• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28 
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/msr.h>
42 #include <asm/desc.h>
43 #include <asm/mtrr.h>
44 
45 #define MAX_IO_MSRS 256
46 #define CR0_RESERVED_BITS						\
47 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
48 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
49 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
50 #define CR4_RESERVED_BITS						\
51 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
52 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
53 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
54 			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
55 
56 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
57 /* EFER defaults:
58  * - enable syscall per default because its emulated by KVM
59  * - enable LME and LMA per default on 64 bit KVM
60  */
61 #ifdef CONFIG_X86_64
62 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
63 #else
64 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
65 #endif
66 
67 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
68 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
69 
70 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
71 				    struct kvm_cpuid_entry2 __user *entries);
72 
73 struct kvm_x86_ops *kvm_x86_ops;
74 EXPORT_SYMBOL_GPL(kvm_x86_ops);
75 
76 struct kvm_stats_debugfs_item debugfs_entries[] = {
77 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
78 	{ "pf_guest", VCPU_STAT(pf_guest) },
79 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
80 	{ "invlpg", VCPU_STAT(invlpg) },
81 	{ "exits", VCPU_STAT(exits) },
82 	{ "io_exits", VCPU_STAT(io_exits) },
83 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
84 	{ "signal_exits", VCPU_STAT(signal_exits) },
85 	{ "irq_window", VCPU_STAT(irq_window_exits) },
86 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
87 	{ "halt_exits", VCPU_STAT(halt_exits) },
88 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
89 	{ "hypercalls", VCPU_STAT(hypercalls) },
90 	{ "request_irq", VCPU_STAT(request_irq_exits) },
91 	{ "request_nmi", VCPU_STAT(request_nmi_exits) },
92 	{ "irq_exits", VCPU_STAT(irq_exits) },
93 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
94 	{ "efer_reload", VCPU_STAT(efer_reload) },
95 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
96 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
97 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
98 	{ "irq_injections", VCPU_STAT(irq_injections) },
99 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
100 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
101 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
102 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
103 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
104 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
105 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
106 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
107 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
108 	{ "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
109 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
110 	{ "largepages", VM_STAT(lpages) },
111 	{ NULL }
112 };
113 
segment_base(u16 selector)114 unsigned long segment_base(u16 selector)
115 {
116 	struct descriptor_table gdt;
117 	struct desc_struct *d;
118 	unsigned long table_base;
119 	unsigned long v;
120 
121 	if (selector == 0)
122 		return 0;
123 
124 	asm("sgdt %0" : "=m"(gdt));
125 	table_base = gdt.base;
126 
127 	if (selector & 4) {           /* from ldt */
128 		u16 ldt_selector;
129 
130 		asm("sldt %0" : "=g"(ldt_selector));
131 		table_base = segment_base(ldt_selector);
132 	}
133 	d = (struct desc_struct *)(table_base + (selector & ~7));
134 	v = d->base0 | ((unsigned long)d->base1 << 16) |
135 		((unsigned long)d->base2 << 24);
136 #ifdef CONFIG_X86_64
137 	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
138 		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
139 #endif
140 	return v;
141 }
142 EXPORT_SYMBOL_GPL(segment_base);
143 
kvm_get_apic_base(struct kvm_vcpu * vcpu)144 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
145 {
146 	if (irqchip_in_kernel(vcpu->kvm))
147 		return vcpu->arch.apic_base;
148 	else
149 		return vcpu->arch.apic_base;
150 }
151 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
152 
kvm_set_apic_base(struct kvm_vcpu * vcpu,u64 data)153 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
154 {
155 	/* TODO: reserve bits check */
156 	if (irqchip_in_kernel(vcpu->kvm))
157 		kvm_lapic_set_base(vcpu, data);
158 	else
159 		vcpu->arch.apic_base = data;
160 }
161 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
162 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)163 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
164 {
165 	WARN_ON(vcpu->arch.exception.pending);
166 	vcpu->arch.exception.pending = true;
167 	vcpu->arch.exception.has_error_code = false;
168 	vcpu->arch.exception.nr = nr;
169 }
170 EXPORT_SYMBOL_GPL(kvm_queue_exception);
171 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,unsigned long addr,u32 error_code)172 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
173 			   u32 error_code)
174 {
175 	++vcpu->stat.pf_guest;
176 	if (vcpu->arch.exception.pending) {
177 		if (vcpu->arch.exception.nr == PF_VECTOR) {
178 			printk(KERN_DEBUG "kvm: inject_page_fault:"
179 					" double fault 0x%lx\n", addr);
180 			vcpu->arch.exception.nr = DF_VECTOR;
181 			vcpu->arch.exception.error_code = 0;
182 		} else if (vcpu->arch.exception.nr == DF_VECTOR) {
183 			/* triple fault -> shutdown */
184 			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
185 		}
186 		return;
187 	}
188 	vcpu->arch.cr2 = addr;
189 	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
190 }
191 
kvm_inject_nmi(struct kvm_vcpu * vcpu)192 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
193 {
194 	vcpu->arch.nmi_pending = 1;
195 }
196 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
197 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)198 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
199 {
200 	WARN_ON(vcpu->arch.exception.pending);
201 	vcpu->arch.exception.pending = true;
202 	vcpu->arch.exception.has_error_code = true;
203 	vcpu->arch.exception.nr = nr;
204 	vcpu->arch.exception.error_code = error_code;
205 }
206 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
207 
__queue_exception(struct kvm_vcpu * vcpu)208 static void __queue_exception(struct kvm_vcpu *vcpu)
209 {
210 	kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
211 				     vcpu->arch.exception.has_error_code,
212 				     vcpu->arch.exception.error_code);
213 }
214 
215 /*
216  * Load the pae pdptrs.  Return true is they are all valid.
217  */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)218 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
219 {
220 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
221 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
222 	int i;
223 	int ret;
224 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
225 
226 	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
227 				  offset * sizeof(u64), sizeof(pdpte));
228 	if (ret < 0) {
229 		ret = 0;
230 		goto out;
231 	}
232 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
233 		if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
234 			ret = 0;
235 			goto out;
236 		}
237 	}
238 	ret = 1;
239 
240 	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
241 out:
242 
243 	return ret;
244 }
245 EXPORT_SYMBOL_GPL(load_pdptrs);
246 
pdptrs_changed(struct kvm_vcpu * vcpu)247 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
248 {
249 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
250 	bool changed = true;
251 	int r;
252 
253 	if (is_long_mode(vcpu) || !is_pae(vcpu))
254 		return false;
255 
256 	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
257 	if (r < 0)
258 		goto out;
259 	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
260 out:
261 
262 	return changed;
263 }
264 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)265 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
266 {
267 	if (cr0 & CR0_RESERVED_BITS) {
268 		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
269 		       cr0, vcpu->arch.cr0);
270 		kvm_inject_gp(vcpu, 0);
271 		return;
272 	}
273 
274 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
275 		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
276 		kvm_inject_gp(vcpu, 0);
277 		return;
278 	}
279 
280 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
281 		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
282 		       "and a clear PE flag\n");
283 		kvm_inject_gp(vcpu, 0);
284 		return;
285 	}
286 
287 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
288 #ifdef CONFIG_X86_64
289 		if ((vcpu->arch.shadow_efer & EFER_LME)) {
290 			int cs_db, cs_l;
291 
292 			if (!is_pae(vcpu)) {
293 				printk(KERN_DEBUG "set_cr0: #GP, start paging "
294 				       "in long mode while PAE is disabled\n");
295 				kvm_inject_gp(vcpu, 0);
296 				return;
297 			}
298 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
299 			if (cs_l) {
300 				printk(KERN_DEBUG "set_cr0: #GP, start paging "
301 				       "in long mode while CS.L == 1\n");
302 				kvm_inject_gp(vcpu, 0);
303 				return;
304 
305 			}
306 		} else
307 #endif
308 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
309 			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
310 			       "reserved bits\n");
311 			kvm_inject_gp(vcpu, 0);
312 			return;
313 		}
314 
315 	}
316 
317 	kvm_x86_ops->set_cr0(vcpu, cr0);
318 	vcpu->arch.cr0 = cr0;
319 
320 	kvm_mmu_sync_global(vcpu);
321 	kvm_mmu_reset_context(vcpu);
322 	return;
323 }
324 EXPORT_SYMBOL_GPL(kvm_set_cr0);
325 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)326 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
327 {
328 	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
329 	KVMTRACE_1D(LMSW, vcpu,
330 		    (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
331 		    handler);
332 }
333 EXPORT_SYMBOL_GPL(kvm_lmsw);
334 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)335 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
336 {
337 	if (cr4 & CR4_RESERVED_BITS) {
338 		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
339 		kvm_inject_gp(vcpu, 0);
340 		return;
341 	}
342 
343 	if (is_long_mode(vcpu)) {
344 		if (!(cr4 & X86_CR4_PAE)) {
345 			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
346 			       "in long mode\n");
347 			kvm_inject_gp(vcpu, 0);
348 			return;
349 		}
350 	} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
351 		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
352 		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
353 		kvm_inject_gp(vcpu, 0);
354 		return;
355 	}
356 
357 	if (cr4 & X86_CR4_VMXE) {
358 		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
359 		kvm_inject_gp(vcpu, 0);
360 		return;
361 	}
362 	kvm_x86_ops->set_cr4(vcpu, cr4);
363 	vcpu->arch.cr4 = cr4;
364 	kvm_mmu_sync_global(vcpu);
365 	kvm_mmu_reset_context(vcpu);
366 }
367 EXPORT_SYMBOL_GPL(kvm_set_cr4);
368 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)369 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
370 {
371 	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
372 		kvm_mmu_sync_roots(vcpu);
373 		kvm_mmu_flush_tlb(vcpu);
374 		return;
375 	}
376 
377 	if (is_long_mode(vcpu)) {
378 		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
379 			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
380 			kvm_inject_gp(vcpu, 0);
381 			return;
382 		}
383 	} else {
384 		if (is_pae(vcpu)) {
385 			if (cr3 & CR3_PAE_RESERVED_BITS) {
386 				printk(KERN_DEBUG
387 				       "set_cr3: #GP, reserved bits\n");
388 				kvm_inject_gp(vcpu, 0);
389 				return;
390 			}
391 			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
392 				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
393 				       "reserved bits\n");
394 				kvm_inject_gp(vcpu, 0);
395 				return;
396 			}
397 		}
398 		/*
399 		 * We don't check reserved bits in nonpae mode, because
400 		 * this isn't enforced, and VMware depends on this.
401 		 */
402 	}
403 
404 	/*
405 	 * Does the new cr3 value map to physical memory? (Note, we
406 	 * catch an invalid cr3 even in real-mode, because it would
407 	 * cause trouble later on when we turn on paging anyway.)
408 	 *
409 	 * A real CPU would silently accept an invalid cr3 and would
410 	 * attempt to use it - with largely undefined (and often hard
411 	 * to debug) behavior on the guest side.
412 	 */
413 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
414 		kvm_inject_gp(vcpu, 0);
415 	else {
416 		vcpu->arch.cr3 = cr3;
417 		vcpu->arch.mmu.new_cr3(vcpu);
418 	}
419 }
420 EXPORT_SYMBOL_GPL(kvm_set_cr3);
421 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)422 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
423 {
424 	if (cr8 & CR8_RESERVED_BITS) {
425 		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
426 		kvm_inject_gp(vcpu, 0);
427 		return;
428 	}
429 	if (irqchip_in_kernel(vcpu->kvm))
430 		kvm_lapic_set_tpr(vcpu, cr8);
431 	else
432 		vcpu->arch.cr8 = cr8;
433 }
434 EXPORT_SYMBOL_GPL(kvm_set_cr8);
435 
kvm_get_cr8(struct kvm_vcpu * vcpu)436 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
437 {
438 	if (irqchip_in_kernel(vcpu->kvm))
439 		return kvm_lapic_get_cr8(vcpu);
440 	else
441 		return vcpu->arch.cr8;
442 }
443 EXPORT_SYMBOL_GPL(kvm_get_cr8);
444 
445 /*
446  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
447  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
448  *
449  * This list is modified at module load time to reflect the
450  * capabilities of the host cpu.
451  */
452 static u32 msrs_to_save[] = {
453 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
454 	MSR_K6_STAR,
455 #ifdef CONFIG_X86_64
456 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
457 #endif
458 	MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
459 	MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT
460 };
461 
462 static unsigned num_msrs_to_save;
463 
464 static u32 emulated_msrs[] = {
465 	MSR_IA32_MISC_ENABLE,
466 };
467 
set_efer(struct kvm_vcpu * vcpu,u64 efer)468 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
469 {
470 	if (efer & efer_reserved_bits) {
471 		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
472 		       efer);
473 		kvm_inject_gp(vcpu, 0);
474 		return;
475 	}
476 
477 	if (is_paging(vcpu)
478 	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
479 		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
480 		kvm_inject_gp(vcpu, 0);
481 		return;
482 	}
483 
484 	kvm_x86_ops->set_efer(vcpu, efer);
485 
486 	efer &= ~EFER_LMA;
487 	efer |= vcpu->arch.shadow_efer & EFER_LMA;
488 
489 	vcpu->arch.shadow_efer = efer;
490 }
491 
kvm_enable_efer_bits(u64 mask)492 void kvm_enable_efer_bits(u64 mask)
493 {
494        efer_reserved_bits &= ~mask;
495 }
496 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
497 
498 
499 /*
500  * Writes msr value into into the appropriate "register".
501  * Returns 0 on success, non-0 otherwise.
502  * Assumes vcpu_load() was already called.
