• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  *
27  * Authors:
28  *   Sheng Yang <sheng.yang@intel.com>
29  *   Based on QEMU and Xen.
30  */
31 
32 #include <linux/kvm_host.h>
33 
34 #include "irq.h"
35 #include "i8254.h"
36 
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42 
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47 
48 /* Compute with 96 bit intermediate result: (a*b)/c */
muldiv64(u64 a,u32 b,u32 c)49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51 	union {
52 		u64 ll;
53 		struct {
54 			u32 low, high;
55 		} l;
56 	} u, res;
57 	u64 rl, rh;
58 
59 	u.ll = a;
60 	rl = (u64)u.l.low * (u64)b;
61 	rh = (u64)u.l.high * (u64)b;
62 	rh += (rl >> 32);
63 	res.l.high = div64_u64(rh, c);
64 	res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 	return res.ll;
66 }
67 
pit_set_gate(struct kvm * kvm,int channel,u32 val)68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70 	struct kvm_kpit_channel_state *c =
71 		&kvm->arch.vpit->pit_state.channels[channel];
72 
73 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74 
75 	switch (c->mode) {
76 	default:
77 	case 0:
78 	case 4:
79 		/* XXX: just disable/enable counting */
80 		break;
81 	case 1:
82 	case 2:
83 	case 3:
84 	case 5:
85 		/* Restart counting on rising edge. */
86 		if (c->gate < val)
87 			c->count_load_time = ktime_get();
88 		break;
89 	}
90 
91 	c->gate = val;
92 }
93 
pit_get_gate(struct kvm * kvm,int channel)94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97 
98 	return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100 
pit_get_count(struct kvm * kvm,int channel)101 static int pit_get_count(struct kvm *kvm, int channel)
102 {
103 	struct kvm_kpit_channel_state *c =
104 		&kvm->arch.vpit->pit_state.channels[channel];
105 	s64 d, t;
106 	int counter;
107 
108 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109 
110 	t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112 
113 	switch (c->mode) {
114 	case 0:
115 	case 1:
116 	case 4:
117 	case 5:
118 		counter = (c->count - d) & 0xffff;
119 		break;
120 	case 3:
121 		/* XXX: may be incorrect for odd counts */
122 		counter = c->count - (mod_64((2 * d), c->count));
123 		break;
124 	default:
125 		counter = c->count - mod_64(d, c->count);
126 		break;
127 	}
128 	return counter;
129 }
130 
pit_get_out(struct kvm * kvm,int channel)131 static int pit_get_out(struct kvm *kvm, int channel)
132 {
133 	struct kvm_kpit_channel_state *c =
134 		&kvm->arch.vpit->pit_state.channels[channel];
135 	s64 d, t;
136 	int out;
137 
138 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139 
140 	t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141 	d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142 
143 	switch (c->mode) {
144 	default:
145 	case 0:
146 		out = (d >= c->count);
147 		break;
148 	case 1:
149 		out = (d < c->count);
150 		break;
151 	case 2:
152 		out = ((mod_64(d, c->count) == 0) && (d != 0));
153 		break;
154 	case 3:
155 		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156 		break;
157 	case 4:
158 	case 5:
159 		out = (d == c->count);
160 		break;
161 	}
162 
163 	return out;
164 }
165 
pit_latch_count(struct kvm * kvm,int channel)166 static void pit_latch_count(struct kvm *kvm, int channel)
167 {
168 	struct kvm_kpit_channel_state *c =
169 		&kvm->arch.vpit->pit_state.channels[channel];
170 
171 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172 
173 	if (!c->count_latched) {
174 		c->latched_count = pit_get_count(kvm, channel);
175 		c->count_latched = c->rw_mode;
176 	}
177 }
178 
pit_latch_status(struct kvm * kvm,int channel)179 static void pit_latch_status(struct kvm *kvm, int channel)
180 {
181 	struct kvm_kpit_channel_state *c =
182 		&kvm->arch.vpit->pit_state.channels[channel];
183 
184 	WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185 
