_to_cpu(eb->h_blkno),
4247 					    le16_to_cpu(new_el->l_next_free_rec));
4248 				status = -EINVAL;
4249 				goto out;
4250 			}
4251 			rec = &new_el->l_recs[1];
4252 		}
4253 	}
4254 
4255 	if (rec) {
4256 		enum ocfs2_contig_type contig_type;
4257 
4258 		contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4259 
4260 		if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4261 			ret = CONTIG_LEFTRIGHT;
4262 		else if (ret == CONTIG_NONE)
4263 			ret = contig_type;
4264 	}
4265 
4266 out:
4267 	if (left_path)
4268 		ocfs2_free_path(left_path);
4269 	if (right_path)
4270 		ocfs2_free_path(right_path);
4271 
4272 	return ret;
4273 }
4274 
ocfs2_figure_contig_type(struct inode * inode,struct ocfs2_insert_type * insert,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * insert_rec,struct ocfs2_extent_tree * et)4275 static void ocfs2_figure_contig_type(struct inode *inode,
4276 				     struct ocfs2_insert_type *insert,
4277 				     struct ocfs2_extent_list *el,
4278 				     struct ocfs2_extent_rec *insert_rec,
4279 				     struct ocfs2_extent_tree *et)
4280 {
4281 	int i;
4282 	enum ocfs2_contig_type contig_type = CONTIG_NONE;
4283 
4284 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4285 
4286 	for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4287 		contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4288 						  insert_rec);
4289 		if (contig_type != CONTIG_NONE) {
4290 			insert->ins_contig_index = i;
4291 			break;
4292 		}
4293 	}
4294 	insert->ins_contig = contig_type;
4295 
4296 	if (insert->ins_contig != CONTIG_NONE) {
4297 		struct ocfs2_extent_rec *rec =
4298 				&el->l_recs[insert->ins_contig_index];
4299 		unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4300 				   le16_to_cpu(insert_rec->e_leaf_clusters);
4301 
4302 		/*
4303 		 * Caller might want us to limit the size of extents, don't
4304 		 * calculate contiguousness if we might exceed that limit.
4305 		 */
4306 		if (et->et_max_leaf_clusters &&
4307 		    (len > et->et_max_leaf_clusters))
4308 			insert->ins_contig = CONTIG_NONE;
4309 	}
4310 }
4311 
4312 /*
4313  * This should only be called against the righmost leaf extent list.
4314  *
4315  * ocfs2_figure_appending_type() will figure out whether we'll have to
4316  * insert at the tail of the rightmost leaf.
4317  *
4318  * This should also work against the root extent list for tree's with 0
4319  * depth. If we consider the root extent list to be the rightmost leaf node
4320  * then the logic here makes sense.
4321  */
ocfs2_figure_appending_type(struct ocfs2_insert_type * insert,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * insert_rec)4322 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4323 					struct ocfs2_extent_list *el,
4324 					struct ocfs2_extent_rec *insert_rec)
4325 {
4326 	int i;
4327 	u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4328 	struct ocfs2_extent_rec *rec;
4329 
4330 	insert->ins_appending = APPEND_NONE;
4331 
4332 	BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4333 
4334 	if (!el->l_next_free_rec)
4335 		goto set_tail_append;
4336 
4337 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4338 		/* Were all records empty? */
4339 		if (le16_to_cpu(el->l_next_free_rec) == 1)
4340 			goto set_tail_append;
4341 	}
4342 
4343 	i = le16_to_cpu(el->l_next_free_rec) - 1;
4344 	rec = &el->l_recs[i];
4345 
4346 	if (cpos >=
4347 	    (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4348 		goto set_tail_append;
4349 
4350 	return;
4351 
4352 set_tail_append:
4353 	insert->ins_appending = APPEND_TAIL;
4354 }
4355 
4356 /*
4357  * Helper function called at the begining of an insert.
4358  *
4359  * This computes a few things that are commonly used in the process of
4360  * inserting into the btree:
4361  *   - Whether the new extent is contiguous with an existing one.
4362  *   - The current tree depth.
4363  *   - Whether the insert is an appending one.
4364  *   - The total # of free records in the tree.
4365  *
4366  * All of the information is stored on the ocfs2_insert_type
4367  * structure.
4368  */
ocfs2_figure_insert_type(struct inode * inode,struct ocfs2_extent_tree * et,struct buffer_head ** last_eb_bh,struct ocfs2_extent_rec * insert_rec,int * free_records,struct ocfs2_insert_type * insert)4369 static int ocfs2_figure_insert_type(struct inode *inode,
4370 				    struct ocfs2_extent_tree *et,
4371 				    struct buffer_head **last_eb_bh,
4372 				    struct ocfs2_extent_rec *insert_rec,
4373 				    int *free_records,
4374 				    struct ocfs2_insert_type *insert)
4375 {
4376 	int ret;
4377 	struct ocfs2_extent_block *eb;
4378 	struct ocfs2_extent_list *el;
4379 	struct ocfs2_path *path = NULL;
4380 	struct buffer_head *bh = NULL;
4381 
4382 	insert->ins_split = SPLIT_NONE;
4383 
4384 	el = et->et_root_el;
4385 	insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4386 
4387 	if (el->l_tree_depth) {
4388 		/*
4389 		 * If we have tree depth, we read in the
4390 		 * rightmost extent block ahead of time as
4391 		 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4392 		 * may want it later.
4393 		 */
4394 		ret = ocfs2_read_extent_block(inode,
4395 					      ocfs2_et_get_last_eb_blk(et),
4396 					      &bh);
4397 		if (ret) {
4398 			mlog_exit(ret);
4399 			goto out;
4400 		}
4401 		eb = (struct ocfs2_extent_block *) bh->b_data;
4402 		el = &eb->h_list;
4403 	}
4404 
4405 	/*
4406 	 * Unless we have a contiguous insert, we'll need to know if
4407 	 * there is room left in our allocation tree for another
4408 	 * extent record.
4409 	 *
4410 	 * XXX: This test is simplistic, we can search for empty
4411 	 * extent records too.
4412 	 */
4413 	*free_records = le16_to_cpu(el->l_count) -
4414 		le16_to_cpu(el->l_next_free_rec);
4415 
4416 	if (!insert->ins_tree_depth) {
4417 		ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4418 		ocfs2_figure_appending_type(insert, el, insert_rec);
4419 		return 0;
4420 	}
4421 
4422 	path = ocfs2_new_path_from_et(et);
4423 	if (!path) {
4424 		ret = -ENOMEM;
4425 		mlog_errno(ret);
4426 		goto out;
4427 	}
4428 
4429 	/*
4430 	 * In the case that we're inserting past what the tree
4431 	 * currently accounts for, ocfs2_find_path() will return for
4432 	 * us the rightmost tree path. This is accounted for below in
4433 	 * the appending code.
4434 	 */
4435 	ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4436 	if (ret) {
4437 		mlog_errno(ret);
4438 		goto out;
4439 	}
4440 
4441 	el = path_leaf_el(path);
4442 
4443 	/*
4444 	 * Now that we have the path, there's two things we want to determine:
4445 	 * 1) Contiguousness (also set contig_index if this is so)
4446 	 *
4447 	 * 2) Are we doing an append? We can trivially break this up
4448          *     into two types of appends: simple record append, or a
4449          *     rotate inside the tail leaf.
4450 	 */
4451 	ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4452 
4453 	/*
4454 	 * The insert code isn't quite ready to deal with all cases of
4455 	 * left contiguousness. Specifically, if it's an insert into
4456 	 * the 1st record in a leaf, it will require the adjustment of
4457 	 * cluster count on the last record of the path directly to it's
4458 	 * left. For now, just catch that case and fool the layers
4459 	 * above us. This works just fine for tree_depth == 0, which
4460 	 * is why we allow that above.
4461 	 */
4462 	if (insert->ins_contig == CONTIG_LEFT &&
4463 	    insert->ins_contig_index == 0)
4464 		insert->ins_contig = CONTIG_NONE;
4465 
4466 	/*
4467 	 * Ok, so we can simply compare against last_eb to figure out
4468 	 * whether the path doesn't exist. This will only happen in
4469 	 * the case that we're doing a tail append, so maybe we can
4470 	 * take advantage of that information somehow.
4471 	 */
4472 	if (ocfs2_et_get_last_eb_blk(et) ==
4473 	    path_leaf_bh(path)->b_blocknr) {
4474 		/*
4475 		 * Ok, ocfs2_find_path() returned us the rightmost
4476 		 * tree path. This might be an appending insert. There are
4477 		 * two cases:
4478 		 *    1) We're doing a true append at the tail:
4479 		 *	-This might even be off the end of the leaf
4480 		 *    2) We're "appending" by rotating in the tail
4481 		 */
4482 		ocfs2_figure_appending_type(insert, el, insert_rec);
4483 	}
4484 
4485 out:
4486 	ocfs2_free_path(path);
4487 
4488 	if (ret == 0)
4489 		*last_eb_bh = bh;
4490 	else
4491 		brelse(bh);
4492 	return ret;
4493 }
4494 
4495 /*
4496  * Insert an extent into an inode btree.
4497  *
4498  * The caller needs to update fe->i_clusters
4499  */
ocfs2_insert_extent(struct ocfs2_super * osb,handle_t * handle,struct inode * inode,struct ocfs2_extent_tree * et,u32 cpos,u64 start_blk,u32 new_clusters,u8 flags,struct ocfs2_alloc_context * meta_ac)4500 int ocfs2_insert_extent(struct ocfs2_super *osb,
4501 			handle_t *handle,
4502 			struct inode *inode,
4503 			struct ocfs2_extent_tree *et,
4504 			u32 cpos,
4505 			u64 start_blk,
4506 			u32 new_clusters,
4507 			u8 flags,
4508 			struct ocfs2_alloc_context *meta_ac)
4509 {
4510 	int status;
4511 	int uninitialized_var(free_records);
4512 	struct buffer_head *last_eb_bh = NULL;
4513 	struct ocfs2_insert_type insert = {0, };
4514 	struct ocfs2_extent_rec rec;
4515 
4516 	mlog(0, "add %u clusters at position %u to inode %llu\n",
4517 	     new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4518 
4519 	memset(&rec, 0, sizeof(rec));
4520 	rec.e_cpos = cpu_to_le32(cpos);
4521 	rec.e_blkno = cpu_to_le64(start_blk);
4522 	rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4523 	rec.e_flags = flags;
4524 	status = ocfs2_et_insert_check(inode, et, &rec);
4525 	if (status) {
4526 		mlog_errno(status);
4527 		goto bail;
4528 	}
4529 
4530 	status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4531 					  &free_records, &insert);
4532 	if (status < 0) {
4533 		mlog_errno(status);
4534 		goto bail;
4535 	}
4536 
4537 	mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4538 	     "Insert.contig_index: %d, Insert.free_records: %d, "
4539 	     "Insert.tree_depth: %d\n",
4540 	     insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4541 	     free_records, insert.ins_tree_depth);
4542 
4543 	if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4544 		status = ocfs2_grow_tree(inode, handle, et,
4545 					 &insert.ins_tree_depth, &last_eb_bh,
4546 					 meta_ac);
4547 		if (status) {
4548 			mlog_errno(status);
4549 			goto bail;
4550 		}
4551 	}
4552 
4553 	/* Finally, we can add clusters. This might rotate the tree for us. */
4554 	status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4555 	if (status < 0)
4556 		mlog_errno(status);
4557 	else if (et->et_ops == &ocfs2_dinode_et_ops)
4558 		ocfs2_extent_map_insert_rec(inode, &rec);
4559 
4560 bail:
4561 	brelse(last_eb_bh);
4562 
4563 	mlog_exit(status);
4564 	return status;
4565 }
4566 
4567 /*
4568  * Allcate and add clusters into the extent b-tree.
4569  * The new clusters(clusters_to_add) will be inserted at logical_offset.
4570  * The extent b-tree's root is specified by et, and
4571  * it is not limited to the file storage. Any extent tree can use this
4572  * function if it implements the proper ocfs2_extent_tree.