503  */
kvm_set_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)504 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
505 {
506 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
507 }
508 
509 /*
510  * Adapt set_msr() to msr_io()'s calling convention
511  */
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)512 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
513 {
514 	return kvm_set_msr(vcpu, index, *data);
515 }
516 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)517 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
518 {
519 	static int version;
520 	struct pvclock_wall_clock wc;
521 	struct timespec now, sys, boot;
522 
523 	if (!wall_clock)
524 		return;
525 
526 	version++;
527 
528 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
529 
530 	/*
531 	 * The guest calculates current wall clock time by adding
532 	 * system time (updated by kvm_write_guest_time below) to the
533 	 * wall clock specified here.  guest system time equals host
534 	 * system time for us, thus we must fill in host boot time here.
535 	 */
536 	now = current_kernel_time();
537 	ktime_get_ts(&sys);
538 	boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
539 
540 	wc.sec = boot.tv_sec;
541 	wc.nsec = boot.tv_nsec;
542 	wc.version = version;
543 
544 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
545 
546 	version++;
547 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
548 }
549 
div_frac(uint32_t dividend,uint32_t divisor)550 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
551 {
552 	uint32_t quotient, remainder;
553 
554 	/* Don't try to replace with do_div(), this one calculates
555 	 * "(dividend << 32) / divisor" */
556 	__asm__ ( "divl %4"
557 		  : "=a" (quotient), "=d" (remainder)
558 		  : "0" (0), "1" (dividend), "r" (divisor) );
559 	return quotient;
560 }
561 
kvm_set_time_scale(uint32_t tsc_khz,struct pvclock_vcpu_time_info * hv_clock)562 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
563 {
564 	uint64_t nsecs = 1000000000LL;
565 	int32_t  shift = 0;
566 	uint64_t tps64;
567 	uint32_t tps32;
568 
569 	tps64 = tsc_khz * 1000LL;
570 	while (tps64 > nsecs*2) {
571 		tps64 >>= 1;
572 		shift--;
573 	}
574 
575 	tps32 = (uint32_t)tps64;
576 	while (tps32 <= (uint32_t)nsecs) {
577 		tps32 <<= 1;
578 		shift++;
579 	}
580 
581 	hv_clock->tsc_shift = shift;
582 	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
583 
584 	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
585 		 __func__, tsc_khz, hv_clock->tsc_shift,
586 		 hv_clock->tsc_to_system_mul);
587 }
588 
kvm_write_guest_time(struct kvm_vcpu * v)589 static void kvm_write_guest_time(struct kvm_vcpu *v)
590 {
591 	struct timespec ts;
592 	unsigned long flags;
593 	struct kvm_vcpu_arch *vcpu = &v->arch;
594 	void *shared_kaddr;
595 
596 	if ((!vcpu->time_page))
597 		return;
598 
599 	if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
600 		kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
601 		vcpu->hv_clock_tsc_khz = tsc_khz;
602 	}
603 
604 	/* Keep irq disabled to prevent changes to the clock */
605 	local_irq_save(flags);
606 	kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
607 			  &vcpu->hv_clock.tsc_timestamp);
608 	ktime_get_ts(&ts);
609 	local_irq_restore(flags);
610 
611 	/* With all the info we got, fill in the values */
612 
613 	vcpu->hv_clock.system_time = ts.tv_nsec +
614 				     (NSEC_PER_SEC * (u64)ts.tv_sec);
615 	/*
616 	 * The interface expects us to write an even number signaling that the
617 	 * update is finished. Since the guest won't see the intermediate
618 	 * state, we just increase by 2 at the end.
619 	 */
620 	vcpu->hv_clock.version += 2;
621 
622 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
623 
624 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
625 	       sizeof(vcpu->hv_clock));
626 
627 	kunmap_atomic(shared_kaddr, KM_USER0);
628 
629 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
630 }
631 
msr_mtrr_valid(unsigned msr)632 static bool msr_mtrr_valid(unsigned msr)
633 {
634 	switch (msr) {
635 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
636 	case MSR_MTRRfix64K_00000:
637 	case MSR_MTRRfix16K_80000:
638 	case MSR_MTRRfix16K_A0000:
639 	case MSR_MTRRfix4K_C0000:
640 	case MSR_MTRRfix4K_C8000:
641 	case MSR_MTRRfix4K_D0000:
642 	case MSR_MTRRfix4K_D8000:
643 	case MSR_MTRRfix4K_E0000:
644 	case MSR_MTRRfix4K_E8000:
645 	case MSR_MTRRfix4K_F0000:
646 	case MSR_MTRRfix4K_F8000:
647 	case MSR_MTRRdefType:
648 	case MSR_IA32_CR_PAT:
649 		return true;
650 	case 0x2f8:
651 		return true;
652 	}
653 	return false;
654 }
655 
set_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 data)656 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
657 {
658 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
659 
660 	if (!msr_mtrr_valid(msr))
661 		return 1;
662 
663 	if (msr == MSR_MTRRdefType) {
664 		vcpu->arch.mtrr_state.def_type = data;
665 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
666 	} else if (msr == MSR_MTRRfix64K_00000)
667 		p[0] = data;
668 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
669 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
670 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
671 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
672 	else if (msr == MSR_IA32_CR_PAT)
673 		vcpu->arch.pat = data;
674 	else {	/* Variable MTRRs */
675 		int idx, is_mtrr_mask;
676 		u64 *pt;
677 
678 		idx = (msr - 0x200) / 2;
679 		is_mtrr_mask = msr - 0x200 - 2 * idx;
680 		if (!is_mtrr_mask)
681 			pt =
682 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
683 		else
684 			pt =
685 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
686 		*pt = data;
687 	}
688 
689 	kvm_mmu_reset_context(vcpu);
690 	return 0;
691 }
692 
kvm_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data)693 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
694 {
695 	switch (msr) {
696 	case MSR_EFER:
697 		set_efer(vcpu, data);
698 		break;
699 	case MSR_IA32_MC0_STATUS:
700 		pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
701 		       __func__, data);
702 		break;
703 	case MSR_IA32_MCG_STATUS:
704 		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
705 			__func__, data);
706 		break;
707 	case MSR_IA32_MCG_CTL:
708 		pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
709 			__func__, data);
710 		break;
711 	case MSR_IA32_DEBUGCTLMSR:
712 		if (!data) {
713 			/* We support the non-activated case already */
714 			break;
715 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
716 			/* Values other than LBR and BTF are vendor-specific,
717 			   thus reserved and should throw a #GP */
718 			return 1;
719 		}
720 		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
721 			__func__, data);
722 		break;
723 	case MSR_IA32_UCODE_REV:
724 	case MSR_IA32_UCODE_WRITE:
725 		break;
726 	case 0x200 ... 0x2ff:
727 		return set_msr_mtrr(vcpu, msr, data);
728 	case MSR_IA32_APICBASE:
729 		kvm_set_apic_base(vcpu, data);
730 		break;
731 	case MSR_IA32_MISC_ENABLE:
732 		vcpu->arch.ia32_misc_enable_msr = data;
733 		break;
734 	case MSR_KVM_WALL_CLOCK:
735 		vcpu->kvm->arch.wall_clock = data;
736 		kvm_write_wall_clock(vcpu->kvm, data);
737 		break;
738 	case MSR_KVM_SYSTEM_TIME: {
739 		if (vcpu->arch.time_page) {
740 			kvm_release_page_dirty(vcpu->arch.time_page);
741 			vcpu->arch.time_page = NULL;
742 		}
743 
744 		vcpu->arch.time = data;
745 
746 		/* we verify if the enable bit is set... */
747 		if (!(data & 1))
748 			break;
749 
750 		/* ...but clean it before doing the actual write */
751 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
752 
753 		vcpu->arch.time_page =
754 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
755 
756 		if (is_error_page(vcpu->arch.time_page)) {
757 			kvm_release_page_clean(vcpu->arch.time_page);
758 			vcpu->arch.time_page = NULL;
759 		}
760 
761 		kvm_write_guest_time(vcpu);
762 		break;
763 	}
764 	default:
765 		pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
766 		return 1;
767 	}
768 	return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
771 
772 
773 /*
774  * Reads an msr value (of 'msr_index') into 'pdata'.
775  * Returns 0 on success, non-0 otherwise.
776  * Assumes vcpu_load() was already called.
777  */
kvm_get_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)778 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
779 {
780 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
781 }
782 
get_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)783 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
784 {
785 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
786 
787 	if (!msr_mtrr_valid(msr))
788 		return 1;
789 
790 	if (msr == MSR_MTRRdefType)
791 		*pdata = vcpu->arch.mtrr_state.def_type +
792 			 (vcpu->arch.mtrr_state.enabled << 10);
793 	else if (msr == MSR_MTRRfix64K_00000)
794 		*pdata = p[0];
795 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
796 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
797 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
798 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
799 	else if (msr == MSR_IA32_CR_PAT)
800 		*pdata = vcpu->arch.pat;
801 	else {	/* Variable MTRRs */
802 		int idx, is_mtrr_mask;
803 		u64 *pt;
804 
805 		idx = (msr - 0x200) / 2;
806 		is_mtrr_mask = msr - 0x200 - 2 * idx;
807 		if (!is_mtrr_mask)
808 			pt =
809 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
810 		else
811 			pt =
812 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
813 		*pdata = *pt;
814 	}
815 
816 	return 0;
817 }
818 
kvm_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)819 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
820 {
821 	u64 data;
822 
823 	switch (msr) {
824 	case 0xc0010010: /* SYSCFG */
825 	case 0xc0010015: /* HWCR */
826 	case MSR_IA32_PLATFORM_ID:
827 	case MSR_IA32_P5_MC_ADDR:
828 	case MSR_IA32_P5_MC_TYPE:
829 	case MSR_IA32_MC0_CTL:
830 	case MSR_IA32_MCG_STATUS:
831 	case MSR_IA32_MCG_CAP:
832 	case MSR_IA32_MCG_CTL:
833 	case MSR_IA32_MC0_MISC:
834 	case MSR_IA32_MC0_MISC+4:
835 	case MSR_IA32_MC0_MISC+8:
836 	case MSR_IA32_MC0_MISC+12:
837 	case MSR_IA32_MC0_MISC+16:
838 	case MSR_IA32_MC0_MISC+20:
839 	case MSR_IA32_UCODE_REV:
840 	case MSR_IA32_EBL_CR_POWERON:
841 	case MSR_IA32_DEBUGCTLMSR:
842 	case MSR_IA32_LASTBRANCHFROMIP:
843 	case MSR_IA32_LASTBRANCHTOIP:
844 	case MSR_IA32_LASTINTFROMIP:
845 	case MSR_IA32_LASTINTTOIP:
846 		data = 0;
847 		break;
848 	case MSR_MTRRcap:
849 		data = 0x500 | KVM_NR_VAR_MTRR;
850 		break;
851 	case 0x200 ... 0x2ff:
852 		return get_msr_mtrr(vcpu, msr, pdata);
853 	case 0xcd: /* fsb frequency */
854 		data = 3;
855 		break;
856 	case MSR_IA32_APICBASE:
857 		data = kvm_get_apic_base(vcpu);
858 		break;
859 	case MSR_IA32_MISC_ENABLE:
860 		data = vcpu->arch.ia32_misc_enable_msr;
861 		break;
862 	case MSR_IA32_PERF_STATUS:
863 		/* TSC increment by tick */
864 		data = 1000ULL;
865 		/* CPU multiplier */
866 		data |= (((uint64_t)4ULL) << 40);
867 		break;
868 	case MSR_EFER:
869 		data = vcpu->arch.shadow_efer;
870 		break;
871 	case MSR_KVM_WALL_CLOCK:
872 		data = vcpu->kvm->arch.wall_clock;
873 		break;
874 	case MSR_KVM_SYSTEM_TIME:
875 		data = vcpu->arch.time;
876 		break;
877 	default:
878 		pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
879 		return 1;
880 	}
881 	*pdata = data;
882 	return 0;
883 }
884 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
885 
886 /*
887  * Read or write a bunch of msrs. All parameters are kernel addresses.
888  *
889  * @return number of msrs set successfully.
890  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))891 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
892 		    struct kvm_msr_entry *entries,
893 		    int (*do_msr)(struct kvm_vcpu *vcpu,
894 				  unsigned index, u64 *data))
895 {
896 	int i;
897 
898 	vcpu_load(vcpu);
899 
900 	down_read(&vcpu->kvm->slots_lock);
901 	for (i = 0; i < msrs->nmsrs; ++i)
902 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
903 			break;
904 	up_read(&vcpu->kvm->slots_lock);
905 
906 	vcpu_put(vcpu);
907 
908 	return i;
909 }
910 
911 /*
912  * Read or write a bunch of msrs. Parameters are user addresses.
913  *
914  * @return number of msrs set successfully.