186 	if (!c->status_latched) {
187 		/* TODO: Return NULL COUNT (bit 6). */
188 		c->status = ((pit_get_out(kvm, channel) << 7) |
189 				(c->rw_mode << 4) |
190 				(c->mode << 1) |
191 				c->bcd);
192 		c->status_latched = 1;
193 	}
194 }
195 
__pit_timer_fn(struct kvm_kpit_state * ps)196 static int __pit_timer_fn(struct kvm_kpit_state *ps)
197 {
198 	struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199 	struct kvm_kpit_timer *pt = &ps->pit_timer;
200 
201 	if (!atomic_inc_and_test(&pt->pending))
202 		set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
203 
204 	if (vcpu0 && waitqueue_active(&vcpu0->wq))
205 		wake_up_interruptible(&vcpu0->wq);
206 
207 	hrtimer_add_expires_ns(&pt->timer, pt->period);
208 	pt->scheduled = hrtimer_get_expires_ns(&pt->timer);
209 	if (pt->period)
210 		ps->channels[0].count_load_time = ktime_get();
211 
212 	return (pt->period == 0 ? 0 : 1);
213 }
214 
pit_has_pending_timer(struct kvm_vcpu * vcpu)215 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
216 {
217 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
218 
219 	if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
220 		return atomic_read(&pit->pit_state.pit_timer.pending);
221 	return 0;
222 }
223 
kvm_pit_ack_irq(struct kvm_irq_ack_notifier * kian)224 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
225 {
226 	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
227 						 irq_ack_notifier);
228 	spin_lock(&ps->inject_lock);
229 	if (atomic_dec_return(&ps->pit_timer.pending) < 0)
230 		atomic_inc(&ps->pit_timer.pending);
231 	ps->irq_ack = 1;
232 	spin_unlock(&ps->inject_lock);
233 }
234 
pit_timer_fn(struct hrtimer * data)235 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
236 {
237 	struct kvm_kpit_state *ps;
238 	int restart_timer = 0;
239 
240 	ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
241 
242 	restart_timer = __pit_timer_fn(ps);
243 
244 	if (restart_timer)
245 		return HRTIMER_RESTART;
246 	else
247 		return HRTIMER_NORESTART;
248 }
249 
__kvm_migrate_pit_timer(struct kvm_vcpu * vcpu)250 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
251 {
252 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
253 	struct hrtimer *timer;
254 
255 	if (vcpu->vcpu_id != 0 || !pit)
256 		return;
257 
258 	timer = &pit->pit_state.pit_timer.timer;
259 	if (hrtimer_cancel(timer))
260 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
261 }
262 
destroy_pit_timer(struct kvm_kpit_timer * pt)263 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
264 {
265 	pr_debug("pit: execute del timer!\n");
266 	hrtimer_cancel(&pt->timer);
267 }
268 
create_pit_timer(struct kvm_kpit_state * ps,u32 val,int is_period)269 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
270 {
271 	struct kvm_kpit_timer *pt = &ps->pit_timer;
272 	s64 interval;
273 
274 	interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
275 
276 	pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
277 
278 	/* TODO The new value only affected after the retriggered */
279 	hrtimer_cancel(&pt->timer);
280 	pt->period = (is_period == 0) ? 0 : interval;
281 	pt->timer.function = pit_timer_fn;
282 	atomic_set(&pt->pending, 0);
283 	ps->irq_ack = 1;
284 
285 	hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
286 		      HRTIMER_MODE_ABS);
287 }
288 
pit_load_count(struct kvm * kvm,int channel,u32 val)289 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
290 {
291 	struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
292 
293 	WARN_ON(!mutex_is_locked(&ps->lock));
294 
295 	pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
296 
297 	/*
298 	 * Though spec said the state of 8254 is undefined after power-up,
299 	 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
300 	 * when booting up.
