• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/sizes.h>
23 #include <asm/tlb.h>
24 
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
27 
28 #include "mm.h"
29 
30 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
31 
32 /*
33  * empty_zero_page is a special page that is used for
34  * zero-initialized data and COW.
35  */
36 struct page *empty_zero_page;
37 EXPORT_SYMBOL(empty_zero_page);
38 
39 /*
40  * The pmd table for the upper-most set of pages.
41  */
42 pmd_t *top_pmd;
43 
44 #define CPOLICY_UNCACHED	0
45 #define CPOLICY_BUFFERED	1
46 #define CPOLICY_WRITETHROUGH	2
47 #define CPOLICY_WRITEBACK	3
48 #define CPOLICY_WRITEALLOC	4
49 
50 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
51 static unsigned int ecc_mask __initdata = 0;
52 pgprot_t pgprot_user;
53 pgprot_t pgprot_kernel;
54 
55 EXPORT_SYMBOL(pgprot_user);
56 EXPORT_SYMBOL(pgprot_kernel);
57 
58 struct cachepolicy {
59 	const char	policy[16];
60 	unsigned int	cr_mask;
61 	unsigned int	pmd;
62 	unsigned int	pte;
63 };
64 
65 static struct cachepolicy cache_policies[] __initdata = {
66 	{
67 		.policy		= "uncached",
68 		.cr_mask	= CR_W|CR_C,
69 		.pmd		= PMD_SECT_UNCACHED,
70 		.pte		= L_PTE_MT_UNCACHED,
71 	}, {
72 		.policy		= "buffered",
73 		.cr_mask	= CR_C,
74 		.pmd		= PMD_SECT_BUFFERED,
75 		.pte		= L_PTE_MT_BUFFERABLE,
76 	}, {
77 		.policy		= "writethrough",
78 		.cr_mask	= 0,
79 		.pmd		= PMD_SECT_WT,
80 		.pte		= L_PTE_MT_WRITETHROUGH,
81 	}, {
82 		.policy		= "writeback",
83 		.cr_mask	= 0,
84 		.pmd		= PMD_SECT_WB,
85 		.pte		= L_PTE_MT_WRITEBACK,
86 	}, {
87 		.policy		= "writealloc",
88 		.cr_mask	= 0,
89 		.pmd		= PMD_SECT_WBWA,
90 		.pte		= L_PTE_MT_WRITEALLOC,
91 	}
92 };
93 
94 /*
95  * These are useful for identifying cache coherency
96  * problems by allowing the cache or the cache and
97  * writebuffer to be turned off.  (Note: the write
98  * buffer should not be on and the cache off).
99  */
early_cachepolicy(char ** p)100 static void __init early_cachepolicy(char **p)
101 {
102 	int i;
103 
104 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
105 		int len = strlen(cache_policies[i].policy);
106 
107 		if (memcmp(*p, cache_policies[i].policy, len) == 0) {
108 			cachepolicy = i;
109 			cr_alignment &= ~cache_policies[i].cr_mask;
110 			cr_no_alignment &= ~cache_policies[i].cr_mask;
111 			*p += len;
112 			break;
113 		}
114 	}
115 	if (i == ARRAY_SIZE(cache_policies))
116 		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
117 	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
118 		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
119 		cachepolicy = CPOLICY_WRITEBACK;
120 	}
121 	flush_cache_all();
122 	set_cr(cr_alignment);
123 }
124 __early_param("cachepolicy=", early_cachepolicy);
125 
early_nocache(char ** __unused)126 static void __init early_nocache(char **__unused)
127 {
128 	char *p = "buffered";
129 	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
130 	early_cachepolicy(&p);
131 }
132 __early_param("nocache", early_nocache);
133 
early_nowrite(char ** __unused)134 static void __init early_nowrite(char **__unused)
135 {
136 	char *p = "uncached";
137 	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
138 	early_cachepolicy(&p);
139 }
140 __early_param("nowb", early_nowrite);
141 
early_ecc(char ** p)142 static void __init early_ecc(char **p)
143 {
144 	if (memcmp(*p, "on", 2) == 0) {
145 		ecc_mask = PMD_PROTECTION;
146 		*p += 2;
147 	} else if (memcmp(*p, "off", 3) == 0) {
148 		ecc_mask = 0;
149 		*p += 3;
150 	}
151 }
152 __early_param("ecc=", early_ecc);
153 
noalign_setup(char * __unused)154 static int __init noalign_setup(char *__unused)
155 {
156 	cr_alignment &= ~CR_A;
157 	cr_no_alignment &= ~CR_A;
158 	set_cr(cr_alignment);
159 	return 1;
160 }