915  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)916 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
917 		  int (*do_msr)(struct kvm_vcpu *vcpu,
918 				unsigned index, u64 *data),
919 		  int writeback)
920 {
921 	struct kvm_msrs msrs;
922 	struct kvm_msr_entry *entries;
923 	int r, n;
924 	unsigned size;
925 
926 	r = -EFAULT;
927 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
928 		goto out;
929 
930 	r = -E2BIG;
931 	if (msrs.nmsrs >= MAX_IO_MSRS)
932 		goto out;
933 
934 	r = -ENOMEM;
935 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
936 	entries = vmalloc(size);
937 	if (!entries)
938 		goto out;
939 
940 	r = -EFAULT;
941 	if (copy_from_user(entries, user_msrs->entries, size))
942 		goto out_free;
943 
944 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
945 	if (r < 0)
946 		goto out_free;
947 
948 	r = -EFAULT;
949 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
950 		goto out_free;
951 
952 	r = n;
953 
954 out_free:
955 	vfree(entries);
956 out:
957 	return r;
958 }
959 
kvm_dev_ioctl_check_extension(long ext)960 int kvm_dev_ioctl_check_extension(long ext)
961 {
962 	int r;
963 
964 	switch (ext) {
965 	case KVM_CAP_IRQCHIP:
966 	case KVM_CAP_HLT:
967 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
968 	case KVM_CAP_SET_TSS_ADDR:
969 	case KVM_CAP_EXT_CPUID:
970 	case KVM_CAP_PIT:
971 	case KVM_CAP_NOP_IO_DELAY:
972 	case KVM_CAP_MP_STATE:
973 	case KVM_CAP_SYNC_MMU:
974 		r = 1;
975 		break;
976 	case KVM_CAP_COALESCED_MMIO:
977 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
978 		break;
979 	case KVM_CAP_VAPIC:
980 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
981 		break;
982 	case KVM_CAP_NR_VCPUS:
983 		r = KVM_MAX_VCPUS;
984 		break;
985 	case KVM_CAP_NR_MEMSLOTS:
986 		r = KVM_MEMORY_SLOTS;
987 		break;
988 	case KVM_CAP_PV_MMU:
989 		r = !tdp_enabled;
990 		break;
991 	case KVM_CAP_IOMMU:
992 		r = iommu_found();
993 		break;
994 	case KVM_CAP_CLOCKSOURCE:
995 		r = boot_cpu_has(X86_FEATURE_CONSTANT_TSC);
996 		break;
997 	default:
998 		r = 0;
999 		break;
1000 	}
1001 	return r;
1002 
1003 }
1004 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1005 long kvm_arch_dev_ioctl(struct file *filp,
1006 			unsigned int ioctl, unsigned long arg)
1007 {
1008 	void __user *argp = (void __user *)arg;
1009 	long r;
1010 
1011 	switch (ioctl) {
1012 	case KVM_GET_MSR_INDEX_LIST: {
1013 		struct kvm_msr_list __user *user_msr_list = argp;
1014 		struct kvm_msr_list msr_list;
1015 		unsigned n;
1016 
1017 		r = -EFAULT;
1018 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1019 			goto out;
1020 		n = msr_list.nmsrs;
1021 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1022 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1023 			goto out;
1024 		r = -E2BIG;
1025 		if (n < num_msrs_to_save)
1026 			goto out;
1027 		r = -EFAULT;
1028 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1029 				 num_msrs_to_save * sizeof(u32)))
1030 			goto out;
1031 		if (copy_to_user(user_msr_list->indices
1032 				 + num_msrs_to_save * sizeof(u32),
1033 				 &emulated_msrs,
1034 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1035 			goto out;
1036 		r = 0;
1037 		break;
1038 	}
1039 	case KVM_GET_SUPPORTED_CPUID: {
1040 		struct kvm_cpuid2 __user *cpuid_arg = argp;
1041 		struct kvm_cpuid2 cpuid;
1042 
1043 		r = -EFAULT;
1044 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1045 			goto out;
1046 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1047 			cpuid_arg->entries);
1048 		if (r)
1049 			goto out;
1050 
1051 		r = -EFAULT;
1052 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1053 			goto out;
1054 		r = 0;
1055 		break;
1056 	}
1057 	default:
1058 		r = -EINVAL;
1059 	}
1060 out:
1061 	return r;
1062 }
1063 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1064 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1065 {
1066 	kvm_x86_ops->vcpu_load(vcpu, cpu);
1067 	kvm_write_guest_time(vcpu);
1068 }
1069 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)1070 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1071 {
1072 	kvm_x86_ops->vcpu_put(vcpu);
1073 	kvm_put_guest_fpu(vcpu);
1074 }
1075 
is_efer_nx(void)1076 static int is_efer_nx(void)
1077 {
1078 	u64 efer;
1079 
1080 	rdmsrl(MSR_EFER, efer);
1081 	return efer & EFER_NX;
1082 }
1083 
cpuid_fix_nx_cap(struct kvm_vcpu * vcpu)1084 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1085 {
1086 	int i;
1087 	struct kvm_cpuid_entry2 *e, *entry;
1088 
1089 	entry = NULL;
1090 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1091 		e = &vcpu->arch.cpuid_entries[i];
1092 		if (e->function == 0x80000001) {
1093 			entry = e;
1094 			break;
1095 		}
1096 	}
1097 	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1098 		entry->edx &= ~(1 << 20);
1099 		printk(KERN_INFO "kvm: guest NX capability removed\n");
1100 	}
1101 }
1102 
1103 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)1104 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1105 				    struct kvm_cpuid *cpuid,
1106 				    struct kvm_cpuid_entry __user *entries)
1107 {
1108 	int r, i;
1109 	struct kvm_cpuid_entry *cpuid_entries;
1110 
1111 	r = -E2BIG;
1112 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1113 		goto out;
1114 	r = -ENOMEM;
1115 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1116 	if (!cpuid_entries)
1117 		goto out;
1118 	r = -EFAULT;
1119 	if (copy_from_user(cpuid_entries, entries,
1120 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1121 		goto out_free;
1122 	for (i = 0; i < cpuid->nent; i++) {
1123 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1124 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1125 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1126 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1127 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1128 		vcpu->arch.cpuid_entries[i].index = 0;
1129 		vcpu->arch.cpuid_entries[i].flags = 0;
1130 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
1131 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
1132 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
1133 	}
1134 	vcpu->arch.cpuid_nent = cpuid->nent;
1135 	cpuid_fix_nx_cap(vcpu);
1136 	r = 0;
1137 
1138 out_free:
1139 	vfree(cpuid_entries);
1140 out:
1141 	return r;
1142 }
1143 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)1144 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1145 				    struct kvm_cpuid2 *cpuid,
1146 				    struct kvm_cpuid_entry2 __user *entries)
1147 {
1148 	int r;
1149 
1150 	r = -E2BIG;
1151 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1152 		goto out;
1153 	r = -EFAULT;
1154 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1155 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1156 		goto out;
1157 	vcpu->arch.cpuid_nent = cpuid->nent;
1158 	return 0;
1159 
1160 out:
1161 	return r;
1162 }
1163 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)1164 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1165 				    struct kvm_cpuid2 *cpuid,
1166 				    struct kvm_cpuid_entry2 __user *entries)
1167 {
1168 	int r;
1169 
1170 	r = -E2BIG;
1171 	if (cpuid->nent < vcpu->arch.cpuid_nent)
1172 		goto out;
1173 	r = -EFAULT;
1174 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1175 			   vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1176 		goto out;
1177 	return 0;
1178 
1179 out:
1180 	cpuid->nent = vcpu->arch.cpuid_nent;
1181 	return r;
1182 }
1183 
bit(int bitno)1184 static inline u32 bit(int bitno)
1185 {
1186 	return 1 << (bitno & 31);
1187 }
1188 
do_cpuid_1_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index)1189 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1190 			  u32 index)
1191 {
1192 	entry->function = function;
1193 	entry->index = index;
1194 	cpuid_count(entry->function, entry->index,
1195 		&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1196 	entry->flags = 0;
1197 }
1198 
do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index,int * nent,int maxnent)1199 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1200 			 u32 index, int *nent, int maxnent)
1201 {
1202 	const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1203 		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1204 		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1205 		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1206 		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1207 		bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1208 		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1209 		bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1210 		bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1211 		bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1212 	const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1213 		bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1214 		bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1215 		bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1216 		bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1217 		bit(X86_FEATURE_PGE) |
1218 		bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1219 		bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1220 		bit(X86_FEATURE_SYSCALL) |
1221 		(bit(X86_FEATURE_NX) && is_efer_nx()) |
1222 #ifdef CONFIG_X86_64
1223 		bit(X86_FEATURE_LM) |
1224 #endif
1225 		bit(X86_FEATURE_MMXEXT) |
1226 		bit(X86_FEATURE_3DNOWEXT) |
1227 		bit(X86_FEATURE_3DNOW);
1228 	const u32 kvm_supported_word3_x86_features =
1229 		bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1230 	const u32 kvm_supported_word6_x86_features =
1231 		bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
1232 
1233 	/* all func 2 cpuid_count() should be called on the same cpu */
1234 	get_cpu();
1235 	do_cpuid_1_ent(entry, function, index);
1236 	++*nent;
1237 
1238 	switch (function) {
1239 	case 0:
1240 		entry->eax = min(entry->eax, (u32)0xb);
1241 		break;
1242 	case 1:
1243 		entry->edx &= kvm_supported_word0_x86_features;
1244 		entry->ecx &= kvm_supported_word3_x86_features;
1245 		break;
1246 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
1247 	 * may return different values. This forces us to get_cpu() before
1248 	 * issuing the first command, and also to emulate this annoying behavior
1249 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1250 	case 2: {
1251 		int t, times = entry->eax & 0xff;
1252 
1253 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1254 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1255 		for (t = 1; t < times && *nent < maxnent; ++t) {
1256 			do_cpuid_1_ent(&entry[t], function, 0);
1257 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1258 			++*nent;
1259 		}
1260 		break;
1261 	}
1262 	/* function 4 and 0xb have additional index. */
1263 	case 4: {
1264 		int i, cache_type;
1265 
1266 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1267 		/* read more entries until cache_type is zero */
1268 		for (i = 1; *nent < maxnent; ++i) {
1269 			cache_type = entry[i - 1].eax & 0x1f;
1270 			if (!cache_type)
1271 				break;
1272 			do_cpuid_1_ent(&entry[i], function, i);
1273 			entry[i].flags |=
1274 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1275 			++*nent;
1276 		}
1277 		break;
1278 	}
1279 	case 0xb: {
1280 		int i, level_type;
1281 
1282 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1283 		/* read more entries until level_type is zero */
1284 		for (i = 1; *nent < maxnent; ++i) {
1285 			level_type = entry[i - 1].ecx & 0xff00;
1286 			if (!level_type)
1287 				break;
1288 			do_cpuid_1_ent(&entry[i], function, i);
1289 			entry[i].flags |=
1290 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1291 			++*nent;
1292 		}
1293 		break;
1294 	}
1295 	case 0x80000000:
1296 		entry->eax = min(entry->eax, 0x8000001a);
1297 		break;
1298 	case 0x80000001:
1299 		entry->edx &= kvm_supported_word1_x86_features;
1300 		entry->ecx &= kvm_supported_word6_x86_features;
1301 		break;
1302 	}
1303 	put_cpu();
1304 }
1305 
kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)1306 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1307 				    struct kvm_cpuid_entry2 __user *entries)
1308 {
1309 	struct kvm_cpuid_entry2 *cpuid_entries;
1310 	int limit, nent = 0, r = -E2BIG;
1311 	u32 func;
1312 
1313 	if (cpuid->nent < 1)
1314 		goto out;
1315 	r = -ENOMEM;
1316 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1317 	if (!cpuid_entries)
1318 		goto out;
1319 
1320 	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1321 	limit = cpuid_entries[0].eax;
1322 	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1323 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
1324 				&nent, cpuid->nent);
1325 	r = -E2BIG;
1326 	if (nent >= cpuid->nent)
1327 		goto out_free;
1328 
1329 	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1330 	limit = cpuid_entries[nent - 1].eax;
1331 	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1332 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
1333 			       &nent, cpuid->nent);
1334 	r = -EFAULT;
1335 	if (copy_to_user(entries, cpuid_entries,
1336 			nent * sizeof(struct kvm_cpuid_entry2)))
1337 		goto out_free;
1338 	cpuid->nent = nent;
1339 	r = 0;
1340 
1341 out_free:
1342 	vfree(cpuid_entries);
1343 out:
1344 	return r;
1345 }
1346 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)1347 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1348 				    struct kvm_lapic_state *s)
1349 {
1350 	vcpu_load(vcpu);
1351 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1352 	vcpu_put(vcpu);
1353 
1354 	return 0;
1355 }
1356 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)1357 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1358 				    struct kvm_lapic_state *s)
1359 {
1360 	vcpu_load(vcpu);
1361 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1362 	kvm_apic_post_state_restore(vcpu);
1363 	vcpu_put(vcpu);
1364 
1365 	return 0;
1366 }
1367 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1368 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1369 				    struct kvm_interrupt *irq)
1370 {
1371 	if (irq->irq < 0 || irq->irq >= 256)
1372 		return -EINVAL;
1373 	if (irqchip_in_kernel(vcpu->kvm))
1374 		return -ENXIO;
1375 	vcpu_load(vcpu);
1376 
1377 	set_bit(irq->irq, vcpu->arch.irq_pending);
1378 	set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1379 
1380 	vcpu_put(vcpu);
1381 
1382 	return 0;
1383 }
1384 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)1385 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1386 {
1387 	vcpu_load(vcpu);
1388 	kvm_inject_nmi(vcpu);
1389 	vcpu_put(vcpu);
1390 
1391 	return 0;
1392 }
1393 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)1394 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1395 					   struct kvm_tpr_access_ctl *tac)
1396 {
1397 	if (tac->flags)
