• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28  *
29  * NOTE: this latency value is not the same as the concept of
30  * 'timeslice length' - timeslices in CFS are of variable length
31  * and have no persistent notion like in traditional, time-slice
32  * based scheduling concepts.
33  *
34  * (to see the precise effective timeslice length of your workload,
35  *  run vmstat and monitor the context-switches (cs) field)
36  */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38 
39 /*
40  * Minimal preemption granularity for CPU-bound tasks:
41  * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42  */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 
45 /*
46  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47  */
48 static unsigned int sched_nr_latency = 5;
49 
50 /*
51  * After fork, child runs first. (default) If set to 0 then
52  * parent will (try to) run first.
53  */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55 
56 /*
57  * sys_sched_yield() compat mode
58  *
59  * This option switches the agressive yield implementation of the
60  * old scheduler back on.
61  */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63 
64 /*
65  * SCHED_OTHER wake-up granularity.
66  * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  *
68  * This option delays the preemption effects of decoupled workloads
69  * and reduces their over-scheduling. Synchronous workloads will still
70  * have immediate wakeup/sleep latencies.
71  */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73 
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75 
76 static const struct sched_class fair_sched_class;
77 
78 /**************************************************************
79  * CFS operations on generic schedulable entities:
80  */
81 
task_of(struct sched_entity * se)82 static inline struct task_struct *task_of(struct sched_entity *se)
83 {
84 	return container_of(se, struct task_struct, se);
85 }
86 
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88 
89 /* cpu runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 	return cfs_rq->rq;
93 }
94 
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se)	(!se->my_q)
97 
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 		for (; se; se = se->parent)
101 
task_cfs_rq(struct task_struct * p)102 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103 {
104 	return p->se.cfs_rq;
105 }
106 
107 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)108 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109 {
110 	return se->cfs_rq;
111 }
112 
113 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)114 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115 {
116 	return grp->my_q;
117 }
118 
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120  * another cpu ('this_cpu')
121  */
cpu_cfs_rq(struct cfs_rq * cfs_rq,int this_cpu)122 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123 {
124 	return cfs_rq->tg->cfs_rq[this_cpu];
125 }
126 
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130 
131 /* Do the two (enqueued) entities belong to the same group ? */
132 static inline int
is_same_group(struct sched_entity * se,struct sched_entity * pse)133 is_same_group(struct sched_entity *se, struct sched_entity *pse)
134 {
135 	if (se->cfs_rq == pse->cfs_rq)
136 		return 1;
137 
138 	return 0;
139 }
140 
parent_entity(struct sched_entity * se)141 static inline struct sched_entity *parent_entity(struct sched_entity *se)
142 {
143 	return se->parent;
144 }
145 
146 /* return depth at which a sched entity is present in the hierarchy */
depth_se(struct sched_entity * se)147 static inline int depth_se(struct sched_entity *se)
148 {
149 	int depth = 0;
150 
151 	for_each_sched_entity(se)
152 		depth++;
153 
154 	return depth;
155 }
156 
157 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)158 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159 {
160 	int se_depth, pse_depth;
161 
162 	/*
163 	 * preemption test can be made between sibling entities who are in the
164 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 	 * both tasks until we find their ancestors who are siblings of common
166 	 * parent.
167 	 */
168 
169 	/* First walk up until both entities are at same depth */
170 	se_depth = depth_se(*se);
171 	pse_depth = depth_se(*pse);
172 
173 	while (se_depth > pse_depth) {
174 		se_depth--;
175 		*se = parent_entity(*se);
176 	}
177 
178 	while (pse_depth > se_depth) {
179 		pse_depth--;
180 		*pse = parent_entity(*pse);
181 	}
182 
183 	while (!is_same_group(*se, *pse)) {
184 		*se = parent_entity(*se);
185 		*pse = parent_entity(*pse);
186 	}
187 }
188 
189 #else	/* CONFIG_FAIR_GROUP_SCHED */
190 
rq_of(struct cfs_rq * cfs_rq)191 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192 {
193 	return container_of(cfs_rq, struct rq, cfs);
194 }
195 
196 #define entity_is_task(se)	1
197 
198 #define for_each_sched_entity(se) \
199 		for (; se; se = NULL)
200 
task_cfs_rq(struct task_struct * p)201 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202 {
203 	return &task_rq(p)->cfs;
204 }
205 
cfs_rq_of(struct sched_entity * se)206 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207 {
208 	struct task_struct *p = task_of(se);
209 	struct rq *rq = task_rq(p);
210 
211 	return &rq->cfs;
212 }
213 
214 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)215 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216 {
217 	return NULL;
218 }
219 
cpu_cfs_rq(struct cfs_rq * cfs_rq,int this_cpu)220 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221 {
222 	return &cpu_rq(this_cpu)->cfs;
223 }
224 
225 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227 
228 static inline int
is_same_group(struct sched_entity * se,struct sched_entity * pse)229 is_same_group(struct sched_entity *se, struct sched_entity *pse)
230 {
231 	return 1;
232 }
233 
parent_entity(struct sched_entity * se)234 static inline struct sched_entity *parent_entity(struct sched_entity *se)
235 {
236 	return NULL;
237 }
238 
239 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)240 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241 {
242 }
243 
244 #endif	/* CONFIG_FAIR_GROUP_SCHED */
245 
246 
247 /**************************************************************
248  * Scheduling class tree data structure manipulation methods:
249  */
250 
max_vruntime(u64 min_vruntime,u64 vruntime)251 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252 {
253 	s64 delta = (s64)(vruntime - min_vruntime);
254 	if (delta > 0)
255 		min_vruntime = vruntime;
256 
257 	return min_vruntime;
258 }
259 
min_vruntime(u64 min_vruntime,u64 vruntime)260 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
261 {
262 	s64 delta = (s64)(vruntime - min_vruntime);
263 	if (delta < 0)
264 		min_vruntime = vruntime;
265 
266 	return min_vruntime;
267 }
268 
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)269 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270 {
271 	return se->vruntime - cfs_rq->min_vruntime;
272 }
273 
update_min_vruntime(struct cfs_rq * cfs_rq)274 static void update_min_vruntime(struct cfs_rq *cfs_rq)
275 {
276 	u64 vruntime = cfs_rq->min_vruntime;
277 
278 	if (cfs_rq->curr)
279 		vruntime = cfs_rq->curr->vruntime;
280 
281 	if (cfs_rq->rb_leftmost) {
282 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 						   struct sched_entity,
284 						   run_node);
285 
286 		if (!cfs_rq->curr)
287 			vruntime = se->vruntime;
288 		else
289 			vruntime = min_vruntime(vruntime, se->vruntime);
290 	}
291 
292 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293 }
294 
295 /*
296  * Enqueue an entity into the rb-tree:
297  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)298 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 {
300 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 	struct rb_node *parent = NULL;
302 	struct sched_entity *entry;
303 	s64 key = entity_key(cfs_rq, se);
304 	int leftmost = 1;
305 
306 	/*
307 	 * Find the right place in the rbtree:
308 	 */
309 	while (*link) {
310 		parent = *link;
311 		entry = rb_entry(parent, struct sched_entity, run_node);
312 		/*
313 		 * We dont care about collisions. Nodes with
314 		 * the same key stay together.
