• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #ifdef CONFIG_SMP
7 
rt_overloaded(struct rq * rq)8 static inline int rt_overloaded(struct rq *rq)
9 {
10 	return atomic_read(&rq->rd->rto_count);
11 }
12 
rt_set_overload(struct rq * rq)13 static inline void rt_set_overload(struct rq *rq)
14 {
15 	if (!rq->online)
16 		return;
17 
18 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
19 	/*
20 	 * Make sure the mask is visible before we set
21 	 * the overload count. That is checked to determine
22 	 * if we should look at the mask. It would be a shame
23 	 * if we looked at the mask, but the mask was not
24 	 * updated yet.
25 	 */
26 	wmb();
27 	atomic_inc(&rq->rd->rto_count);
28 }
29 
rt_clear_overload(struct rq * rq)30 static inline void rt_clear_overload(struct rq *rq)
31 {
32 	if (!rq->online)
33 		return;
34 
35 	/* the order here really doesn't matter */
36 	atomic_dec(&rq->rd->rto_count);
37 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
38 }
39 
update_rt_migration(struct rq * rq)40 static void update_rt_migration(struct rq *rq)
41 {
42 	if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 		if (!rq->rt.overloaded) {
44 			rt_set_overload(rq);
45 			rq->rt.overloaded = 1;
46 		}
47 	} else if (rq->rt.overloaded) {
48 		rt_clear_overload(rq);
49 		rq->rt.overloaded = 0;
50 	}
51 }
52 #endif /* CONFIG_SMP */
53 
rt_task_of(struct sched_rt_entity * rt_se)54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
55 {
56 	return container_of(rt_se, struct task_struct, rt);
57 }
58 
on_rt_rq(struct sched_rt_entity * rt_se)59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60 {
61 	return !list_empty(&rt_se->run_list);
62 }
63 
64 #ifdef CONFIG_RT_GROUP_SCHED
65 
sched_rt_runtime(struct rt_rq * rt_rq)66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
67 {
68 	if (!rt_rq->tg)
69 		return RUNTIME_INF;
70 
71 	return rt_rq->rt_runtime;
72 }
73 
sched_rt_period(struct rt_rq * rt_rq)74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75 {
76 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
77 }
78 
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81 
rq_of_rt_rq(struct rt_rq * rt_rq)82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83 {
84 	return rt_rq->rq;
85 }
86 
rt_rq_of_se(struct sched_rt_entity * rt_se)87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88 {
89 	return rt_se->rt_rq;
90 }
91 
92 #define for_each_sched_rt_entity(rt_se) \
93 	for (; rt_se; rt_se = rt_se->parent)
94 
group_rt_rq(struct sched_rt_entity * rt_se)95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96 {
97 	return rt_se->my_q;
98 }
99 
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104 {
105 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
106 	struct sched_rt_entity *rt_se = rt_rq->rt_se;
107 
108 	if (rt_rq->rt_nr_running) {
109 		if (rt_se && !on_rt_rq(rt_se))
110 			enqueue_rt_entity(rt_se);
111 		if (rt_rq->highest_prio < curr->prio)
112 			resched_task(curr);
113 	}
114 }
115 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
117 {
118 	struct sched_rt_entity *rt_se = rt_rq->rt_se;
119 
120 	if (rt_se && on_rt_rq(rt_se))
121 		dequeue_rt_entity(rt_se);
122 }
123 
rt_rq_throttled(struct rt_rq * rt_rq)124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125 {
126 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127 }
128 
rt_se_boosted(struct sched_rt_entity * rt_se)129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
130 {
131 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 	struct task_struct *p;
133 
134 	if (rt_rq)
135 		return !!rt_rq->rt_nr_boosted;
136 
137 	p = rt_task_of(rt_se);
138 	return p->prio != p->normal_prio;
139 }
140 
141 #ifdef CONFIG_SMP
sched_rt_period_mask(void)142 static inline const struct cpumask *sched_rt_period_mask(void)
143 {
144 	return cpu_rq(smp_processor_id())->rd->span;
145 }
146 #else
sched_rt_period_mask(void)147 static inline const struct cpumask *sched_rt_period_mask(void)
148 {
149 	return cpu_online_mask;
150 }
151 #endif
152 
153 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
155 {
156 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157 }
158 
sched_rt_bandwidth(struct rt_rq * rt_rq)159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160 {
161 	return &rt_rq->tg->rt_bandwidth;
162 }
163 
164 #else /* !CONFIG_RT_GROUP_SCHED */
165 
sched_rt_runtime(struct rt_rq * rt_rq)166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167 {
168 	return rt_rq->rt_runtime;
169 }
170 
sched_rt_period(struct rt_rq * rt_rq)171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172 {
173 	return ktime_to_ns(def_rt_bandwidth.rt_period);
174 }
175 
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178 
rq_of_rt_rq(struct rt_rq * rt_rq)179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181 	return container_of(rt_rq, struct rq, rt);
182 }
183 
rt_rq_of_se(struct sched_rt_entity * rt_se)184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186 	struct task_struct *p = rt_task_of(rt_se);
187 	struct rq *rq = task_rq(p);
188 
189 	return &rq->rt;
190 }
191 
192 #define for_each_sched_rt_entity(rt_se) \
193 	for (; rt_se; rt_se = NULL)
194 
group_rt_rq(struct sched_rt_entity * rt_se)195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196 {
197 	return NULL;
198 }
199 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 	if (rt_rq->rt_nr_running)
203 		resched_task(rq_of_rt_rq(rt_rq)->curr);
204 }
205 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)206 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
207 {
208 }
209 
rt_rq_throttled(struct rt_rq * rt_rq)210 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211 {
212 	return rt_rq->rt_throttled;
213 }
214 
sched_rt_period_mask(void)215 static inline const struct cpumask *sched_rt_period_mask(void)
216 {
217 	return cpu_online_mask;
218 }
219 
220 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)221 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222 {
223 	return &cpu_rq(cpu)->rt;
224 }
225 
sched_rt_bandwidth(struct rt_rq * rt_rq)226 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227 {
228 	return &def_rt_bandwidth;
229 }
230 
231 #endif /* CONFIG_RT_GROUP_SCHED */
232 
233 #ifdef CONFIG_SMP
234 /*
235  * We ran out of runtime, see if we can borrow some from our neighbours.