1398 		return -EINVAL;
1399 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
1400 	return 0;
1401 }
1402 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1403 long kvm_arch_vcpu_ioctl(struct file *filp,
1404 			 unsigned int ioctl, unsigned long arg)
1405 {
1406 	struct kvm_vcpu *vcpu = filp->private_data;
1407 	void __user *argp = (void __user *)arg;
1408 	int r;
1409 	struct kvm_lapic_state *lapic = NULL;
1410 
1411 	switch (ioctl) {
1412 	case KVM_GET_LAPIC: {
1413 		lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1414 
1415 		r = -ENOMEM;
1416 		if (!lapic)
1417 			goto out;
1418 		r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1419 		if (r)
1420 			goto out;
1421 		r = -EFAULT;
1422 		if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1423 			goto out;
1424 		r = 0;
1425 		break;
1426 	}
1427 	case KVM_SET_LAPIC: {
1428 		lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1429 		r = -ENOMEM;
1430 		if (!lapic)
1431 			goto out;
1432 		r = -EFAULT;
1433 		if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1434 			goto out;
1435 		r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1436 		if (r)
1437 			goto out;
1438 		r = 0;
1439 		break;
1440 	}
1441 	case KVM_INTERRUPT: {
1442 		struct kvm_interrupt irq;
1443 
1444 		r = -EFAULT;
1445 		if (copy_from_user(&irq, argp, sizeof irq))
1446 			goto out;
1447 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1448 		if (r)
1449 			goto out;
1450 		r = 0;
1451 		break;
1452 	}
1453 	case KVM_NMI: {
1454 		r = kvm_vcpu_ioctl_nmi(vcpu);
1455 		if (r)
1456 			goto out;
1457 		r = 0;
1458 		break;
1459 	}
1460 	case KVM_SET_CPUID: {
1461 		struct kvm_cpuid __user *cpuid_arg = argp;
1462 		struct kvm_cpuid cpuid;
1463 
1464 		r = -EFAULT;
1465 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1466 			goto out;
1467 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1468 		if (r)
1469 			goto out;
1470 		break;
1471 	}
1472 	case KVM_SET_CPUID2: {
1473 		struct kvm_cpuid2 __user *cpuid_arg = argp;
1474 		struct kvm_cpuid2 cpuid;
1475 
1476 		r = -EFAULT;
1477 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1478 			goto out;
1479 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1480 				cpuid_arg->entries);
1481 		if (r)
1482 			goto out;
1483 		break;
1484 	}
1485 	case KVM_GET_CPUID2: {
1486 		struct kvm_cpuid2 __user *cpuid_arg = argp;
1487 		struct kvm_cpuid2 cpuid;
1488 
1489 		r = -EFAULT;
1490 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1491 			goto out;
1492 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1493 				cpuid_arg->entries);
1494 		if (r)
1495 			goto out;
1496 		r = -EFAULT;
1497 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1498 			goto out;
1499 		r = 0;
1500 		break;
1501 	}
1502 	case KVM_GET_MSRS:
1503 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
1504 		break;
1505 	case KVM_SET_MSRS:
1506 		r = msr_io(vcpu, argp, do_set_msr, 0);
1507 		break;
1508 	case KVM_TPR_ACCESS_REPORTING: {
1509 		struct kvm_tpr_access_ctl tac;
1510 
1511 		r = -EFAULT;
1512 		if (copy_from_user(&tac, argp, sizeof tac))
1513 			goto out;
1514 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1515 		if (r)
1516 			goto out;
1517 		r = -EFAULT;
1518 		if (copy_to_user(argp, &tac, sizeof tac))
1519 			goto out;
1520 		r = 0;
1521 		break;
1522 	};
1523 	case KVM_SET_VAPIC_ADDR: {
1524 		struct kvm_vapic_addr va;
1525 
1526 		r = -EINVAL;
1527 		if (!irqchip_in_kernel(vcpu->kvm))
1528 			goto out;
1529 		r = -EFAULT;
1530 		if (copy_from_user(&va, argp, sizeof va))
1531 			goto out;
1532 		r = 0;
1533 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1534 		break;
1535 	}
1536 	default:
1537 		r = -EINVAL;
1538 	}
1539 out:
1540 	if (lapic)
1541 		kfree(lapic);
1542 	return r;
1543 }
1544 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)1545 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1546 {
1547 	int ret;
1548 
1549 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
1550 		return -1;
1551 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1552 	return ret;
1553 }
1554 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)1555 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1556 					  u32 kvm_nr_mmu_pages)
1557 {
1558 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1559 		return -EINVAL;
1560 
1561 	down_write(&kvm->slots_lock);
1562 
1563 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1564 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1565 
1566 	up_write(&kvm->slots_lock);
1567 	return 0;
1568 }
1569 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)1570 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1571 {
1572 	return kvm->arch.n_alloc_mmu_pages;
1573 }
1574 
unalias_gfn(struct kvm * kvm,gfn_t gfn)1575 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1576 {
1577 	int i;
1578 	struct kvm_mem_alias *alias;
1579 
1580 	for (i = 0; i < kvm->arch.naliases; ++i) {
1581 		alias = &kvm->arch.aliases[i];
1582 		if (gfn >= alias->base_gfn
1583 		    && gfn < alias->base_gfn + alias->npages)
1584 			return alias->target_gfn + gfn - alias->base_gfn;
1585 	}
1586 	return gfn;
1587 }
1588 
1589 /*
1590  * Set a new alias region.  Aliases map a portion of physical memory into
1591  * another portion.  This is useful for memory windows, for example the PC
1592  * VGA region.
1593  */
kvm_vm_ioctl_set_memory_alias(struct kvm * kvm,struct kvm_memory_alias * alias)1594 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1595 					 struct kvm_memory_alias *alias)
1596 {
1597 	int r, n;
1598 	struct kvm_mem_alias *p;
1599 
1600 	r = -EINVAL;
1601 	/* General sanity checks */
1602 	if (alias->memory_size & (PAGE_SIZE - 1))
1603 		goto out;
1604 	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1605 		goto out;
1606 	if (alias->slot >= KVM_ALIAS_SLOTS)
1607 		goto out;
1608 	if (alias->guest_phys_addr + alias->memory_size
1609 	    < alias->guest_phys_addr)
1610 		goto out;
1611 	if (alias->target_phys_addr + alias->memory_size
1612 	    < alias->target_phys_addr)
1613 		goto out;
1614 
1615 	down_write(&kvm->slots_lock);
1616 	spin_lock(&kvm->mmu_lock);
1617 
1618 	p = &kvm->arch.aliases[alias->slot];
1619 	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1620 	p->npages = alias->memory_size >> PAGE_SHIFT;
1621 	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1622 
1623 	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1624 		if (kvm->arch.aliases[n - 1].npages)
1625 			break;
1626 	kvm->arch.naliases = n;
1627 
1628 	spin_unlock(&kvm->mmu_lock);
1629 	kvm_mmu_zap_all(kvm);
1630 
1631 	up_write(&kvm->slots_lock);
1632 
1633 	return 0;
1634 
1635 out:
1636 	return r;
1637 }
1638 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)1639 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1640 {
1641 	int r;
1642 
1643 	r = 0;
1644 	switch (chip->chip_id) {
1645 	case KVM_IRQCHIP_PIC_MASTER:
1646 		memcpy(&chip->chip.pic,
1647 			&pic_irqchip(kvm)->pics[0],
1648 			sizeof(struct kvm_pic_state));
1649 		break;
1650 	case KVM_IRQCHIP_PIC_SLAVE:
1651 		memcpy(&chip->chip.pic,
1652 			&pic_irqchip(kvm)->pics[1],
1653 			sizeof(struct kvm_pic_state));
1654 		break;
1655 	case KVM_IRQCHIP_IOAPIC:
1656 		memcpy(&chip->chip.ioapic,
1657 			ioapic_irqchip(kvm),
1658 			sizeof(struct kvm_ioapic_state));
1659 		break;
1660 	default:
1661 		r = -EINVAL;
1662 		break;
1663 	}
1664 	return r;
1665 }
1666 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)1667 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1668 {
1669 	int r;
1670 
1671 	r = 0;
1672 	switch (chip->chip_id) {
1673 	case KVM_IRQCHIP_PIC_MASTER:
1674 		memcpy(&pic_irqchip(kvm)->pics[0],
1675 			&chip->chip.pic,
1676 			sizeof(struct kvm_pic_state));
1677 		break;
1678 	case KVM_IRQCHIP_PIC_SLAVE:
1679 		memcpy(&pic_irqchip(kvm)->pics[1],
1680 			&chip->chip.pic,
1681 			sizeof(struct kvm_pic_state));
1682 		break;
1683 	case KVM_IRQCHIP_IOAPIC:
1684 		memcpy(ioapic_irqchip(kvm),
1685 			&chip->chip.ioapic,
1686 			sizeof(struct kvm_ioapic_state));
1687 		break;
1688 	default:
1689 		r = -EINVAL;
1690 		break;
1691 	}
1692 	kvm_pic_update_irq(pic_irqchip(kvm));
1693 	return r;
1694 }
1695 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)1696 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1697 {
1698 	int r = 0;
1699 
1700 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1701 	return r;
1702 }
1703 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)1704 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1705 {
1706 	int r = 0;
1707 
1708 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1709 	kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1710 	return r;
1711 }
1712 
1713 /*
1714  * Get (and clear) the dirty memory log for a memory slot.
1715  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1716 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1717 				      struct kvm_dirty_log *log)
1718 {
1719 	int r;
1720 	int n;
1721 	struct kvm_memory_slot *memslot;
1722 	int is_dirty = 0;
1723 
1724 	down_write(&kvm->slots_lock);
1725 
1726 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
1727 	if (r)
1728 		goto out;
1729 
1730 	/* If nothing is dirty, don't bother messing with page tables. */
1731 	if (is_dirty) {
1732 		kvm_mmu_slot_remove_write_access(kvm, log->slot);
1733 		kvm_flush_remote_tlbs(kvm);
1734 		memslot = &kvm->memslots[log->slot];
1735 		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1736 		memset(memslot->dirty_bitmap, 0, n);
1737 	}
1738 	r = 0;
1739 out:
1740 	up_write(&kvm->slots_lock);
1741 	return r;
1742 }
1743 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1744 long kvm_arch_vm_ioctl(struct file *filp,
1745 		       unsigned int ioctl, unsigned long arg)
1746 {
1747 	struct kvm *kvm = filp->private_data;
1748 	void __user *argp = (void __user *)arg;
1749 	int r = -EINVAL;
1750 	/*
1751 	 * This union makes it completely explicit to gcc-3.x
1752 	 * that these two variables' stack usage should be
1753 	 * combined, not added together.
1754 	 */
1755 	union {
1756 		struct kvm_pit_state ps;
1757 		struct kvm_memory_alias alias;
1758 	} u;
1759 
1760 	switch (ioctl) {
1761 	case KVM_SET_TSS_ADDR:
1762 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1763 		if (r < 0)
1764 			goto out;
1765 		break;
1766 	case KVM_SET_MEMORY_REGION: {
1767 		struct kvm_memory_region kvm_mem;
1768 		struct kvm_userspace_memory_region kvm_userspace_mem;
1769 
1770 		r = -EFAULT;
1771 		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1772 			goto out;
1773 		kvm_userspace_mem.slot = kvm_mem.slot;
1774 		kvm_userspace_mem.flags = kvm_mem.flags;
1775 		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1776 		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1777 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1778 		if (r)
1779 			goto out;
1780 		break;
1781 	}
1782 	case KVM_SET_NR_MMU_PAGES:
1783 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1784 		if (r)
1785 			goto out;
1786 		break;
1787 	case KVM_GET_NR_MMU_PAGES:
1788 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1789 		break;
1790 	case KVM_SET_MEMORY_ALIAS:
1791 		r = -EFAULT;
1792 		if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1793 			goto out;
1794 		r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1795 		if (r)
1796 			goto out;
1797 		break;
1798 	case KVM_CREATE_IRQCHIP:
1799 		r = -ENOMEM;
1800 		kvm->arch.vpic = kvm_create_pic(kvm);
1801 		if (kvm->arch.vpic) {
1802 			r = kvm_ioapic_init(kvm);
1803 			if (r) {
1804 				kfree(kvm->arch.vpic);
1805 				kvm->arch.vpic = NULL;
1806 				goto out;
1807 			}
1808 		} else
1809 			goto out;
1810 		break;
1811 	case KVM_CREATE_PIT:
1812 		r = -ENOMEM;
1813 		kvm->arch.vpit = kvm_create_pit(kvm);
1814 		if (kvm->arch.vpit)
1815 			r = 0;
1816 		break;
1817 	case KVM_IRQ_LINE: {
1818 		struct kvm_irq_level irq_event;
1819 
1820 		r = -EFAULT;
1821 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
1822 			goto out;
1823 		if (irqchip_in_kernel(kvm)) {
1824 			mutex_lock(&kvm->lock);
1825 			kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1826 				    irq_event.irq, irq_event.level);
1827 			mutex_unlock(&kvm->lock);
1828 			r = 0;
1829 		}
1830 		break;
1831 	}
1832 	case KVM_GET_IRQCHIP: {
1833 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1834 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1835 
1836 		r = -ENOMEM;
1837 		if (!chip)
1838 			goto out;
1839 		r = -EFAULT;
1840 		if (copy_from_user(chip, argp, sizeof *chip))
1841 			goto get_irqchip_out;
1842 		r = -ENXIO;
1843 		if (!irqchip_in_kernel(kvm))
1844 			goto get_irqchip_out;
1845 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1846 		if (r)
1847 			goto get_irqchip_out;
1848 		r = -EFAULT;
1849 		if (copy_to_user(argp, chip, sizeof *chip))
1850 			goto get_irqchip_out;
1851 		r = 0;
1852 	get_irqchip_out:
1853 		kfree(chip);
1854 		if (r)
1855 			goto out;
1856 		break;
1857 	}
1858 	case KVM_SET_IRQCHIP: {
1859 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1860 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1861 
1862 		r = -ENOMEM;
1863 		if (!chip)
1864 			goto out;
1865 		r = -EFAULT;
1866 		if (copy_from_user(chip, argp, sizeof *chip))
1867 			goto set_irqchip_out;
1868 		r = -ENXIO;
1869 		if (!irqchip_in_kernel(kvm))
1870 			goto set_irqchip_out;
1871 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1872 		if (r)
1873 			goto set_irqchip_out;
1874 		r = 0;
1875 	set_irqchip_out:
1876 		kfree(chip);
1877 		if (r)
1878 			goto out;
1879 		break;
1880 	}
1881 	case KVM_GET_PIT: {
1882 		r = -EFAULT;
1883 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1884 			goto out;
1885 		r = -ENXIO;
1886 		if (!kvm->arch.vpit)
1887 			goto out;
1888 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1889 		if (r)
1890 			goto out;
1891 		r = -EFAULT;
1892 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1893 			goto out;
1894 		r = 0;
1895 		break;
1896 	}
1897 	case KVM_SET_PIT: {
1898 		r = -EFAULT;
1899 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
1900 			goto out;
1901 		r = -ENXIO;
1902 		if (!kvm->arch.vpit)
1903 			goto out;
1904 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1905 		if (r)
1906 			goto out;
1907 		r = 0;
1908 		break;
1909 	}
1910 	default:
1911 		;
1912 	}
1913 out:
1914 	return r;
1915 }
1916 
kvm_init_msr_list(void)1917 static void kvm_init_msr_list(void)
1918 {
1919 	u32 dummy[2];
1920 	unsigned i, j;
1921 
1922 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1923 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1924 			continue;
1925 		if (j < i)
1926 			msrs_to_save[j] = msrs_to_save[i];
1927 		j++;
1928 	}
1929 	num_msrs_to_save = j;
1930 }
1931 
1932 /*
1933  * Only apic need an MMIO device hook, so shortcut now..