315 		 */
316 		if (key < entity_key(cfs_rq, entry)) {
317 			link = &parent->rb_left;
318 		} else {
319 			link = &parent->rb_right;
320 			leftmost = 0;
321 		}
322 	}
323 
324 	/*
325 	 * Maintain a cache of leftmost tree entries (it is frequently
326 	 * used):
327 	 */
328 	if (leftmost)
329 		cfs_rq->rb_leftmost = &se->run_node;
330 
331 	rb_link_node(&se->run_node, parent, link);
332 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
333 }
334 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)335 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336 {
337 	if (cfs_rq->rb_leftmost == &se->run_node) {
338 		struct rb_node *next_node;
339 
340 		next_node = rb_next(&se->run_node);
341 		cfs_rq->rb_leftmost = next_node;
342 	}
343 
344 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
345 }
346 
__pick_next_entity(struct cfs_rq * cfs_rq)347 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348 {
349 	struct rb_node *left = cfs_rq->rb_leftmost;
350 
351 	if (!left)
352 		return NULL;
353 
354 	return rb_entry(left, struct sched_entity, run_node);
355 }
356 
__pick_last_entity(struct cfs_rq * cfs_rq)357 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
358 {
359 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
360 
361 	if (!last)
362 		return NULL;
363 
364 	return rb_entry(last, struct sched_entity, run_node);
365 }
366 
367 /**************************************************************
368  * Scheduling class statistics methods:
369  */
370 
371 #ifdef CONFIG_SCHED_DEBUG
sched_nr_latency_handler(struct ctl_table * table,int write,struct file * filp,void __user * buffer,size_t * lenp,loff_t * ppos)372 int sched_nr_latency_handler(struct ctl_table *table, int write,
373 		struct file *filp, void __user *buffer, size_t *lenp,
374 		loff_t *ppos)
375 {
376 	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377 
378 	if (ret || !write)
379 		return ret;
380 
381 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 					sysctl_sched_min_granularity);
383 
384 	return 0;
385 }
386 #endif
387 
388 /*
389  * delta /= w
390  */
391 static inline unsigned long
calc_delta_fair(unsigned long delta,struct sched_entity * se)392 calc_delta_fair(unsigned long delta, struct sched_entity *se)
393 {
394 	if (unlikely(se->load.weight != NICE_0_LOAD))
395 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
396 
397 	return delta;
398 }
399 
400 /*
401  * The idea is to set a period in which each task runs once.
402  *
403  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
404  * this period because otherwise the slices get too small.
405  *
406  * p = (nr <= nl) ? l : l*nr/nl
407  */
__sched_period(unsigned long nr_running)408 static u64 __sched_period(unsigned long nr_running)
409 {
410 	u64 period = sysctl_sched_latency;
411 	unsigned long nr_latency = sched_nr_latency;
412 
413 	if (unlikely(nr_running > nr_latency)) {
414 		period = sysctl_sched_min_granularity;
415 		period *= nr_running;
416 	}
417 
418 	return period;
419 }
420 
421 /*
422  * We calculate the wall-time slice from the period by taking a part
423  * proportional to the weight.
424  *
425  * s = p*P[w/rw]
426  */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)427 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
428 {
429 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
430 
431 	for_each_sched_entity(se) {
432 		struct load_weight *load;
433 
434 		cfs_rq = cfs_rq_of(se);
435 		load = &cfs_rq->load;
436 
437 		if (unlikely(!se->on_rq)) {
438 			struct load_weight lw = cfs_rq->load;
439 
440 			update_load_add(&lw, se->load.weight);
441 			load = &lw;
442 		}
443 		slice = calc_delta_mine(slice, se->load.weight, load);
444 	}
445 	return slice;
446 }
447 
448 /*
449  * We calculate the vruntime slice of a to be inserted task
450  *
451  * vs = s/w
452  */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)453 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
454 {
455 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
456 }
457 
458 /*
459  * Update the current task's runtime statistics. Skip current tasks that
460  * are not in our scheduling class.
461  */
462 static inline void
__update_curr(struct cfs_rq * cfs_rq,struct sched_entity * curr,unsigned long delta_exec)463 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
464 	      unsigned long delta_exec)
465 {
466 	unsigned long delta_exec_weighted;
467 
468 	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
469 
470 	curr->sum_exec_runtime += delta_exec;
471 	schedstat_add(cfs_rq, exec_clock, delta_exec);
472 	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
473 	curr->vruntime += delta_exec_weighted;
474 	update_min_vruntime(cfs_rq);
475 }
476 
update_curr(struct cfs_rq * cfs_rq)477 static void update_curr(struct cfs_rq *cfs_rq)
478 {
479 	struct sched_entity *curr = cfs_rq->curr;
480 	u64 now = rq_of(cfs_rq)->clock;
481 	unsigned long delta_exec;
482 
483 	if (unlikely(!curr))
484 		return;
485 
486 	/*
487 	 * Get the amount of time the current task was running
488 	 * since the last time we changed load (this cannot
489 	 * overflow on 32 bits):
490 	 */
491 	delta_exec = (unsigned long)(now - curr->exec_start);
492 	if (!delta_exec)
493 		return;
494 
495 	__update_curr(cfs_rq, curr, delta_exec);
496 	curr->exec_start = now;
497 
498 	if (entity_is_task(curr)) {
499 		struct task_struct *curtask = task_of(curr);
500 
501 		cpuacct_charge(curtask, delta_exec);
502 		account_group_exec_runtime(curtask, delta_exec);
503 	}
504 }
505 
506 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)507 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
508 {
509 	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
510 }
511 
512 /*
513  * Task is being enqueued - update stats:
514  */
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)515 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
516 {
517 	/*
518 	 * Are we enqueueing a waiting task? (for current tasks
519 	 * a dequeue/enqueue event is a NOP)
520 	 */
521 	if (se != cfs_rq->curr)
522 		update_stats_wait_start(cfs_rq, se);
523 }
524 
525 static void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)526 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 	schedstat_set(se->wait_max, max(se->wait_max,
529 			rq_of(cfs_rq)->clock - se->wait_start));
530 	schedstat_set(se->wait_count, se->wait_count + 1);
531 	schedstat_set(se->wait_sum, se->wait_sum +
532 			rq_of(cfs_rq)->clock - se->wait_start);
533 	schedstat_set(se->wait_start, 0);
534 }
535 
536 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)537 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
538 {
539 	/*
540 	 * Mark the end of the wait period if dequeueing a
541 	 * waiting task:
542 	 */
543 	if (se != cfs_rq->curr)
544 		update_stats_wait_end(cfs_rq, se);
545 }
546 
547 /*
548  * We are picking a new current task - update its stats:
549  */