161 __setup("noalign", noalign_setup);
162 
163 #ifndef CONFIG_SMP
adjust_cr(unsigned long mask,unsigned long set)164 void adjust_cr(unsigned long mask, unsigned long set)
165 {
166 	unsigned long flags;
167 
168 	mask &= ~CR_A;
169 
170 	set &= mask;
171 
172 	local_irq_save(flags);
173 
174 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
175 	cr_alignment = (cr_alignment & ~mask) | set;
176 
177 	set_cr((get_cr() & ~mask) | set);
178 
179 	local_irq_restore(flags);
180 }
181 #endif
182 
183 #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
184 #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
185 
186 static struct mem_type mem_types[] = {
187 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
188 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
189 				  L_PTE_SHARED,
190 		.prot_l1	= PMD_TYPE_TABLE,
191 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
192 		.domain		= DOMAIN_IO,
193 	},
194 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
195 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
196 		.prot_l1	= PMD_TYPE_TABLE,
197 		.prot_sect	= PROT_SECT_DEVICE,
198 		.domain		= DOMAIN_IO,
199 	},
200 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
201 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
202 		.prot_l1	= PMD_TYPE_TABLE,
203 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
204 		.domain		= DOMAIN_IO,
205 	},
206 	[MT_DEVICE_WC] = {	/* ioremap_wc */
207 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
208 		.prot_l1	= PMD_TYPE_TABLE,
209 		.prot_sect	= PROT_SECT_DEVICE,
210 		.domain		= DOMAIN_IO,
211 	},
212 	[MT_UNCACHED] = {
213 		.prot_pte	= PROT_PTE_DEVICE,
214 		.prot_l1	= PMD_TYPE_TABLE,
215 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
216 		.domain		= DOMAIN_IO,
217 	},
218 	[MT_CACHECLEAN] = {
219 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
220 		.domain    = DOMAIN_KERNEL,
221 	},
222 	[MT_MINICLEAN] = {
223 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
224 		.domain    = DOMAIN_KERNEL,
225 	},
226 	[MT_LOW_VECTORS] = {
227 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
228 				L_PTE_EXEC,
229 		.prot_l1   = PMD_TYPE_TABLE,
230 		.domain    = DOMAIN_USER,
231 	},
232 	[MT_HIGH_VECTORS] = {
233 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
234 				L_PTE_USER | L_PTE_EXEC,
235 		.prot_l1   = PMD_TYPE_TABLE,
236 		.domain    = DOMAIN_USER,
237 	},
238 	[MT_MEMORY] = {
239 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
240 		.domain    = DOMAIN_KERNEL,
241 	},
242 	[MT_ROM] = {
243 		.prot_sect = PMD_TYPE_SECT,
244 		.domain    = DOMAIN_KERNEL,
245 	},
246 };
247 
get_mem_type(unsigned int type)248 const struct mem_type *get_mem_type(unsigned int type)
249 {
250 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
251 }
252 
253 /*
254  * Adjust the PMD section entries according to the CPU in use.
255  */
build_mem_type_table(void)256 static void __init build_mem_type_table(void)
257 {
258 	struct cachepolicy *cp;
259 	unsigned int cr = get_cr();
260 	unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
261 	int cpu_arch = cpu_architecture();
262 	int i;
263 
264 	if (cpu_arch < CPU_ARCH_ARMv6) {
265 #if defined(CONFIG_CPU_DCACHE_DISABLE)
266 		if (cachepolicy > CPOLICY_BUFFERED)
267 			cachepolicy = CPOLICY_BUFFERED;
268 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
269 		if (cachepolicy > CPOLICY_WRITETHROUGH)
270 			cachepolicy = CPOLICY_WRITETHROUGH;
271 #endif
272 	}
273 	if (cpu_arch < CPU_ARCH_ARMv5) {
274 		if (cachepolicy >= CPOLICY_WRITEALLOC)
275 			cachepolicy = CPOLICY_WRITEBACK;
276 		ecc_mask = 0;
277 	}
278 #ifdef CONFIG_SMP
279 	cachepolicy = CPOLICY_WRITEALLOC;
280 #endif
281 
282 	/*
283 	 * Strip out features not present on earlier architectures.