4573  */
ocfs2_add_clusters_in_btree(struct ocfs2_super * osb,struct inode * inode,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct ocfs2_extent_tree * et,handle_t * handle,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)4574 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4575 				struct inode *inode,
4576 				u32 *logical_offset,
4577 				u32 clusters_to_add,
4578 				int mark_unwritten,
4579 				struct ocfs2_extent_tree *et,
4580 				handle_t *handle,
4581 				struct ocfs2_alloc_context *data_ac,
4582 				struct ocfs2_alloc_context *meta_ac,
4583 				enum ocfs2_alloc_restarted *reason_ret)
4584 {
4585 	int status = 0;
4586 	int free_extents;
4587 	enum ocfs2_alloc_restarted reason = RESTART_NONE;
4588 	u32 bit_off, num_bits;
4589 	u64 block;
4590 	u8 flags = 0;
4591 
4592 	BUG_ON(!clusters_to_add);
4593 
4594 	if (mark_unwritten)
4595 		flags = OCFS2_EXT_UNWRITTEN;
4596 
4597 	free_extents = ocfs2_num_free_extents(osb, inode, et);
4598 	if (free_extents < 0) {
4599 		status = free_extents;
4600 		mlog_errno(status);
4601 		goto leave;
4602 	}
4603 
4604 	/* there are two cases which could cause us to EAGAIN in the
4605 	 * we-need-more-metadata case:
4606 	 * 1) we haven't reserved *any*
4607 	 * 2) we are so fragmented, we've needed to add metadata too
4608 	 *    many times. */
4609 	if (!free_extents && !meta_ac) {
4610 		mlog(0, "we haven't reserved any metadata!\n");
4611 		status = -EAGAIN;
4612 		reason = RESTART_META;
4613 		goto leave;
4614 	} else if ((!free_extents)
4615 		   && (ocfs2_alloc_context_bits_left(meta_ac)
4616 		       < ocfs2_extend_meta_needed(et->et_root_el))) {
4617 		mlog(0, "filesystem is really fragmented...\n");
4618 		status = -EAGAIN;
4619 		reason = RESTART_META;
4620 		goto leave;
4621 	}
4622 
4623 	status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4624 					clusters_to_add, &bit_off, &num_bits);
4625 	if (status < 0) {
4626 		if (status != -ENOSPC)
4627 			mlog_errno(status);
4628 		goto leave;
4629 	}
4630 
4631 	BUG_ON(num_bits > clusters_to_add);
4632 
4633 	/* reserve our write early -- insert_extent may update the tree root */
4634 	status = ocfs2_et_root_journal_access(handle, inode, et,
4635 					      OCFS2_JOURNAL_ACCESS_WRITE);
4636 	if (status < 0) {
4637 		mlog_errno(status);
4638 		goto leave;
4639 	}
4640 
4641 	block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4642 	mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4643 	     num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4644 	status = ocfs2_insert_extent(osb, handle, inode, et,
4645 				     *logical_offset, block,
4646 				     num_bits, flags, meta_ac);
4647 	if (status < 0) {
4648 		mlog_errno(status);
4649 		goto leave;
4650 	}
4651 
4652 	status = ocfs2_journal_dirty(handle, et->et_root_bh);
4653 	if (status < 0) {
4654 		mlog_errno(status);
4655 		goto leave;
4656 	}
4657 
4658 	clusters_to_add -= num_bits;
4659 	*logical_offset += num_bits;
4660 
4661 	if (clusters_to_add) {
4662 		mlog(0, "need to alloc once more, wanted = %u\n",
4663 		     clusters_to_add);
4664 		status = -EAGAIN;
4665 		reason = RESTART_TRANS;
4666 	}
4667 
4668 leave:
4669 	mlog_exit(status);
4670 	if (reason_ret)
4671 		*reason_ret = reason;
4672 	return status;
4673 }
4674 
ocfs2_make_right_split_rec(struct super_block * sb,struct ocfs2_extent_rec * split_rec,u32 cpos,struct ocfs2_extent_rec * rec)4675 static void ocfs2_make_right_split_rec(struct super_block *sb,
4676 				       struct ocfs2_extent_rec *split_rec,
4677 				       u32 cpos,
4678 				       struct ocfs2_extent_rec *rec)
4679 {
4680 	u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4681 	u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4682 
4683 	memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4684 
4685 	split_rec->e_cpos = cpu_to_le32(cpos);
4686 	split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4687 
4688 	split_rec->e_blkno = rec->e_blkno;
4689 	le64_add_cpu(&split_rec->e_blkno,
4690 		     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4691 
4692 	split_rec->e_flags = rec->e_flags;
4693 }
4694 
ocfs2_split_and_insert(struct inode * inode,handle_t * handle,struct ocfs2_path * path,struct ocfs2_extent_tree * et,struct buffer_head ** last_eb_bh,int split_index,struct ocfs2_extent_rec * orig_split_rec,struct ocfs2_alloc_context * meta_ac)4695 static int ocfs2_split_and_insert(struct inode *inode,
4696 				  handle_t *handle,
4697 				  struct ocfs2_path *path,
4698 				  struct ocfs2_extent_tree *et,
4699 				  struct buffer_head **last_eb_bh,
4700 				  int split_index,
4701 				  struct ocfs2_extent_rec *orig_split_rec,
4702 				  struct ocfs2_alloc_context *meta_ac)
4703 {
4704 	int ret = 0, depth;
4705 	unsigned int insert_range, rec_range, do_leftright = 0;
4706 	struct ocfs2_extent_rec tmprec;
4707 	struct ocfs2_extent_list *rightmost_el;
4708 	struct ocfs2_extent_rec rec;
4709 	struct ocfs2_extent_rec split_rec = *orig_split_rec;
4710 	struct ocfs2_insert_type insert;
4711 	struct ocfs2_extent_block *eb;
4712 
4713 leftright:
4714 	/*
4715 	 * Store a copy of the record on the stack - it might move
4716 	 * around as the tree is manipulated below.
4717 	 */
4718 	rec = path_leaf_el(path)->l_recs[split_index];
4719 
4720 	rightmost_el = et->et_root_el;
4721 
4722 	depth = le16_to_cpu(rightmost_el->l_tree_depth);
4723 	if (depth) {
4724 		BUG_ON(!(*last_eb_bh));
4725 		eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4726 		rightmost_el = &eb->h_list;
4727 	}
4728 
4729 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4730 	    le16_to_cpu(rightmost_el->l_count)) {
4731 		ret = ocfs2_grow_tree(inode, handle, et,
4732 				      &depth, last_eb_bh, meta_ac);
4733 		if (ret) {
4734 			mlog_errno(ret);
4735 			goto out;
4736 		}
4737 	}
4738 
4739 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4740 	insert.ins_appending = APPEND_NONE;
4741 	insert.ins_contig = CONTIG_NONE;
4742 	insert.ins_tree_depth = depth;
4743 
4744 	insert_range = le32_to_cpu(split_rec.e_cpos) +
4745 		le16_to_cpu(split_rec.e_leaf_clusters);
4746 	rec_range = le32_to_cpu(rec.e_cpos) +
4747 		le16_to_cpu(rec.e_leaf_clusters);
4748 
4749 	if (split_rec.e_cpos == rec.e_cpos) {
4750 		insert.ins_split = SPLIT_LEFT;
4751 	} else if (insert_range == rec_range) {
4752 		insert.ins_split = SPLIT_RIGHT;
4753 	} else {
4754 		/*
4755 		 * Left/right split. We fake this as a right split
4756 		 * first and then make a second pass as a left split.
4757 		 */
4758 		insert.ins_split = SPLIT_RIGHT;
4759 
4760 		ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4761 					   &rec);
4762 
4763 		split_rec = tmprec;
4764 
4765 		BUG_ON(do_leftright);
4766 		do_leftright = 1;
4767 	}
4768 
4769 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4770 	if (ret) {
4771 		mlog_errno(ret);
4772 		goto out;
4773 	}
4774 
4775 	if (do_leftright == 1) {
4776 		u32 cpos;
4777 		struct ocfs2_extent_list *el;
4778 
4779 		do_leftright++;
4780 		split_rec = *orig_split_rec;
4781 
4782 		ocfs2_reinit_path(path, 1);
4783 
4784 		cpos = le32_to_cpu(split_rec.e_cpos);
4785 		ret = ocfs2_find_path(inode, path, cpos);
4786 		if (ret) {
4787 			mlog_errno(ret);
4788 			goto out;
4789 		}
4790 
4791 		el = path_leaf_el(path);
4792 		split_index = ocfs2_search_extent_list(el, cpos);
4793 		goto leftright;
4794 	}
4795 out:
4796 
4797 	return ret;
4798 }
4799 
ocfs2_replace_extent_rec(struct inode * inode,handle_t * handle,struct ocfs2_path * path,struct ocfs2_extent_list * el,int split_index,struct ocfs2_extent_rec * split_rec)4800 static int ocfs2_replace_extent_rec(struct inode *inode,
4801 				    handle_t *handle,
4802 				    struct ocfs2_path *path,
4803 				    struct ocfs2_extent_list *el,
4804 				    int split_index,
4805 				    struct ocfs2_extent_rec *split_rec)
4806 {
4807 	int ret;
4808 
4809 	ret = ocfs2_path_bh_journal_access(handle, inode, path,
4810 					   path_num_items(path) - 1);
4811 	if (ret) {
4812 		mlog_errno(ret);
4813 		goto out;
4814 	}
4815 
4816 	el->l_recs[split_index] = *split_rec;
4817 
4818 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
4819 out:
4820 	return ret;
4821 }
4822 
4823 /*
4824  * Mark part or all of the extent record at split_index in the leaf
4825  * pointed to by path as written. This removes the unwritten
4826  * extent flag.
4827  *
4828  * Care is taken to handle contiguousness so as to not grow the tree.
4829  *
4830  * meta_ac is not strictly necessary - we only truly need it if growth
4831  * of the tree is required. All other cases will degrade into a less
4832  * optimal tree layout.
4833  *
4834  * last_eb_bh should be the rightmost leaf block for any extent
4835  * btree. Since a split may grow the tree or a merge might shrink it,
4836  * the caller cannot trust the contents of that buffer after this call.
4837  *
4838  * This code is optimized for readability - several passes might be
4839  * made over certain portions of the tree. All of those blocks will
4840  * have been brought into cache (and pinned via the journal), so the
4841  * extra overhead is not expressed in terms of disk reads.
4842  */
__ocfs2_mark_extent_written(struct inode * inode,struct ocfs2_extent_tree * et,handle_t * handle,struct ocfs2_path * path,int split_index,struct ocfs2_extent_rec * split_rec,struct ocfs2_alloc_context * meta_ac,struct ocfs2_cached_dealloc_ctxt * dealloc)4843 static int __ocfs2_mark_extent_written(struct inode *inode,
4844 				       struct ocfs2_extent_tree *et,
4845 				       handle_t *handle,
4846 				       struct ocfs2_path *path,
4847 				       int split_index,
4848 				       struct ocfs2_extent_rec *split_rec,
4849 				       struct ocfs2_alloc_context *meta_ac,
4850 				       struct ocfs2_cached_dealloc_ctxt *dealloc)
4851 {
4852 	int ret = 0;
4853 	struct ocfs2_extent_list *el = path_leaf_el(path);
4854 	struct buffer_head *last_eb_bh = NULL;
4855 	struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4856 	struct ocfs2_merge_ctxt ctxt;
4857 	struct ocfs2_extent_list *rightmost_el;
4858 
4859 	if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4860 		ret = -EIO;
4861 		mlog_errno(ret);
4862 		goto out;
4863 	}
4864 
4865 	if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4866 	    ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4867 	     (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4868 		ret = -EIO;
4869 		mlog_errno(ret);
4870 		goto out;
4871 	}
4872 
4873 	ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4874 							    split_index,
4875 							    split_rec);
4876 
4877 	/*
4878 	 * The core merge / split code wants to know how much room is
4879 	 * left in this inodes allocation tree, so we pass the
4880 	 * rightmost extent list.
4881 	 */
4882 	if (path->p_tree_depth) {
4883 		struct ocfs2_extent_block *eb;
4884 
4885 		ret = ocfs2_read_extent_block(inode,
4886 					      ocfs2_et_get_last_eb_blk(et),
4887 					      &last_eb_bh);
4888 		if (ret) {
4889 			mlog_exit(ret);
4890 			goto out;
4891 		}
4892 
4893 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4894 		rightmost_el = &eb->h_list;
4895 	} else
4896 		rightmost_el = path_root_el(path);
4897 
4898 	if (rec->e_cpos == split_rec->e_cpos &&
4899 	    rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4900 		ctxt.c_split_covers_rec = 1;
4901 	else
4902 		ctxt.c_split_covers_rec = 0;
4903 
4904 	ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4905 
4906 	mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4907 	     split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4908 	     ctxt.c_split_covers_rec);
4909 
4910 	if (ctxt.c_contig_type == CONTIG_NONE) {
4911 		if (ctxt.c_split_covers_rec)
4912 			ret = ocfs2_replace_extent_rec(inode, handle,
4913 						       path, el,
4914 						       split_index, split_rec);
4915 		else
4916 			ret = ocfs2_split_and_insert(inode, handle, path, et,
4917 						     &last_eb_bh, split_index,
4918 						     split_rec, meta_ac);
4919 		if (ret)
4920 			mlog_errno(ret);
4921 	} else {
4922 		ret = ocfs2_try_to_merge_extent(inode, handle, path,
4923 						split_index, split_rec,
4924 						dealloc, &ctxt, et);
4925 		if (ret)
4926 			mlog_errno(ret);
4927 	}
4928 
4929 out:
4930 	brelse(last_eb_bh);
4931 	return ret;
4932 }
4933 
4934 /*
4935  * Mark the already-existing extent at cpos as written for len clusters.
4936  *
4937  * If the existing extent is larger than the request, initiate a
4938  * split. An attempt will be made at merging with adjacent extents.
4939  *
4940  * The caller is responsible for passing down meta_ac if we'll need it.
4941  */
ocfs2_mark_extent_written(struct inode * inode,struct ocfs2_extent_tree * et,handle_t * handle,u32 cpos,u32 len,u32 phys,struct ocfs2_alloc_context * meta_ac,struct ocfs2_cached_dealloc_ctxt * dealloc)4942 int ocfs2_mark_extent_written(struct inode *inode,
4943 			      struct ocfs2_extent_tree *et,
4944 			      handle_t *handle, u32 cpos, u32 len, u32 phys,
4945 			      struct ocfs2_alloc_context *meta_ac,
4946 			      struct ocfs2_cached_dealloc_ctxt *dealloc)
4947 {
4948 	int ret, index;
4949 	u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4950 	struct ocfs2_extent_rec split_rec;
4951 	struct ocfs2_path *left_path = NULL;
4952 	struct ocfs2_extent_list *el;
4953 
4954 	mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4955 	     inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4956 
4957 	if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4958 		ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4959 			    "that are being written to, but the feature bit "
4960 			    "is not set in the super block.",
4961 			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
4962 		ret = -EROFS;
4963 		goto out;
4964 	}
4965 
4966 	/*
4967 	 * XXX: This should be fixed up so that we just re-insert the
4968 	 * next extent records.