550 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)551 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
552 {
553 	/*
554 	 * We are starting a new run period:
555 	 */
556 	se->exec_start = rq_of(cfs_rq)->clock;
557 }
558 
559 /**************************************************
560  * Scheduling class queueing methods:
561  */
562 
563 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
564 static void
add_cfs_task_weight(struct cfs_rq * cfs_rq,unsigned long weight)565 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
566 {
567 	cfs_rq->task_weight += weight;
568 }
569 #else
570 static inline void
add_cfs_task_weight(struct cfs_rq * cfs_rq,unsigned long weight)571 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
572 {
573 }
574 #endif
575 
576 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)577 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
578 {
579 	update_load_add(&cfs_rq->load, se->load.weight);
580 	if (!parent_entity(se))
581 		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
582 	if (entity_is_task(se)) {
583 		add_cfs_task_weight(cfs_rq, se->load.weight);
584 		list_add(&se->group_node, &cfs_rq->tasks);
585 	}
586 	cfs_rq->nr_running++;
587 	se->on_rq = 1;
588 }
589 
590 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)591 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
592 {
593 	update_load_sub(&cfs_rq->load, se->load.weight);
594 	if (!parent_entity(se))
595 		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
596 	if (entity_is_task(se)) {
597 		add_cfs_task_weight(cfs_rq, -se->load.weight);
598 		list_del_init(&se->group_node);
599 	}
600 	cfs_rq->nr_running--;
601 	se->on_rq = 0;
602 }
603 
enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)604 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
605 {
606 #ifdef CONFIG_SCHEDSTATS
607 	if (se->sleep_start) {
608 		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
609 		struct task_struct *tsk = task_of(se);
610 
611 		if ((s64)delta < 0)
612 			delta = 0;
613 
614 		if (unlikely(delta > se->sleep_max))
615 			se->sleep_max = delta;
616 
617 		se->sleep_start = 0;
618 		se->sum_sleep_runtime += delta;
619 
620 		account_scheduler_latency(tsk, delta >> 10, 1);
621 	}
622 	if (se->block_start) {
623 		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
624 		struct task_struct *tsk = task_of(se);
625 
626 		if ((s64)delta < 0)
627 			delta = 0;
628 
629 		if (unlikely(delta > se->block_max))
630 			se->block_max = delta;
631 
632 		se->block_start = 0;
633 		se->sum_sleep_runtime += delta;
634 
635 		/*
636 		 * Blocking time is in units of nanosecs, so shift by 20 to
637 		 * get a milliseconds-range estimation of the amount of
638 		 * time that the task spent sleeping:
639 		 */
640 		if (unlikely(prof_on == SLEEP_PROFILING)) {
641 
642 			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
643 				     delta >> 20);
644 		}
645 		account_scheduler_latency(tsk, delta >> 10, 0);
646 	}
647 #endif
648 }
649 
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)650 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
651 {
652 #ifdef CONFIG_SCHED_DEBUG
653 	s64 d = se->vruntime - cfs_rq->min_vruntime;
654 
655 	if (d < 0)
656 		d = -d;
657 
658 	if (d > 3*sysctl_sched_latency)
659 		schedstat_inc(cfs_rq, nr_spread_over);
660 #endif
661 }
662 
663 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)664 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
665 {
666 	u64 vruntime = cfs_rq->min_vruntime;
667 
668 	/*
669 	 * The 'current' period is already promised to the current tasks,
670 	 * however the extra weight of the new task will slow them down a
671 	 * little, place the new task so that it fits in the slot that
672 	 * stays open at the end.
673 	 */
674 	if (initial && sched_feat(START_DEBIT))
675 		vruntime += sched_vslice(cfs_rq, se);
676 
677 	if (!initial) {
678 		/* sleeps upto a single latency don't count. */
679 		if (sched_feat(NEW_FAIR_SLEEPERS)) {
680 			unsigned long thresh = sysctl_sched_latency;
681 
682 			/*
683 			 * Convert the sleeper threshold into virtual time.
684 			 * SCHED_IDLE is a special sub-class.  We care about
685 			 * fairness only relative to other SCHED_IDLE tasks,
686 			 * all of which have the same weight.
687 			 */
688 			if (sched_feat(NORMALIZED_SLEEPER) &&
689 					task_of(se)->policy != SCHED_IDLE)
690 				thresh = calc_delta_fair(thresh, se);
691 
692 			vruntime -= thresh;
693 		}
694 
695 		/* ensure we never gain time by being placed backwards. */
696 		vruntime = max_vruntime(se->vruntime, vruntime);
697 	}
698 
699 	se->vruntime = vruntime;
700 }
701 
702 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int wakeup)703 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
704 {
705 	/*
706 	 * Update run-time statistics of the 'current'.
707 	 */
708 	update_curr(cfs_rq);
709 	account_entity_enqueue(cfs_rq, se);
710 
711 	if (wakeup) {
712 		place_entity(cfs_rq, se, 0);
713 		enqueue_sleeper(cfs_rq, se);
714 	}
715 
716 	update_stats_enqueue(cfs_rq, se);
717 	check_spread(cfs_rq, se);
718 	if (se != cfs_rq->curr)
719 		__enqueue_entity(cfs_rq, se);
720 }
721 
__clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)722 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
723 {
724 	if (cfs_rq->last == se)
725 		cfs_rq->last = NULL;
726 
727 	if (cfs_rq->next == se)
728 		cfs_rq->next = NULL;
729 }
730 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)731 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
732 {
733 	for_each_sched_entity(se)
734 		__clear_buddies(cfs_rq_of(se), se);
735 }
736 
737 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int sleep)738 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
739 {
740 	/*
741 	 * Update run-time statistics of the 'current'.
742 	 */
743 	update_curr(cfs_rq);
744 
745 	update_stats_dequeue(cfs_rq, se);
746 	if (sleep) {
747 #ifdef CONFIG_SCHEDSTATS
748 		if (entity_is_task(se)) {
749 			struct task_struct *tsk = task_of(se);
750 
751 			if (tsk->state & TASK_INTERRUPTIBLE)
752 				se->sleep_start = rq_of(cfs_rq)->clock;
753 			if (tsk->state & TASK_UNINTERRUPTIBLE)
754 				se->block_start = rq_of(cfs_rq)->clock;
755 		}
756 #endif
757 	}
758 
759 	clear_buddies(cfs_rq, se);
760 
761 	if (se != cfs_rq->curr)
762 		__dequeue_entity(cfs_rq, se);
763 	account_entity_dequeue(cfs_rq, se);
764 	update_min_vruntime(cfs_rq);
765 }
766 
767 /*
768  * Preempt the current task with a newly woken task if needed:
769  */
770 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)771 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
772 {
773 	unsigned long ideal_runtime, delta_exec;
774 
775 	ideal_runtime = sched_slice(cfs_rq, curr);
776 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
777 	if (delta_exec > ideal_runtime) {
778 		resched_task(rq_of(cfs_rq)->curr);
779 		/*
780 		 * The current task ran long enough, ensure it doesn't get
781 		 * re-elected due to buddy favours.