284 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
285 	 * without extended page tables don't have the 'Shared' bit.
286 	 */
287 	if (cpu_arch < CPU_ARCH_ARMv5)
288 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
289 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
290 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
291 		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
292 			mem_types[i].prot_sect &= ~PMD_SECT_S;
293 
294 	/*
295 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
296 	 * "update-able on write" bit on ARM610).  However, Xscale and
297 	 * Xscale3 require this bit to be cleared.
298 	 */
299 	if (cpu_is_xscale() || cpu_is_xsc3()) {
300 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
301 			mem_types[i].prot_sect &= ~PMD_BIT4;
302 			mem_types[i].prot_l1 &= ~PMD_BIT4;
303 		}
304 	} else if (cpu_arch < CPU_ARCH_ARMv6) {
305 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
306 			if (mem_types[i].prot_l1)
307 				mem_types[i].prot_l1 |= PMD_BIT4;
308 			if (mem_types[i].prot_sect)
309 				mem_types[i].prot_sect |= PMD_BIT4;
310 		}
311 	}
312 
313 	/*
314 	 * Mark the device areas according to the CPU/architecture.
315 	 */
316 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
317 		if (!cpu_is_xsc3()) {
318 			/*
319 			 * Mark device regions on ARMv6+ as execute-never
320 			 * to prevent speculative instruction fetches.
321 			 */
322 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
323 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
324 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
325 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
326 		}
327 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
328 			/*
329 			 * For ARMv7 with TEX remapping,
330 			 * - shared device is SXCB=1100
331 			 * - nonshared device is SXCB=0100
332 			 * - write combine device mem is SXCB=0001
333 			 * (Uncached Normal memory)
334 			 */
335 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
336 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
337 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
338 		} else if (cpu_is_xsc3()) {
339 			/*
340 			 * For Xscale3,
341 			 * - shared device is TEXCB=00101
342 			 * - nonshared device is TEXCB=01000
343 			 * - write combine device mem is TEXCB=00100
344 			 * (Inner/Outer Uncacheable in xsc3 parlance)
345 			 */
346 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
347 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
348 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
349 		} else {
350 			/*
351 			 * For ARMv6 and ARMv7 without TEX remapping,
352 			 * - shared device is TEXCB=00001
353 			 * - nonshared device is TEXCB=01000
354 			 * - write combine device mem is TEXCB=00100
355 			 * (Uncached Normal in ARMv6 parlance).
356 			 */
357 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
358 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
359 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
360 		}
361 	} else {
362 		/*
363 		 * On others, write combining is "Uncached/Buffered"
364 		 */
365 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
366 	}
367 
368 	/*
369 	 * Now deal with the memory-type mappings
370 	 */
371 	cp = &cache_policies[cachepolicy];
372 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
373 
374 #ifndef CONFIG_SMP
375 	/*
376 	 * Only use write-through for non-SMP systems
377 	 */
378 	if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
379 		vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
380 #endif
381 
382 	/*
383 	 * Enable CPU-specific coherency if supported.
384 	 * (Only available on XSC3 at the moment.)
385 	 */
386 	if (arch_is_coherent() && cpu_is_xsc3())
387 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
388 
389 	/*
390 	 * ARMv6 and above have extended page tables.
391 	 */
392 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
393 		/*
394 		 * Mark cache clean areas and XIP ROM read only
395 		 * from SVC mode and no access from userspace.