236  */
do_balance_runtime(struct rt_rq * rt_rq)237 static int do_balance_runtime(struct rt_rq *rt_rq)
238 {
239 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
240 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
241 	int i, weight, more = 0;
242 	u64 rt_period;
243 
244 	weight = cpumask_weight(rd->span);
245 
246 	spin_lock(&rt_b->rt_runtime_lock);
247 	rt_period = ktime_to_ns(rt_b->rt_period);
248 	for_each_cpu(i, rd->span) {
249 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
250 		s64 diff;
251 
252 		if (iter == rt_rq)
253 			continue;
254 
255 		spin_lock(&iter->rt_runtime_lock);
256 		/*
257 		 * Either all rqs have inf runtime and there's nothing to steal
258 		 * or __disable_runtime() below sets a specific rq to inf to
259 		 * indicate its been disabled and disalow stealing.
260 		 */
261 		if (iter->rt_runtime == RUNTIME_INF)
262 			goto next;
263 
264 		/*
265 		 * From runqueues with spare time, take 1/n part of their
266 		 * spare time, but no more than our period.
267 		 */
268 		diff = iter->rt_runtime - iter->rt_time;
269 		if (diff > 0) {
270 			diff = div_u64((u64)diff, weight);
271 			if (rt_rq->rt_runtime + diff > rt_period)
272 				diff = rt_period - rt_rq->rt_runtime;
273 			iter->rt_runtime -= diff;
274 			rt_rq->rt_runtime += diff;
275 			more = 1;
276 			if (rt_rq->rt_runtime == rt_period) {
277 				spin_unlock(&iter->rt_runtime_lock);
278 				break;
279 			}
280 		}
281 next:
282 		spin_unlock(&iter->rt_runtime_lock);
283 	}
284 	spin_unlock(&rt_b->rt_runtime_lock);
285 
286 	return more;
287 }
288 
289 /*
290  * Ensure this RQ takes back all the runtime it lend to its neighbours.
291  */
__disable_runtime(struct rq * rq)292 static void __disable_runtime(struct rq *rq)
293 {
294 	struct root_domain *rd = rq->rd;
295 	struct rt_rq *rt_rq;
296 
297 	if (unlikely(!scheduler_running))
298 		return;
299 
300 	for_each_leaf_rt_rq(rt_rq, rq) {
301 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
302 		s64 want;
303 		int i;
304 
305 		spin_lock(&rt_b->rt_runtime_lock);
306 		spin_lock(&rt_rq->rt_runtime_lock);
307 		/*
308 		 * Either we're all inf and nobody needs to borrow, or we're
309 		 * already disabled and thus have nothing to do, or we have
310 		 * exactly the right amount of runtime to take out.
311 		 */
312 		if (rt_rq->rt_runtime == RUNTIME_INF ||
313 				rt_rq->rt_runtime == rt_b->rt_runtime)
314 			goto balanced;
315 		spin_unlock(&rt_rq->rt_runtime_lock);
316 
317 		/*
318 		 * Calculate the difference between what we started out with
319 		 * and what we current have, that's the amount of runtime
320 		 * we lend and now have to reclaim.
321 		 */
322 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
323 
324 		/*
325 		 * Greedy reclaim, take back as much as we can.
326 		 */
327 		for_each_cpu(i, rd->span) {
328 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
329 			s64 diff;
330 
331 			/*
332 			 * Can't reclaim from ourselves or disabled runqueues.
333 			 */
334 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
335 				continue;
336 
337 			spin_lock(&iter->rt_runtime_lock);
338 			if (want > 0) {
339 				diff = min_t(s64, iter->rt_runtime, want);
340 				iter->rt_runtime -= diff;
341 				want -= diff;
342 			} else {
343 				iter->rt_runtime -= want;
344 				want -= want;
345 			}
346 			spin_unlock(&iter->rt_runtime_lock);
347 
348 			if (!want)
349 				break;
350 		}
351 
352 		spin_lock(&rt_rq->rt_runtime_lock);
353 		/*
354 		 * We cannot be left wanting - that would mean some runtime
355 		 * leaked out of the system.
356 		 */
357 		BUG_ON(want);
358 balanced:
359 		/*
360 		 * Disable all the borrow logic by pretending we have inf
361 		 * runtime - in which case borrowing doesn't make sense.
362 		 */
363 		rt_rq->rt_runtime = RUNTIME_INF;
364 		spin_unlock(&rt_rq->rt_runtime_lock);
365 		spin_unlock(&rt_b->rt_runtime_lock);
366 	}
367 }
368 
disable_runtime(struct rq * rq)369 static void disable_runtime(struct rq *rq)
370 {
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(&rq->lock, flags);
374 	__disable_runtime(rq);
375 	spin_unlock_irqrestore(&rq->lock, flags);
376 }
377 
__enable_runtime(struct rq * rq)378 static void __enable_runtime(struct rq *rq)
379 {
380 	struct rt_rq *rt_rq;
381 
382 	if (unlikely(!scheduler_running))
383 		return;
384 
385 	/*
386 	 * Reset each runqueue's bandwidth settings
387 	 */
388 	for_each_leaf_rt_rq(rt_rq, rq) {
389 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
390 
391 		spin_lock(&rt_b->rt_runtime_lock);
392 		spin_lock(&rt_rq->rt_runtime_lock);
393 		rt_rq->rt_runtime = rt_b->rt_runtime;
394 		rt_rq->rt_time = 0;
395 		rt_rq->rt_throttled = 0;
396 		spin_unlock(&rt_rq->rt_runtime_lock);
397 		spin_unlock(&rt_b->rt_runtime_lock);
398 	}
399 }
400 
enable_runtime(struct rq * rq)401 static void enable_runtime(struct rq *rq)
402 {
403 	unsigned long flags;
404 
405 	spin_lock_irqsave(&rq->lock, flags);
406 	__enable_runtime(rq);
407 	spin_unlock_irqrestore(&rq->lock, flags);
408 }
409 
balance_runtime(struct rt_rq * rt_rq)410 static int balance_runtime(struct rt_rq *rt_rq)
411 {
412 	int more = 0;
413 
414 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
415 		spin_unlock(&rt_rq->rt_runtime_lock);
416 		more = do_balance_runtime(rt_rq);
417 		spin_lock(&rt_rq->rt_runtime_lock);
418 	}
419 
420 	return more;
421 }
422 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)423 static inline int balance_runtime(struct rt_rq *rt_rq)
424 {
425 	return 0;
426 }
427 #endif /* CONFIG_SMP */
428 
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)429 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
430 {
431 	int i, idle = 1;
432 	const struct cpumask *span;
433 
434 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
435 		return 1;
436 
437 	span = sched_rt_period_mask();
438 	for_each_cpu(i, span) {
439 		int enqueue = 0;