4969 	 *
4970 	 * XXX: This is a hack on the extent tree, maybe it should be
4971 	 * an op?
4972 	 */
4973 	if (et->et_ops == &ocfs2_dinode_et_ops)
4974 		ocfs2_extent_map_trunc(inode, 0);
4975 
4976 	left_path = ocfs2_new_path_from_et(et);
4977 	if (!left_path) {
4978 		ret = -ENOMEM;
4979 		mlog_errno(ret);
4980 		goto out;
4981 	}
4982 
4983 	ret = ocfs2_find_path(inode, left_path, cpos);
4984 	if (ret) {
4985 		mlog_errno(ret);
4986 		goto out;
4987 	}
4988 	el = path_leaf_el(left_path);
4989 
4990 	index = ocfs2_search_extent_list(el, cpos);
4991 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4992 		ocfs2_error(inode->i_sb,
4993 			    "Inode %llu has an extent at cpos %u which can no "
4994 			    "longer be found.\n",
4995 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4996 		ret = -EROFS;
4997 		goto out;
4998 	}
4999 
5000 	memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5001 	split_rec.e_cpos = cpu_to_le32(cpos);
5002 	split_rec.e_leaf_clusters = cpu_to_le16(len);
5003 	split_rec.e_blkno = cpu_to_le64(start_blkno);
5004 	split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5005 	split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5006 
5007 	ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5008 					  index, &split_rec, meta_ac,
5009 					  dealloc);
5010 	if (ret)
5011 		mlog_errno(ret);
5012 
5013 out:
5014 	ocfs2_free_path(left_path);
5015 	return ret;
5016 }
5017 
ocfs2_split_tree(struct inode * inode,struct ocfs2_extent_tree * et,handle_t * handle,struct ocfs2_path * path,int index,u32 new_range,struct ocfs2_alloc_context * meta_ac)5018 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5019 			    handle_t *handle, struct ocfs2_path *path,
5020 			    int index, u32 new_range,
5021 			    struct ocfs2_alloc_context *meta_ac)
5022 {
5023 	int ret, depth, credits = handle->h_buffer_credits;
5024 	struct buffer_head *last_eb_bh = NULL;
5025 	struct ocfs2_extent_block *eb;
5026 	struct ocfs2_extent_list *rightmost_el, *el;
5027 	struct ocfs2_extent_rec split_rec;
5028 	struct ocfs2_extent_rec *rec;
5029 	struct ocfs2_insert_type insert;
5030 
5031 	/*
5032 	 * Setup the record to split before we grow the tree.
5033 	 */
5034 	el = path_leaf_el(path);
5035 	rec = &el->l_recs[index];
5036 	ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5037 
5038 	depth = path->p_tree_depth;
5039 	if (depth > 0) {
5040 		ret = ocfs2_read_extent_block(inode,
5041 					      ocfs2_et_get_last_eb_blk(et),
5042 					      &last_eb_bh);
5043 		if (ret < 0) {
5044 			mlog_errno(ret);
5045 			goto out;
5046 		}
5047 
5048 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5049 		rightmost_el = &eb->h_list;
5050 	} else
5051 		rightmost_el = path_leaf_el(path);
5052 
5053 	credits += path->p_tree_depth +
5054 		   ocfs2_extend_meta_needed(et->et_root_el);
5055 	ret = ocfs2_extend_trans(handle, credits);
5056 	if (ret) {
5057 		mlog_errno(ret);
5058 		goto out;
5059 	}
5060 
5061 	if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5062 	    le16_to_cpu(rightmost_el->l_count)) {
5063 		ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5064 				      meta_ac);
5065 		if (ret) {
5066 			mlog_errno(ret);
5067 			goto out;
5068 		}
5069 	}
5070 
5071 	memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5072 	insert.ins_appending = APPEND_NONE;
5073 	insert.ins_contig = CONTIG_NONE;
5074 	insert.ins_split = SPLIT_RIGHT;
5075 	insert.ins_tree_depth = depth;
5076 
5077 	ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5078 	if (ret)
5079 		mlog_errno(ret);
5080 
5081 out:
5082 	brelse(last_eb_bh);
5083 	return ret;
5084 }
5085 
ocfs2_truncate_rec(struct inode * inode,handle_t * handle,struct ocfs2_path * path,int index,struct ocfs2_cached_dealloc_ctxt * dealloc,u32 cpos,u32 len,struct ocfs2_extent_tree * et)5086 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5087 			      struct ocfs2_path *path, int index,
5088 			      struct ocfs2_cached_dealloc_ctxt *dealloc,
5089 			      u32 cpos, u32 len,
5090 			      struct ocfs2_extent_tree *et)
5091 {
5092 	int ret;
5093 	u32 left_cpos, rec_range, trunc_range;
5094 	int wants_rotate = 0, is_rightmost_tree_rec = 0;
5095 	struct super_block *sb = inode->i_sb;
5096 	struct ocfs2_path *left_path = NULL;
5097 	struct ocfs2_extent_list *el = path_leaf_el(path);
5098 	struct ocfs2_extent_rec *rec;
5099 	struct ocfs2_extent_block *eb;
5100 
5101 	if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5102 		ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5103 		if (ret) {
5104 			mlog_errno(ret);
5105 			goto out;
5106 		}
5107 
5108 		index--;
5109 	}
5110 
5111 	if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5112 	    path->p_tree_depth) {
5113 		/*
5114 		 * Check whether this is the rightmost tree record. If
5115 		 * we remove all of this record or part of its right
5116 		 * edge then an update of the record lengths above it
5117 		 * will be required.
5118 		 */
5119 		eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5120 		if (eb->h_next_leaf_blk == 0)
5121 			is_rightmost_tree_rec = 1;
5122 	}
5123 
5124 	rec = &el->l_recs[index];
5125 	if (index == 0 && path->p_tree_depth &&
5126 	    le32_to_cpu(rec->e_cpos) == cpos) {
5127 		/*
5128 		 * Changing the leftmost offset (via partial or whole
5129 		 * record truncate) of an interior (or rightmost) path
5130 		 * means we have to update the subtree that is formed
5131 		 * by this leaf and the one to it's left.
5132 		 *
5133 		 * There are two cases we can skip:
5134 		 *   1) Path is the leftmost one in our inode tree.
5135 		 *   2) The leaf is rightmost and will be empty after
5136 		 *      we remove the extent record - the rotate code
5137 		 *      knows how to update the newly formed edge.
5138 		 */
5139 
5140 		ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5141 						    &left_cpos);
5142 		if (ret) {
5143 			mlog_errno(ret);
5144 			goto out;
5145 		}
5146 
5147 		if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5148 			left_path = ocfs2_new_path_from_path(path);
5149 			if (!left_path) {
5150 				ret = -ENOMEM;
5151 				mlog_errno(ret);
5152 				goto out;
5153 			}
5154 
5155 			ret = ocfs2_find_path(inode, left_path, left_cpos);
5156 			if (ret) {
5157 				mlog_errno(ret);
5158 				goto out;
5159 			}
5160 		}
5161 	}
5162 
5163 	ret = ocfs2_extend_rotate_transaction(handle, 0,
5164 					      handle->h_buffer_credits,
5165 					      path);
5166 	if (ret) {
5167 		mlog_errno(ret);
5168 		goto out;
5169 	}
5170 
5171 	ret = ocfs2_journal_access_path(inode, handle, path);
5172 	if (ret) {
5173 		mlog_errno(ret);
5174 		goto out;
5175 	}
5176 
5177 	ret = ocfs2_journal_access_path(inode, handle, left_path);
5178 	if (ret) {
5179 		mlog_errno(ret);
5180 		goto out;
5181 	}
5182 
5183 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5184 	trunc_range = cpos + len;
5185 
5186 	if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5187 		int next_free;
5188 
5189 		memset(rec, 0, sizeof(*rec));
5190 		ocfs2_cleanup_merge(el, index);
5191 		wants_rotate = 1;
5192 
5193 		next_free = le16_to_cpu(el->l_next_free_rec);
5194 		if (is_rightmost_tree_rec && next_free > 1) {
5195 			/*
5196 			 * We skip the edge update if this path will
5197 			 * be deleted by the rotate code.
5198 			 */
5199 			rec = &el->l_recs[next_free - 1];
5200 			ocfs2_adjust_rightmost_records(inode, handle, path,
5201 						       rec);
5202 		}
5203 	} else if (le32_to_cpu(rec->e_cpos) == cpos) {
5204 		/* Remove leftmost portion of the record. */
5205 		le32_add_cpu(&rec->e_cpos, len);
5206 		le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5207 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5208 	} else if (rec_range == trunc_range) {
5209 		/* Remove rightmost portion of the record */
5210 		le16_add_cpu(&rec->e_leaf_clusters, -len);
5211 		if (is_rightmost_tree_rec)
5212 			ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5213 	} else {
5214 		/* Caller should have trapped this. */
5215 		mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5216 		     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5217 		     le32_to_cpu(rec->e_cpos),
5218 		     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5219 		BUG();
5220 	}
5221 
5222 	if (left_path) {
5223 		int subtree_index;
5224 
5225 		subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5226 		ocfs2_complete_edge_insert(inode, handle, left_path, path,
5227 					   subtree_index);
5228 	}
5229 
5230 	ocfs2_journal_dirty(handle, path_leaf_bh(path));
5231 
5232 	ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5233 	if (ret) {
5234 		mlog_errno(ret);
5235 		goto out;
5236 	}
5237 
5238 out:
5239 	ocfs2_free_path(left_path);
5240 	return ret;
5241 }
5242 
ocfs2_remove_extent(struct inode * inode,struct ocfs2_extent_tree * et,u32 cpos,u32 len,handle_t * handle,struct ocfs2_alloc_context * meta_ac,struct ocfs2_cached_dealloc_ctxt * dealloc)5243 int ocfs2_remove_extent(struct inode *inode,
5244 			struct ocfs2_extent_tree *et,
5245 			u32 cpos, u32 len, handle_t *handle,
5246 			struct ocfs2_alloc_context *meta_ac,
5247 			struct ocfs2_cached_dealloc_ctxt *dealloc)
5248 {
5249 	int ret, index;
5250 	u32 rec_range, trunc_range;
5251 	struct ocfs2_extent_rec *rec;
5252 	struct ocfs2_extent_list *el;
5253 	struct ocfs2_path *path = NULL;
5254 
5255 	ocfs2_extent_map_trunc(inode, 0);
5256 
5257 	path = ocfs2_new_path_from_et(et);
5258 	if (!path) {
5259 		ret = -ENOMEM;
5260 		mlog_errno(ret);
5261 		goto out;
5262 	}
5263 
5264 	ret = ocfs2_find_path(inode, path, cpos);
5265 	if (ret) {
5266 		mlog_errno(ret);
5267 		goto out;
5268 	}
5269 
5270 	el = path_leaf_el(path);
5271 	index = ocfs2_search_extent_list(el, cpos);
5272 	if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5273 		ocfs2_error(inode->i_sb,
5274 			    "Inode %llu has an extent at cpos %u which can no "
5275 			    "longer be found.\n",
5276 			    (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5277 		ret = -EROFS;
5278 		goto out;
5279 	}
5280 
5281 	/*
5282 	 * We have 3 cases of extent removal:
5283 	 *   1) Range covers the entire extent rec
5284 	 *   2) Range begins or ends on one edge of the extent rec
5285 	 *   3) Range is in the middle of the extent rec (no shared edges)
5286 	 *
5287 	 * For case 1 we remove the extent rec and left rotate to
5288 	 * fill the hole.
5289 	 *
5290 	 * For case 2 we just shrink the existing extent rec, with a
5291 	 * tree update if the shrinking edge is also the edge of an
5292 	 * extent block.
5293 	 *
5294 	 * For case 3 we do a right split to turn the extent rec into
5295 	 * something case 2 can handle.
5296 	 */
5297 	rec = &el->l_recs[index];
5298 	rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5299 	trunc_range = cpos + len;
5300 
5301 	BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5302 
5303 	mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5304 	     "(cpos %u, len %u)\n",
5305 	     (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5306 	     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5307 
5308 	if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5309 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5310 					 cpos, len, et);
5311 		if (ret) {
5312 			mlog_errno(ret);
5313 			goto out;
5314 		}
5315 	} else {
5316 		ret = ocfs2_split_tree(inode, et, handle, path, index,
5317 				       trunc_range, meta_ac);
5318 		if (ret) {
5319 			mlog_errno(ret);
5320 			goto out;
5321 		}
5322 
5323 		/*
5324 		 * The split could have manipulated the tree enough to
5325 		 * move the record location, so we have to look for it again.
5326 		 */
5327 		ocfs2_reinit_path(path, 1);
5328 
5329 		ret = ocfs2_find_path(inode, path, cpos);
5330 		if (ret) {
5331 			mlog_errno(ret);
5332 			goto out;
5333 		}
5334 
5335 		el = path_leaf_el(path);
5336 		index = ocfs2_search_extent_list(el, cpos);
5337 		if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5338 			ocfs2_error(inode->i_sb,
5339 				    "Inode %llu: split at cpos %u lost record.",
5340 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5341 				    cpos);
5342 			ret = -EROFS;
5343 			goto out;
5344 		}
5345 
5346 		/*
5347 		 * Double check our values here. If anything is fishy,
5348 		 * it's easier to catch it at the top level.