396 		 */
397 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
398 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
399 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
400 
401 #ifdef CONFIG_SMP
402 		/*
403 		 * Mark memory with the "shared" attribute for SMP systems
404 		 */
405 		user_pgprot |= L_PTE_SHARED;
406 		kern_pgprot |= L_PTE_SHARED;
407 		vecs_pgprot |= L_PTE_SHARED;
408 		mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
409 #endif
410 	}
411 
412 	for (i = 0; i < 16; i++) {
413 		unsigned long v = pgprot_val(protection_map[i]);
414 		protection_map[i] = __pgprot(v | user_pgprot);
415 	}
416 
417 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
418 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
419 
420 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
421 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
422 				 L_PTE_DIRTY | L_PTE_WRITE |
423 				 L_PTE_EXEC | kern_pgprot);
424 
425 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
426 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
427 	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
428 	mem_types[MT_ROM].prot_sect |= cp->pmd;
429 
430 	switch (cp->pmd) {
431 	case PMD_SECT_WT:
432 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
433 		break;
434 	case PMD_SECT_WB:
435 	case PMD_SECT_WBWA:
436 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
437 		break;
438 	}
439 	printk("Memory policy: ECC %sabled, Data cache %s\n",
440 		ecc_mask ? "en" : "dis", cp->policy);
441 
442 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
443 		struct mem_type *t = &mem_types[i];
444 		if (t->prot_l1)
445 			t->prot_l1 |= PMD_DOMAIN(t->domain);
446 		if (t->prot_sect)
447 			t->prot_sect |= PMD_DOMAIN(t->domain);
448 	}
449 }
450 
451 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
452 
alloc_init_pte(pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,const struct mem_type * type)453 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
454 				  unsigned long end, unsigned long pfn,
455 				  const struct mem_type *type)
456 {
457 	pte_t *pte;
458 
459 	if (pmd_none(*pmd)) {
460 		pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
461 		__pmd_populate(pmd, __pa(pte) | type->prot_l1);
462 	}
463 
464 	pte = pte_offset_kernel(pmd, addr);
465 	do {
466 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
467 		pfn++;
468 	} while (pte++, addr += PAGE_SIZE, addr != end);
469 }
470 
alloc_init_section(pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long phys,const struct mem_type * type)471 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
472 				      unsigned long end, unsigned long phys,
473 				      const struct mem_type *type)
474 {
475 	pmd_t *pmd = pmd_offset(pgd, addr);
476 
477 	/*
478 	 * Try a section mapping - end, addr and phys must all be aligned
479 	 * to a section boundary.  Note that PMDs refer to the individual
480 	 * L1 entries, whereas PGDs refer to a group of L1 entries making
481 	 * up one logical pointer to an L2 table.
482 	 */
483 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
484 		pmd_t *p = pmd;
485 
486 		if (addr & SECTION_SIZE)
487 			pmd++;
488 
489 		do {
490 			*pmd = __pmd(phys | type->prot_sect);
491 			phys += SECTION_SIZE;
492 		} while (pmd++, addr += SECTION_SIZE, addr != end);
493 
494 		flush_pmd_entry(p);
495 	} else {
496 		/*
497 		 * No need to loop; pte's aren't interested in the
498 		 * individual L1 entries.
499 		 */
500 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
501 	}
502 }
503 
create_36bit_mapping(struct map_desc * md,const struct mem_type * type)504 static void __init create_36bit_mapping(struct map_desc *md,
505 					const struct mem_type *type)
506 {
507 	unsigned long phys, addr, length, end;
508 	pgd_t *pgd;
509 
510 	addr = md->virtual;
511 	phys = (unsigned long)__pfn_to_phys(md->pfn);
512 	length = PAGE_ALIGN(md->length);
513 
514 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
515 		printk(KERN_ERR "MM: CPU does not support supersection "
516 		       "mapping for 0x%08llx at 0x%08lx\n",
517 		       __pfn_to_phys((u64)md->pfn), addr);
518 		return;
519 	}
520 
521 	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
522 	 *	Since domain assignments can in fact be arbitrary, the
523 	 *	'domain == 0' check below is required to insure that ARMv6
524 	 *	supersections are only allocated for domain 0 regardless
525 	 *	of the actual domain assignments in use.
526 	 */
527 	if (type->domain) {
528 		printk(KERN_ERR "MM: invalid domain in supersection "
529 		       "mapping for 0x%08llx at 0x%08lx\n",
530 		       __pfn_to_phys((u64)md->pfn), addr);
531 		return;
532 	}
533 
534 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
535 		printk(KERN_ERR "MM: cannot create mapping for "
536 		       "0x%08llx at 0x%08lx invalid alignment\n",
537 		       __pfn_to_phys((u64)md->pfn), addr);
538 		return;
539 	}
540 
541 	/*
542 	 * Shift bits [35:32] of address into bits [23:20] of PMD
543 	 * (See ARMv6 spec).