440 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
441 		struct rq *rq = rq_of_rt_rq(rt_rq);
442 
443 		spin_lock(&rq->lock);
444 		if (rt_rq->rt_time) {
445 			u64 runtime;
446 
447 			spin_lock(&rt_rq->rt_runtime_lock);
448 			if (rt_rq->rt_throttled)
449 				balance_runtime(rt_rq);
450 			runtime = rt_rq->rt_runtime;
451 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
452 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
453 				rt_rq->rt_throttled = 0;
454 				enqueue = 1;
455 			}
456 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
457 				idle = 0;
458 			spin_unlock(&rt_rq->rt_runtime_lock);
459 		} else if (rt_rq->rt_nr_running)
460 			idle = 0;
461 
462 		if (enqueue)
463 			sched_rt_rq_enqueue(rt_rq);
464 		spin_unlock(&rq->lock);
465 	}
466 
467 	return idle;
468 }
469 
rt_se_prio(struct sched_rt_entity * rt_se)470 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
471 {
472 #ifdef CONFIG_RT_GROUP_SCHED
473 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
474 
475 	if (rt_rq)
476 		return rt_rq->highest_prio;
477 #endif
478 
479 	return rt_task_of(rt_se)->prio;
480 }
481 
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)482 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
483 {
484 	u64 runtime = sched_rt_runtime(rt_rq);
485 
486 	if (rt_rq->rt_throttled)
487 		return rt_rq_throttled(rt_rq);
488 
489 	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
490 		return 0;
491 
492 	balance_runtime(rt_rq);
493 	runtime = sched_rt_runtime(rt_rq);
494 	if (runtime == RUNTIME_INF)
495 		return 0;
496 
497 	if (rt_rq->rt_time > runtime) {
498 		rt_rq->rt_throttled = 1;
499 		if (rt_rq_throttled(rt_rq)) {
500 			sched_rt_rq_dequeue(rt_rq);
501 			return 1;
502 		}
503 	}
504 
505 	return 0;
506 }
507 
508 /*
509  * Update the current task's runtime statistics. Skip current tasks that
510  * are not in our scheduling class.
511  */
update_curr_rt(struct rq * rq)512 static void update_curr_rt(struct rq *rq)
513 {
514 	struct task_struct *curr = rq->curr;
515 	struct sched_rt_entity *rt_se = &curr->rt;
516 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
517 	u64 delta_exec;
518 
519 	if (!task_has_rt_policy(curr))
520 		return;
521 
522 	delta_exec = rq->clock - curr->se.exec_start;
523 	if (unlikely((s64)delta_exec < 0))
524 		delta_exec = 0;
525 
526 	schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
527 
528 	curr->se.sum_exec_runtime += delta_exec;
529 	account_group_exec_runtime(curr, delta_exec);
530 
531 	curr->se.exec_start = rq->clock;
532 	cpuacct_charge(curr, delta_exec);
533 
534 	if (!rt_bandwidth_enabled())
535 		return;
536 
537 	for_each_sched_rt_entity(rt_se) {
538 		rt_rq = rt_rq_of_se(rt_se);
539 
540 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
541 			spin_lock(&rt_rq->rt_runtime_lock);
542 			rt_rq->rt_time += delta_exec;
543 			if (sched_rt_runtime_exceeded(rt_rq))
544 				resched_task(curr);
545 			spin_unlock(&rt_rq->rt_runtime_lock);
546 		}
547 	}
548 }
549 
550 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)551 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
552 {
553 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
554 	rt_rq->rt_nr_running++;
555 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
556 	if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
557 #ifdef CONFIG_SMP
558 		struct rq *rq = rq_of_rt_rq(rt_rq);
559 #endif
560 
561 		rt_rq->highest_prio = rt_se_prio(rt_se);
562 #ifdef CONFIG_SMP
563 		if (rq->online)
564 			cpupri_set(&rq->rd->cpupri, rq->cpu,
565 				   rt_se_prio(rt_se));
566 #endif
567 	}
568 #endif
569 #ifdef CONFIG_SMP
570 	if (rt_se->nr_cpus_allowed > 1) {
571 		struct rq *rq = rq_of_rt_rq(rt_rq);
572 
573 		rq->rt.rt_nr_migratory++;
574 	}
575 
576 	update_rt_migration(rq_of_rt_rq(rt_rq));
577 #endif
578 #ifdef CONFIG_RT_GROUP_SCHED
579 	if (rt_se_boosted(rt_se))
580 		rt_rq->rt_nr_boosted++;
581 
582 	if (rt_rq->tg)
583 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
584 #else
585 	start_rt_bandwidth(&def_rt_bandwidth);
586 #endif
587 }
588 
589 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)590 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
591 {
592 #ifdef CONFIG_SMP
593 	int highest_prio = rt_rq->highest_prio;
594 #endif
595 
596 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
597 	WARN_ON(!rt_rq->rt_nr_running);
598 	rt_rq->rt_nr_running--;
599 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
600 	if (rt_rq->rt_nr_running) {
601 		struct rt_prio_array *array;
602 
603 		WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
604 		if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
605 			/* recalculate */
606 			array = &rt_rq->active;
607 			rt_rq->highest_prio =
608 				sched_find_first_bit(array->bitmap);
609 		} /* otherwise leave rq->highest prio alone */
610 	} else
611 		rt_rq->highest_prio = MAX_RT_PRIO;
612 #endif
613 #ifdef CONFIG_SMP
614 	if (rt_se->nr_cpus_allowed > 1) {
615 		struct rq *rq = rq_of_rt_rq(rt_rq);
616 		rq->rt.rt_nr_migratory--;
617 	}
618 
619 	if (rt_rq->highest_prio != highest_prio) {
620 		struct rq *rq = rq_of_rt_rq(rt_rq);
621 
622 		if (rq->online)
623 			cpupri_set(&rq->rd->cpupri, rq->cpu,
624 				   rt_rq->highest_prio);
625 	}
626 
627 	update_rt_migration(rq_of_rt_rq(rt_rq));
628 #endif /* CONFIG_SMP */
629 #ifdef CONFIG_RT_GROUP_SCHED
630 	if (rt_se_boosted(rt_se))
631 		rt_rq->rt_nr_boosted--;
632 
633 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
634 #endif
635 }
636 
__enqueue_rt_entity(struct sched_rt_entity * rt_se)637 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
638 {
639 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
640 	struct rt_prio_array *array = &rt_rq->active;
641 	struct rt_rq *group_rq = group_rt_rq(rt_se);
642 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
643 
644 	/*
645 	 * Don't enqueue the group if its throttled, or when empty.