782 		 */
783 		clear_buddies(cfs_rq, curr);
784 	}
785 }
786 
787 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)788 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
789 {
790 	/* 'current' is not kept within the tree. */
791 	if (se->on_rq) {
792 		/*
793 		 * Any task has to be enqueued before it get to execute on
794 		 * a CPU. So account for the time it spent waiting on the
795 		 * runqueue.
796 		 */
797 		update_stats_wait_end(cfs_rq, se);
798 		__dequeue_entity(cfs_rq, se);
799 	}
800 
801 	update_stats_curr_start(cfs_rq, se);
802 	cfs_rq->curr = se;
803 #ifdef CONFIG_SCHEDSTATS
804 	/*
805 	 * Track our maximum slice length, if the CPU's load is at
806 	 * least twice that of our own weight (i.e. dont track it
807 	 * when there are only lesser-weight tasks around):
808 	 */
809 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
810 		se->slice_max = max(se->slice_max,
811 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
812 	}
813 #endif
814 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
815 }
816 
817 static int
818 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
819 
pick_next_entity(struct cfs_rq * cfs_rq)820 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
821 {
822 	struct sched_entity *se = __pick_next_entity(cfs_rq);
823 
824 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
825 		return cfs_rq->next;
826 
827 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
828 		return cfs_rq->last;
829 
830 	return se;
831 }
832 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)833 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
834 {
835 	/*
836 	 * If still on the runqueue then deactivate_task()
837 	 * was not called and update_curr() has to be done:
838 	 */
839 	if (prev->on_rq)
840 		update_curr(cfs_rq);
841 
842 	check_spread(cfs_rq, prev);
843 	if (prev->on_rq) {
844 		update_stats_wait_start(cfs_rq, prev);
845 		/* Put 'current' back into the tree. */
846 		__enqueue_entity(cfs_rq, prev);
847 	}
848 	cfs_rq->curr = NULL;
849 }
850 
851 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)852 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
853 {
854 	/*
855 	 * Update run-time statistics of the 'current'.
856 	 */
857 	update_curr(cfs_rq);
858 
859 #ifdef CONFIG_SCHED_HRTICK
860 	/*
861 	 * queued ticks are scheduled to match the slice, so don't bother
862 	 * validating it and just reschedule.
863 	 */
864 	if (queued) {
865 		resched_task(rq_of(cfs_rq)->curr);
866 		return;
867 	}
868 	/*
869 	 * don't let the period tick interfere with the hrtick preemption
870 	 */
871 	if (!sched_feat(DOUBLE_TICK) &&
872 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
873 		return;
874 #endif
875 
876 	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
877 		check_preempt_tick(cfs_rq, curr);
878 }
879 
880 /**************************************************
881  * CFS operations on tasks:
882  */
883 
884 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)885 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
886 {
887 	struct sched_entity *se = &p->se;
888 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
889 
890 	WARN_ON(task_rq(p) != rq);
891 
892 	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
893 		u64 slice = sched_slice(cfs_rq, se);
894 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
895 		s64 delta = slice - ran;
896 
897 		if (delta < 0) {
898 			if (rq->curr == p)
899 				resched_task(p);
900 			return;
901 		}
902 
903 		/*
904 		 * Don't schedule slices shorter than 10000ns, that just
905 		 * doesn't make sense. Rely on vruntime for fairness.
906 		 */
907 		if (rq->curr != p)
908 			delta = max_t(s64, 10000LL, delta);
909 
910 		hrtick_start(rq, delta);
911 	}
912 }
913 
914 /*
915  * called from enqueue/dequeue and updates the hrtick when the
916  * current task is from our class and nr_running is low enough
917  * to matter.
918  */
hrtick_update(struct rq * rq)919 static void hrtick_update(struct rq *rq)
920 {
921 	struct task_struct *curr = rq->curr;
922 
923 	if (curr->sched_class != &fair_sched_class)
924 		return;
925 
926 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
927 		hrtick_start_fair(rq, curr);
928 }
929 #else /* !CONFIG_SCHED_HRTICK */
930 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)931 hrtick_start_fair(struct rq *rq, struct task_struct *p)
932 {
933 }
934 
hrtick_update(struct rq * rq)935 static inline void hrtick_update(struct rq *rq)
936 {
937 }
938 #endif
939 
940 /*
941  * The enqueue_task method is called before nr_running is
942  * increased. Here we update the fair scheduling stats and
943  * then put the task into the rbtree:
944  */
enqueue_task_fair(struct rq * rq,struct task_struct * p,int wakeup)945 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
946 {
947 	struct cfs_rq *cfs_rq;
948 	struct sched_entity *se = &p->se;
949 
950 	for_each_sched_entity(se) {
951 		if (se->on_rq)
952 			break;
953 		cfs_rq = cfs_rq_of(se);
954 		enqueue_entity(cfs_rq, se, wakeup);
955 		wakeup = 1;
956 	}
957 
958 	hrtick_update(rq);
959 }
960 
961 /*
962  * The dequeue_task method is called before nr_running is
963  * decreased. We remove the task from the rbtree and
964  * update the fair scheduling stats:
965  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int sleep)966 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
967 {
968 	struct cfs_rq *cfs_rq;
969 	struct sched_entity *se = &p->se;
970 
971 	for_each_sched_entity(se) {
972 		cfs_rq = cfs_rq_of(se);
973 		dequeue_entity(cfs_rq, se, sleep);
974 		/* Don't dequeue parent if it has other entities besides us */
975 		if (cfs_rq->load.weight)
976 			break;
977 		sleep = 1;
978 	}
979 
980 	hrtick_update(rq);
981 }
982 
983 /*
984  * sched_yield() support is very simple - we dequeue and enqueue.
985  *
986  * If compat_yield is turned on then we requeue to the end of the tree.
987  */
yield_task_fair(struct rq * rq)988 static void yield_task_fair(struct rq *rq)
989 {
990 	struct task_struct *curr = rq->curr;
991 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
992 	struct sched_entity *rightmost, *se = &curr->se;
993 
994 	/*
995 	 * Are we the only task in the tree?