1934  */
vcpu_find_pervcpu_dev(struct kvm_vcpu * vcpu,gpa_t addr,int len,int is_write)1935 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1936 						gpa_t addr, int len,
1937 						int is_write)
1938 {
1939 	struct kvm_io_device *dev;
1940 
1941 	if (vcpu->arch.apic) {
1942 		dev = &vcpu->arch.apic->dev;
1943 		if (dev->in_range(dev, addr, len, is_write))
1944 			return dev;
1945 	}
1946 	return NULL;
1947 }
1948 
1949 
vcpu_find_mmio_dev(struct kvm_vcpu * vcpu,gpa_t addr,int len,int is_write)1950 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1951 						gpa_t addr, int len,
1952 						int is_write)
1953 {
1954 	struct kvm_io_device *dev;
1955 
1956 	dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
1957 	if (dev == NULL)
1958 		dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
1959 					  is_write);
1960 	return dev;
1961 }
1962 
emulator_read_std(unsigned long addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu)1963 int emulator_read_std(unsigned long addr,
1964 			     void *val,
1965 			     unsigned int bytes,
1966 			     struct kvm_vcpu *vcpu)
1967 {
1968 	void *data = val;
1969 	int r = X86EMUL_CONTINUE;
1970 
1971 	while (bytes) {
1972 		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
1973 		unsigned offset = addr & (PAGE_SIZE-1);
1974 		unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1975 		int ret;
1976 
1977 		if (gpa == UNMAPPED_GVA) {
1978 			r = X86EMUL_PROPAGATE_FAULT;
1979 			goto out;
1980 		}
1981 		ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1982 		if (ret < 0) {
1983 			r = X86EMUL_UNHANDLEABLE;
1984 			goto out;
1985 		}
1986 
1987 		bytes -= tocopy;
1988 		data += tocopy;
1989 		addr += tocopy;
1990 	}
1991 out:
1992 	return r;
1993 }
1994 EXPORT_SYMBOL_GPL(emulator_read_std);
1995 
emulator_read_emulated(unsigned long addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu)1996 static int emulator_read_emulated(unsigned long addr,
1997 				  void *val,
1998 				  unsigned int bytes,
1999 				  struct kvm_vcpu *vcpu)
2000 {
2001 	struct kvm_io_device *mmio_dev;
2002 	gpa_t                 gpa;
2003 
2004 	if (vcpu->mmio_read_completed) {
2005 		memcpy(val, vcpu->mmio_data, bytes);
2006 		vcpu->mmio_read_completed = 0;
2007 		return X86EMUL_CONTINUE;
2008 	}
2009 
2010 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2011 
2012 	/* For APIC access vmexit */
2013 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2014 		goto mmio;
2015 
2016 	if (emulator_read_std(addr, val, bytes, vcpu)
2017 			== X86EMUL_CONTINUE)
2018 		return X86EMUL_CONTINUE;
2019 	if (gpa == UNMAPPED_GVA)
2020 		return X86EMUL_PROPAGATE_FAULT;
2021 
2022 mmio:
2023 	/*
2024 	 * Is this MMIO handled locally?
2025 	 */
2026 	mutex_lock(&vcpu->kvm->lock);
2027 	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2028 	if (mmio_dev) {
2029 		kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2030 		mutex_unlock(&vcpu->kvm->lock);
2031 		return X86EMUL_CONTINUE;
2032 	}
2033 	mutex_unlock(&vcpu->kvm->lock);
2034 
2035 	vcpu->mmio_needed = 1;
2036 	vcpu->mmio_phys_addr = gpa;
2037 	vcpu->mmio_size = bytes;
2038 	vcpu->mmio_is_write = 0;
2039 
2040 	return X86EMUL_UNHANDLEABLE;
2041 }
2042 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)2043 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2044 			  const void *val, int bytes)
2045 {
2046 	int ret;
2047 
2048 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2049 	if (ret < 0)
2050 		return 0;
2051 	kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2052 	return 1;
2053 }
2054 
emulator_write_emulated_onepage(unsigned long addr,const void * val,unsigned int bytes,struct kvm_vcpu * vcpu)2055 static int emulator_write_emulated_onepage(unsigned long addr,
2056 					   const void *val,
2057 					   unsigned int bytes,
2058 					   struct kvm_vcpu *vcpu)
2059 {
2060 	struct kvm_io_device *mmio_dev;
2061 	gpa_t                 gpa;
2062 
2063 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2064 
2065 	if (gpa == UNMAPPED_GVA) {
2066 		kvm_inject_page_fault(vcpu, addr, 2);
2067 		return X86EMUL_PROPAGATE_FAULT;
2068 	}
2069 
2070 	/* For APIC access vmexit */
2071 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2072 		goto mmio;
2073 
2074 	if (emulator_write_phys(vcpu, gpa, val, bytes))
2075 		return X86EMUL_CONTINUE;
2076 
2077 mmio:
2078 	/*
2079 	 * Is this MMIO handled locally?
2080 	 */
2081 	mutex_lock(&vcpu->kvm->lock);
2082 	mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2083 	if (mmio_dev) {
2084 		kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2085 		mutex_unlock(&vcpu->kvm->lock);
2086 		return X86EMUL_CONTINUE;
2087 	}
2088 	mutex_unlock(&vcpu->kvm->lock);
2089 
2090 	vcpu->mmio_needed = 1;
2091 	vcpu->mmio_phys_addr = gpa;
2092 	vcpu->mmio_size = bytes;
2093 	vcpu->mmio_is_write = 1;
2094 	memcpy(vcpu->mmio_data, val, bytes);
2095 
2096 	return X86EMUL_CONTINUE;
2097 }
2098 
emulator_write_emulated(unsigned long addr,const void * val,unsigned int bytes,struct kvm_vcpu * vcpu)2099 int emulator_write_emulated(unsigned long addr,
2100 				   const void *val,
2101 				   unsigned int bytes,
2102 				   struct kvm_vcpu *vcpu)
2103 {
2104 	/* Crossing a page boundary? */
2105 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2106 		int rc, now;
2107 
2108 		now = -addr & ~PAGE_MASK;
2109 		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2110 		if (rc != X86EMUL_CONTINUE)
2111 			return rc;
2112 		addr += now;
2113 		val += now;
2114 		bytes -= now;
2115 	}
2116 	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2117 }
2118 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2119 
emulator_cmpxchg_emulated(unsigned long addr,const void * old,const void * new,unsigned int bytes,struct kvm_vcpu * vcpu)2120 static int emulator_cmpxchg_emulated(unsigned long addr,
2121 				     const void *old,
2122 				     const void *new,
2123 				     unsigned int bytes,
2124 				     struct kvm_vcpu *vcpu)
2125 {
2126 	static int reported;
2127 
2128 	if (!reported) {
2129 		reported = 1;
2130 		printk(KERN_WARNING "kvm: emulating exchange as write\n");
2131 	}
2132 #ifndef CONFIG_X86_64
2133 	/* guests cmpxchg8b have to be emulated atomically */
2134 	if (bytes == 8) {
2135 		gpa_t gpa;
2136 		struct page *page;
2137 		char *kaddr;
2138 		u64 val;
2139 
2140 		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2141 
2142 		if (gpa == UNMAPPED_GVA ||
2143 		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2144 			goto emul_write;
2145 
2146 		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2147 			goto emul_write;
2148 
2149 		val = *(u64 *)new;
2150 
2151 		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2152 
2153 		kaddr = kmap_atomic(page, KM_USER0);
2154 		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2155 		kunmap_atomic(kaddr, KM_USER0);
2156 		kvm_release_page_dirty(page);
2157 	}
2158 emul_write:
2159 #endif
2160 
2161 	return emulator_write_emulated(addr, new, bytes, vcpu);
2162 }
2163 
get_segment_base(struct kvm_vcpu * vcpu,int seg)2164 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2165 {
2166 	return kvm_x86_ops->get_segment_base(vcpu, seg);
2167 }
2168 
emulate_invlpg(struct kvm_vcpu * vcpu,gva_t address)2169 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2170 {
2171 	kvm_mmu_invlpg(vcpu, address);
2172 	return X86EMUL_CONTINUE;
2173 }
2174 
emulate_clts(struct kvm_vcpu * vcpu)2175 int emulate_clts(struct kvm_vcpu *vcpu)
2176 {
2177 	KVMTRACE_0D(CLTS, vcpu, handler);
2178 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2179 	return X86EMUL_CONTINUE;
2180 }
2181 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)2182 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2183 {
2184 	struct kvm_vcpu *vcpu = ctxt->vcpu;
2185 
2186 	switch (dr) {
2187 	case 0 ... 3:
2188 		*dest = kvm_x86_ops->get_dr(vcpu, dr);
2189 		return X86EMUL_CONTINUE;
2190 	default:
2191 		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2192 		return X86EMUL_UNHANDLEABLE;
2193 	}
2194 }
2195 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)2196 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2197 {
2198 	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2199 	int exception;
2200 
2201 	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2202 	if (exception) {
2203 		/* FIXME: better handling */
2204 		return X86EMUL_UNHANDLEABLE;
2205 	}
2206 	return X86EMUL_CONTINUE;
2207 }
2208 
kvm_report_emulation_failure(struct kvm_vcpu * vcpu,const char * context)2209 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2210 {
2211 	u8 opcodes[4];
2212 	unsigned long rip = kvm_rip_read(vcpu);
2213 	unsigned long rip_linear;
2214 
2215 	if (!printk_ratelimit())
2216 		return;
2217 
2218 	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2219 
2220 	emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
2221 
2222 	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2223 	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2224 }
2225 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2226 
2227 static struct x86_emulate_ops emulate_ops = {
2228 	.read_std            = emulator_read_std,
2229 	.read_emulated       = emulator_read_emulated,
2230 	.write_emulated      = emulator_write_emulated,
2231 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
2232 };
2233 
cache_all_regs(struct kvm_vcpu * vcpu)2234 static void cache_all_regs(struct kvm_vcpu *vcpu)
2235 {
2236 	kvm_register_read(vcpu, VCPU_REGS_RAX);
2237 	kvm_register_read(vcpu, VCPU_REGS_RSP);
2238 	kvm_register_read(vcpu, VCPU_REGS_RIP);
2239 	vcpu->arch.regs_dirty = ~0;
2240 }
2241 
emulate_instruction(struct kvm_vcpu * vcpu,struct kvm_run * run,unsigned long cr2,u16 error_code,int emulation_type)2242 int emulate_instruction(struct kvm_vcpu *vcpu,
2243 			struct kvm_run *run,
2244 			unsigned long cr2,
2245 			u16 error_code,
2246 			int emulation_type)
2247 {
2248 	int r;
2249 	struct decode_cache *c;
2250 
2251 	kvm_clear_exception_queue(vcpu);
2252 	vcpu->arch.mmio_fault_cr2 = cr2;
2253 	/*
2254 	 * TODO: fix x86_emulate.c to use guest_read/write_register
2255 	 * instead of direct ->regs accesses, can save hundred cycles
2256 	 * on Intel for instructions that don't read/change RSP, for
2257 	 * for example.