301 	 * So here setting initialize rate for it, and not a specific number
302 	 */
303 	if (val == 0)
304 		val = 0x10000;
305 
306 	ps->channels[channel].count_load_time = ktime_get();
307 	ps->channels[channel].count = val;
308 
309 	if (channel != 0)
310 		return;
311 
312 	/* Two types of timer
313 	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
314 	switch (ps->channels[0].mode) {
315 	case 1:
316         /* FIXME: enhance mode 4 precision */
317 	case 4:
318 		create_pit_timer(ps, val, 0);
319 		break;
320 	case 2:
321 	case 3:
322 		create_pit_timer(ps, val, 1);
323 		break;
324 	default:
325 		destroy_pit_timer(&ps->pit_timer);
326 	}
327 }
328 
kvm_pit_load_count(struct kvm * kvm,int channel,u32 val)329 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
330 {
331 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
332 	pit_load_count(kvm, channel, val);
333 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
334 }
335 
pit_ioport_write(struct kvm_io_device * this,gpa_t addr,int len,const void * data)336 static void pit_ioport_write(struct kvm_io_device *this,
337 			     gpa_t addr, int len, const void *data)
338 {
339 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
340 	struct kvm_kpit_state *pit_state = &pit->pit_state;
341 	struct kvm *kvm = pit->kvm;
342 	int channel, access;
343 	struct kvm_kpit_channel_state *s;
344 	u32 val = *(u32 *) data;
345 
346 	val  &= 0xff;
347 	addr &= KVM_PIT_CHANNEL_MASK;
348 
349 	mutex_lock(&pit_state->lock);
350 
351 	if (val != 0)
352 		pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
353 			  (unsigned int)addr, len, val);
354 
355 	if (addr == 3) {
356 		channel = val >> 6;
357 		if (channel == 3) {
358 			/* Read-Back Command. */
359 			for (channel = 0; channel < 3; channel++) {
360 				s = &pit_state->channels[channel];
361 				if (val & (2 << channel)) {
362 					if (!(val & 0x20))
363 						pit_latch_count(kvm, channel);
364 					if (!(val & 0x10))
365 						pit_latch_status(kvm, channel);
366 				}
367 			}
368 		} else {
369 			/* Select Counter <channel>. */
370 			s = &pit_state->channels[channel];
371 			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
372 			if (access == 0) {
373 				pit_latch_count(kvm, channel);
374 			} else {
375 				s->rw_mode = access;
376 				s->read_state = access;
377 				s->write_state = access;
378 				s->mode = (val >> 1) & 7;
379 				if (s->mode > 5)
380 					s->mode -= 4;
381 				s->bcd = val & 1;
382 			}
383 		}
384 	} else {
385 		/* Write Count. */
386 		s = &pit_state->channels[addr];
387 		switch (s->write_state) {
388 		default:
389 		case RW_STATE_LSB:
390 			pit_load_count(kvm, addr, val);
391 			break;
392 		case RW_STATE_MSB:
393 			pit_load_count(kvm, addr, val << 8);
394 			break;
395 		case RW_STATE_WORD0:
396 			s->write_latch = val;
397 			s->write_state = RW_STATE_WORD1;
398 			break;
399 		case RW_STATE_WORD1:
400 			pit_load_count(kvm, addr, s->write_latch | (val << 8));
401 			s->write_state = RW_STATE_WORD0;
402 			break;
403 		}
404 	}
405 
406 	mutex_unlock(&pit_state->lock);
407 }
408 
pit_ioport_read(struct kvm_io_device * this,gpa_t addr,int len,void * data)409 static void pit_ioport_read(struct kvm_io_device *this,
410 			    gpa_t addr, int len, void *data)
411 {
412 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
413 	struct kvm_kpit_state *pit_state = &pit->pit_state;
414 	struct kvm *kvm = pit->kvm;
415 	int ret, count;
416 	struct kvm_kpit_channel_state *s;
417 
418 	addr &= KVM_PIT_CHANNEL_MASK;
419 	s = &pit_state->channels[addr];
420 
421 	mutex_lock(&pit_state->lock);
422 