5349 		 */
5350 		rec = &el->l_recs[index];
5351 		rec_range = le32_to_cpu(rec->e_cpos) +
5352 			ocfs2_rec_clusters(el, rec);
5353 		if (rec_range != trunc_range) {
5354 			ocfs2_error(inode->i_sb,
5355 				    "Inode %llu: error after split at cpos %u"
5356 				    "trunc len %u, existing record is (%u,%u)",
5357 				    (unsigned long long)OCFS2_I(inode)->ip_blkno,
5358 				    cpos, len, le32_to_cpu(rec->e_cpos),
5359 				    ocfs2_rec_clusters(el, rec));
5360 			ret = -EROFS;
5361 			goto out;
5362 		}
5363 
5364 		ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5365 					 cpos, len, et);
5366 		if (ret) {
5367 			mlog_errno(ret);
5368 			goto out;
5369 		}
5370 	}
5371 
5372 out:
5373 	ocfs2_free_path(path);
5374 	return ret;
5375 }
5376 
ocfs2_remove_btree_range(struct inode * inode,struct ocfs2_extent_tree * et,u32 cpos,u32 phys_cpos,u32 len,struct ocfs2_cached_dealloc_ctxt * dealloc)5377 int ocfs2_remove_btree_range(struct inode *inode,
5378 			     struct ocfs2_extent_tree *et,
5379 			     u32 cpos, u32 phys_cpos, u32 len,
5380 			     struct ocfs2_cached_dealloc_ctxt *dealloc)
5381 {
5382 	int ret;
5383 	u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5384 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5385 	struct inode *tl_inode = osb->osb_tl_inode;
5386 	handle_t *handle;
5387 	struct ocfs2_alloc_context *meta_ac = NULL;
5388 
5389 	ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5390 	if (ret) {
5391 		mlog_errno(ret);
5392 		return ret;
5393 	}
5394 
5395 	mutex_lock(&tl_inode->i_mutex);
5396 
5397 	if (ocfs2_truncate_log_needs_flush(osb)) {
5398 		ret = __ocfs2_flush_truncate_log(osb);
5399 		if (ret < 0) {
5400 			mlog_errno(ret);
5401 			goto out;
5402 		}
5403 	}
5404 
5405 	handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5406 	if (IS_ERR(handle)) {
5407 		ret = PTR_ERR(handle);
5408 		mlog_errno(ret);
5409 		goto out;
5410 	}
5411 
5412 	ret = ocfs2_et_root_journal_access(handle, inode, et,
5413 					   OCFS2_JOURNAL_ACCESS_WRITE);
5414 	if (ret) {
5415 		mlog_errno(ret);
5416 		goto out;
5417 	}
5418 
5419 	vfs_dq_free_space_nodirty(inode,
5420 				  ocfs2_clusters_to_bytes(inode->i_sb, len));
5421 
5422 	ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5423 				  dealloc);
5424 	if (ret) {
5425 		mlog_errno(ret);
5426 		goto out_commit;
5427 	}
5428 
5429 	ocfs2_et_update_clusters(inode, et, -len);
5430 
5431 	ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5432 	if (ret) {
5433 		mlog_errno(ret);
5434 		goto out_commit;
5435 	}
5436 
5437 	ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5438 	if (ret)
5439 		mlog_errno(ret);
5440 
5441 out_commit:
5442 	ocfs2_commit_trans(osb, handle);
5443 out:
5444 	mutex_unlock(&tl_inode->i_mutex);
5445 
5446 	if (meta_ac)
5447 		ocfs2_free_alloc_context(meta_ac);
5448 
5449 	return ret;
5450 }
5451 
ocfs2_truncate_log_needs_flush(struct ocfs2_super * osb)5452 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5453 {
5454 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5455 	struct ocfs2_dinode *di;
5456 	struct ocfs2_truncate_log *tl;
5457 
5458 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5459 	tl = &di->id2.i_dealloc;
5460 
5461 	mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5462 			"slot %d, invalid truncate log parameters: used = "
5463 			"%u, count = %u\n", osb->slot_num,
5464 			le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5465 	return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5466 }
5467 
ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log * tl,unsigned int new_start)5468 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5469 					   unsigned int new_start)
5470 {
5471 	unsigned int tail_index;
5472 	unsigned int current_tail;
5473 
5474 	/* No records, nothing to coalesce */
5475 	if (!le16_to_cpu(tl->tl_used))
5476 		return 0;
5477 
5478 	tail_index = le16_to_cpu(tl->tl_used) - 1;
5479 	current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5480 	current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5481 
5482 	return current_tail == new_start;
5483 }
5484 
ocfs2_truncate_log_append(struct ocfs2_super * osb,handle_t * handle,u64 start_blk,unsigned int num_clusters)5485 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5486 			      handle_t *handle,
5487 			      u64 start_blk,
5488 			      unsigned int num_clusters)
5489 {
5490 	int status, index;
5491 	unsigned int start_cluster, tl_count;
5492 	struct inode *tl_inode = osb->osb_tl_inode;
5493 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5494 	struct ocfs2_dinode *di;
5495 	struct ocfs2_truncate_log *tl;
5496 
5497 	mlog_entry("start_blk = %llu, num_clusters = %u\n",
5498 		   (unsigned long long)start_blk, num_clusters);
5499 
5500 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5501 
5502 	start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5503 
5504 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5505 
5506 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5507 	 * by the underlying call to ocfs2_read_inode_block(), so any
5508 	 * corruption is a code bug */
5509 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5510 
5511 	tl = &di->id2.i_dealloc;
5512 	tl_count = le16_to_cpu(tl->tl_count);
5513 	mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5514 			tl_count == 0,
5515 			"Truncate record count on #%llu invalid "
5516 			"wanted %u, actual %u\n",
5517 			(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5518 			ocfs2_truncate_recs_per_inode(osb->sb),
5519 			le16_to_cpu(tl->tl_count));
5520 
5521 	/* Caller should have known to flush before calling us. */
5522 	index = le16_to_cpu(tl->tl_used);
5523 	if (index >= tl_count) {
5524 		status = -ENOSPC;
5525 		mlog_errno(status);
5526 		goto bail;
5527 	}
5528 
5529 	status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5530 					 OCFS2_JOURNAL_ACCESS_WRITE);
5531 	if (status < 0) {
5532 		mlog_errno(status);
5533 		goto bail;
5534 	}
5535 
5536 	mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5537 	     "%llu (index = %d)\n", num_clusters, start_cluster,
5538 	     (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5539 
5540 	if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5541 		/*
5542 		 * Move index back to the record we are coalescing with.
5543 		 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5544 		 */
5545 		index--;
5546 
5547 		num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5548 		mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5549 		     index, le32_to_cpu(tl->tl_recs[index].t_start),
5550 		     num_clusters);
5551 	} else {
5552 		tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5553 		tl->tl_used = cpu_to_le16(index + 1);
5554 	}
5555 	tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5556 
5557 	status = ocfs2_journal_dirty(handle, tl_bh);
5558 	if (status < 0) {
5559 		mlog_errno(status);
5560 		goto bail;
5561 	}
5562 
5563 bail:
5564 	mlog_exit(status);
5565 	return status;
5566 }
5567 
ocfs2_replay_truncate_records(struct ocfs2_super * osb,handle_t * handle,struct inode * data_alloc_inode,struct buffer_head * data_alloc_bh)5568 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5569 					 handle_t *handle,
5570 					 struct inode *data_alloc_inode,
5571 					 struct buffer_head *data_alloc_bh)
5572 {
5573 	int status = 0;
5574 	int i;
5575 	unsigned int num_clusters;
5576 	u64 start_blk;
5577 	struct ocfs2_truncate_rec rec;
5578 	struct ocfs2_dinode *di;
5579 	struct ocfs2_truncate_log *tl;
5580 	struct inode *tl_inode = osb->osb_tl_inode;
5581 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5582 
5583 	mlog_entry_void();
5584 
5585 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5586 	tl = &di->id2.i_dealloc;
5587 	i = le16_to_cpu(tl->tl_used) - 1;
5588 	while (i >= 0) {
5589 		/* Caller has given us at least enough credits to
5590 		 * update the truncate log dinode */
5591 		status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5592 						 OCFS2_JOURNAL_ACCESS_WRITE);
5593 		if (status < 0) {
5594 			mlog_errno(status);
5595 			goto bail;
5596 		}
5597 
5598 		tl->tl_used = cpu_to_le16(i);
5599 
5600 		status = ocfs2_journal_dirty(handle, tl_bh);
5601 		if (status < 0) {
5602 			mlog_errno(status);
5603 			goto bail;
5604 		}
5605 
5606 		/* TODO: Perhaps we can calculate the bulk of the
5607 		 * credits up front rather than extending like
5608 		 * this. */
5609 		status = ocfs2_extend_trans(handle,
5610 					    OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5611 		if (status < 0) {
5612 			mlog_errno(status);
5613 			goto bail;
5614 		}
5615 
5616 		rec = tl->tl_recs[i];
5617 		start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5618 						    le32_to_cpu(rec.t_start));
5619 		num_clusters = le32_to_cpu(rec.t_clusters);
5620 
5621 		/* if start_blk is not set, we ignore the record as
5622 		 * invalid. */
5623 		if (start_blk) {
5624 			mlog(0, "free record %d, start = %u, clusters = %u\n",
5625 			     i, le32_to_cpu(rec.t_start), num_clusters);
5626 
5627 			status = ocfs2_free_clusters(handle, data_alloc_inode,
5628 						     data_alloc_bh, start_blk,
5629 						     num_clusters);
5630 			if (status < 0) {
5631 				mlog_errno(status);
5632 				goto bail;
5633 			}
5634 		}
5635 		i--;
5636 	}
5637 
5638 bail:
5639 	mlog_exit(status);
5640 	return status;
5641 }
5642 
5643 /* Expects you to already be holding tl_inode->i_mutex */
__ocfs2_flush_truncate_log(struct ocfs2_super * osb)5644 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5645 {
5646 	int status;
5647 	unsigned int num_to_flush;
5648 	handle_t *handle;
5649 	struct inode *tl_inode = osb->osb_tl_inode;
5650 	struct inode *data_alloc_inode = NULL;
5651 	struct buffer_head *tl_bh = osb->osb_tl_bh;
5652 	struct buffer_head *data_alloc_bh = NULL;
5653 	struct ocfs2_dinode *di;
5654 	struct ocfs2_truncate_log *tl;
5655 
5656 	mlog_entry_void();
5657 
5658 	BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5659 
5660 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5661 
5662 	/* tl_bh is loaded from ocfs2_truncate_log_init().  It's validated
5663 	 * by the underlying call to ocfs2_read_inode_block(), so any
5664 	 * corruption is a code bug */
5665 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5666 
5667 	tl = &di->id2.i_dealloc;
5668 	num_to_flush = le16_to_cpu(tl->tl_used);
5669 	mlog(0, "Flush %u records from truncate log #%llu\n",
5670 	     num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5671 	if (!num_to_flush) {
5672 		status = 0;
5673 		goto out;
5674 	}
5675 
5676 	data_alloc_inode = ocfs2_get_system_file_inode(osb,
5677 						       GLOBAL_BITMAP_SYSTEM_INODE,
5678 						       OCFS2_INVALID_SLOT);
5679 	if (!data_alloc_inode) {
5680 		status = -EINVAL;
5681 		mlog(ML_ERROR, "Could not get bitmap inode!\n");
5682 		goto out;
5683 	}
5684 
5685 	mutex_lock(&data_alloc_inode->i_mutex);
5686 
5687 	status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5688 	if (status < 0) {
5689 		mlog_errno(status);
5690 		goto out_mutex;
5691 	}
5692 
5693 	handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5694 	if (IS_ERR(handle)) {
5695 		status = PTR_ERR(handle);
5696 		mlog_errno(status);
5697 		goto out_unlock;
5698 	}
5699 
5700 	status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5701 					       data_alloc_bh);
5702 	if (status < 0)
5703 		mlog_errno(status);
5704 
5705 	ocfs2_commit_trans(osb, handle);
5706 
5707 out_unlock:
5708 	brelse(data_alloc_bh);
5709 	ocfs2_inode_unlock(data_alloc_inode, 1);
5710 
5711 out_mutex:
5712 	mutex_unlock(&data_alloc_inode->i_mutex);
5713 	iput(data_alloc_inode);
5714 
5715 out:
5716 	mlog_exit(status);
5717 	return status;
5718 }
5719 
ocfs2_flush_truncate_log(struct ocfs2_super * osb)5720 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5721 {
5722 	int status;
5723 	struct inode *tl_inode = osb->osb_tl_inode;
5724 
5725 	mutex_lock(&tl_inode->i_mutex);
5726 	status = __ocfs2_flush_truncate_log(osb);
5727 	mutex_unlock(&tl_inode->i_mutex);
5728 
5729 	return status;
5730 }
5731 
ocfs2_truncate_log_worker(struct work_struct * work)5732 static void ocfs2_truncate_log_worker(struct work_struct *work)
5733 {
5734 	int status;
5735 	struct ocfs2_super *osb =
5736 		container_of(work, struct ocfs2_super,