2258 	 */
2259 	cache_all_regs(vcpu);
2260 
2261 	vcpu->mmio_is_write = 0;
2262 	vcpu->arch.pio.string = 0;
2263 
2264 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2265 		int cs_db, cs_l;
2266 		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2267 
2268 		vcpu->arch.emulate_ctxt.vcpu = vcpu;
2269 		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2270 		vcpu->arch.emulate_ctxt.mode =
2271 			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2272 			? X86EMUL_MODE_REAL : cs_l
2273 			? X86EMUL_MODE_PROT64 :	cs_db
2274 			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2275 
2276 		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2277 
2278 		/* Reject the instructions other than VMCALL/VMMCALL when
2279 		 * try to emulate invalid opcode */
2280 		c = &vcpu->arch.emulate_ctxt.decode;
2281 		if ((emulation_type & EMULTYPE_TRAP_UD) &&
2282 		    (!(c->twobyte && c->b == 0x01 &&
2283 		      (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2284 		       c->modrm_mod == 3 && c->modrm_rm == 1)))
2285 			return EMULATE_FAIL;
2286 
2287 		++vcpu->stat.insn_emulation;
2288 		if (r)  {
2289 			++vcpu->stat.insn_emulation_fail;
2290 			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2291 				return EMULATE_DONE;
2292 			return EMULATE_FAIL;
2293 		}
2294 	}
2295 
2296 	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2297 
2298 	if (vcpu->arch.pio.string)
2299 		return EMULATE_DO_MMIO;
2300 
2301 	if ((r || vcpu->mmio_is_write) && run) {
2302 		run->exit_reason = KVM_EXIT_MMIO;
2303 		run->mmio.phys_addr = vcpu->mmio_phys_addr;
2304 		memcpy(run->mmio.data, vcpu->mmio_data, 8);
2305 		run->mmio.len = vcpu->mmio_size;
2306 		run->mmio.is_write = vcpu->mmio_is_write;
2307 	}
2308 
2309 	if (r) {
2310 		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2311 			return EMULATE_DONE;
2312 		if (!vcpu->mmio_needed) {
2313 			kvm_report_emulation_failure(vcpu, "mmio");
2314 			return EMULATE_FAIL;
2315 		}
2316 		return EMULATE_DO_MMIO;
2317 	}
2318 
2319 	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2320 
2321 	if (vcpu->mmio_is_write) {
2322 		vcpu->mmio_needed = 0;
2323 		return EMULATE_DO_MMIO;
2324 	}
2325 
2326 	return EMULATE_DONE;
2327 }
2328 EXPORT_SYMBOL_GPL(emulate_instruction);
2329 
free_pio_guest_pages(struct kvm_vcpu * vcpu)2330 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
2331 {
2332 	int i;
2333 
2334 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
2335 		if (vcpu->arch.pio.guest_pages[i]) {
2336 			kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
2337 			vcpu->arch.pio.guest_pages[i] = NULL;
2338 		}
2339 }
2340 
pio_copy_data(struct kvm_vcpu * vcpu)2341 static int pio_copy_data(struct kvm_vcpu *vcpu)
2342 {
2343 	void *p = vcpu->arch.pio_data;
2344 	void *q;
2345 	unsigned bytes;
2346 	int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
2347 
2348 	q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
2349 		 PAGE_KERNEL);
2350 	if (!q) {
2351 		free_pio_guest_pages(vcpu);
2352 		return -ENOMEM;
2353 	}
2354 	q += vcpu->arch.pio.guest_page_offset;
2355 	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2356 	if (vcpu->arch.pio.in)
2357 		memcpy(q, p, bytes);
2358 	else
2359 		memcpy(p, q, bytes);
2360 	q -= vcpu->arch.pio.guest_page_offset;
2361 	vunmap(q);
2362 	free_pio_guest_pages(vcpu);
2363 	return 0;
2364 }
2365 
complete_pio(struct kvm_vcpu * vcpu)2366 int complete_pio(struct kvm_vcpu *vcpu)
2367 {
2368 	struct kvm_pio_request *io = &vcpu->arch.pio;
2369 	long delta;
2370 	int r;
2371 	unsigned long val;
2372 
2373 	if (!io->string) {
2374 		if (io->in) {
2375 			val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2376 			memcpy(&val, vcpu->arch.pio_data, io->size);
2377 			kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2378 		}
2379 	} else {
2380 		if (io->in) {
2381 			r = pio_copy_data(vcpu);
2382 			if (r)
2383 				return r;
2384 		}
2385 
2386 		delta = 1;
2387 		if (io->rep) {
2388 			delta *= io->cur_count;
2389 			/*
2390 			 * The size of the register should really depend on
2391 			 * current address size.
2392 			 */
2393 			val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2394 			val -= delta;
2395 			kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2396 		}
2397 		if (io->down)
2398 			delta = -delta;
2399 		delta *= io->size;
2400 		if (io->in) {
2401 			val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2402 			val += delta;
2403 			kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2404 		} else {
2405 			val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2406 			val += delta;
2407 			kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2408 		}
2409 	}
2410 
2411 	io->count -= io->cur_count;
2412 	io->cur_count = 0;
2413 
2414 	return 0;
2415 }
2416 
kernel_pio(struct kvm_io_device * pio_dev,struct kvm_vcpu * vcpu,void * pd)2417 static void kernel_pio(struct kvm_io_device *pio_dev,
2418 		       struct kvm_vcpu *vcpu,
2419 		       void *pd)
2420 {
2421 	/* TODO: String I/O for in kernel device */
2422 
2423 	mutex_lock(&vcpu->kvm->lock);
2424 	if (vcpu->arch.pio.in)
2425 		kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2426 				  vcpu->arch.pio.size,
2427 				  pd);
2428 	else
2429 		kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2430 				   vcpu->arch.pio.size,
2431 				   pd);
2432 	mutex_unlock(&vcpu->kvm->lock);
2433 }
2434 
pio_string_write(struct kvm_io_device * pio_dev,struct kvm_vcpu * vcpu)2435 static void pio_string_write(struct kvm_io_device *pio_dev,
2436 			     struct kvm_vcpu *vcpu)
2437 {
2438 	struct kvm_pio_request *io = &vcpu->arch.pio;
2439 	void *pd = vcpu->arch.pio_data;
2440 	int i;
2441 
2442 	mutex_lock(&vcpu->kvm->lock);
2443 	for (i = 0; i < io->cur_count; i++) {
2444 		kvm_iodevice_write(pio_dev, io->port,
2445 				   io->size,
2446 				   pd);
2447 		pd += io->size;
2448 	}
2449 	mutex_unlock(&vcpu->kvm->lock);
2450 }
2451 
vcpu_find_pio_dev(struct kvm_vcpu * vcpu,gpa_t addr,int len,int is_write)2452 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2453 					       gpa_t addr, int len,
2454 					       int is_write)
2455 {
2456 	return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2457 }
2458 
kvm_emulate_pio(struct kvm_vcpu * vcpu,struct kvm_run * run,int in,int size,unsigned port)2459 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2460 		  int size, unsigned port)
2461 {
2462 	struct kvm_io_device *pio_dev;
2463 	unsigned long val;
2464 
2465 	vcpu->run->exit_reason = KVM_EXIT_IO;
2466 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2467 	vcpu->run->io.size = vcpu->arch.pio.size = size;
2468 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2469 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2470 	vcpu->run->io.port = vcpu->arch.pio.port = port;
2471 	vcpu->arch.pio.in = in;
2472 	vcpu->arch.pio.string = 0;
2473 	vcpu->arch.pio.down = 0;
2474 	vcpu->arch.pio.guest_page_offset = 0;
2475 	vcpu->arch.pio.rep = 0;
2476 
2477 	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2478 		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2479 			    handler);
2480 	else
2481 		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2482 			    handler);
2483 
2484 	val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2485 	memcpy(vcpu->arch.pio_data, &val, 4);
2486 
2487 	pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2488 	if (pio_dev) {
2489 		kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2490 		complete_pio(vcpu);
2491 		return 1;
2492 	}
2493 	return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2496 
kvm_emulate_pio_string(struct kvm_vcpu * vcpu,struct kvm_run * run,int in,int size,unsigned long count,int down,gva_t address,int rep,unsigned port)2497 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2498 		  int size, unsigned long count, int down,
2499 		  gva_t address, int rep, unsigned port)
2500 {
2501 	unsigned now, in_page;
2502 	int i, ret = 0;
2503 	int nr_pages = 1;
2504 	struct page *page;
2505 	struct kvm_io_device *pio_dev;
2506 
2507 	vcpu->run->exit_reason = KVM_EXIT_IO;
2508 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2509 	vcpu->run->io.size = vcpu->arch.pio.size = size;
2510 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2511 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2512 	vcpu->run->io.port = vcpu->arch.pio.port = port;
2513 	vcpu->arch.pio.in = in;
2514 	vcpu->arch.pio.string = 1;
2515 	vcpu->arch.pio.down = down;
2516 	vcpu->arch.pio.guest_page_offset = offset_in_page(address);
2517 	vcpu->arch.pio.rep = rep;
2518 
2519 	if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2520 		KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2521 			    handler);
2522 	else
2523 		KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2524 			    handler);
2525 
2526 	if (!count) {
2527 		kvm_x86_ops->skip_emulated_instruction(vcpu);
2528 		return 1;
2529 	}
2530 
2531 	if (!down)
2532 		in_page = PAGE_SIZE - offset_in_page(address);
2533 	else
2534 		in_page = offset_in_page(address) + size;
2535 	now = min(count, (unsigned long)in_page / size);
2536 	if (!now) {
2537 		/*
2538 		 * String I/O straddles page boundary.  Pin two guest pages
2539 		 * so that we satisfy atomicity constraints.  Do just one
2540 		 * transaction to avoid complexity.
2541 		 */
2542 		nr_pages = 2;
2543 		now = 1;
2544 	}
2545 	if (down) {
2546 		/*
2547 		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2548 		 */
2549 		pr_unimpl(vcpu, "guest string pio down\n");
2550 		kvm_inject_gp(vcpu, 0);
2551 		return 1;
2552 	}
2553 	vcpu->run->io.count = now;
2554 	vcpu->arch.pio.cur_count = now;
2555 
2556 	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2557 		kvm_x86_ops->skip_emulated_instruction(vcpu);
2558 
2559 	for (i = 0; i < nr_pages; ++i) {
2560 		page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2561 		vcpu->arch.pio.guest_pages[i] = page;
2562 		if (!page) {
2563 			kvm_inject_gp(vcpu, 0);
2564 			free_pio_guest_pages(vcpu);
2565 			return 1;
2566 		}
2567 	}
2568 
2569 	pio_dev = vcpu_find_pio_dev(vcpu, port,
2570 				    vcpu->arch.pio.cur_count,
2571 				    !vcpu->arch.pio.in);
2572 	if (!vcpu->arch.pio.in) {
2573 		/* string PIO write */
2574 		ret = pio_copy_data(vcpu);
2575 		if (ret >= 0 && pio_dev) {
2576 			pio_string_write(pio_dev, vcpu);
2577 			complete_pio(vcpu);
2578 			if (vcpu->arch.pio.count == 0)
2579 				ret = 1;
2580 		}
2581 	} else if (pio_dev)
2582 		pr_unimpl(vcpu, "no string pio read support yet, "
2583 		       "port %x size %d count %ld\n",
2584 			port, size, count);
2585 
2586 	return ret;
2587 }
2588 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2589 
kvm_arch_init(void * opaque)2590 int kvm_arch_init(void *opaque)
2591 {
2592 	int r;
2593 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2594 
2595 	if (kvm_x86_ops) {
2596 		printk(KERN_ERR "kvm: already loaded the other module\n");
2597 		r = -EEXIST;
2598 		goto out;
2599 	}
2600 
2601 	if (!ops->cpu_has_kvm_support()) {
2602 		printk(KERN_ERR "kvm: no hardware support\n");
2603 		r = -EOPNOTSUPP;
2604 		goto out;
2605 	}
2606 	if (ops->disabled_by_bios()) {
2607 		printk(KERN_ERR "kvm: disabled by bios\n");
2608 		r = -EOPNOTSUPP;
2609 		goto out;
2610 	}
2611 
2612 	r = kvm_mmu_module_init();
2613 	if (r)
2614 		goto out;
2615 
2616 	kvm_init_msr_list();
2617 
2618 	kvm_x86_ops = ops;
2619 	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2620 	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2621 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2622 			PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2623 	return 0;
2624 
2625 out:
2626 	return r;
2627 }
2628 
kvm_arch_exit(void)2629 void kvm_arch_exit(void)
2630 {
2631 	kvm_x86_ops = NULL;
2632 	kvm_mmu_module_exit();
2633 }
2634 
kvm_emulate_halt(struct kvm_vcpu * vcpu)2635 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2636 {
2637 	++vcpu->stat.halt_exits;
2638 	KVMTRACE_0D(HLT, vcpu, handler);
2639 	if (irqchip_in_kernel(vcpu->kvm)) {
2640 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2641 		return 1;
2642 	} else {
2643 		vcpu->run->exit_reason = KVM_EXIT_HLT;
2644 		return 0;
2645 	}
2646 }
2647 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2648 
hc_gpa(struct kvm_vcpu * vcpu,unsigned long a0,unsigned long a1)2649 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2650 			   unsigned long a1)
2651 {
2652 	if (is_long_mode(vcpu))
2653 		return a0;
2654 	else
2655 		return a0 | ((gpa_t)a1 << 32);
2656 }
2657 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)2658 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2659 {
2660 	unsigned long nr, a0, a1, a2, a3, ret;
2661 	int r = 1;
2662 
2663 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2664 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2665 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2666 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2667 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2668 
2669 	KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2670 
2671 	if (!is_long_mode(vcpu)) {
2672 		nr &= 0xFFFFFFFF;
2673 		a0 &= 0xFFFFFFFF;
2674 		a1 &= 0xFFFFFFFF;
2675 		a2 &= 0xFFFFFFFF;
2676 		a3 &= 0xFFFFFFFF;
2677 	}
2678 
2679 	switch (nr) {
2680 	case KVM_HC_VAPIC_POLL_IRQ:
2681 		ret = 0;
2682 		break;
2683 	case KVM_HC_MMU_OP:
2684 		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2685 		break;
2686 	default:
2687 		ret = -KVM_ENOSYS;
2688 		break;
2689 	}
2690 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2691 	++vcpu->stat.hypercalls;
2692 	return r;
2693 }
2694 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2695 
kvm_fix_hypercall(struct kvm_vcpu * vcpu)2696 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2697 {
2698 	char instruction[3];
2699 	int ret = 0;
2700 	unsigned long rip = kvm_rip_read(vcpu);
2701 
2702 
2703 	/*
2704 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
2705 	 * to ensure that the updated hypercall appears atomically across all
2706 	 * VCPUs.