996 	 */
997 	if (unlikely(cfs_rq->nr_running == 1))
998 		return;
999 
1000 	clear_buddies(cfs_rq, se);
1001 
1002 	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1003 		update_rq_clock(rq);
1004 		/*
1005 		 * Update run-time statistics of the 'current'.
1006 		 */
1007 		update_curr(cfs_rq);
1008 
1009 		return;
1010 	}
1011 	/*
1012 	 * Find the rightmost entry in the rbtree:
1013 	 */
1014 	rightmost = __pick_last_entity(cfs_rq);
1015 	/*
1016 	 * Already in the rightmost position?
1017 	 */
1018 	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1019 		return;
1020 
1021 	/*
1022 	 * Minimally necessary key value to be last in the tree:
1023 	 * Upon rescheduling, sched_class::put_prev_task() will place
1024 	 * 'current' within the tree based on its new key value.
1025 	 */
1026 	se->vruntime = rightmost->vruntime + 1;
1027 }
1028 
1029 /*
1030  * wake_idle() will wake a task on an idle cpu if task->cpu is
1031  * not idle and an idle cpu is available.  The span of cpus to
1032  * search starts with cpus closest then further out as needed,
1033  * so we always favor a closer, idle cpu.
1034  * Domains may include CPUs that are not usable for migration,
1035  * hence we need to mask them out (cpu_active_mask)
1036  *
1037  * Returns the CPU we should wake onto.
1038  */
1039 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
wake_idle(int cpu,struct task_struct * p)1040 static int wake_idle(int cpu, struct task_struct *p)
1041 {
1042 	struct sched_domain *sd;
1043 	int i;
1044 	unsigned int chosen_wakeup_cpu;
1045 	int this_cpu;
1046 
1047 	/*
1048 	 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1049 	 * are idle and this is not a kernel thread and this task's affinity
1050 	 * allows it to be moved to preferred cpu, then just move!
1051 	 */
1052 
1053 	this_cpu = smp_processor_id();
1054 	chosen_wakeup_cpu =
1055 		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1056 
1057 	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1058 		idle_cpu(cpu) && idle_cpu(this_cpu) &&
1059 		p->mm && !(p->flags & PF_KTHREAD) &&
1060 		cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1061 		return chosen_wakeup_cpu;
1062 
1063 	/*
1064 	 * If it is idle, then it is the best cpu to run this task.
1065 	 *
1066 	 * This cpu is also the best, if it has more than one task already.
1067 	 * Siblings must be also busy(in most cases) as they didn't already
1068 	 * pickup the extra load from this cpu and hence we need not check
1069 	 * sibling runqueue info. This will avoid the checks and cache miss
1070 	 * penalities associated with that.
1071 	 */
1072 	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1073 		return cpu;
1074 
1075 	for_each_domain(cpu, sd) {
1076 		if ((sd->flags & SD_WAKE_IDLE)
1077 		    || ((sd->flags & SD_WAKE_IDLE_FAR)
1078 			&& !task_hot(p, task_rq(p)->clock, sd))) {
1079 			for_each_cpu_and(i, sched_domain_span(sd),
1080 					 &p->cpus_allowed) {
1081 				if (cpu_active(i) && idle_cpu(i)) {
1082 					if (i != task_cpu(p)) {
1083 						schedstat_inc(p,
1084 						       se.nr_wakeups_idle);
1085 					}
1086 					return i;
1087 				}
1088 			}
1089 		} else {
1090 			break;
1091 		}
1092 	}
1093 	return cpu;
1094 }
1095 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
wake_idle(int cpu,struct task_struct * p)1096 static inline int wake_idle(int cpu, struct task_struct *p)
1097 {
1098 	return cpu;
1099 }
1100 #endif
1101 
1102 #ifdef CONFIG_SMP
1103 
1104 #ifdef CONFIG_FAIR_GROUP_SCHED
1105 /*
1106  * effective_load() calculates the load change as seen from the root_task_group
1107  *
1108  * Adding load to a group doesn't make a group heavier, but can cause movement
1109  * of group shares between cpus. Assuming the shares were perfectly aligned one
1110  * can calculate the shift in shares.
1111  *
1112  * The problem is that perfectly aligning the shares is rather expensive, hence
1113  * we try to avoid doing that too often - see update_shares(), which ratelimits
1114  * this change.
1115  *
1116  * We compensate this by not only taking the current delta into account, but
1117  * also considering the delta between when the shares were last adjusted and
1118  * now.
1119  *
1120  * We still saw a performance dip, some tracing learned us that between
1121  * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1122  * significantly. Therefore try to bias the error in direction of failing
1123  * the affine wakeup.
1124  *
1125  */
effective_load(struct task_group * tg,int cpu,long wl,long wg)1126 static long effective_load(struct task_group *tg, int cpu,
1127 		long wl, long wg)
1128 {
1129 	struct sched_entity *se = tg->se[cpu];
1130 
1131 	if (!tg->parent)
1132 		return wl;
1133 
1134 	/*
1135 	 * By not taking the decrease of shares on the other cpu into
1136 	 * account our error leans towards reducing the affine wakeups.
1137 	 */
1138 	if (!wl && sched_feat(ASYM_EFF_LOAD))
1139 		return wl;
1140 
1141 	for_each_sched_entity(se) {
1142 		long S, rw, s, a, b;
1143 		long more_w;
1144 
1145 		/*
1146 		 * Instead of using this increment, also add the difference
1147 		 * between when the shares were last updated and now.
1148 		 */
1149 		more_w = se->my_q->load.weight - se->my_q->rq_weight;
1150 		wl += more_w;
1151 		wg += more_w;
1152 
1153 		S = se->my_q->tg->shares;
1154 		s = se->my_q->shares;
1155 		rw = se->my_q->rq_weight;
1156 
1157 		a = S*(rw + wl);
1158 		b = S*rw + s*wg;
1159 
1160 		wl = s*(a-b);
1161 
1162 		if (likely(b))
1163 			wl /= b;
1164 
1165 		/*
1166 		 * Assume the group is already running and will
1167 		 * thus already be accounted for in the weight.
1168 		 *
1169 		 * That is, moving shares between CPUs, does not
1170 		 * alter the group weight.