5737 			     osb_truncate_log_wq.work);
5738 
5739 	mlog_entry_void();
5740 
5741 	status = ocfs2_flush_truncate_log(osb);
5742 	if (status < 0)
5743 		mlog_errno(status);
5744 	else
5745 		ocfs2_init_inode_steal_slot(osb);
5746 
5747 	mlog_exit(status);
5748 }
5749 
5750 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
ocfs2_schedule_truncate_log_flush(struct ocfs2_super * osb,int cancel)5751 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5752 				       int cancel)
5753 {
5754 	if (osb->osb_tl_inode) {
5755 		/* We want to push off log flushes while truncates are
5756 		 * still running. */
5757 		if (cancel)
5758 			cancel_delayed_work(&osb->osb_truncate_log_wq);
5759 
5760 		queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5761 				   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5762 	}
5763 }
5764 
ocfs2_get_truncate_log_info(struct ocfs2_super * osb,int slot_num,struct inode ** tl_inode,struct buffer_head ** tl_bh)5765 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5766 				       int slot_num,
5767 				       struct inode **tl_inode,
5768 				       struct buffer_head **tl_bh)
5769 {
5770 	int status;
5771 	struct inode *inode = NULL;
5772 	struct buffer_head *bh = NULL;
5773 
5774 	inode = ocfs2_get_system_file_inode(osb,
5775 					   TRUNCATE_LOG_SYSTEM_INODE,
5776 					   slot_num);
5777 	if (!inode) {
5778 		status = -EINVAL;
5779 		mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5780 		goto bail;
5781 	}
5782 
5783 	status = ocfs2_read_inode_block(inode, &bh);
5784 	if (status < 0) {
5785 		iput(inode);
5786 		mlog_errno(status);
5787 		goto bail;
5788 	}
5789 
5790 	*tl_inode = inode;
5791 	*tl_bh    = bh;
5792 bail:
5793 	mlog_exit(status);
5794 	return status;
5795 }
5796 
5797 /* called during the 1st stage of node recovery. we stamp a clean
5798  * truncate log and pass back a copy for processing later. if the
5799  * truncate log does not require processing, a *tl_copy is set to
5800  * NULL. */
ocfs2_begin_truncate_log_recovery(struct ocfs2_super * osb,int slot_num,struct ocfs2_dinode ** tl_copy)5801 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5802 				      int slot_num,
5803 				      struct ocfs2_dinode **tl_copy)
5804 {
5805 	int status;
5806 	struct inode *tl_inode = NULL;
5807 	struct buffer_head *tl_bh = NULL;
5808 	struct ocfs2_dinode *di;
5809 	struct ocfs2_truncate_log *tl;
5810 
5811 	*tl_copy = NULL;
5812 
5813 	mlog(0, "recover truncate log from slot %d\n", slot_num);
5814 
5815 	status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5816 	if (status < 0) {
5817 		mlog_errno(status);
5818 		goto bail;
5819 	}
5820 
5821 	di = (struct ocfs2_dinode *) tl_bh->b_data;
5822 
5823 	/* tl_bh is loaded from ocfs2_get_truncate_log_info().  It's
5824 	 * validated by the underlying call to ocfs2_read_inode_block(),
5825 	 * so any corruption is a code bug */
5826 	BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5827 
5828 	tl = &di->id2.i_dealloc;
5829 	if (le16_to_cpu(tl->tl_used)) {
5830 		mlog(0, "We'll have %u logs to recover\n",
5831 		     le16_to_cpu(tl->tl_used));
5832 
5833 		*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5834 		if (!(*tl_copy)) {
5835 			status = -ENOMEM;
5836 			mlog_errno(status);
5837 			goto bail;
5838 		}
5839 
5840 		/* Assuming the write-out below goes well, this copy
5841 		 * will be passed back to recovery for processing. */
5842 		memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5843 
5844 		/* All we need to do to clear the truncate log is set
5845 		 * tl_used. */
5846 		tl->tl_used = 0;
5847 
5848 		ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
5849 		status = ocfs2_write_block(osb, tl_bh, tl_inode);
5850 		if (status < 0) {
5851 			mlog_errno(status);
5852 			goto bail;
5853 		}
5854 	}
5855 
5856 bail:
5857 	if (tl_inode)
5858 		iput(tl_inode);
5859 	brelse(tl_bh);
5860 
5861 	if (status < 0 && (*tl_copy)) {
5862 		kfree(*tl_copy);
5863 		*tl_copy = NULL;
5864 	}
5865 
5866 	mlog_exit(status);
5867 	return status;
5868 }
5869 
ocfs2_complete_truncate_log_recovery(struct ocfs2_super * osb,struct ocfs2_dinode * tl_copy)5870 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5871 					 struct ocfs2_dinode *tl_copy)
5872 {
5873 	int status = 0;
5874 	int i;
5875 	unsigned int clusters, num_recs, start_cluster;
5876 	u64 start_blk;
5877 	handle_t *handle;
5878 	struct inode *tl_inode = osb->osb_tl_inode;
5879 	struct ocfs2_truncate_log *tl;
5880 
5881 	mlog_entry_void();
5882 
5883 	if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5884 		mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5885 		return -EINVAL;
5886 	}
5887 
5888 	tl = &tl_copy->id2.i_dealloc;
5889 	num_recs = le16_to_cpu(tl->tl_used);
5890 	mlog(0, "cleanup %u records from %llu\n", num_recs,
5891 	     (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5892 
5893 	mutex_lock(&tl_inode->i_mutex);
5894 	for(i = 0; i < num_recs; i++) {
5895 		if (ocfs2_truncate_log_needs_flush(osb)) {
5896 			status = __ocfs2_flush_truncate_log(osb);
5897 			if (status < 0) {
5898 				mlog_errno(status);
5899 				goto bail_up;
5900 			}
5901 		}
5902 
5903 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5904 		if (IS_ERR(handle)) {
5905 			status = PTR_ERR(handle);
5906 			mlog_errno(status);
5907 			goto bail_up;
5908 		}
5909 
5910 		clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5911 		start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5912 		start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5913 
5914 		status = ocfs2_truncate_log_append(osb, handle,
5915 						   start_blk, clusters);
5916 		ocfs2_commit_trans(osb, handle);
5917 		if (status < 0) {
5918 			mlog_errno(status);
5919 			goto bail_up;
5920 		}
5921 	}
5922 
5923 bail_up:
5924 	mutex_unlock(&tl_inode->i_mutex);
5925 
5926 	mlog_exit(status);
5927 	return status;
5928 }
5929 
ocfs2_truncate_log_shutdown(struct ocfs2_super * osb)5930 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5931 {
5932 	int status;
5933 	struct inode *tl_inode = osb->osb_tl_inode;
5934 
5935 	mlog_entry_void();
5936 
5937 	if (tl_inode) {
5938 		cancel_delayed_work(&osb->osb_truncate_log_wq);
5939 		flush_workqueue(ocfs2_wq);
5940 
5941 		status = ocfs2_flush_truncate_log(osb);
5942 		if (status < 0)
5943 			mlog_errno(status);
5944 
5945 		brelse(osb->osb_tl_bh);
5946 		iput(osb->osb_tl_inode);
5947 	}
5948 
5949 	mlog_exit_void();
5950 }
5951 
ocfs2_truncate_log_init(struct ocfs2_super * osb)5952 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5953 {
5954 	int status;
5955 	struct inode *tl_inode = NULL;
5956 	struct buffer_head *tl_bh = NULL;
5957 
5958 	mlog_entry_void();
5959 
5960 	status = ocfs2_get_truncate_log_info(osb,
5961 					     osb->slot_num,
5962 					     &tl_inode,
5963 					     &tl_bh);
5964 	if (status < 0)
5965 		mlog_errno(status);
5966 
5967 	/* ocfs2_truncate_log_shutdown keys on the existence of
5968 	 * osb->osb_tl_inode so we don't set any of the osb variables
5969 	 * until we're sure all is well. */
5970 	INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5971 			  ocfs2_truncate_log_worker);
5972 	osb->osb_tl_bh    = tl_bh;
5973 	osb->osb_tl_inode = tl_inode;
5974 
5975 	mlog_exit(status);
5976 	return status;
5977 }
5978 
5979 /*
5980  * Delayed de-allocation of suballocator blocks.
5981  *
5982  * Some sets of block de-allocations might involve multiple suballocator inodes.
5983  *
5984  * The locking for this can get extremely complicated, especially when
5985  * the suballocator inodes to delete from aren't known until deep
5986  * within an unrelated codepath.
5987  *
5988  * ocfs2_extent_block structures are a good example of this - an inode
5989  * btree could have been grown by any number of nodes each allocating
5990  * out of their own suballoc inode.
5991  *
5992  * These structures allow the delay of block de-allocation until a
5993  * later time, when locking of multiple cluster inodes won't cause
5994  * deadlock.
5995  */
5996 
5997 /*
5998  * Describe a single bit freed from a suballocator.  For the block
5999  * suballocators, it represents one block.  For the global cluster
6000  * allocator, it represents some clusters and free_bit indicates
6001  * clusters number.
6002  */
6003 struct ocfs2_cached_block_free {
6004 	struct ocfs2_cached_block_free		*free_next;
6005 	u64					free_blk;
6006 	unsigned int				free_bit;
6007 };
6008 
6009 struct ocfs2_per_slot_free_list {
6010 	struct ocfs2_per_slot_free_list		*f_next_suballocator;
6011 	int					f_inode_type;
6012 	int					f_slot;
6013 	struct ocfs2_cached_block_free		*f_first;
6014 };
6015 
ocfs2_free_cached_blocks(struct ocfs2_super * osb,int sysfile_type,int slot,struct ocfs2_cached_block_free * head)6016 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6017 				    int sysfile_type,
6018 				    int slot,
6019 				    struct ocfs2_cached_block_free *head)
6020 {
6021 	int ret;
6022 	u64 bg_blkno;
6023 	handle_t *handle;
6024 	struct inode *inode;
6025 	struct buffer_head *di_bh = NULL;
6026 	struct ocfs2_cached_block_free *tmp;
6027 
6028 	inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6029 	if (!inode) {
6030 		ret = -EINVAL;
6031 		mlog_errno(ret);
6032 		goto out;
6033 	}
6034 
6035 	mutex_lock(&inode->i_mutex);
6036 
6037 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
6038 	if (ret) {
6039 		mlog_errno(ret);
6040 		goto out_mutex;
6041 	}
6042 
6043 	handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6044 	if (IS_ERR(handle)) {
6045 		ret = PTR_ERR(handle);
6046 		mlog_errno(ret);
6047 		goto out_unlock;
6048 	}
6049 
6050 	while (head) {
6051 		bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6052 						      head->free_bit);
6053 		mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6054 		     head->free_bit, (unsigned long long)head->free_blk);
6055 
6056 		ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6057 					       head->free_bit, bg_blkno, 1);
6058 		if (ret) {
6059 			mlog_errno(ret);
6060 			goto out_journal;
6061 		}
6062 
6063 		ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6064 		if (ret) {
6065 			mlog_errno(ret);
6066 			goto out_journal;
6067 		}
6068 
6069 		tmp = head;
6070 		head = head->free_next;
6071 		kfree(tmp);
6072 	}
6073 
6074 out_journal:
6075 	ocfs2_commit_trans(osb, handle);
6076 
6077 out_unlock:
6078 	ocfs2_inode_unlock(inode, 1);
6079 	brelse(di_bh);
6080 out_mutex:
6081 	mutex_unlock(&inode->i_mutex);
6082 	iput(inode);
6083 out:
6084 	while(head) {
6085 		/* Premature exit may have left some dangling items. */
6086 		tmp = head;
6087 		head = head->free_next;
6088 		kfree(tmp);
6089 	}
6090 
6091 	return ret;
6092 }
6093 
ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt * ctxt,u64 blkno,unsigned int bit)6094 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6095 				u64 blkno, unsigned int bit)
6096 {
6097 	int ret = 0;
6098 	struct ocfs2_cached_block_free *item;
6099 
6100 	item = kmalloc(sizeof(*item), GFP_NOFS);
6101 	if (item == NULL) {
6102 		ret = -ENOMEM;
6103 		mlog_errno(ret);
6104 		return ret;
6105 	}
6106 
6107 	mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6108 	     bit, (unsigned long long)blkno);
6109 
6110 	item->free_blk = blkno;
6111 	item->free_bit = bit;
6112 	item->free_next = ctxt->c_global_allocator;
6113 
6114 	ctxt->c_global_allocator = item;
6115 	return ret;
6116 }
6117 
ocfs2_free_cached_clusters(struct ocfs2_super * osb,struct ocfs2_cached_block_free * head)6118 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6119 				      struct ocfs2_cached_block_free *head)
6120 {
6121 	struct ocfs2_cached_block_free *tmp;
6122 	struct inode *tl_inode = osb->osb_tl_inode;
6123 	handle_t *handle;
6124 	int ret = 0;
6125 
6126 	mutex_lock(&tl_inode->i_mutex);
6127 
6128 	while (head) {
6129 		if (ocfs2_truncate_log_needs_flush(osb)) {
6130 			ret = __ocfs2_flush_truncate_log(osb);
6131 			if (ret < 0) {
6132 				mlog_errno(ret);
6133 				break;
6134 			}
6135 		}
6136 
6137 		handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6138 		if (IS_ERR(handle)) {
6139 			ret = PTR_ERR(handle);
6140 			mlog_errno(ret);
6141 			break;
6142 		}
6143 
6144 		ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6145 						head->free_bit);
6146 
6147 		ocfs2_commit_trans(osb, handle);
6148 		tmp = head;
6149 		head = head->free_next;