544 	 */
545 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
546 
547 	pgd = pgd_offset_k(addr);
548 	end = addr + length;
549 	do {
550 		pmd_t *pmd = pmd_offset(pgd, addr);
551 		int i;
552 
553 		for (i = 0; i < 16; i++)
554 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
555 
556 		addr += SUPERSECTION_SIZE;
557 		phys += SUPERSECTION_SIZE;
558 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
559 	} while (addr != end);
560 }
561 
562 /*
563  * Create the page directory entries and any necessary
564  * page tables for the mapping specified by `md'.  We
565  * are able to cope here with varying sizes and address
566  * offsets, and we take full advantage of sections and
567  * supersections.
568  */
create_mapping(struct map_desc * md)569 void __init create_mapping(struct map_desc *md)
570 {
571 	unsigned long phys, addr, length, end;
572 	const struct mem_type *type;
573 	pgd_t *pgd;
574 
575 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
576 		printk(KERN_WARNING "BUG: not creating mapping for "
577 		       "0x%08llx at 0x%08lx in user region\n",
578 		       __pfn_to_phys((u64)md->pfn), md->virtual);
579 		return;
580 	}
581 
582 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
583 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
584 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
585 		       "overlaps vmalloc space\n",
586 		       __pfn_to_phys((u64)md->pfn), md->virtual);
587 	}
588 
589 	type = &mem_types[md->type];
590 
591 	/*
592 	 * Catch 36-bit addresses
593 	 */
594 	if (md->pfn >= 0x100000) {
595 		create_36bit_mapping(md, type);
596 		return;
597 	}
598 
599 	addr = md->virtual & PAGE_MASK;
600 	phys = (unsigned long)__pfn_to_phys(md->pfn);
601 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
602 
603 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
604 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
605 		       "be mapped using pages, ignoring.\n",
606 		       __pfn_to_phys(md->pfn), addr);
607 		return;
608 	}
609 
610 	pgd = pgd_offset_k(addr);
611 	end = addr + length;
612 	do {
613 		unsigned long next = pgd_addr_end(addr, end);
614 
615 		alloc_init_section(pgd, addr, next, phys, type);
616 
617 		phys += next - addr;
618 		addr = next;
619 	} while (pgd++, addr != end);
620 }
621 
622 /*
623  * Create the architecture specific mappings
624  */
iotable_init(struct map_desc * io_desc,int nr)625 void __init iotable_init(struct map_desc *io_desc, int nr)
626 {
627 	int i;
628 
629 	for (i = 0; i < nr; i++)
630 		create_mapping(io_desc + i);
631 }
632 
633 static unsigned long __initdata vmalloc_reserve = SZ_128M;
634 
635 /*
636  * vmalloc=size forces the vmalloc area to be exactly 'size'
637  * bytes. This can be used to increase (or decrease) the vmalloc
638  * area - the default is 128m.
639  */
early_vmalloc(char ** arg)640 static void __init early_vmalloc(char **arg)
641 {
642 	vmalloc_reserve = memparse(*arg, arg);
643 
644 	if (vmalloc_reserve < SZ_16M) {
645 		vmalloc_reserve = SZ_16M;
646 		printk(KERN_WARNING
647 			"vmalloc area too small, limiting to %luMB\n",
648 			vmalloc_reserve >> 20);
649 	}
650 
651 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
652 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
653 		printk(KERN_WARNING
654 			"vmalloc area is too big, limiting to %luMB\n",
655 			vmalloc_reserve >> 20);
656 	}
657 }
658 __early_param("vmalloc=", early_vmalloc);
659 
660 #define VMALLOC_MIN	(void *)(VMALLOC_END - vmalloc_reserve)
661 
sanity_check_meminfo(void)662 static void __init sanity_check_meminfo(void)
663 {
664 	int i, j;
665 
666 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
667 		struct membank *bank = &meminfo.bank[j];
668 		*bank = meminfo.bank[i];
669 
670 #ifdef CONFIG_HIGHMEM
671 		/*
672 		 * Split those memory banks which are partially overlapping
673 		 * the vmalloc area greatly simplifying things later.
674 		 */
675 		if (__va(bank->start) < VMALLOC_MIN &&
676 		    bank->size > VMALLOC_MIN - __va(bank->start)) {
677 			if (meminfo.nr_banks >= NR_BANKS) {
678 				printk(KERN_CRIT "NR_BANKS too low, "
679 						 "ignoring high memory\n");
680 			} else {
681 				memmove(bank + 1, bank,
682 					(meminfo.nr_banks - i) * sizeof(*bank));
683 				meminfo.nr_banks++;
684 				i++;
685 				bank[1].size -= VMALLOC_MIN - __va(bank->start);
686 				bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
687 				j++;
688 			}
689 			bank->size = VMALLOC_MIN - __va(bank->start);
690 		}
691 #else
692 		/*
693 		 * Check whether this memory bank would entirely overlap
694 		 * the vmalloc area.