646 	 * The latter is a consequence of the former when a child group
647 	 * get throttled and the current group doesn't have any other
648 	 * active members.
649 	 */
650 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
651 		return;
652 
653 	list_add_tail(&rt_se->run_list, queue);
654 	__set_bit(rt_se_prio(rt_se), array->bitmap);
655 
656 	inc_rt_tasks(rt_se, rt_rq);
657 }
658 
__dequeue_rt_entity(struct sched_rt_entity * rt_se)659 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
660 {
661 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
662 	struct rt_prio_array *array = &rt_rq->active;
663 
664 	list_del_init(&rt_se->run_list);
665 	if (list_empty(array->queue + rt_se_prio(rt_se)))
666 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
667 
668 	dec_rt_tasks(rt_se, rt_rq);
669 }
670 
671 /*
672  * Because the prio of an upper entry depends on the lower
673  * entries, we must remove entries top - down.
674  */
dequeue_rt_stack(struct sched_rt_entity * rt_se)675 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
676 {
677 	struct sched_rt_entity *back = NULL;
678 
679 	for_each_sched_rt_entity(rt_se) {
680 		rt_se->back = back;
681 		back = rt_se;
682 	}
683 
684 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
685 		if (on_rt_rq(rt_se))
686 			__dequeue_rt_entity(rt_se);
687 	}
688 }
689 
enqueue_rt_entity(struct sched_rt_entity * rt_se)690 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
691 {
692 	dequeue_rt_stack(rt_se);
693 	for_each_sched_rt_entity(rt_se)
694 		__enqueue_rt_entity(rt_se);
695 }
696 
dequeue_rt_entity(struct sched_rt_entity * rt_se)697 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
698 {
699 	dequeue_rt_stack(rt_se);
700 
701 	for_each_sched_rt_entity(rt_se) {
702 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
703 
704 		if (rt_rq && rt_rq->rt_nr_running)
705 			__enqueue_rt_entity(rt_se);
706 	}
707 }
708 
709 /*
710  * Adding/removing a task to/from a priority array:
711  */
enqueue_task_rt(struct rq * rq,struct task_struct * p,int wakeup)712 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
713 {
714 	struct sched_rt_entity *rt_se = &p->rt;
715 
716 	if (wakeup)
717 		rt_se->timeout = 0;
718 
719 	enqueue_rt_entity(rt_se);
720 
721 	inc_cpu_load(rq, p->se.load.weight);
722 }
723 
dequeue_task_rt(struct rq * rq,struct task_struct * p,int sleep)724 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
725 {
726 	struct sched_rt_entity *rt_se = &p->rt;
727 
728 	update_curr_rt(rq);
729 	dequeue_rt_entity(rt_se);
730 
731 	dec_cpu_load(rq, p->se.load.weight);
732 }
733 
734 /*
735  * Put task to the end of the run list without the overhead of dequeue
736  * followed by enqueue.
737  */
738 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)739 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
740 {
741 	if (on_rt_rq(rt_se)) {
742 		struct rt_prio_array *array = &rt_rq->active;
743 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
744 
745 		if (head)
746 			list_move(&rt_se->run_list, queue);
747 		else
748 			list_move_tail(&rt_se->run_list, queue);
749 	}
750 }
751 
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)752 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
753 {
754 	struct sched_rt_entity *rt_se = &p->rt;
755 	struct rt_rq *rt_rq;
756 
757 	for_each_sched_rt_entity(rt_se) {
758 		rt_rq = rt_rq_of_se(rt_se);
759 		requeue_rt_entity(rt_rq, rt_se, head);
760 	}
761 }
762 
yield_task_rt(struct rq * rq)763 static void yield_task_rt(struct rq *rq)
764 {
765 	requeue_task_rt(rq, rq->curr, 0);
766 }
767 
768 #ifdef CONFIG_SMP
769 static int find_lowest_rq(struct task_struct *task);
770 
select_task_rq_rt(struct task_struct * p,int sync)771 static int select_task_rq_rt(struct task_struct *p, int sync)
772 {
773 	struct rq *rq = task_rq(p);
774 
775 	/*
776 	 * If the current task is an RT task, then
777 	 * try to see if we can wake this RT task up on another
778 	 * runqueue. Otherwise simply start this RT task
779 	 * on its current runqueue.
780 	 *
781 	 * We want to avoid overloading runqueues. Even if
782 	 * the RT task is of higher priority than the current RT task.
783 	 * RT tasks behave differently than other tasks. If
784 	 * one gets preempted, we try to push it off to another queue.
785 	 * So trying to keep a preempting RT task on the same
786 	 * cache hot CPU will force the running RT task to
787 	 * a cold CPU. So we waste all the cache for the lower
788 	 * RT task in hopes of saving some of a RT task
789 	 * that is just being woken and probably will have
790 	 * cold cache anyway.