6150 		kfree(tmp);
6151 
6152 		if (ret < 0) {
6153 			mlog_errno(ret);
6154 			break;
6155 		}
6156 	}
6157 
6158 	mutex_unlock(&tl_inode->i_mutex);
6159 
6160 	while (head) {
6161 		/* Premature exit may have left some dangling items. */
6162 		tmp = head;
6163 		head = head->free_next;
6164 		kfree(tmp);
6165 	}
6166 
6167 	return ret;
6168 }
6169 
ocfs2_run_deallocs(struct ocfs2_super * osb,struct ocfs2_cached_dealloc_ctxt * ctxt)6170 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6171 		       struct ocfs2_cached_dealloc_ctxt *ctxt)
6172 {
6173 	int ret = 0, ret2;
6174 	struct ocfs2_per_slot_free_list *fl;
6175 
6176 	if (!ctxt)
6177 		return 0;
6178 
6179 	while (ctxt->c_first_suballocator) {
6180 		fl = ctxt->c_first_suballocator;
6181 
6182 		if (fl->f_first) {
6183 			mlog(0, "Free items: (type %u, slot %d)\n",
6184 			     fl->f_inode_type, fl->f_slot);
6185 			ret2 = ocfs2_free_cached_blocks(osb,
6186 							fl->f_inode_type,
6187 							fl->f_slot,
6188 							fl->f_first);
6189 			if (ret2)
6190 				mlog_errno(ret2);
6191 			if (!ret)
6192 				ret = ret2;
6193 		}
6194 
6195 		ctxt->c_first_suballocator = fl->f_next_suballocator;
6196 		kfree(fl);
6197 	}
6198 
6199 	if (ctxt->c_global_allocator) {
6200 		ret2 = ocfs2_free_cached_clusters(osb,
6201 						  ctxt->c_global_allocator);
6202 		if (ret2)
6203 			mlog_errno(ret2);
6204 		if (!ret)
6205 			ret = ret2;
6206 
6207 		ctxt->c_global_allocator = NULL;
6208 	}
6209 
6210 	return ret;
6211 }
6212 
6213 static struct ocfs2_per_slot_free_list *
ocfs2_find_per_slot_free_list(int type,int slot,struct ocfs2_cached_dealloc_ctxt * ctxt)6214 ocfs2_find_per_slot_free_list(int type,
6215 			      int slot,
6216 			      struct ocfs2_cached_dealloc_ctxt *ctxt)
6217 {
6218 	struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6219 
6220 	while (fl) {
6221 		if (fl->f_inode_type == type && fl->f_slot == slot)
6222 			return fl;
6223 
6224 		fl = fl->f_next_suballocator;
6225 	}
6226 
6227 	fl = kmalloc(sizeof(*fl), GFP_NOFS);
6228 	if (fl) {
6229 		fl->f_inode_type = type;
6230 		fl->f_slot = slot;
6231 		fl->f_first = NULL;
6232 		fl->f_next_suballocator = ctxt->c_first_suballocator;
6233 
6234 		ctxt->c_first_suballocator = fl;
6235 	}
6236 	return fl;
6237 }
6238 
ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt * ctxt,int type,int slot,u64 blkno,unsigned int bit)6239 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6240 				     int type, int slot, u64 blkno,
6241 				     unsigned int bit)
6242 {
6243 	int ret;
6244 	struct ocfs2_per_slot_free_list *fl;
6245 	struct ocfs2_cached_block_free *item;
6246 
6247 	fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6248 	if (fl == NULL) {
6249 		ret = -ENOMEM;
6250 		mlog_errno(ret);
6251 		goto out;
6252 	}
6253 
6254 	item = kmalloc(sizeof(*item), GFP_NOFS);
6255 	if (item == NULL) {
6256 		ret = -ENOMEM;
6257 		mlog_errno(ret);
6258 		goto out;
6259 	}
6260 
6261 	mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6262 	     type, slot, bit, (unsigned long long)blkno);
6263 
6264 	item->free_blk = blkno;
6265 	item->free_bit = bit;
6266 	item->free_next = fl->f_first;
6267 
6268 	fl->f_first = item;
6269 
6270 	ret = 0;
6271 out:
6272 	return ret;
6273 }
6274 
ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt * ctxt,struct ocfs2_extent_block * eb)6275 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6276 					 struct ocfs2_extent_block *eb)
6277 {
6278 	return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6279 					 le16_to_cpu(eb->h_suballoc_slot),
6280 					 le64_to_cpu(eb->h_blkno),
6281 					 le16_to_cpu(eb->h_suballoc_bit));
6282 }
6283 
6284 /* This function will figure out whether the currently last extent
6285  * block will be deleted, and if it will, what the new last extent
6286  * block will be so we can update his h_next_leaf_blk field, as well
6287  * as the dinodes i_last_eb_blk */
ocfs2_find_new_last_ext_blk(struct inode * inode,unsigned int clusters_to_del,struct ocfs2_path * path,struct buffer_head ** new_last_eb)6288 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6289 				       unsigned int clusters_to_del,
6290 				       struct ocfs2_path *path,
6291 				       struct buffer_head **new_last_eb)
6292 {
6293 	int next_free, ret = 0;
6294 	u32 cpos;
6295 	struct ocfs2_extent_rec *rec;
6296 	struct ocfs2_extent_block *eb;
6297 	struct ocfs2_extent_list *el;
6298 	struct buffer_head *bh = NULL;
6299 
6300 	*new_last_eb = NULL;
6301 
6302 	/* we have no tree, so of course, no last_eb. */
6303 	if (!path->p_tree_depth)
6304 		goto out;
6305 
6306 	/* trunc to zero special case - this makes tree_depth = 0
6307 	 * regardless of what it is.  */
6308 	if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6309 		goto out;
6310 
6311 	el = path_leaf_el(path);
6312 	BUG_ON(!el->l_next_free_rec);
6313 
6314 	/*
6315 	 * Make sure that this extent list will actually be empty
6316 	 * after we clear away the data. We can shortcut out if
6317 	 * there's more than one non-empty extent in the
6318 	 * list. Otherwise, a check of the remaining extent is
6319 	 * necessary.
6320 	 */
6321 	next_free = le16_to_cpu(el->l_next_free_rec);
6322 	rec = NULL;
6323 	if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6324 		if (next_free > 2)
6325 			goto out;
6326 
6327 		/* We may have a valid extent in index 1, check it. */
6328 		if (next_free == 2)
6329 			rec = &el->l_recs[1];
6330 
6331 		/*
6332 		 * Fall through - no more nonempty extents, so we want
6333 		 * to delete this leaf.
6334 		 */
6335 	} else {
6336 		if (next_free > 1)
6337 			goto out;
6338 
6339 		rec = &el->l_recs[0];
6340 	}
6341 
6342 	if (rec) {
6343 		/*
6344 		 * Check it we'll only be trimming off the end of this
6345 		 * cluster.
6346 		 */
6347 		if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6348 			goto out;
6349 	}
6350 
6351 	ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6352 	if (ret) {
6353 		mlog_errno(ret);
6354 		goto out;
6355 	}
6356 
6357 	ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6358 	if (ret) {
6359 		mlog_errno(ret);
6360 		goto out;
6361 	}
6362 
6363 	eb = (struct ocfs2_extent_block *) bh->b_data;
6364 	el = &eb->h_list;
6365 
6366 	/* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6367 	 * Any corruption is a code bug. */
6368 	BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6369 
6370 	*new_last_eb = bh;
6371 	get_bh(*new_last_eb);
6372 	mlog(0, "returning block %llu, (cpos: %u)\n",
6373 	     (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6374 out:
6375 	brelse(bh);
6376 
6377 	return ret;
6378 }
6379 
6380 /*
6381  * Trim some clusters off the rightmost edge of a tree. Only called
6382  * during truncate.
6383  *
6384  * The caller needs to:
6385  *   - start journaling of each path component.
6386  *   - compute and fully set up any new last ext block
6387  */
ocfs2_trim_tree(struct inode * inode,struct ocfs2_path * path,handle_t * handle,struct ocfs2_truncate_context * tc,u32 clusters_to_del,u64 * delete_start)6388 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6389 			   handle_t *handle, struct ocfs2_truncate_context *tc,
6390 			   u32 clusters_to_del, u64 *delete_start)
6391 {
6392 	int ret, i, index = path->p_tree_depth;
6393 	u32 new_edge = 0;
6394 	u64 deleted_eb = 0;
6395 	struct buffer_head *bh;
6396 	struct ocfs2_extent_list *el;
6397 	struct ocfs2_extent_rec *rec;
6398 
6399 	*delete_start = 0;
6400 
6401 	while (index >= 0) {
6402 		bh = path->p_node[index].bh;
6403 		el = path->p_node[index].el;
6404 
6405 		mlog(0, "traveling tree (index = %d, block = %llu)\n",
6406 		     index,  (unsigned long long)bh->b_blocknr);
6407 
6408 		BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6409 
6410 		if (index !=
6411 		    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6412 			ocfs2_error(inode->i_sb,
6413 				    "Inode %lu has invalid ext. block %llu",
6414 				    inode->i_ino,
6415 				    (unsigned long long)bh->b_blocknr);
6416 			ret = -EROFS;
6417 			goto out;
6418 		}
6419 
6420 find_tail_record:
6421 		i = le16_to_cpu(el->l_next_free_rec) - 1;
6422 		rec = &el->l_recs[i];
6423 
6424 		mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6425 		     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6426 		     ocfs2_rec_clusters(el, rec),
6427 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6428 		     le16_to_cpu(el->l_next_free_rec));
6429 
6430 		BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6431 
6432 		if (le16_to_cpu(el->l_tree_depth) == 0) {
6433 			/*
6434 			 * If the leaf block contains a single empty
6435 			 * extent and no records, we can just remove
6436 			 * the block.
6437 			 */
6438 			if (i == 0 && ocfs2_is_empty_extent(rec)) {
6439 				memset(rec, 0,
6440 				       sizeof(struct ocfs2_extent_rec));
6441 				el->l_next_free_rec = cpu_to_le16(0);
6442 
6443 				goto delete;
6444 			}
6445 
6446 			/*
6447 			 * Remove any empty extents by shifting things
6448 			 * left. That should make life much easier on
6449 			 * the code below. This condition is rare
6450 			 * enough that we shouldn't see a performance
6451 			 * hit.
6452 			 */
6453 			if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6454 				le16_add_cpu(&el->l_next_free_rec, -1);
6455 
6456 				for(i = 0;
6457 				    i < le16_to_cpu(el->l_next_free_rec); i++)
6458 					el->l_recs[i] = el->l_recs[i + 1];
6459 
6460 				memset(&el->l_recs[i], 0,
6461 				       sizeof(struct ocfs2_extent_rec));
6462 
6463 				/*
6464 				 * We've modified our extent list. The
6465 				 * simplest way to handle this change
6466 				 * is to being the search from the
6467 				 * start again.
6468 				 */
6469 				goto find_tail_record;
6470 			}
6471 
6472 			le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6473 
6474 			/*
6475 			 * We'll use "new_edge" on our way back up the
6476 			 * tree to know what our rightmost cpos is.
6477 			 */
6478 			new_edge = le16_to_cpu(rec->e_leaf_clusters);
6479 			new_edge += le32_to_cpu(rec->e_cpos);
6480 
6481 			/*
6482 			 * The caller will use this to delete data blocks.
6483 			 */
6484 			*delete_start = le64_to_cpu(rec->e_blkno)
6485 				+ ocfs2_clusters_to_blocks(inode->i_sb,
6486 					le16_to_cpu(rec->e_leaf_clusters));
6487 
6488 			/*
6489 			 * If it's now empty, remove this record.
6490 			 */
6491 			if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6492 				memset(rec, 0,
6493 				       sizeof(struct ocfs2_extent_rec));
6494 				le16_add_cpu(&el->l_next_free_rec, -1);
6495 			}
6496 		} else {
6497 			if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6498 				memset(rec, 0,
6499 				       sizeof(struct ocfs2_extent_rec));
6500 				le16_add_cpu(&el->l_next_free_rec, -1);
6501 
6502 				goto delete;
6503 			}
6504 
6505 			/* Can this actually happen? */
6506 			if (le16_to_cpu(el->l_next_free_rec) == 0)
6507 				goto delete;
6508 
6509 			/*
6510 			 * We never actually deleted any clusters
6511 			 * because our leaf was empty. There's no
6512 			 * reason to adjust the rightmost edge then.
6513 			 */
6514 			if (new_edge == 0)
6515 				goto delete;
6516 
6517 			rec->e_int_clusters = cpu_to_le32(new_edge);
6518 			le32_add_cpu(&rec->e_int_clusters,
6519 				     -le32_to_cpu(rec->e_cpos));
6520 
6521 			 /*
6522 			  * A deleted child record should have been
6523 			  * caught above.
6524 			  */
6525 			 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6526 		}
6527 
6528 delete:
6529 		ret = ocfs2_journal_dirty(handle, bh);
6530 		if (ret) {
6531 			mlog_errno(ret);
6532 			goto out;
6533 		}
6534 
6535 		mlog(0, "extent list container %llu, after: record %d: "
6536 		     "(%u, %u, %llu), next = %u.\n",
6537 		     (unsigned long long)bh->b_blocknr, i,
6538 		     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6539 		     (unsigned long long)le64_to_cpu(rec->e_blkno),
6540 		     le16_to_cpu(el->l_next_free_rec));
6541 
6542 		/*
6543 		 * We must be careful to only attempt delete of an
6544 		 * extent block (and not the root inode block).
6545 		 */
6546 		if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6547 			struct ocfs2_extent_block *eb =
6548 				(struct ocfs2_extent_block *)bh->b_data;
6549 
6550 			/*
6551 			 * Save this for use when processing the
6552 			 * parent block.