1171 		 */
1172 		wg = 0;
1173 	}
1174 
1175 	return wl;
1176 }
1177 
1178 #else
1179 
effective_load(struct task_group * tg,int cpu,unsigned long wl,unsigned long wg)1180 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1181 		unsigned long wl, unsigned long wg)
1182 {
1183 	return wl;
1184 }
1185 
1186 #endif
1187 
1188 static int
wake_affine(struct sched_domain * this_sd,struct rq * this_rq,struct task_struct * p,int prev_cpu,int this_cpu,int sync,int idx,unsigned long load,unsigned long this_load,unsigned int imbalance)1189 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1190 	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1191 	    int idx, unsigned long load, unsigned long this_load,
1192 	    unsigned int imbalance)
1193 {
1194 	struct task_struct *curr = this_rq->curr;
1195 	struct task_group *tg;
1196 	unsigned long tl = this_load;
1197 	unsigned long tl_per_task;
1198 	unsigned long weight;
1199 	int balanced;
1200 
1201 	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1202 		return 0;
1203 
1204 	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1205 			p->se.avg_overlap > sysctl_sched_migration_cost))
1206 		sync = 0;
1207 
1208 	/*
1209 	 * If sync wakeup then subtract the (maximum possible)
1210 	 * effect of the currently running task from the load
1211 	 * of the current CPU:
1212 	 */
1213 	if (sync) {
1214 		tg = task_group(current);
1215 		weight = current->se.load.weight;
1216 
1217 		tl += effective_load(tg, this_cpu, -weight, -weight);
1218 		load += effective_load(tg, prev_cpu, 0, -weight);
1219 	}
1220 
1221 	tg = task_group(p);
1222 	weight = p->se.load.weight;
1223 
1224 	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1225 		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1226 
1227 	/*
1228 	 * If the currently running task will sleep within
1229 	 * a reasonable amount of time then attract this newly
1230 	 * woken task:
1231 	 */
1232 	if (sync && balanced)
1233 		return 1;
1234 
1235 	schedstat_inc(p, se.nr_wakeups_affine_attempts);
1236 	tl_per_task = cpu_avg_load_per_task(this_cpu);
1237 
1238 	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1239 			tl_per_task)) {
1240 		/*
1241 		 * This domain has SD_WAKE_AFFINE and
1242 		 * p is cache cold in this domain, and
1243 		 * there is no bad imbalance.
1244 		 */
1245 		schedstat_inc(this_sd, ttwu_move_affine);
1246 		schedstat_inc(p, se.nr_wakeups_affine);
1247 
1248 		return 1;
1249 	}
1250 	return 0;
1251 }
1252 
select_task_rq_fair(struct task_struct * p,int sync)1253 static int select_task_rq_fair(struct task_struct *p, int sync)
1254 {
1255 	struct sched_domain *sd, *this_sd = NULL;
1256 	int prev_cpu, this_cpu, new_cpu;
1257 	unsigned long load, this_load;
1258 	struct rq *this_rq;
1259 	unsigned int imbalance;
1260 	int idx;
1261 
1262 	prev_cpu	= task_cpu(p);
1263 	this_cpu	= smp_processor_id();
1264 	this_rq		= cpu_rq(this_cpu);
1265 	new_cpu		= prev_cpu;
1266 
1267 	if (prev_cpu == this_cpu)
1268 		goto out;
1269 	/*
1270 	 * 'this_sd' is the first domain that both
1271 	 * this_cpu and prev_cpu are present in:
1272 	 */
1273 	for_each_domain(this_cpu, sd) {
1274 		if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1275 			this_sd = sd;
1276 			break;
1277 		}
1278 	}
1279 
1280 	if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1281 		goto out;
1282 
1283 	/*
1284 	 * Check for affine wakeup and passive balancing possibilities.
1285 	 */
1286 	if (!this_sd)
1287 		goto out;
1288 
1289 	idx = this_sd->wake_idx;
1290 
1291 	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1292 
1293 	load = source_load(prev_cpu, idx);
1294 	this_load = target_load(this_cpu, idx);
1295 
1296 	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1297 				     load, this_load, imbalance))
1298 		return this_cpu;
1299 
1300 	/*
1301 	 * Start passive balancing when half the imbalance_pct
1302 	 * limit is reached.
1303 	 */
1304 	if (this_sd->flags & SD_WAKE_BALANCE) {
1305 		if (imbalance*this_load <= 100*load) {
1306 			schedstat_inc(this_sd, ttwu_move_balance);
1307 			schedstat_inc(p, se.nr_wakeups_passive);
1308 			return this_cpu;
1309 		}
1310 	}
1311 
1312 out:
1313 	return wake_idle(new_cpu, p);
1314 }
1315 #endif /* CONFIG_SMP */
1316 
wakeup_gran(struct sched_entity * se)1317 static unsigned long wakeup_gran(struct sched_entity *se)
1318 {
1319 	unsigned long gran = sysctl_sched_wakeup_granularity;
1320 
1321 	/*
1322 	 * More easily preempt - nice tasks, while not making it harder for
1323 	 * + nice tasks.
1324 	 */
1325 	if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1326 		gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
1327 
1328 	return gran;
1329 }
1330 
1331 /*
1332  * Should 'se' preempt 'curr'.
1333  *
1334  *             |s1
1335  *        |s2
1336  *   |s3
1337  *         g
1338  *      |<--->|c
1339  *
1340  *  w(c, s1) = -1
1341  *  w(c, s2) =  0
1342  *  w(c, s3) =  1
1343  *
1344  */
1345 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)1346 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1347 {
1348 	s64 gran, vdiff = curr->vruntime - se->vruntime;
1349 
1350 	if (vdiff <= 0)
1351 		return -1;
1352 
1353 	gran = wakeup_gran(curr);
1354 	if (vdiff > gran)
1355 		return 1;
1356 
1357 	return 0;
1358 }
1359 
set_last_buddy(struct sched_entity * se)1360 static void set_last_buddy(struct sched_entity *se)
1361 {
1362 	if (likely(task_of(se)->policy != SCHED_IDLE)) {
1363 		for_each_sched_entity(se)
1364 			cfs_rq_of(se)->last = se;
1365 	}
1366 }
1367 
set_next_buddy(struct sched_entity * se)1368 static void set_next_buddy(struct sched_entity *se)
1369 {
1370 	if (likely(task_of(se)->policy != SCHED_IDLE)) {
1371 		for_each_sched_entity(se)
1372 			cfs_rq_of(se)->next = se;
1373 	}
1374 }
1375 
1376 /*
1377  * Preempt the current task with a newly woken task if needed:
1378  */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int sync)1379 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1380 {
1381 	struct task_struct *curr = rq->curr;
1382 	struct sched_entity *se = &curr->se, *pse = &p->se;
1383 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1384 
1385 	update_curr(cfs_rq);
1386 
1387 	if (unlikely(rt_prio(p->prio))) {
1388 		resched_task(curr);
1389 		return;
1390 	}
1391 
1392 	if (unlikely(p->sched_class != &fair_sched_class))
1393 		return;
1394 
1395 	if (unlikely(se == pse))
1396 		return;
1397 
1398 	/*
1399 	 * Only set the backward buddy when the current task is still on the
1400 	 * rq. This can happen when a wakeup gets interleaved with schedule on
1401 	 * the ->pre_schedule() or idle_balance() point, either of which can
1402 	 * drop the rq lock.
1403 	 *
1404 	 * Also, during early boot the idle thread is in the fair class, for
1405 	 * obvious reasons its a bad idea to schedule back to the idle thread.