423 	if (s->status_latched) {
424 		s->status_latched = 0;
425 		ret = s->status;
426 	} else if (s->count_latched) {
427 		switch (s->count_latched) {
428 		default:
429 		case RW_STATE_LSB:
430 			ret = s->latched_count & 0xff;
431 			s->count_latched = 0;
432 			break;
433 		case RW_STATE_MSB:
434 			ret = s->latched_count >> 8;
435 			s->count_latched = 0;
436 			break;
437 		case RW_STATE_WORD0:
438 			ret = s->latched_count & 0xff;
439 			s->count_latched = RW_STATE_MSB;
440 			break;
441 		}
442 	} else {
443 		switch (s->read_state) {
444 		default:
445 		case RW_STATE_LSB:
446 			count = pit_get_count(kvm, addr);
447 			ret = count & 0xff;
448 			break;
449 		case RW_STATE_MSB:
450 			count = pit_get_count(kvm, addr);
451 			ret = (count >> 8) & 0xff;
452 			break;
453 		case RW_STATE_WORD0:
454 			count = pit_get_count(kvm, addr);
455 			ret = count & 0xff;
456 			s->read_state = RW_STATE_WORD1;
457 			break;
458 		case RW_STATE_WORD1:
459 			count = pit_get_count(kvm, addr);
460 			ret = (count >> 8) & 0xff;
461 			s->read_state = RW_STATE_WORD0;
462 			break;
463 		}
464 	}
465 
466 	if (len > sizeof(ret))
467 		len = sizeof(ret);
468 	memcpy(data, (char *)&ret, len);
469 
470 	mutex_unlock(&pit_state->lock);
471 }
472 
pit_in_range(struct kvm_io_device * this,gpa_t addr,int len,int is_write)473 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
474 			int len, int is_write)
475 {
476 	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
477 		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
478 }
479 
speaker_ioport_write(struct kvm_io_device * this,gpa_t addr,int len,const void * data)480 static void speaker_ioport_write(struct kvm_io_device *this,
481 				 gpa_t addr, int len, const void *data)
482 {
483 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
484 	struct kvm_kpit_state *pit_state = &pit->pit_state;
485 	struct kvm *kvm = pit->kvm;
486 	u32 val = *(u32 *) data;
487 
488 	mutex_lock(&pit_state->lock);
489 	pit_state->speaker_data_on = (val >> 1) & 1;
490 	pit_set_gate(kvm, 2, val & 1);
491 	mutex_unlock(&pit_state->lock);
492 }
493 
speaker_ioport_read(struct kvm_io_device * this,gpa_t addr,int len,void * data)494 static void speaker_ioport_read(struct kvm_io_device *this,
495 				gpa_t addr, int len, void *data)
496 {
497 	struct kvm_pit *pit = (struct kvm_pit *)this->private;
498 	struct kvm_kpit_state *pit_state = &pit->pit_state;
499 	struct kvm *kvm = pit->kvm;
500 	unsigned int refresh_clock;
501 	int ret;
502 
503 	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
504 	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
505 
506 	mutex_lock(&pit_state->lock);
507 	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
508 		(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
509 	if (len > sizeof(ret))
510 		len = sizeof(ret);
511 	memcpy(data, (char *)&ret, len);
512 	mutex_unlock(&pit_state->lock);
513 }
514 
speaker_in_range(struct kvm_io_device * this,gpa_t addr,int len,int is_write)515 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
516 			    int len, int is_write)
517 {
518 	return (addr == KVM_SPEAKER_BASE_ADDRESS);
519 }
520 
kvm_pit_reset(struct kvm_pit * pit)521 void kvm_pit_reset(struct kvm_pit *pit)
522 {
523 	int i;
524 	struct kvm_kpit_channel_state *c;
525 
526 	mutex_lock(&pit->pit_state.lock);
527 	for (i = 0; i < 3; i++) {
528 		c = &pit->pit_state.channels[i];
529 		c->mode = 0xff;
530 		c->gate = (i != 2);
531 		pit_load_count(pit->kvm, i, 0);
532 	}
533 	mutex_unlock(&pit->pit_state.lock);
534 
535 	atomic_set(&pit->pit_state.pit_timer.pending, 0);
536 	pit->pit_state.irq_ack = 1;