6553 			 */
6554 			deleted_eb = le64_to_cpu(eb->h_blkno);
6555 
6556 			mlog(0, "deleting this extent block.\n");
6557 
6558 			ocfs2_remove_from_cache(inode, bh);
6559 
6560 			BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6561 			BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6562 			BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6563 
6564 			ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6565 			/* An error here is not fatal. */
6566 			if (ret < 0)
6567 				mlog_errno(ret);
6568 		} else {
6569 			deleted_eb = 0;
6570 		}
6571 
6572 		index--;
6573 	}
6574 
6575 	ret = 0;
6576 out:
6577 	return ret;
6578 }
6579 
ocfs2_do_truncate(struct ocfs2_super * osb,unsigned int clusters_to_del,struct inode * inode,struct buffer_head * fe_bh,handle_t * handle,struct ocfs2_truncate_context * tc,struct ocfs2_path * path)6580 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6581 			     unsigned int clusters_to_del,
6582 			     struct inode *inode,
6583 			     struct buffer_head *fe_bh,
6584 			     handle_t *handle,
6585 			     struct ocfs2_truncate_context *tc,
6586 			     struct ocfs2_path *path)
6587 {
6588 	int status;
6589 	struct ocfs2_dinode *fe;
6590 	struct ocfs2_extent_block *last_eb = NULL;
6591 	struct ocfs2_extent_list *el;
6592 	struct buffer_head *last_eb_bh = NULL;
6593 	u64 delete_blk = 0;
6594 
6595 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
6596 
6597 	status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6598 					     path, &last_eb_bh);
6599 	if (status < 0) {
6600 		mlog_errno(status);
6601 		goto bail;
6602 	}
6603 
6604 	/*
6605 	 * Each component will be touched, so we might as well journal
6606 	 * here to avoid having to handle errors later.
6607 	 */
6608 	status = ocfs2_journal_access_path(inode, handle, path);
6609 	if (status < 0) {
6610 		mlog_errno(status);
6611 		goto bail;
6612 	}
6613 
6614 	if (last_eb_bh) {
6615 		status = ocfs2_journal_access_eb(handle, inode, last_eb_bh,
6616 						 OCFS2_JOURNAL_ACCESS_WRITE);
6617 		if (status < 0) {
6618 			mlog_errno(status);
6619 			goto bail;
6620 		}
6621 
6622 		last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6623 	}
6624 
6625 	el = &(fe->id2.i_list);
6626 
6627 	/*
6628 	 * Lower levels depend on this never happening, but it's best
6629 	 * to check it up here before changing the tree.
6630 	 */
6631 	if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6632 		ocfs2_error(inode->i_sb,
6633 			    "Inode %lu has an empty extent record, depth %u\n",
6634 			    inode->i_ino, le16_to_cpu(el->l_tree_depth));
6635 		status = -EROFS;
6636 		goto bail;
6637 	}
6638 
6639 	vfs_dq_free_space_nodirty(inode,
6640 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6641 	spin_lock(&OCFS2_I(inode)->ip_lock);
6642 	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6643 				      clusters_to_del;
6644 	spin_unlock(&OCFS2_I(inode)->ip_lock);
6645 	le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6646 	inode->i_blocks = ocfs2_inode_sector_count(inode);
6647 
6648 	status = ocfs2_trim_tree(inode, path, handle, tc,
6649 				 clusters_to_del, &delete_blk);
6650 	if (status) {
6651 		mlog_errno(status);
6652 		goto bail;
6653 	}
6654 
6655 	if (le32_to_cpu(fe->i_clusters) == 0) {
6656 		/* trunc to zero is a special case. */
6657 		el->l_tree_depth = 0;
6658 		fe->i_last_eb_blk = 0;
6659 	} else if (last_eb)
6660 		fe->i_last_eb_blk = last_eb->h_blkno;
6661 
6662 	status = ocfs2_journal_dirty(handle, fe_bh);
6663 	if (status < 0) {
6664 		mlog_errno(status);
6665 		goto bail;
6666 	}
6667 
6668 	if (last_eb) {
6669 		/* If there will be a new last extent block, then by
6670 		 * definition, there cannot be any leaves to the right of
6671 		 * him. */
6672 		last_eb->h_next_leaf_blk = 0;
6673 		status = ocfs2_journal_dirty(handle, last_eb_bh);
6674 		if (status < 0) {
6675 			mlog_errno(status);
6676 			goto bail;
6677 		}
6678 	}
6679 
6680 	if (delete_blk) {
6681 		status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6682 						   clusters_to_del);
6683 		if (status < 0) {
6684 			mlog_errno(status);
6685 			goto bail;
6686 		}
6687 	}
6688 	status = 0;
6689 bail:
6690 
6691 	mlog_exit(status);
6692 	return status;
6693 }
6694 
ocfs2_zero_func(handle_t * handle,struct buffer_head * bh)6695 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6696 {
6697 	set_buffer_uptodate(bh);
6698 	mark_buffer_dirty(bh);
6699 	return 0;
6700 }
6701 
ocfs2_map_and_dirty_page(struct inode * inode,handle_t * handle,unsigned int from,unsigned int to,struct page * page,int zero,u64 * phys)6702 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6703 				     unsigned int from, unsigned int to,
6704 				     struct page *page, int zero, u64 *phys)
6705 {
6706 	int ret, partial = 0;
6707 
6708 	ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6709 	if (ret)
6710 		mlog_errno(ret);
6711 
6712 	if (zero)
6713 		zero_user_segment(page, from, to);
6714 
6715 	/*
6716 	 * Need to set the buffers we zero'd into uptodate
6717 	 * here if they aren't - ocfs2_map_page_blocks()
6718 	 * might've skipped some
6719 	 */
6720 	ret = walk_page_buffers(handle, page_buffers(page),
6721 				from, to, &partial,
6722 				ocfs2_zero_func);
6723 	if (ret < 0)
6724 		mlog_errno(ret);
6725 	else if (ocfs2_should_order_data(inode)) {
6726 		ret = ocfs2_jbd2_file_inode(handle, inode);
6727 		if (ret < 0)
6728 			mlog_errno(ret);
6729 	}
6730 
6731 	if (!partial)
6732 		SetPageUptodate(page);
6733 
6734 	flush_dcache_page(page);
6735 }
6736 
ocfs2_zero_cluster_pages(struct inode * inode,loff_t start,loff_t end,struct page ** pages,int numpages,u64 phys,handle_t * handle)6737 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6738 				     loff_t end, struct page **pages,
6739 				     int numpages, u64 phys, handle_t *handle)
6740 {
6741 	int i;
6742 	struct page *page;
6743 	unsigned int from, to = PAGE_CACHE_SIZE;
6744 	struct super_block *sb = inode->i_sb;
6745 
6746 	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6747 
6748 	if (numpages == 0)
6749 		goto out;
6750 
6751 	to = PAGE_CACHE_SIZE;
6752 	for(i = 0; i < numpages; i++) {
6753 		page = pages[i];
6754 
6755 		from = start & (PAGE_CACHE_SIZE - 1);
6756 		if ((end >> PAGE_CACHE_SHIFT) == page->index)
6757 			to = end & (PAGE_CACHE_SIZE - 1);
6758 
6759 		BUG_ON(from > PAGE_CACHE_SIZE);
6760 		BUG_ON(to > PAGE_CACHE_SIZE);
6761 
6762 		ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6763 					 &phys);
6764 
6765 		start = (page->index + 1) << PAGE_CACHE_SHIFT;
6766 	}
6767 out:
6768 	if (pages)
6769 		ocfs2_unlock_and_free_pages(pages, numpages);
6770 }
6771 
ocfs2_grab_eof_pages(struct inode * inode,loff_t start,loff_t end,struct page ** pages,int * num)6772 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6773 				struct page **pages, int *num)
6774 {
6775 	int numpages, ret = 0;
6776 	struct super_block *sb = inode->i_sb;
6777 	struct address_space *mapping = inode->i_mapping;
6778 	unsigned long index;
6779 	loff_t last_page_bytes;
6780 
6781 	BUG_ON(start > end);
6782 
6783 	BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6784 	       (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6785 
6786 	numpages = 0;
6787 	last_page_bytes = PAGE_ALIGN(end);
6788 	index = start >> PAGE_CACHE_SHIFT;
6789 	do {
6790 		pages[numpages] = grab_cache_page(mapping, index);
6791 		if (!pages[numpages]) {
6792 			ret = -ENOMEM;
6793 			mlog_errno(ret);
6794 			goto out;
6795 		}
6796 
6797 		numpages++;
6798 		index++;
6799 	} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6800 
6801 out:
6802 	if (ret != 0) {
6803 		if (pages)
6804 			ocfs2_unlock_and_free_pages(pages, numpages);
6805 		numpages = 0;
6806 	}
6807 
6808 	*num = numpages;
6809 
6810 	return ret;
6811 }
6812 
6813 /*
6814  * Zero the area past i_size but still within an allocated
6815  * cluster. This avoids exposing nonzero data on subsequent file
6816  * extends.
6817  *
6818  * We need to call this before i_size is updated on the inode because
6819  * otherwise block_write_full_page() will skip writeout of pages past
6820  * i_size. The new_i_size parameter is passed for this reason.
6821  */
ocfs2_zero_range_for_truncate(struct inode * inode,handle_t * handle,u64 range_start,u64 range_end)6822 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6823 				  u64 range_start, u64 range_end)
6824 {
6825 	int ret = 0, numpages;
6826 	struct page **pages = NULL;
6827 	u64 phys;
6828 	unsigned int ext_flags;
6829 	struct super_block *sb = inode->i_sb;
6830 
6831 	/*
6832 	 * File systems which don't support sparse files zero on every
6833 	 * extend.
6834 	 */
6835 	if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6836 		return 0;
6837 
6838 	pages = kcalloc(ocfs2_pages_per_cluster(sb),
6839 			sizeof(struct page *), GFP_NOFS);
6840 	if (pages == NULL) {
6841 		ret = -ENOMEM;
6842 		mlog_errno(ret);
6843 		goto out;
6844 	}
6845 
6846 	if (range_start == range_end)
6847 		goto out;
6848 
6849 	ret = ocfs2_extent_map_get_blocks(inode,
6850 					  range_start >> sb->s_blocksize_bits,
6851 					  &phys, NULL, &ext_flags);
6852 	if (ret) {
6853 		mlog_errno(ret);
6854 		goto out;
6855 	}
6856 
6857 	/*
6858 	 * Tail is a hole, or is marked unwritten. In either case, we
6859 	 * can count on read and write to return/push zero's.
6860 	 */
6861 	if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6862 		goto out;
6863 
6864 	ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6865 				   &numpages);
6866 	if (ret) {
6867 		mlog_errno(ret);
6868 		goto out;
6869 	}
6870 
6871 	ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6872 				 numpages, phys, handle);
6873 
6874 	/*
6875 	 * Initiate writeout of the pages we zero'd here. We don't
6876 	 * wait on them - the truncate_inode_pages() call later will
6877 	 * do that for us.
6878 	 */
6879 	ret = do_sync_mapping_range(inode->i_mapping, range_start,
6880 				    range_end - 1, SYNC_FILE_RANGE_WRITE);
6881 	if (ret)
6882 		mlog_errno(ret);
6883 
6884 out:
6885 	if (pages)
6886 		kfree(pages);
6887 
6888 	return ret;
6889 }
6890 
ocfs2_zero_dinode_id2_with_xattr(struct inode * inode,struct ocfs2_dinode * di)6891 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6892 					     struct ocfs2_dinode *di)
6893 {
6894 	unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6895 	unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6896 
6897 	if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6898 		memset(&di->id2, 0, blocksize -
6899 				    offsetof(struct ocfs2_dinode, id2) -
6900 				    xattrsize);
6901 	else
6902 		memset(&di->id2, 0, blocksize -
6903 				    offsetof(struct ocfs2_dinode, id2));
6904 }
6905 
ocfs2_dinode_new_extent_list(struct inode * inode,struct ocfs2_dinode * di)6906 void ocfs2_dinode_new_extent_list(struct inode *inode,
6907 				  struct ocfs2_dinode *di)
6908 {
6909 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6910 	di->id2.i_list.l_tree_depth = 0;
6911 	di->id2.i_list.l_next_free_rec = 0;
6912 	di->id2.i_list.l_count = cpu_to_le16(
6913 		ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6914 }
6915 
ocfs2_set_inode_data_inline(struct inode * inode,struct ocfs2_dinode * di)6916 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6917 {
6918 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6919 	struct ocfs2_inline_data *idata = &di->id2.i_data;
6920 
6921 	spin_lock(&oi->ip_lock);
6922 	oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6923 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6924 	spin_unlock(&oi->ip_lock);
6925 
6926 	/*
6927 	 * We clear the entire i_data structure here so that all
6928 	 * fields can be properly initialized.
6929 	 */
6930 	ocfs2_zero_dinode_id2_with_xattr(inode, di);
6931 
6932 	idata->id_count = cpu_to_le16(
6933 			ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6934 }
6935 
ocfs2_convert_inline_data_to_extents(struct inode * inode,struct buffer_head * di_bh)6936 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6937 					 struct buffer_head *di_bh)
6938 {
6939 	int ret, i, has_data, num_pages = 0;
6940 	handle_t *handle;
6941 	u64 uninitialized_var(block);
6942 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
6943 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6944 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6945 	struct ocfs2_alloc_context *data_ac = NULL;
6946 	struct page **pages = NULL;
6947 	loff_t end = osb->s_clustersize;
6948 	struct ocfs2_extent_tree et;
6949 	int did_quota = 0;
6950 
6951 	has_data = i_size_read(inode) ? 1 : 0;
6952 
6953 	if (has_data) {
6954 		pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6955 				sizeof(struct page *), GFP_NOFS);
6956 		if (pages == NULL) {
6957 			ret = -ENOMEM;
6958 			mlog_errno(ret);
6959 			goto out;
6960 		}
6961 
6962 		ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6963 		if (ret) {
6964 			mlog_errno(ret);
6965 			goto out;
6966 		}
6967 	}
6968 
6969 	handle = ocfs2_start_trans(osb,
6970 				   ocfs2_inline_to_extents_credits(osb->sb));
6971 	if (IS_ERR(handle)) {
6972 		ret = PTR_ERR(handle);
6973 		mlog_errno(ret);
6974 		goto out_unlock;
6975 	}
6976 
6977 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
6978 				      OCFS2_JOURNAL_ACCESS_WRITE);
6979 	if (ret) {
6980 		mlog_errno(ret);
6981 		goto out_commit;
6982 	}
6983 
6984 	if (has_data) {
6985 		u32 bit_off, num;
6986 		unsigned int page_end;
6987 		u64 phys;
6988 
6989 		if (vfs_dq_alloc_space_nodirty(inode,
6990 				       ocfs2_clusters_to_bytes(osb->sb, 1))) {
6991 			ret = -EDQUOT;
6992 			goto out_commit;
6993 		}
6994 		did_quota = 1;
6995 
6996 		ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6997 					   &num);
6998 		if (ret) {
6999 			mlog_errno(ret);
7000 			goto out_commit;
7001 		}
7002 
7003 		/*
7004 		 * Save two copies, one for insert, and one that can
7005 		 * be changed by ocfs2_map_and_dirty_page() below.