1406 	 */
1407 	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1408 		set_last_buddy(se);
1409 	set_next_buddy(pse);
1410 
1411 	/*
1412 	 * We can come here with TIF_NEED_RESCHED already set from new task
1413 	 * wake up path.
1414 	 */
1415 	if (test_tsk_need_resched(curr))
1416 		return;
1417 
1418 	/*
1419 	 * Batch and idle tasks do not preempt (their preemption is driven by
1420 	 * the tick):
1421 	 */
1422 	if (unlikely(p->policy != SCHED_NORMAL))
1423 		return;
1424 
1425 	/* Idle tasks are by definition preempted by everybody. */
1426 	if (unlikely(curr->policy == SCHED_IDLE)) {
1427 		resched_task(curr);
1428 		return;
1429 	}
1430 
1431 	if (!sched_feat(WAKEUP_PREEMPT))
1432 		return;
1433 
1434 	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1435 			(se->avg_overlap < sysctl_sched_migration_cost &&
1436 			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1437 		resched_task(curr);
1438 		return;
1439 	}
1440 
1441 	find_matching_se(&se, &pse);
1442 
1443 	while (se) {
1444 		BUG_ON(!pse);
1445 
1446 		if (wakeup_preempt_entity(se, pse) == 1) {
1447 			resched_task(curr);
1448 			break;
1449 		}
1450 
1451 		se = parent_entity(se);
1452 		pse = parent_entity(pse);
1453 	}
1454 }
1455 
pick_next_task_fair(struct rq * rq)1456 static struct task_struct *pick_next_task_fair(struct rq *rq)
1457 {
1458 	struct task_struct *p;
1459 	struct cfs_rq *cfs_rq = &rq->cfs;
1460 	struct sched_entity *se;
1461 
1462 	if (unlikely(!cfs_rq->nr_running))
1463 		return NULL;
1464 
1465 	do {
1466 		se = pick_next_entity(cfs_rq);
1467 		/*
1468 		 * If se was a buddy, clear it so that it will have to earn
1469 		 * the favour again.
1470 		 */
1471 		__clear_buddies(cfs_rq, se);
1472 		set_next_entity(cfs_rq, se);
1473 		cfs_rq = group_cfs_rq(se);
1474 	} while (cfs_rq);
1475 
1476 	p = task_of(se);
1477 	hrtick_start_fair(rq, p);
1478 
1479 	return p;
1480 }
1481 
1482 /*
1483  * Account for a descheduled task:
1484  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)1485 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1486 {
1487 	struct sched_entity *se = &prev->se;
1488 	struct cfs_rq *cfs_rq;
1489 
1490 	for_each_sched_entity(se) {
1491 		cfs_rq = cfs_rq_of(se);
1492 		put_prev_entity(cfs_rq, se);
1493 	}
1494 }
1495 
1496 #ifdef CONFIG_SMP
1497 /**************************************************
1498  * Fair scheduling class load-balancing methods:
1499  */
1500 
1501 /*
1502  * Load-balancing iterator. Note: while the runqueue stays locked
1503  * during the whole iteration, the current task might be
1504  * dequeued so the iterator has to be dequeue-safe. Here we
1505  * achieve that by always pre-iterating before returning
1506  * the current task:
1507  */
1508 static struct task_struct *
__load_balance_iterator(struct cfs_rq * cfs_rq,struct list_head * next)1509 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1510 {
1511 	struct task_struct *p = NULL;
1512 	struct sched_entity *se;
1513 
1514 	if (next == &cfs_rq->tasks)
1515 		return NULL;
1516 
1517 	se = list_entry(next, struct sched_entity, group_node);
1518 	p = task_of(se);
1519 	cfs_rq->balance_iterator = next->next;
1520 
1521 	return p;
1522 }
1523 
load_balance_start_fair(void * arg)1524 static struct task_struct *load_balance_start_fair(void *arg)
1525 {
1526 	struct cfs_rq *cfs_rq = arg;
1527 
1528 	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1529 }
1530 
load_balance_next_fair(void * arg)1531 static struct task_struct *load_balance_next_fair(void *arg)
1532 {
1533 	struct cfs_rq *cfs_rq = arg;
1534 
1535 	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1536 }
1537 
1538 static unsigned long
__load_balance_fair(struct rq * this_rq,int this_cpu,struct rq * busiest,unsigned long max_load_move,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned,int * this_best_prio,struct cfs_rq * cfs_rq)1539 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1540 		unsigned long max_load_move, struct sched_domain *sd,
1541 		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1542 		struct cfs_rq *cfs_rq)
1543 {
1544 	struct rq_iterator cfs_rq_iterator;
1545 
1546 	cfs_rq_iterator.start = load_balance_start_fair;
1547 	cfs_rq_iterator.next = load_balance_next_fair;
1548 	cfs_rq_iterator.arg = cfs_rq;
1549 
1550 	return balance_tasks(this_rq, this_cpu, busiest,
1551 			max_load_move, sd, idle, all_pinned,
1552 			this_best_prio, &cfs_rq_iterator);
1553 }
1554 
1555 #ifdef CONFIG_FAIR_GROUP_SCHED
1556 static unsigned long
load_balance_fair(struct rq * this_rq,int this_cpu,struct rq * busiest,unsigned long max_load_move,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned,int * this_best_prio)1557 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1558 		  unsigned long max_load_move,
1559 		  struct sched_domain *sd, enum cpu_idle_type idle,
1560 		  int *all_pinned, int *this_best_prio)
1561 {
1562 	long rem_load_move = max_load_move;
1563 	int busiest_cpu = cpu_of(busiest);
1564 	struct task_group *tg;
1565 
1566 	rcu_read_lock();
1567 	update_h_load(busiest_cpu);
1568 
1569 	list_for_each_entry_rcu(tg, &task_groups, list) {
1570 		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1571 		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1572 		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1573 		u64 rem_load, moved_load;
1574 
1575 		/*
1576 		 * empty group
1577 		 */
1578 		if (!busiest_cfs_rq->task_weight)
1579 			continue;
1580 
1581 		rem_load = (u64)rem_load_move * busiest_weight;
1582 		rem_load = div_u64(rem_load, busiest_h_load + 1);
1583 
1584 		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1585 				rem_load, sd, idle, all_pinned, this_best_prio,
1586 				tg->cfs_rq[busiest_cpu]);
1587 
1588 		if (!moved_load)
1589 			continue;
1590 
1591 		moved_load *= busiest_h_load;
1592 		moved_load = div_u64(moved_load, busiest_weight + 1);
1593 
1594 		rem_load_move -= moved_load;
1595 		if (rem_load_move < 0)
1596 			break;
1597 	}
1598 	rcu_read_unlock();
1599 
1600 	return max_load_move - rem_load_move;
1601 }
1602 #else
1603 static unsigned long