791 	 */
792 	if (unlikely(rt_task(rq->curr)) &&
793 	    (p->rt.nr_cpus_allowed > 1)) {
794 		int cpu = find_lowest_rq(p);
795 
796 		return (cpu == -1) ? task_cpu(p) : cpu;
797 	}
798 
799 	/*
800 	 * Otherwise, just let it ride on the affined RQ and the
801 	 * post-schedule router will push the preempted task away
802 	 */
803 	return task_cpu(p);
804 }
805 
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)806 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
807 {
808 	cpumask_var_t mask;
809 
810 	if (rq->curr->rt.nr_cpus_allowed == 1)
811 		return;
812 
813 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
814 		return;
815 
816 	if (p->rt.nr_cpus_allowed != 1
817 	    && cpupri_find(&rq->rd->cpupri, p, mask))
818 		goto free;
819 
820 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
821 		goto free;
822 
823 	/*
824 	 * There appears to be other cpus that can accept
825 	 * current and none to run 'p', so lets reschedule
826 	 * to try and push current away:
827 	 */
828 	requeue_task_rt(rq, p, 1);
829 	resched_task(rq->curr);
830 free:
831 	free_cpumask_var(mask);
832 }
833 
834 #endif /* CONFIG_SMP */
835 
836 /*
837  * Preempt the current task with a newly woken task if needed:
838  */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int sync)839 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
840 {
841 	if (p->prio < rq->curr->prio) {
842 		resched_task(rq->curr);
843 		return;
844 	}
845 
846 #ifdef CONFIG_SMP
847 	/*
848 	 * If:
849 	 *
850 	 * - the newly woken task is of equal priority to the current task
851 	 * - the newly woken task is non-migratable while current is migratable
852 	 * - current will be preempted on the next reschedule
853 	 *
854 	 * we should check to see if current can readily move to a different
855 	 * cpu.  If so, we will reschedule to allow the push logic to try
856 	 * to move current somewhere else, making room for our non-migratable
857 	 * task.
858 	 */
859 	if (p->prio == rq->curr->prio && !need_resched())
860 		check_preempt_equal_prio(rq, p);
861 #endif
862 }
863 
pick_next_rt_entity(struct rq * rq,struct rt_rq * rt_rq)864 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
865 						   struct rt_rq *rt_rq)
866 {
867 	struct rt_prio_array *array = &rt_rq->active;
868 	struct sched_rt_entity *next = NULL;
869 	struct list_head *queue;
870 	int idx;
871 
872 	idx = sched_find_first_bit(array->bitmap);
873 	BUG_ON(idx >= MAX_RT_PRIO);
874 
875 	queue = array->queue + idx;
876 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
877 
878 	return next;
879 }
880 
pick_next_task_rt(struct rq * rq)881 static struct task_struct *pick_next_task_rt(struct rq *rq)
882 {
883 	struct sched_rt_entity *rt_se;
884 	struct task_struct *p;
885 	struct rt_rq *rt_rq;
886 
887 	rt_rq = &rq->rt;
888 
889 	if (unlikely(!rt_rq->rt_nr_running))
890 		return NULL;
891 
892 	if (rt_rq_throttled(rt_rq))
893 		return NULL;
894 
895 	do {
896 		rt_se = pick_next_rt_entity(rq, rt_rq);
897 		BUG_ON(!rt_se);
898 		rt_rq = group_rt_rq(rt_se);
899 	} while (rt_rq);
900 
901 	p = rt_task_of(rt_se);
902 	p->se.exec_start = rq->clock;
903 	return p;
904 }
905 
put_prev_task_rt(struct rq * rq,struct task_struct * p)906 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
907 {
908 	update_curr_rt(rq);
909 	p->se.exec_start = 0;
910 }
911 
912 #ifdef CONFIG_SMP
913 
914 /* Only try algorithms three times */
915 #define RT_MAX_TRIES 3
916 
917 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
918 
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)919 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
920 {
921 	if (!task_running(rq, p) &&
922 	    (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
923 	    (p->rt.nr_cpus_allowed > 1))
924 		return 1;
925 	return 0;
926 }
927 
928 /* Return the second highest RT task, NULL otherwise */
pick_next_highest_task_rt(struct rq * rq,int cpu)929 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
930 {
931 	struct task_struct *next = NULL;
932 	struct sched_rt_entity *rt_se;
933 	struct rt_prio_array *array;
934 	struct rt_rq *rt_rq;
935 	int idx;
936 
937 	for_each_leaf_rt_rq(rt_rq, rq) {
938 		array = &rt_rq->active;
939 		idx = sched_find_first_bit(array->bitmap);
940  next_idx:
941 		if (idx >= MAX_RT_PRIO)
942 			continue;
943 		if (next && next->prio < idx)
944 			continue;
945 		list_for_each_entry(rt_se, array->queue + idx, run_list) {
946 			struct task_struct *p = rt_task_of(rt_se);
947 			if (pick_rt_task(rq, p, cpu)) {
948 				next = p;
949 				break;
950 			}
951 		}
952 		if (!next) {
953 			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
954 			goto next_idx;
955 		}
956 	}
957 
958 	return next;
959 }
960 
961 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
962 
pick_optimal_cpu(int this_cpu,cpumask_t * mask)963 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
964 {
965 	int first;
966 
967 	/* "this_cpu" is cheaper to preempt than a remote processor */
968 	if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
969 		return this_cpu;
970 
971 	first = cpumask_first(mask);
972 	if (first < nr_cpu_ids)
973 		return first;
974 
975 	return -1;
976 }
977 
find_lowest_rq(struct task_struct * task)978 static int find_lowest_rq(struct task_struct *task)
979 {
980 	struct sched_domain *sd;
981 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
982 	int this_cpu = smp_processor_id();
983 	int cpu      = task_cpu(task);
984 
985 	if (task->rt.nr_cpus_allowed == 1)
986 		return -1; /* No other targets possible */
987 
988 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
989 		return -1; /* No targets found */
990 
991 	/*
992 	 * Only consider CPUs that are usable for migration.
993 	 * I guess we might want to change cpupri_find() to ignore those
994 	 * in the first place.
995 	 */
996 	cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
997 
998 	/*
999 	 * At this point we have built a mask of cpus representing the
1000 	 * lowest priority tasks in the system.  Now we want to elect
1001 	 * the best one based on our affinity and topology.
1002 	 *
1003 	 * We prioritize the last cpu that the task executed on since
1004 	 * it is most likely cache-hot in that location.
1005 	 */
1006 	if (cpumask_test_cpu(cpu, lowest_mask))
1007 		return cpu;
1008 
1009 	/*
1010 	 * Otherwise, we consult the sched_domains span maps to figure
1011 	 * out which cpu is logically closest to our hot cache data.