695 		 */
696 		if (__va(bank->start) >= VMALLOC_MIN ||
697 		    __va(bank->start) < PAGE_OFFSET) {
698 			printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
699 			       "(vmalloc region overlap).\n",
700 			       bank->start, bank->start + bank->size - 1);
701 			continue;
702 		}
703 
704 		/*
705 		 * Check whether this memory bank would partially overlap
706 		 * the vmalloc area.
707 		 */
708 		if (__va(bank->start + bank->size) > VMALLOC_MIN ||
709 		    __va(bank->start + bank->size) < __va(bank->start)) {
710 			unsigned long newsize = VMALLOC_MIN - __va(bank->start);
711 			printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
712 			       "to -%.8lx (vmalloc region overlap).\n",
713 			       bank->start, bank->start + bank->size - 1,
714 			       bank->start + newsize - 1);
715 			bank->size = newsize;
716 		}
717 #endif
718 		j++;
719 	}
720 	meminfo.nr_banks = j;
721 }
722 
prepare_page_table(void)723 static inline void prepare_page_table(void)
724 {
725 	unsigned long addr;
726 
727 	/*
728 	 * Clear out all the mappings below the kernel image.
729 	 */
730 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
731 		pmd_clear(pmd_off_k(addr));
732 
733 #ifdef CONFIG_XIP_KERNEL
734 	/* The XIP kernel is mapped in the module area -- skip over it */
735 	addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
736 #endif
737 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
738 		pmd_clear(pmd_off_k(addr));
739 
740 	/*
741 	 * Clear out all the kernel space mappings, except for the first
742 	 * memory bank, up to the end of the vmalloc region.
743 	 */
744 	for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
745 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
746 		pmd_clear(pmd_off_k(addr));
747 }
748 
749 /*
750  * Reserve the various regions of node 0
751  */
reserve_node_zero(pg_data_t * pgdat)752 void __init reserve_node_zero(pg_data_t *pgdat)
753 {
754 	unsigned long res_size = 0;
755 
756 	/*
757 	 * Register the kernel text and data with bootmem.
758 	 * Note that this can only be in node 0.
759 	 */
760 #ifdef CONFIG_XIP_KERNEL
761 	reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
762 			BOOTMEM_DEFAULT);
763 #else
764 	reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
765 			BOOTMEM_DEFAULT);
766 #endif
767 
768 	/*
769 	 * Reserve the page tables.  These are already in use,
770 	 * and can only be in node 0.
771 	 */
772 	reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
773 			     PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
774 
775 	/*
776 	 * Hmm... This should go elsewhere, but we really really need to
777 	 * stop things allocating the low memory; ideally we need a better
778 	 * implementation of GFP_DMA which does not assume that DMA-able
779 	 * memory starts at zero.
780 	 */
781 	if (machine_is_integrator() || machine_is_cintegrator())
782 		res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
783 
784 	/*
785 	 * These should likewise go elsewhere.  They pre-reserve the
786 	 * screen memory region at the start of main system memory.
787 	 */
788 	if (machine_is_edb7211())
789 		res_size = 0x00020000;
790 	if (machine_is_p720t())
791 		res_size = 0x00014000;
792 
793 	/* H1940 and RX3715 need to reserve this for suspend */
794 
795 	if (machine_is_h1940() || machine_is_rx3715()) {
796 		reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
797 				BOOTMEM_DEFAULT);
798 		reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
799 				BOOTMEM_DEFAULT);
800 	}
801 
802 #ifdef CONFIG_SA1111
803 	/*
804 	 * Because of the SA1111 DMA bug, we want to preserve our
805 	 * precious DMA-able memory...
806 	 */
807 	res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
808 #endif
809 	if (res_size)
810 		reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
811 				BOOTMEM_DEFAULT);
812 }
813 
814 /*
815  * Set up device the mappings.  Since we clear out the page tables for all
816  * mappings above VMALLOC_END, we will remove any debug device mappings.