2707 	 */
2708 	kvm_mmu_zap_all(vcpu->kvm);
2709 
2710 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
2711 	if (emulator_write_emulated(rip, instruction, 3, vcpu)
2712 	    != X86EMUL_CONTINUE)
2713 		ret = -EFAULT;
2714 
2715 	return ret;
2716 }
2717 
mk_cr_64(u64 curr_cr,u32 new_val)2718 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2719 {
2720 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2721 }
2722 
realmode_lgdt(struct kvm_vcpu * vcpu,u16 limit,unsigned long base)2723 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2724 {
2725 	struct descriptor_table dt = { limit, base };
2726 
2727 	kvm_x86_ops->set_gdt(vcpu, &dt);
2728 }
2729 
realmode_lidt(struct kvm_vcpu * vcpu,u16 limit,unsigned long base)2730 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2731 {
2732 	struct descriptor_table dt = { limit, base };
2733 
2734 	kvm_x86_ops->set_idt(vcpu, &dt);
2735 }
2736 
realmode_lmsw(struct kvm_vcpu * vcpu,unsigned long msw,unsigned long * rflags)2737 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2738 		   unsigned long *rflags)
2739 {
2740 	kvm_lmsw(vcpu, msw);
2741 	*rflags = kvm_x86_ops->get_rflags(vcpu);
2742 }
2743 
realmode_get_cr(struct kvm_vcpu * vcpu,int cr)2744 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2745 {
2746 	unsigned long value;
2747 
2748 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2749 	switch (cr) {
2750 	case 0:
2751 		value = vcpu->arch.cr0;
2752 		break;
2753 	case 2:
2754 		value = vcpu->arch.cr2;
2755 		break;
2756 	case 3:
2757 		value = vcpu->arch.cr3;
2758 		break;
2759 	case 4:
2760 		value = vcpu->arch.cr4;
2761 		break;
2762 	case 8:
2763 		value = kvm_get_cr8(vcpu);
2764 		break;
2765 	default:
2766 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2767 		return 0;
2768 	}
2769 	KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2770 		    (u32)((u64)value >> 32), handler);
2771 
2772 	return value;
2773 }
2774 
realmode_set_cr(struct kvm_vcpu * vcpu,int cr,unsigned long val,unsigned long * rflags)2775 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2776 		     unsigned long *rflags)
2777 {
2778 	KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2779 		    (u32)((u64)val >> 32), handler);
2780 
2781 	switch (cr) {
2782 	case 0:
2783 		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2784 		*rflags = kvm_x86_ops->get_rflags(vcpu);
2785 		break;
2786 	case 2:
2787 		vcpu->arch.cr2 = val;
2788 		break;
2789 	case 3:
2790 		kvm_set_cr3(vcpu, val);
2791 		break;
2792 	case 4:
2793 		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2794 		break;
2795 	case 8:
2796 		kvm_set_cr8(vcpu, val & 0xfUL);
2797 		break;
2798 	default:
2799 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2800 	}
2801 }
2802 
move_to_next_stateful_cpuid_entry(struct kvm_vcpu * vcpu,int i)2803 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2804 {
2805 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2806 	int j, nent = vcpu->arch.cpuid_nent;
2807 
2808 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2809 	/* when no next entry is found, the current entry[i] is reselected */
2810 	for (j = i + 1; ; j = (j + 1) % nent) {
2811 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2812 		if (ej->function == e->function) {
2813 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2814 			return j;
2815 		}
2816 	}
2817 	return 0; /* silence gcc, even though control never reaches here */
2818 }
2819 
2820 /* find an entry with matching function, matching index (if needed), and that
2821  * should be read next (if it's stateful) */
is_matching_cpuid_entry(struct kvm_cpuid_entry2 * e,u32 function,u32 index)2822 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2823 	u32 function, u32 index)
2824 {
2825 	if (e->function != function)
2826 		return 0;
2827 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2828 		return 0;
2829 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2830 		!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2831 		return 0;
2832 	return 1;
2833 }
2834 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)2835 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2836 {
2837 	int i;
2838 	u32 function, index;
2839 	struct kvm_cpuid_entry2 *e, *best;
2840 
2841 	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
2842 	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
2843 	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
2844 	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
2845 	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
2846 	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2847 	best = NULL;
2848 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2849 		e = &vcpu->arch.cpuid_entries[i];
2850 		if (is_matching_cpuid_entry(e, function, index)) {
2851 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2852 				move_to_next_stateful_cpuid_entry(vcpu, i);
2853 			best = e;
2854 			break;
2855 		}
2856 		/*
2857 		 * Both basic or both extended?
2858 		 */
2859 		if (((e->function ^ function) & 0x80000000) == 0)
2860 			if (!best || e->function > best->function)
2861 				best = e;
2862 	}
2863 	if (best) {
2864 		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
2865 		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
2866 		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
2867 		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
2868 	}
2869 	kvm_x86_ops->skip_emulated_instruction(vcpu);
2870 	KVMTRACE_5D(CPUID, vcpu, function,
2871 		    (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
2872 		    (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
2873 		    (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
2874 		    (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
2875 }
2876 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2877 
2878 /*
2879  * Check if userspace requested an interrupt window, and that the
2880  * interrupt window is open.
2881  *
2882  * No need to exit to userspace if we already have an interrupt queued.
2883  */
dm_request_for_irq_injection(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)2884 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2885 					  struct kvm_run *kvm_run)
2886 {
2887 	return (!vcpu->arch.irq_summary &&
2888 		kvm_run->request_interrupt_window &&
2889 		vcpu->arch.interrupt_window_open &&
2890 		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2891 }
2892 
post_kvm_run_save(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)2893 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2894 			      struct kvm_run *kvm_run)
2895 {
2896 	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2897 	kvm_run->cr8 = kvm_get_cr8(vcpu);
2898 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
2899 	if (irqchip_in_kernel(vcpu->kvm))
2900 		kvm_run->ready_for_interrupt_injection = 1;
2901 	else
2902 		kvm_run->ready_for_interrupt_injection =
2903 					(vcpu->arch.interrupt_window_open &&
2904 					 vcpu->arch.irq_summary == 0);
2905 }
2906 
vapic_enter(struct kvm_vcpu * vcpu)2907 static void vapic_enter(struct kvm_vcpu *vcpu)
2908 {
2909 	struct kvm_lapic *apic = vcpu->arch.apic;
2910 	struct page *page;
2911 
2912 	if (!apic || !apic->vapic_addr)
2913 		return;
2914 
2915 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2916 
2917 	vcpu->arch.apic->vapic_page = page;
2918 }
2919 
vapic_exit(struct kvm_vcpu * vcpu)2920 static void vapic_exit(struct kvm_vcpu *vcpu)
2921 {
2922 	struct kvm_lapic *apic = vcpu->arch.apic;
2923 
2924 	if (!apic || !apic->vapic_addr)
2925 		return;
2926 
2927 	down_read(&vcpu->kvm->slots_lock);
2928 	kvm_release_page_dirty(apic->vapic_page);
2929 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2930 	up_read(&vcpu->kvm->slots_lock);
2931 }
2932 
vcpu_enter_guest(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)2933 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2934 {
2935 	int r;
2936 
2937 	if (vcpu->requests)
2938 		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2939 			kvm_mmu_unload(vcpu);
2940 
2941 	r = kvm_mmu_reload(vcpu);
2942 	if (unlikely(r))
2943 		goto out;
2944 
2945 	if (vcpu->requests) {
2946 		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2947 			__kvm_migrate_timers(vcpu);
2948 		if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
2949 			kvm_mmu_sync_roots(vcpu);
2950 		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2951 			kvm_x86_ops->tlb_flush(vcpu);
2952 		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
2953 				       &vcpu->requests)) {
2954 			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
2955 			r = 0;
2956 			goto out;
2957 		}
2958 		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
2959 			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2960 			r = 0;
2961 			goto out;
2962 		}
2963 	}
2964 
2965 	clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
2966 	kvm_inject_pending_timer_irqs(vcpu);
2967 
2968 	preempt_disable();
2969 
2970 	kvm_x86_ops->prepare_guest_switch(vcpu);
2971 	kvm_load_guest_fpu(vcpu);
2972 
2973 	local_irq_disable();
2974 
2975 	if (vcpu->requests || need_resched() || signal_pending(current)) {
2976 		local_irq_enable();
2977 		preempt_enable();
2978 		r = 1;
2979 		goto out;
2980 	}
2981 
2982 	if (vcpu->guest_debug.enabled)
2983 		kvm_x86_ops->guest_debug_pre(vcpu);
2984 
2985 	vcpu->guest_mode = 1;
2986 	/*
2987 	 * Make sure that guest_mode assignment won't happen after
2988 	 * testing the pending IRQ vector bitmap.
2989 	 */
2990 	smp_wmb();
2991 
2992 	if (vcpu->arch.exception.pending)
2993 		__queue_exception(vcpu);
2994 	else if (irqchip_in_kernel(vcpu->kvm))
2995 		kvm_x86_ops->inject_pending_irq(vcpu);
2996 	else
2997 		kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2998 
2999 	kvm_lapic_sync_to_vapic(vcpu);
3000 
3001 	up_read(&vcpu->kvm->slots_lock);
3002 
3003 	kvm_guest_enter();
3004 
3005 
3006 	KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3007 	kvm_x86_ops->run(vcpu, kvm_run);
3008 
3009 	vcpu->guest_mode = 0;
3010 	local_irq_enable();
3011 
3012 	++vcpu->stat.exits;
3013 
3014 	/*
3015 	 * We must have an instruction between local_irq_enable() and
3016 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3017 	 * the interrupt shadow.  The stat.exits increment will do nicely.
3018 	 * But we need to prevent reordering, hence this barrier():
3019 	 */
3020 	barrier();
3021 
3022 	kvm_guest_exit();
3023 
3024 	preempt_enable();
3025 
3026 	down_read(&vcpu->kvm->slots_lock);
3027 
3028 	/*
3029 	 * Profile KVM exit RIPs:
3030 	 */
3031 	if (unlikely(prof_on == KVM_PROFILING)) {
3032 		unsigned long rip = kvm_rip_read(vcpu);
3033 		profile_hit(KVM_PROFILING, (void *)rip);
3034 	}
3035 
3036 	if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3037 		vcpu->arch.exception.pending = false;
3038 
3039 	kvm_lapic_sync_from_vapic(vcpu);
3040 
3041 	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3042 out:
3043 	return r;
3044 }
3045 
__vcpu_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)3046 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3047 {
3048 	int r;
3049 
3050 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3051 		pr_debug("vcpu %d received sipi with vector # %x\n",
3052 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3053 		kvm_lapic_reset(vcpu);
3054 		r = kvm_arch_vcpu_reset(vcpu);
3055 		if (r)
3056 			return r;
3057 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3058 	}
3059 
3060 	down_read(&vcpu->kvm->slots_lock);
3061 	vapic_enter(vcpu);
3062 
3063 	r = 1;
3064 	while (r > 0) {
3065 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3066 			r = vcpu_enter_guest(vcpu, kvm_run);
3067 		else {
3068 			up_read(&vcpu->kvm->slots_lock);
3069 			kvm_vcpu_block(vcpu);
3070 			down_read(&vcpu->kvm->slots_lock);
3071 			if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3072 				if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3073 					vcpu->arch.mp_state =
3074 							KVM_MP_STATE_RUNNABLE;
3075 			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3076 				r = -EINTR;
3077 		}
3078 
3079 		if (r > 0) {
3080 			if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3081 				r = -EINTR;
3082 				kvm_run->exit_reason = KVM_EXIT_INTR;
3083 				++vcpu->stat.request_irq_exits;
3084 			}
3085 			if (signal_pending(current)) {
3086 				r = -EINTR;
3087 				kvm_run->exit_reason = KVM_EXIT_INTR;
3088 				++vcpu->stat.signal_exits;
3089 			}
3090 			if (need_resched()) {
3091 				up_read(&vcpu->kvm->slots_lock);
3092 				kvm_resched(vcpu);
3093 				down_read(&vcpu->kvm->slots_lock);
3094 			}
3095 		}
3096 	}
3097 
3098 	up_read(&vcpu->kvm->slots_lock);
3099 	post_kvm_run_save(vcpu, kvm_run);
3100 
3101 	vapic_exit(vcpu);
3102 
3103 	return r;
3104 }
3105 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)3106 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3107 {
3108 	int r;
3109 	sigset_t sigsaved;
3110 
3111 	vcpu_load(vcpu);
3112 
3113 	if (vcpu->sigset_active)
3114 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3115 
3116 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3117 		kvm_vcpu_block(vcpu);
3118 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3119 		r = -EAGAIN;
3120 		goto out;
3121 	}
3122 
3123 	/* re-sync apic's tpr */
3124 	if (!irqchip_in_kernel(vcpu->kvm))
3125 		kvm_set_cr8(vcpu, kvm_run->cr8);
3126 
3127 	if (vcpu->arch.pio.cur_count) {
3128 		r = complete_pio(vcpu);
3129 		if (r)
3130 			goto out;
3131 	}
3132 #if CONFIG_HAS_IOMEM
3133 	if (vcpu->mmio_needed) {
3134 		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3135 		vcpu->mmio_read_completed = 1;
3136 		vcpu->mmio_needed = 0;
3137 
3138 		down_read(&vcpu->kvm->slots_lock);
3139 		r = emulate_instruction(vcpu, kvm_run,
3140 					vcpu->arch.mmio_fault_cr2, 0,
3141 					EMULTYPE_NO_DECODE);
3142 		up_read(&vcpu->kvm->slots_lock);
3143 		if (r == EMULATE_DO_MMIO) {
3144 			/*
3145 			 * Read-modify-write.  Back to userspace.