1012 	 */
1013 	if (this_cpu == cpu)
1014 		this_cpu = -1; /* Skip this_cpu opt if the same */
1015 
1016 	for_each_domain(cpu, sd) {
1017 		if (sd->flags & SD_WAKE_AFFINE) {
1018 			cpumask_t domain_mask;
1019 			int       best_cpu;
1020 
1021 			cpumask_and(&domain_mask, sched_domain_span(sd),
1022 				    lowest_mask);
1023 
1024 			best_cpu = pick_optimal_cpu(this_cpu,
1025 						    &domain_mask);
1026 			if (best_cpu != -1)
1027 				return best_cpu;
1028 		}
1029 	}
1030 
1031 	/*
1032 	 * And finally, if there were no matches within the domains
1033 	 * just give the caller *something* to work with from the compatible
1034 	 * locations.
1035 	 */
1036 	return pick_optimal_cpu(this_cpu, lowest_mask);
1037 }
1038 
1039 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1040 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1041 {
1042 	struct rq *lowest_rq = NULL;
1043 	int tries;
1044 	int cpu;
1045 
1046 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1047 		cpu = find_lowest_rq(task);
1048 
1049 		if ((cpu == -1) || (cpu == rq->cpu))
1050 			break;
1051 
1052 		lowest_rq = cpu_rq(cpu);
1053 
1054 		/* if the prio of this runqueue changed, try again */
1055 		if (double_lock_balance(rq, lowest_rq)) {
1056 			/*
1057 			 * We had to unlock the run queue. In
1058 			 * the mean time, task could have
1059 			 * migrated already or had its affinity changed.
1060 			 * Also make sure that it wasn't scheduled on its rq.
1061 			 */
1062 			if (unlikely(task_rq(task) != rq ||
1063 				     !cpumask_test_cpu(lowest_rq->cpu,
1064 						       &task->cpus_allowed) ||
1065 				     task_running(rq, task) ||
1066 				     !task->se.on_rq)) {
1067 
1068 				spin_unlock(&lowest_rq->lock);
1069 				lowest_rq = NULL;
1070 				break;
1071 			}
1072 		}
1073 
1074 		/* If this rq is still suitable use it. */
1075 		if (lowest_rq->rt.highest_prio > task->prio)
1076 			break;
1077 
1078 		/* try again */
1079 		double_unlock_balance(rq, lowest_rq);
1080 		lowest_rq = NULL;
1081 	}
1082 
1083 	return lowest_rq;
1084 }
1085 
1086 /*
1087  * If the current CPU has more than one RT task, see if the non
1088  * running task can migrate over to a CPU that is running a task
1089  * of lesser priority.
1090  */
push_rt_task(struct rq * rq)1091 static int push_rt_task(struct rq *rq)
1092 {
1093 	struct task_struct *next_task;
1094 	struct rq *lowest_rq;
1095 	int ret = 0;
1096 	int paranoid = RT_MAX_TRIES;
1097 
1098 	if (!rq->rt.overloaded)
1099 		return 0;
1100 
1101 	next_task = pick_next_highest_task_rt(rq, -1);
1102 	if (!next_task)
1103 		return 0;
1104 
1105  retry:
1106 	if (unlikely(next_task == rq->curr)) {
1107 		WARN_ON(1);
1108 		return 0;
1109 	}
1110 
1111 	/*
1112 	 * It's possible that the next_task slipped in of
1113 	 * higher priority than current. If that's the case
1114 	 * just reschedule current.
1115 	 */
1116 	if (unlikely(next_task->prio < rq->curr->prio)) {
1117 		resched_task(rq->curr);
1118 		return 0;
1119 	}
1120 
1121 	/* We might release rq lock */
1122 	get_task_struct(next_task);
1123 
1124 	/* find_lock_lowest_rq locks the rq if found */
1125 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1126 	if (!lowest_rq) {
1127 		struct task_struct *task;
1128 		/*
1129 		 * find lock_lowest_rq releases rq->lock
1130 		 * so it is possible that next_task has changed.
1131 		 * If it has, then try again.
1132 		 */
1133 		task = pick_next_highest_task_rt(rq, -1);
1134 		if (unlikely(task != next_task) && task && paranoid--) {
1135 			put_task_struct(next_task);
1136 			next_task = task;
1137 			goto retry;
1138 		}
1139 		goto out;
1140 	}
1141 
1142 	deactivate_task(rq, next_task, 0);
1143 	set_task_cpu(next_task, lowest_rq->cpu);
1144 	activate_task(lowest_rq, next_task, 0);
1145 
1146 	resched_task(lowest_rq->curr);
1147 
1148 	double_unlock_balance(rq, lowest_rq);
1149 
1150 	ret = 1;
1151 out:
1152 	put_task_struct(next_task);
1153 
1154 	return ret;
1155 }
1156 
1157 /*
1158  * TODO: Currently we just use the second highest prio task on
1159  *       the queue, and stop when it can't migrate (or there's
1160  *       no more RT tasks).  There may be a case where a lower
1161  *       priority RT task has a different affinity than the
1162  *       higher RT task. In this case the lower RT task could
1163  *       possibly be able to migrate where as the higher priority
1164  *       RT task could not.  We currently ignore this issue.
1165  *       Enhancements are welcome!
1166  */
push_rt_tasks(struct rq * rq)1167 static void push_rt_tasks(struct rq *rq)
1168 {
1169 	/* push_rt_task will return true if it moved an RT */
1170 	while (push_rt_task(rq))
1171 		;
1172 }
1173 
pull_rt_task(struct rq * this_rq)1174 static int pull_rt_task(struct rq *this_rq)
1175 {
1176 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1177 	struct task_struct *p, *next;
1178 	struct rq *src_rq;
1179 
1180 	if (likely(!rt_overloaded(this_rq)))
1181 		return 0;
1182 
1183 	next = pick_next_task_rt(this_rq);
1184 
1185 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1186 		if (this_cpu == cpu)
1187 			continue;
1188 
1189 		src_rq = cpu_rq(cpu);
1190 		/*
1191 		 * We can potentially drop this_rq's lock in
1192 		 * double_lock_balance, and another CPU could
1193 		 * steal our next task - hence we must cause
1194 		 * the caller to recalculate the next task
1195 		 * in that case:
1196 		 */
1197 		if (double_lock_balance(this_rq, src_rq)) {
1198 			struct task_struct *old_next = next;
1199 
1200 			next = pick_next_task_rt(this_rq);
1201 			if (next != old_next)
1202 				ret = 1;
1203 		}
1204 
1205 		/*
1206 		 * Are there still pullable RT tasks?