load_balance_fair(struct rq * this_rq,int this_cpu,struct rq * busiest,unsigned long max_load_move,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned,int * this_best_prio)1604 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1605 		  unsigned long max_load_move,
1606 		  struct sched_domain *sd, enum cpu_idle_type idle,
1607 		  int *all_pinned, int *this_best_prio)
1608 {
1609 	return __load_balance_fair(this_rq, this_cpu, busiest,
1610 			max_load_move, sd, idle, all_pinned,
1611 			this_best_prio, &busiest->cfs);
1612 }
1613 #endif
1614 
1615 static int
move_one_task_fair(struct rq * this_rq,int this_cpu,struct rq * busiest,struct sched_domain * sd,enum cpu_idle_type idle)1616 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1617 		   struct sched_domain *sd, enum cpu_idle_type idle)
1618 {
1619 	struct cfs_rq *busy_cfs_rq;
1620 	struct rq_iterator cfs_rq_iterator;
1621 
1622 	cfs_rq_iterator.start = load_balance_start_fair;
1623 	cfs_rq_iterator.next = load_balance_next_fair;
1624 
1625 	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1626 		/*
1627 		 * pass busy_cfs_rq argument into
1628 		 * load_balance_[start|next]_fair iterators
1629 		 */
1630 		cfs_rq_iterator.arg = busy_cfs_rq;
1631 		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1632 				       &cfs_rq_iterator))
1633 		    return 1;
1634 	}
1635 
1636 	return 0;
1637 }
1638 #endif /* CONFIG_SMP */
1639 
1640 /*
1641  * scheduler tick hitting a task of our scheduling class:
1642  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)1643 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1644 {
1645 	struct cfs_rq *cfs_rq;
1646 	struct sched_entity *se = &curr->se;
1647 
1648 	for_each_sched_entity(se) {
1649 		cfs_rq = cfs_rq_of(se);
1650 		entity_tick(cfs_rq, se, queued);
1651 	}
1652 }
1653 
1654 /*
1655  * Share the fairness runtime between parent and child, thus the
1656  * total amount of pressure for CPU stays equal - new tasks
1657  * get a chance to run but frequent forkers are not allowed to
1658  * monopolize the CPU. Note: the parent runqueue is locked,
1659  * the child is not running yet.
1660  */
task_new_fair(struct rq * rq,struct task_struct * p)1661 static void task_new_fair(struct rq *rq, struct task_struct *p)
1662 {
1663 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1664 	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1665 	int this_cpu = smp_processor_id();
1666 
1667 	sched_info_queued(p);
1668 
1669 	update_curr(cfs_rq);
1670 	place_entity(cfs_rq, se, 1);
1671 
1672 	/* 'curr' will be NULL if the child belongs to a different group */
1673 	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1674 			curr && curr->vruntime < se->vruntime) {
1675 		/*
1676 		 * Upon rescheduling, sched_class::put_prev_task() will place
1677 		 * 'current' within the tree based on its new key value.
1678 		 */
1679 		swap(curr->vruntime, se->vruntime);
1680 		resched_task(rq->curr);
1681 	}
1682 
1683 	enqueue_task_fair(rq, p, 0);
1684 }
1685 
1686 /*
1687  * Priority of the task has changed. Check to see if we preempt
1688  * the current task.
1689  */
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio,int running)1690 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1691 			      int oldprio, int running)
1692 {
1693 	/*
1694 	 * Reschedule if we are currently running on this runqueue and
1695 	 * our priority decreased, or if we are not currently running on
1696 	 * this runqueue and our priority is higher than the current's
1697 	 */
1698 	if (running) {
1699 		if (p->prio > oldprio)
1700 			resched_task(rq->curr);
1701 	} else
1702 		check_preempt_curr(rq, p, 0);
1703 }
1704 
1705 /*
1706  * We switched to the sched_fair class.
1707  */
switched_to_fair(struct rq * rq,struct task_struct * p,int running)1708 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1709 			     int running)
1710 {
1711 	/*
1712 	 * We were most likely switched from sched_rt, so
1713 	 * kick off the schedule if running, otherwise just see
1714 	 * if we can still preempt the current task.
1715 	 */
1716 	if (running)
1717 		resched_task(rq->curr);
1718 	else
1719 		check_preempt_curr(rq, p, 0);
1720 }
1721 
1722 /* Account for a task changing its policy or group.
1723  *
1724  * This routine is mostly called to set cfs_rq->curr field when a task
1725  * migrates between groups/classes.
1726  */
set_curr_task_fair(struct rq * rq)1727 static void set_curr_task_fair(struct rq *rq)
1728 {
1729 	struct sched_entity *se = &rq->curr->se;
1730 
1731 	for_each_sched_entity(se)
1732 		set_next_entity(cfs_rq_of(se), se);
1733 }
1734 
1735 #ifdef CONFIG_FAIR_GROUP_SCHED
moved_group_fair(struct task_struct * p)1736 static void moved_group_fair(struct task_struct *p)
1737 {
1738 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1739 
1740 	update_curr(cfs_rq);
1741 	place_entity(cfs_rq, &p->se, 1);
1742 }
1743 #endif
1744 
1745 /*
1746  * All the scheduling class methods:
1747  */
1748 static const struct sched_class fair_sched_class = {
1749 	.next			= &idle_sched_class,
1750 	.enqueue_task		= enqueue_task_fair,
1751 	.dequeue_task		= dequeue_task_fair,
1752 	.yield_task		= yield_task_fair,
1753 
1754 	.check_preempt_curr	= check_preempt_wakeup,
1755 
1756 	.pick_next_task		= pick_next_task_fair,
1757 	.put_prev_task		= put_prev_task_fair,
1758 
1759 #ifdef CONFIG_SMP
1760 	.select_task_rq		= select_task_rq_fair,
1761 
1762 	.load_balance		= load_balance_fair,
1763 	.move_one_task		= move_one_task_fair,
1764 #endif
1765 
1766 	.set_curr_task          = set_curr_task_fair,
1767 	.task_tick		= task_tick_fair,
1768 	.task_new		= task_new_fair,
1769 
1770 	.prio_changed		= prio_changed_fair,
1771 	.switched_to		= switched_to_fair,
1772 
1773 #ifdef CONFIG_FAIR_GROUP_SCHED
1774 	.moved_group		= moved_group_fair,
1775 #endif
1776 };
1777 
1778 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)1779 static void print_cfs_stats(struct seq_file *m, int cpu)
1780 {
1781 	struct cfs_rq *cfs_rq;
1782 
1783 	rcu_read_lock();
1784 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1785 		print_cfs_rq(m, cpu, cfs_rq);
1786 	rcu_read_unlock();
1787 }
1788 #endif
1789