7006 		 */
7007 		block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7008 
7009 		/*
7010 		 * Non sparse file systems zero on extend, so no need
7011 		 * to do that now.
7012 		 */
7013 		if (!ocfs2_sparse_alloc(osb) &&
7014 		    PAGE_CACHE_SIZE < osb->s_clustersize)
7015 			end = PAGE_CACHE_SIZE;
7016 
7017 		ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7018 		if (ret) {
7019 			mlog_errno(ret);
7020 			goto out_commit;
7021 		}
7022 
7023 		/*
7024 		 * This should populate the 1st page for us and mark
7025 		 * it up to date.
7026 		 */
7027 		ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7028 		if (ret) {
7029 			mlog_errno(ret);
7030 			goto out_commit;
7031 		}
7032 
7033 		page_end = PAGE_CACHE_SIZE;
7034 		if (PAGE_CACHE_SIZE > osb->s_clustersize)
7035 			page_end = osb->s_clustersize;
7036 
7037 		for (i = 0; i < num_pages; i++)
7038 			ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7039 						 pages[i], i > 0, &phys);
7040 	}
7041 
7042 	spin_lock(&oi->ip_lock);
7043 	oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7044 	di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7045 	spin_unlock(&oi->ip_lock);
7046 
7047 	ocfs2_dinode_new_extent_list(inode, di);
7048 
7049 	ocfs2_journal_dirty(handle, di_bh);
7050 
7051 	if (has_data) {
7052 		/*
7053 		 * An error at this point should be extremely rare. If
7054 		 * this proves to be false, we could always re-build
7055 		 * the in-inode data from our pages.
7056 		 */
7057 		ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7058 		ret = ocfs2_insert_extent(osb, handle, inode, &et,
7059 					  0, block, 1, 0, NULL);
7060 		if (ret) {
7061 			mlog_errno(ret);
7062 			goto out_commit;
7063 		}
7064 
7065 		inode->i_blocks = ocfs2_inode_sector_count(inode);
7066 	}
7067 
7068 out_commit:
7069 	if (ret < 0 && did_quota)
7070 		vfs_dq_free_space_nodirty(inode,
7071 					  ocfs2_clusters_to_bytes(osb->sb, 1));
7072 
7073 	ocfs2_commit_trans(osb, handle);
7074 
7075 out_unlock:
7076 	if (data_ac)
7077 		ocfs2_free_alloc_context(data_ac);
7078 
7079 out:
7080 	if (pages) {
7081 		ocfs2_unlock_and_free_pages(pages, num_pages);
7082 		kfree(pages);
7083 	}
7084 
7085 	return ret;
7086 }
7087 
7088 /*
7089  * It is expected, that by the time you call this function,
7090  * inode->i_size and fe->i_size have been adjusted.
7091  *
7092  * WARNING: This will kfree the truncate context
7093  */
ocfs2_commit_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,struct ocfs2_truncate_context * tc)7094 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7095 			  struct inode *inode,
7096 			  struct buffer_head *fe_bh,
7097 			  struct ocfs2_truncate_context *tc)
7098 {
7099 	int status, i, credits, tl_sem = 0;
7100 	u32 clusters_to_del, new_highest_cpos, range;
7101 	struct ocfs2_extent_list *el;
7102 	handle_t *handle = NULL;
7103 	struct inode *tl_inode = osb->osb_tl_inode;
7104 	struct ocfs2_path *path = NULL;
7105 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7106 
7107 	mlog_entry_void();
7108 
7109 	new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7110 						     i_size_read(inode));
7111 
7112 	path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7113 			      ocfs2_journal_access_di);
7114 	if (!path) {
7115 		status = -ENOMEM;
7116 		mlog_errno(status);
7117 		goto bail;
7118 	}
7119 
7120 	ocfs2_extent_map_trunc(inode, new_highest_cpos);
7121 
7122 start:
7123 	/*
7124 	 * Check that we still have allocation to delete.
7125 	 */
7126 	if (OCFS2_I(inode)->ip_clusters == 0) {
7127 		status = 0;
7128 		goto bail;
7129 	}
7130 
7131 	/*
7132 	 * Truncate always works against the rightmost tree branch.
7133 	 */
7134 	status = ocfs2_find_path(inode, path, UINT_MAX);
7135 	if (status) {
7136 		mlog_errno(status);
7137 		goto bail;
7138 	}
7139 
7140 	mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7141 	     OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7142 
7143 	/*
7144 	 * By now, el will point to the extent list on the bottom most
7145 	 * portion of this tree. Only the tail record is considered in
7146 	 * each pass.
7147 	 *
7148 	 * We handle the following cases, in order:
7149 	 * - empty extent: delete the remaining branch
7150 	 * - remove the entire record
7151 	 * - remove a partial record
7152 	 * - no record needs to be removed (truncate has completed)
7153 	 */
7154 	el = path_leaf_el(path);
7155 	if (le16_to_cpu(el->l_next_free_rec) == 0) {
7156 		ocfs2_error(inode->i_sb,
7157 			    "Inode %llu has empty extent block at %llu\n",
7158 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7159 			    (unsigned long long)path_leaf_bh(path)->b_blocknr);
7160 		status = -EROFS;
7161 		goto bail;
7162 	}
7163 
7164 	i = le16_to_cpu(el->l_next_free_rec) - 1;
7165 	range = le32_to_cpu(el->l_recs[i].e_cpos) +
7166 		ocfs2_rec_clusters(el, &el->l_recs[i]);
7167 	if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7168 		clusters_to_del = 0;
7169 	} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7170 		clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7171 	} else if (range > new_highest_cpos) {
7172 		clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7173 				   le32_to_cpu(el->l_recs[i].e_cpos)) -
7174 				  new_highest_cpos;
7175 	} else {
7176 		status = 0;
7177 		goto bail;
7178 	}
7179 
7180 	mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7181 	     clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7182 
7183 	mutex_lock(&tl_inode->i_mutex);
7184 	tl_sem = 1;
7185 	/* ocfs2_truncate_log_needs_flush guarantees us at least one
7186 	 * record is free for use. If there isn't any, we flush to get
7187 	 * an empty truncate log.  */
7188 	if (ocfs2_truncate_log_needs_flush(osb)) {
7189 		status = __ocfs2_flush_truncate_log(osb);
7190 		if (status < 0) {
7191 			mlog_errno(status);
7192 			goto bail;
7193 		}
7194 	}
7195 
7196 	credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7197 						(struct ocfs2_dinode *)fe_bh->b_data,
7198 						el);
7199 	handle = ocfs2_start_trans(osb, credits);
7200 	if (IS_ERR(handle)) {
7201 		status = PTR_ERR(handle);
7202 		handle = NULL;
7203 		mlog_errno(status);
7204 		goto bail;
7205 	}
7206 
7207 	status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7208 				   tc, path);
7209 	if (status < 0) {
7210 		mlog_errno(status);
7211 		goto bail;
7212 	}
7213 
7214 	mutex_unlock(&tl_inode->i_mutex);
7215 	tl_sem = 0;
7216 
7217 	ocfs2_commit_trans(osb, handle);
7218 	handle = NULL;
7219 
7220 	ocfs2_reinit_path(path, 1);
7221 
7222 	/*
7223 	 * The check above will catch the case where we've truncated
7224 	 * away all allocation.
7225 	 */
7226 	goto start;
7227 
7228 bail:
7229 
7230 	ocfs2_schedule_truncate_log_flush(osb, 1);
7231 
7232 	if (tl_sem)
7233 		mutex_unlock(&tl_inode->i_mutex);
7234 
7235 	if (handle)
7236 		ocfs2_commit_trans(osb, handle);
7237 
7238 	ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7239 
7240 	ocfs2_free_path(path);
7241 
7242 	/* This will drop the ext_alloc cluster lock for us */
7243 	ocfs2_free_truncate_context(tc);
7244 
7245 	mlog_exit(status);
7246 	return status;
7247 }
7248 
7249 /*
7250  * Expects the inode to already be locked.
7251  */
ocfs2_prepare_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,struct ocfs2_truncate_context ** tc)7252 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7253 			   struct inode *inode,
7254 			   struct buffer_head *fe_bh,
7255 			   struct ocfs2_truncate_context **tc)
7256 {
7257 	int status;
7258 	unsigned int new_i_clusters;
7259 	struct ocfs2_dinode *fe;
7260 	struct ocfs2_extent_block *eb;
7261 	struct buffer_head *last_eb_bh = NULL;
7262 
7263 	mlog_entry_void();
7264 
7265 	*tc = NULL;
7266 
7267 	new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7268 						  i_size_read(inode));
7269 	fe = (struct ocfs2_dinode *) fe_bh->b_data;
7270 
7271 	mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7272 	     "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7273 	     (unsigned long long)le64_to_cpu(fe->i_size));
7274 
7275 	*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7276 	if (!(*tc)) {
7277 		status = -ENOMEM;
7278 		mlog_errno(status);
7279 		goto bail;
7280 	}
7281 	ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7282 
7283 	if (fe->id2.i_list.l_tree_depth) {
7284 		status = ocfs2_read_extent_block(inode,
7285 						 le64_to_cpu(fe->i_last_eb_blk),
7286 						 &last_eb_bh);
7287 		if (status < 0) {
7288 			mlog_errno(status);
7289 			goto bail;
7290 		}
7291 		eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7292 	}
7293 
7294 	(*tc)->tc_last_eb_bh = last_eb_bh;
7295 
7296 	status = 0;
7297 bail:
7298 	if (status < 0) {
7299 		if (*tc)
7300 			ocfs2_free_truncate_context(*tc);
7301 		*tc = NULL;
7302 	}
7303 	mlog_exit_void();
7304 	return status;
7305 }
7306 
7307 /*
7308  * 'start' is inclusive, 'end' is not.
7309  */
ocfs2_truncate_inline(struct inode * inode,struct buffer_head * di_bh,unsigned int start,unsigned int end,int trunc)7310 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7311 			  unsigned int start, unsigned int end, int trunc)
7312 {
7313 	int ret;
7314 	unsigned int numbytes;
7315 	handle_t *handle;
7316 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7317 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7318 	struct ocfs2_inline_data *idata = &di->id2.i_data;
7319 
7320 	if (end > i_size_read(inode))
7321 		end = i_size_read(inode);
7322 
7323 	BUG_ON(start >= end);
7324 
7325 	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7326 	    !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7327 	    !ocfs2_supports_inline_data(osb)) {
7328 		ocfs2_error(inode->i_sb,
7329 			    "Inline data flags for inode %llu don't agree! "
7330 			    "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7331 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
7332 			    le16_to_cpu(di->i_dyn_features),
7333 			    OCFS2_I(inode)->ip_dyn_features,
7334 			    osb->s_feature_incompat);
7335 		ret = -EROFS;
7336 		goto out;
7337 	}
7338 
7339 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7340 	if (IS_ERR(handle)) {
7341 		ret = PTR_ERR(handle);
7342 		mlog_errno(ret);
7343 		goto out;
7344 	}
7345 
7346 	ret = ocfs2_journal_access_di(handle, inode, di_bh,
7347 				      OCFS2_JOURNAL_ACCESS_WRITE);
7348 	if (ret) {
7349 		mlog_errno(ret);
7350 		goto out_commit;
7351 	}
7352 
7353 	numbytes = end - start;
7354 	memset(idata->id_data + start, 0, numbytes);
7355 
7356 	/*
7357 	 * No need to worry about the data page here - it's been
7358 	 * truncated already and inline data doesn't need it for
7359 	 * pushing zero's to disk, so we'll let readpage pick it up
7360 	 * later.
7361 	 */
7362 	if (trunc) {
7363 		i_size_write(inode, start);
7364 		di->i_size = cpu_to_le64(start);
7365 	}
7366 
7367 	inode->i_blocks = ocfs2_inode_sector_count(inode);
7368 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7369 
7370 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7371 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7372 
7373 	ocfs2_journal_dirty(handle, di_bh);
7374 
7375 out_commit:
7376 	ocfs2_commit_trans(osb, handle);
7377 
7378 out:
7379 	return ret;
7380 }
7381 
ocfs2_free_truncate_context(struct ocfs2_truncate_context * tc)7382 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7383 {
7384 	/*
7385 	 * The caller is responsible for completing deallocation
7386 	 * before freeing the context.
7387 	 */
7388 	if (tc->tc_dealloc.c_first_suballocator != NULL)
7389 		mlog(ML_NOTICE,
7390 		     "Truncate completion has non-empty dealloc context\n");
7391 
7392 	brelse(tc->tc_last_eb_bh);
7393 
7394 	kfree(tc);
7395 }
7396