1207 		 */
1208 		if (src_rq->rt.rt_nr_running <= 1)
1209 			goto skip;
1210 
1211 		p = pick_next_highest_task_rt(src_rq, this_cpu);
1212 
1213 		/*
1214 		 * Do we have an RT task that preempts
1215 		 * the to-be-scheduled task?
1216 		 */
1217 		if (p && (!next || (p->prio < next->prio))) {
1218 			WARN_ON(p == src_rq->curr);
1219 			WARN_ON(!p->se.on_rq);
1220 
1221 			/*
1222 			 * There's a chance that p is higher in priority
1223 			 * than what's currently running on its cpu.
1224 			 * This is just that p is wakeing up and hasn't
1225 			 * had a chance to schedule. We only pull
1226 			 * p if it is lower in priority than the
1227 			 * current task on the run queue or
1228 			 * this_rq next task is lower in prio than
1229 			 * the current task on that rq.
1230 			 */
1231 			if (p->prio < src_rq->curr->prio ||
1232 			    (next && next->prio < src_rq->curr->prio))
1233 				goto skip;
1234 
1235 			ret = 1;
1236 
1237 			deactivate_task(src_rq, p, 0);
1238 			set_task_cpu(p, this_cpu);
1239 			activate_task(this_rq, p, 0);
1240 			/*
1241 			 * We continue with the search, just in
1242 			 * case there's an even higher prio task
1243 			 * in another runqueue. (low likelyhood
1244 			 * but possible)
1245 			 *
1246 			 * Update next so that we won't pick a task
1247 			 * on another cpu with a priority lower (or equal)
1248 			 * than the one we just picked.
1249 			 */
1250 			next = p;
1251 
1252 		}
1253  skip:
1254 		double_unlock_balance(this_rq, src_rq);
1255 	}
1256 
1257 	return ret;
1258 }
1259 
pre_schedule_rt(struct rq * rq,struct task_struct * prev)1260 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1261 {
1262 	/* Try to pull RT tasks here if we lower this rq's prio */
1263 	if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1264 		pull_rt_task(rq);
1265 }
1266 
post_schedule_rt(struct rq * rq)1267 static void post_schedule_rt(struct rq *rq)
1268 {
1269 	/*
1270 	 * If we have more than one rt_task queued, then
1271 	 * see if we can push the other rt_tasks off to other CPUS.
1272 	 * Note we may release the rq lock, and since
1273 	 * the lock was owned by prev, we need to release it
1274 	 * first via finish_lock_switch and then reaquire it here.
1275 	 */
1276 	if (unlikely(rq->rt.overloaded)) {
1277 		spin_lock_irq(&rq->lock);
1278 		push_rt_tasks(rq);
1279 		spin_unlock_irq(&rq->lock);
1280 	}
1281 }
1282 
1283 /*
1284  * If we are not running and we are not going to reschedule soon, we should
1285  * try to push tasks away now
1286  */
task_wake_up_rt(struct rq * rq,struct task_struct * p)1287 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1288 {
1289 	if (!task_running(rq, p) &&
1290 	    !test_tsk_need_resched(rq->curr) &&
1291 	    rq->rt.overloaded)
1292 		push_rt_tasks(rq);
1293 }
1294 
1295 static unsigned long
load_balance_rt(struct rq * this_rq,int this_cpu,struct rq * busiest,unsigned long max_load_move,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned,int * this_best_prio)1296 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1297 		unsigned long max_load_move,
1298 		struct sched_domain *sd, enum cpu_idle_type idle,
1299 		int *all_pinned, int *this_best_prio)
1300 {
1301 	/* don't touch RT tasks */
1302 	return 0;
1303 }
1304 
1305 static int
move_one_task_rt(struct rq * this_rq,int this_cpu,struct rq * busiest,struct sched_domain * sd,enum cpu_idle_type idle)1306 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1307 		 struct sched_domain *sd, enum cpu_idle_type idle)
1308 {
1309 	/* don't touch RT tasks */
1310 	return 0;
1311 }
1312 
set_cpus_allowed_rt(struct task_struct * p,const struct cpumask * new_mask)1313 static void set_cpus_allowed_rt(struct task_struct *p,
1314 				const struct cpumask *new_mask)
1315 {
1316 	int weight = cpumask_weight(new_mask);
1317 
1318 	BUG_ON(!rt_task(p));
1319 
1320 	/*
1321 	 * Update the migration status of the RQ if we have an RT task
1322 	 * which is running AND changing its weight value.
1323 	 */
1324 	if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1325 		struct rq *rq = task_rq(p);
1326 
1327 		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1328 			rq->rt.rt_nr_migratory++;
1329 		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1330 			BUG_ON(!rq->rt.rt_nr_migratory);
1331 			rq->rt.rt_nr_migratory--;
1332 		}
1333 
1334 		update_rt_migration(rq);
1335 	}
1336 
1337 	cpumask_copy(&p->cpus_allowed, new_mask);
1338 	p->rt.nr_cpus_allowed = weight;
1339 }
1340 
1341 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)1342 static void rq_online_rt(struct rq *rq)
1343 {
1344 	if (rq->rt.overloaded)
1345 		rt_set_overload(rq);
1346 
1347 	__enable_runtime(rq);
1348 
1349 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1350 }
1351 
1352 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)1353 static void rq_offline_rt(struct rq *rq)
1354 {
1355 	if (rq->rt.overloaded)
1356 		rt_clear_overload(rq);
1357 
1358 	__disable_runtime(rq);
1359 
1360 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1361 }
1362 
1363 /*
1364  * When switch from the rt queue, we bring ourselves to a position
1365  * that we might want to pull RT tasks from other runqueues.
1366  */
switched_from_rt(struct rq * rq,struct task_struct * p,int running)1367 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1368 			   int running)
1369 {
1370 	/*
1371 	 * If there are other RT tasks then we will reschedule
1372 	 * and the scheduling of the other RT tasks will handle
1373 	 * the balancing. But if we are the last RT task
1374 	 * we may need to handle the pulling of RT tasks
1375 	 * now.