537 }
538 
kvm_create_pit(struct kvm * kvm)539 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
540 {
541 	struct kvm_pit *pit;
542 	struct kvm_kpit_state *pit_state;
543 
544 	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
545 	if (!pit)
546 		return NULL;
547 
548 	mutex_lock(&kvm->lock);
549 	pit->irq_source_id = kvm_request_irq_source_id(kvm);
550 	mutex_unlock(&kvm->lock);
551 	if (pit->irq_source_id < 0) {
552 		kfree(pit);
553 		return NULL;
554 	}
555 
556 	mutex_init(&pit->pit_state.lock);
557 	mutex_lock(&pit->pit_state.lock);
558 	spin_lock_init(&pit->pit_state.inject_lock);
559 
560 	/* Initialize PIO device */
561 	pit->dev.read = pit_ioport_read;
562 	pit->dev.write = pit_ioport_write;
563 	pit->dev.in_range = pit_in_range;
564 	pit->dev.private = pit;
565 	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
566 
567 	pit->speaker_dev.read = speaker_ioport_read;
568 	pit->speaker_dev.write = speaker_ioport_write;
569 	pit->speaker_dev.in_range = speaker_in_range;
570 	pit->speaker_dev.private = pit;
571 	kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
572 
573 	kvm->arch.vpit = pit;
574 	pit->kvm = kvm;
575 
576 	pit_state = &pit->pit_state;
577 	pit_state->pit = pit;
578 	hrtimer_init(&pit_state->pit_timer.timer,
579 		     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
580 	pit_state->irq_ack_notifier.gsi = 0;
581 	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
582 	kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
583 	mutex_unlock(&pit->pit_state.lock);
584 
585 	kvm_pit_reset(pit);
586 
587 	return pit;
588 }
589 
kvm_free_pit(struct kvm * kvm)590 void kvm_free_pit(struct kvm *kvm)
591 {
592 	struct hrtimer *timer;
593 
594 	if (kvm->arch.vpit) {
595 		mutex_lock(&kvm->arch.vpit->pit_state.lock);
596 		timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
597 		hrtimer_cancel(timer);
598 		kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
599 		mutex_unlock(&kvm->arch.vpit->pit_state.lock);
600 		kfree(kvm->arch.vpit);
601 	}
602 }
603 
__inject_pit_timer_intr(struct kvm * kvm)604 static void __inject_pit_timer_intr(struct kvm *kvm)
605 {
606 	struct kvm_vcpu *vcpu;
607 	int i;
608 
609 	mutex_lock(&kvm->lock);
610 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
611 	kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
612 	mutex_unlock(&kvm->lock);
613 
614 	/*
615 	 * Provides NMI watchdog support via Virtual Wire mode.
616 	 * The route is: PIT -> PIC -> LVT0 in NMI mode.
617 	 *
618 	 * Note: Our Virtual Wire implementation is simplified, only
619 	 * propagating PIT interrupts to all VCPUs when they have set
620 	 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
621 	 * VCPU0, and only if its LVT0 is in EXTINT mode.
622 	 */
623 	if (kvm->arch.vapics_in_nmi_mode > 0)
624 		for (i = 0; i < KVM_MAX_VCPUS; ++i) {
625 			vcpu = kvm->vcpus[i];
626 			if (vcpu)
627 				kvm_apic_nmi_wd_deliver(vcpu);
628 		}
629 }
630 
kvm_inject_pit_timer_irqs(struct kvm_vcpu * vcpu)631 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
632 {
633 	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
634 	struct kvm *kvm = vcpu->kvm;
635 	struct kvm_kpit_state *ps;
636 
637 	if (vcpu && pit) {
638 		int inject = 0;
639 		ps = &pit->pit_state;
640 
641 		/* Try to inject pending interrupts when
642 		 * last one has been acked.
643 		 */
644 		spin_lock(&ps->inject_lock);
645 		if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
646 			ps->irq_ack = 0;
647 			inject = 1;
648 		}
649 		spin_unlock(&ps->inject_lock);
650 		if (inject)
651 			__inject_pit_timer_intr(kvm);
652 	}
653 }
654