817  * This means you have to be careful how you debug this function, or any
818  * called function.  This means you can't use any function or debugging
819  * method which may touch any device, otherwise the kernel _will_ crash.
820  */
devicemaps_init(struct machine_desc * mdesc)821 static void __init devicemaps_init(struct machine_desc *mdesc)
822 {
823 	struct map_desc map;
824 	unsigned long addr;
825 	void *vectors;
826 
827 	/*
828 	 * Allocate the vector page early.
829 	 */
830 	vectors = alloc_bootmem_low_pages(PAGE_SIZE);
831 
832 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
833 		pmd_clear(pmd_off_k(addr));
834 
835 	/*
836 	 * Map the kernel if it is XIP.
837 	 * It is always first in the modulearea.
838 	 */
839 #ifdef CONFIG_XIP_KERNEL
840 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
841 	map.virtual = MODULES_VADDR;
842 	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
843 	map.type = MT_ROM;
844 	create_mapping(&map);
845 #endif
846 
847 	/*
848 	 * Map the cache flushing regions.
849 	 */
850 #ifdef FLUSH_BASE
851 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
852 	map.virtual = FLUSH_BASE;
853 	map.length = SZ_1M;
854 	map.type = MT_CACHECLEAN;
855 	create_mapping(&map);
856 #endif
857 #ifdef FLUSH_BASE_MINICACHE
858 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
859 	map.virtual = FLUSH_BASE_MINICACHE;
860 	map.length = SZ_1M;
861 	map.type = MT_MINICLEAN;
862 	create_mapping(&map);
863 #endif
864 
865 	/*
866 	 * Create a mapping for the machine vectors at the high-vectors
867 	 * location (0xffff0000).  If we aren't using high-vectors, also
868 	 * create a mapping at the low-vectors virtual address.
869 	 */
870 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
871 	map.virtual = 0xffff0000;
872 	map.length = PAGE_SIZE;
873 	map.type = MT_HIGH_VECTORS;
874 	create_mapping(&map);
875 
876 	if (!vectors_high()) {
877 		map.virtual = 0;
878 		map.type = MT_LOW_VECTORS;
879 		create_mapping(&map);
880 	}
881 
882 	/*
883 	 * Ask the machine support to map in the statically mapped devices.
884 	 */
885 	if (mdesc->map_io)
886 		mdesc->map_io();
887 
888 	/*
889 	 * Finally flush the caches and tlb to ensure that we're in a
890 	 * consistent state wrt the writebuffer.  This also ensures that
891 	 * any write-allocated cache lines in the vector page are written
892 	 * back.  After this point, we can start to touch devices again.
893 	 */
894 	local_flush_tlb_all();
895 	flush_cache_all();
896 }
897 
898 /*
899  * paging_init() sets up the page tables, initialises the zone memory
900  * maps, and sets up the zero page, bad page and bad page tables.
901  */
paging_init(struct machine_desc * mdesc)902 void __init paging_init(struct machine_desc *mdesc)
903 {
904 	void *zero_page;
905 
906 	build_mem_type_table();
907 	sanity_check_meminfo();
908 	prepare_page_table();
909 	bootmem_init();
910 	devicemaps_init(mdesc);
911 
912 	top_pmd = pmd_off_k(0xffff0000);
913 
914 	/*
915 	 * allocate the zero page.  Note that this always succeeds and
916 	 * returns a zeroed result.
917 	 */
918 	zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
919 	empty_zero_page = virt_to_page(zero_page);
920 	flush_dcache_page(empty_zero_page);
921 }
922 
923 /*
924  * In order to soft-boot, we need to insert a 1:1 mapping in place of
925  * the user-mode pages.  This will then ensure that we have predictable
926  * results when turning the mmu off
927  */
setup_mm_for_reboot(char mode)928 void setup_mm_for_reboot(char mode)
929 {
930 	unsigned long base_pmdval;
931 	pgd_t *pgd;
932 	int i;
933 
934 	if (current->mm && current->mm->pgd)
935 		pgd = current->mm->pgd;
936 	else
937 		pgd = init_mm.pgd;
938 
939 	base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
940 	if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
941 		base_pmdval |= PMD_BIT4;
942 
943 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
944 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
945 		pmd_t *pmd;
946 
947 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
948 		pmd[0] = __pmd(pmdval);
949 		pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
950 		flush_pmd_entry(pmd);
951 	}
952 }
953