1376 	 */
1377 	if (!rq->rt.rt_nr_running)
1378 		pull_rt_task(rq);
1379 }
1380 
init_sched_rt_class(void)1381 static inline void init_sched_rt_class(void)
1382 {
1383 	unsigned int i;
1384 
1385 	for_each_possible_cpu(i)
1386 		alloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1387 					GFP_KERNEL, cpu_to_node(i));
1388 }
1389 #endif /* CONFIG_SMP */
1390 
1391 /*
1392  * When switching a task to RT, we may overload the runqueue
1393  * with RT tasks. In this case we try to push them off to
1394  * other runqueues.
1395  */
switched_to_rt(struct rq * rq,struct task_struct * p,int running)1396 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1397 			   int running)
1398 {
1399 	int check_resched = 1;
1400 
1401 	/*
1402 	 * If we are already running, then there's nothing
1403 	 * that needs to be done. But if we are not running
1404 	 * we may need to preempt the current running task.
1405 	 * If that current running task is also an RT task
1406 	 * then see if we can move to another run queue.
1407 	 */
1408 	if (!running) {
1409 #ifdef CONFIG_SMP
1410 		if (rq->rt.overloaded && push_rt_task(rq) &&
1411 		    /* Don't resched if we changed runqueues */
1412 		    rq != task_rq(p))
1413 			check_resched = 0;
1414 #endif /* CONFIG_SMP */
1415 		if (check_resched && p->prio < rq->curr->prio)
1416 			resched_task(rq->curr);
1417 	}
1418 }
1419 
1420 /*
1421  * Priority of the task has changed. This may cause
1422  * us to initiate a push or pull.
1423  */
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio,int running)1424 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1425 			    int oldprio, int running)
1426 {
1427 	if (running) {
1428 #ifdef CONFIG_SMP
1429 		/*
1430 		 * If our priority decreases while running, we
1431 		 * may need to pull tasks to this runqueue.
1432 		 */
1433 		if (oldprio < p->prio)
1434 			pull_rt_task(rq);
1435 		/*
1436 		 * If there's a higher priority task waiting to run
1437 		 * then reschedule. Note, the above pull_rt_task
1438 		 * can release the rq lock and p could migrate.
1439 		 * Only reschedule if p is still on the same runqueue.
1440 		 */
1441 		if (p->prio > rq->rt.highest_prio && rq->curr == p)
1442 			resched_task(p);
1443 #else
1444 		/* For UP simply resched on drop of prio */
1445 		if (oldprio < p->prio)
1446 			resched_task(p);
1447 #endif /* CONFIG_SMP */
1448 	} else {
1449 		/*
1450 		 * This task is not running, but if it is
1451 		 * greater than the current running task
1452 		 * then reschedule.
1453 		 */
1454 		if (p->prio < rq->curr->prio)
1455 			resched_task(rq->curr);
1456 	}
1457 }
1458 
watchdog(struct rq * rq,struct task_struct * p)1459 static void watchdog(struct rq *rq, struct task_struct *p)
1460 {
1461 	unsigned long soft, hard;
1462 
1463 	if (!p->signal)
1464 		return;
1465 
1466 	soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1467 	hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1468 
1469 	if (soft != RLIM_INFINITY) {
1470 		unsigned long next;
1471 
1472 		p->rt.timeout++;
1473 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1474 		if (p->rt.timeout > next)
1475 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1476 	}
1477 }
1478 
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)1479 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1480 {
1481 	update_curr_rt(rq);
1482 
1483 	watchdog(rq, p);
1484 
1485 	/*
1486 	 * RR tasks need a special form of timeslice management.
1487 	 * FIFO tasks have no timeslices.
1488 	 */
1489 	if (p->policy != SCHED_RR)
1490 		return;
1491 
1492 	if (--p->rt.time_slice)
1493 		return;
1494 
1495 	p->rt.time_slice = DEF_TIMESLICE;
1496 
1497 	/*
1498 	 * Requeue to the end of queue if we are not the only element
1499 	 * on the queue:
1500 	 */
1501 	if (p->rt.run_list.prev != p->rt.run_list.next) {
1502 		requeue_task_rt(rq, p, 0);
1503 		set_tsk_need_resched(p);
1504 	}
1505 }
1506 
set_curr_task_rt(struct rq * rq)1507 static void set_curr_task_rt(struct rq *rq)
1508 {
1509 	struct task_struct *p = rq->curr;
1510 
1511 	p->se.exec_start = rq->clock;
1512 }
1513 
1514 static const struct sched_class rt_sched_class = {
1515 	.next			= &fair_sched_class,
1516 	.enqueue_task		= enqueue_task_rt,
1517 	.dequeue_task		= dequeue_task_rt,
1518 	.yield_task		= yield_task_rt,
1519 
1520 	.check_preempt_curr	= check_preempt_curr_rt,
1521 
1522 	.pick_next_task		= pick_next_task_rt,
1523 	.put_prev_task		= put_prev_task_rt,
1524 
1525 #ifdef CONFIG_SMP
1526 	.select_task_rq		= select_task_rq_rt,
1527 
1528 	.load_balance		= load_balance_rt,
1529 	.move_one_task		= move_one_task_rt,
1530 	.set_cpus_allowed       = set_cpus_allowed_rt,
1531 	.rq_online              = rq_online_rt,
1532 	.rq_offline             = rq_offline_rt,
1533 	.pre_schedule		= pre_schedule_rt,
1534 	.post_schedule		= post_schedule_rt,
1535 	.task_wake_up		= task_wake_up_rt,
1536 	.switched_from		= switched_from_rt,
1537 #endif
1538 
1539 	.set_curr_task          = set_curr_task_rt,
1540 	.task_tick		= task_tick_rt,
1541 
1542 	.prio_changed		= prio_changed_rt,
1543 	.switched_to		= switched_to_rt,
1544 };
1545 
1546 #ifdef CONFIG_SCHED_DEBUG
1547 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1548 
print_rt_stats(struct seq_file * m,int cpu)1549 static void print_rt_stats(struct seq_file *m, int cpu)
1550 {
1551 	struct rt_rq *rt_rq;
1552 
1553 	rcu_read_lock();
1554 	for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1555 		print_rt_rq(m, cpu, rt_rq);
1556 	rcu_read_unlock();
1557 }
1558 #endif /* CONFIG_SCHED_DEBUG */
1559 
1560