3146 			 */
3147 			r = 0;
3148 			goto out;
3149 		}
3150 	}
3151 #endif
3152 	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3153 		kvm_register_write(vcpu, VCPU_REGS_RAX,
3154 				     kvm_run->hypercall.ret);
3155 
3156 	r = __vcpu_run(vcpu, kvm_run);
3157 
3158 out:
3159 	if (vcpu->sigset_active)
3160 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3161 
3162 	vcpu_put(vcpu);
3163 	return r;
3164 }
3165 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)3166 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3167 {
3168 	vcpu_load(vcpu);
3169 
3170 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3171 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3172 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3173 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3174 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3175 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3176 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3177 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3178 #ifdef CONFIG_X86_64
3179 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3180 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3181 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3182 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3183 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3184 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3185 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3186 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3187 #endif
3188 
3189 	regs->rip = kvm_rip_read(vcpu);
3190 	regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3191 
3192 	/*
3193 	 * Don't leak debug flags in case they were set for guest debugging
3194 	 */
3195 	if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
3196 		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3197 
3198 	vcpu_put(vcpu);
3199 
3200 	return 0;
3201 }
3202 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)3203 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3204 {
3205 	vcpu_load(vcpu);
3206 
3207 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3208 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3209 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3210 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3211 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3212 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3213 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3214 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3215 #ifdef CONFIG_X86_64
3216 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3217 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3218 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3219 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3220 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3221 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3222 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3223 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3224 
3225 #endif
3226 
3227 	kvm_rip_write(vcpu, regs->rip);
3228 	kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3229 
3230 
3231 	vcpu->arch.exception.pending = false;
3232 
3233 	vcpu_put(vcpu);
3234 
3235 	return 0;
3236 }
3237 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3238 void kvm_get_segment(struct kvm_vcpu *vcpu,
3239 		     struct kvm_segment *var, int seg)
3240 {
3241 	kvm_x86_ops->get_segment(vcpu, var, seg);
3242 }
3243 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3244 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3245 {
3246 	struct kvm_segment cs;
3247 
3248 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3249 	*db = cs.db;
3250 	*l = cs.l;
3251 }
3252 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3253 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)3254 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3255 				  struct kvm_sregs *sregs)
3256 {
3257 	struct descriptor_table dt;
3258 	int pending_vec;
3259 
3260 	vcpu_load(vcpu);
3261 
3262 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3263 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3264 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3265 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3266 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3267 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3268 
3269 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3270 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3271 
3272 	kvm_x86_ops->get_idt(vcpu, &dt);
3273 	sregs->idt.limit = dt.limit;
3274 	sregs->idt.base = dt.base;
3275 	kvm_x86_ops->get_gdt(vcpu, &dt);
3276 	sregs->gdt.limit = dt.limit;
3277 	sregs->gdt.base = dt.base;
3278 
3279 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3280 	sregs->cr0 = vcpu->arch.cr0;
3281 	sregs->cr2 = vcpu->arch.cr2;
3282 	sregs->cr3 = vcpu->arch.cr3;
3283 	sregs->cr4 = vcpu->arch.cr4;
3284 	sregs->cr8 = kvm_get_cr8(vcpu);
3285 	sregs->efer = vcpu->arch.shadow_efer;
3286 	sregs->apic_base = kvm_get_apic_base(vcpu);
3287 
3288 	if (irqchip_in_kernel(vcpu->kvm)) {
3289 		memset(sregs->interrupt_bitmap, 0,
3290 		       sizeof sregs->interrupt_bitmap);
3291 		pending_vec = kvm_x86_ops->get_irq(vcpu);
3292 		if (pending_vec >= 0)
3293 			set_bit(pending_vec,
3294 				(unsigned long *)sregs->interrupt_bitmap);
3295 	} else
3296 		memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3297 		       sizeof sregs->interrupt_bitmap);
3298 
3299 	vcpu_put(vcpu);
3300 
3301 	return 0;
3302 }
3303 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)3304 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3305 				    struct kvm_mp_state *mp_state)
3306 {
3307 	vcpu_load(vcpu);
3308 	mp_state->mp_state = vcpu->arch.mp_state;
3309 	vcpu_put(vcpu);
3310 	return 0;
3311 }
3312 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)3313 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3314 				    struct kvm_mp_state *mp_state)
3315 {
3316 	vcpu_load(vcpu);
3317 	vcpu->arch.mp_state = mp_state->mp_state;
3318 	vcpu_put(vcpu);
3319 	return 0;
3320 }
3321 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3322 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3323 			struct kvm_segment *var, int seg)
3324 {
3325 	kvm_x86_ops->set_segment(vcpu, var, seg);
3326 }
3327 
seg_desct_to_kvm_desct(struct desc_struct * seg_desc,u16 selector,struct kvm_segment * kvm_desct)3328 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3329 				   struct kvm_segment *kvm_desct)
3330 {
3331 	kvm_desct->base = seg_desc->base0;
3332 	kvm_desct->base |= seg_desc->base1 << 16;
3333 	kvm_desct->base |= seg_desc->base2 << 24;
3334 	kvm_desct->limit = seg_desc->limit0;
3335 	kvm_desct->limit |= seg_desc->limit << 16;
3336 	if (seg_desc->g) {
3337 		kvm_desct->limit <<= 12;
3338 		kvm_desct->limit |= 0xfff;
3339 	}
3340 	kvm_desct->selector = selector;
3341 	kvm_desct->type = seg_desc->type;
3342 	kvm_desct->present = seg_desc->p;
3343 	kvm_desct->dpl = seg_desc->dpl;
3344 	kvm_desct->db = seg_desc->d;
3345 	kvm_desct->s = seg_desc->s;
3346 	kvm_desct->l = seg_desc->l;
3347 	kvm_desct->g = seg_desc->g;
3348 	kvm_desct->avl = seg_desc->avl;
3349 	if (!selector)
3350 		kvm_desct->unusable = 1;
3351 	else
3352 		kvm_desct->unusable = 0;
3353 	kvm_desct->padding = 0;
3354 }
3355 
get_segment_descriptor_dtable(struct kvm_vcpu * vcpu,u16 selector,struct descriptor_table * dtable)3356 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3357 					  u16 selector,
3358 					  struct descriptor_table *dtable)
3359 {
3360 	if (selector & 1 << 2) {
3361 		struct kvm_segment kvm_seg;
3362 
3363 		kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3364 
3365 		if (kvm_seg.unusable)
3366 			dtable->limit = 0;
3367 		else
3368 			dtable->limit = kvm_seg.limit;
3369 		dtable->base = kvm_seg.base;
3370 	}
3371 	else
3372 		kvm_x86_ops->get_gdt(vcpu, dtable);
3373 }
3374 
3375 /* allowed just for 8 bytes segments */
load_guest_segment_descriptor(struct kvm_vcpu * vcpu,u16 selector,struct desc_struct * seg_desc)3376 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3377 					 struct desc_struct *seg_desc)
3378 {
3379 	gpa_t gpa;
3380 	struct descriptor_table dtable;
3381 	u16 index = selector >> 3;
3382 
3383 	get_segment_descriptor_dtable(vcpu, selector, &dtable);
3384 
3385 	if (dtable.limit < index * 8 + 7) {
3386 		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3387 		return 1;
3388 	}
3389 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3390 	gpa += index * 8;
3391 	return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3392 }
3393 
3394 /* allowed just for 8 bytes segments */
save_guest_segment_descriptor(struct kvm_vcpu * vcpu,u16 selector,struct desc_struct * seg_desc)3395 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3396 					 struct desc_struct *seg_desc)
3397 {
3398 	gpa_t gpa;
3399 	struct descriptor_table dtable;
3400 	u16 index = selector >> 3;
3401 
3402 	get_segment_descriptor_dtable(vcpu, selector, &dtable);
3403 
3404 	if (dtable.limit < index * 8 + 7)
3405 		return 1;
3406 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3407 	gpa += index * 8;
3408 	return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3409 }
3410 
get_tss_base_addr(struct kvm_vcpu * vcpu,struct desc_struct * seg_desc)3411 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3412 			     struct desc_struct *seg_desc)
3413 {
3414 	u32 base_addr;
3415 
3416 	base_addr = seg_desc->base0;
3417 	base_addr |= (seg_desc->base1 << 16);
3418 	base_addr |= (seg_desc->base2 << 24);
3419 
3420 	return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3421 }
3422 
get_segment_selector(struct kvm_vcpu * vcpu,int seg)3423 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3424 {
3425 	struct kvm_segment kvm_seg;
3426 
3427 	kvm_get_segment(vcpu, &kvm_seg, seg);
3428 	return kvm_seg.selector;
3429 }
3430 
load_segment_descriptor_to_kvm_desct(struct kvm_vcpu * vcpu,u16 selector,struct kvm_segment * kvm_seg)3431 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3432 						u16 selector,
3433 						struct kvm_segment *kvm_seg)
3434 {
3435 	struct desc_struct seg_desc;
3436 
3437 	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3438 		return 1;
3439 	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3440 	return 0;
3441 }
3442 
kvm_load_realmode_segment(struct kvm_vcpu * vcpu,u16 selector,int seg)3443 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3444 {
3445 	struct kvm_segment segvar = {
3446 		.base = selector << 4,
3447 		.limit = 0xffff,
3448 		.selector = selector,
3449 		.type = 3,
3450 		.present = 1,
3451 		.dpl = 3,
3452 		.db = 0,
3453 		.s = 1,
3454 		.l = 0,
3455 		.g = 0,
3456 		.avl = 0,
3457 		.unusable = 0,
3458 	};
3459 	kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3460 	return 0;
3461 }
3462 
kvm_load_segment_descriptor(struct kvm_vcpu * vcpu,u16 selector,int type_bits,int seg)3463 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3464 				int type_bits, int seg)
3465 {
3466 	struct kvm_segment kvm_seg;
3467 
3468 	if (!(vcpu->arch.cr0 & X86_CR0_PE))
3469 		return kvm_load_realmode_segment(vcpu, selector, seg);
3470 	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3471 		return 1;
3472 	kvm_seg.type |= type_bits;
3473 
3474 	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3475 	    seg != VCPU_SREG_LDTR)
3476 		if (!kvm_seg.s)
3477 			kvm_seg.unusable = 1;
3478 
3479 	kvm_set_segment(vcpu, &kvm_seg, seg);
3480 	return 0;
3481 }
3482 
save_state_to_tss32(struct kvm_vcpu * vcpu,struct tss_segment_32 * tss)3483 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3484 				struct tss_segment_32 *tss)
3485 {
3486 	tss->cr3 = vcpu->arch.cr3;
3487 	tss->eip = kvm_rip_read(vcpu);
3488 	tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3489 	tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3490 	tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3491 	tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3492 	tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3493 	tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3494 	tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3495 	tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3496 	tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3497 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3498 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3499 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3500 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3501 	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3502 	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3503 	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3504 	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3505 }
3506 
load_state_from_tss32(struct kvm_vcpu * vcpu,struct tss_segment_32 * tss)3507 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3508 				  struct tss_segment_32 *tss)
3509 {
3510 	kvm_set_cr3(vcpu, tss->cr3);
3511 
3512 	kvm_rip_write(vcpu, tss->eip);
3513 	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3514 
3515 	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3516 	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3517 	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3518 	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3519 	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3520 	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3521 	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3522 	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3523 
3524 	if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3525 		return 1;
3526 
3527 	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3528 		return 1;
3529 
3530 	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3531 		return 1;
3532 
3533 	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3534 		return 1;
3535 
3536 	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3537 		return 1;
3538 
3539 	if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3540 		return 1;
3541 
3542 	if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3543 		return 1;
3544 	return 0;
3545 }
3546 
save_state_to_tss16(struct kvm_vcpu * vcpu,struct tss_segment_16 * tss)3547 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3548 				struct tss_segment_16 *tss)
3549 {
3550 	tss->ip = kvm_rip_read(vcpu);
3551 	tss->flag = kvm_x86_ops->get_rflags(vcpu);
3552 	tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3553 	tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3554 	tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3555 	tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3556 	tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3557 	tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3558 	tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3559 	tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3560 
3561 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3562 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3563 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3564 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3565 	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3566 	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3567 }
3568 
load_state_from_tss16(struct kvm_vcpu * vcpu,struct tss_segment_16 * tss)3569 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3570 				 struct tss_segment_16 *tss)
3571 {
3572 	kvm_rip_write(vcpu, tss->ip);
3573 	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3574 	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3575 	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3576 	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3577 	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3578 	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3579 	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3580 	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3581 	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3582 
3583 	if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3584 		return 1;
3585 
3586 	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3587 		return 1;
3588 
3589 	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3590 		return 1;
3591 
3592 	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3593 		return 1;
3594 
3595 	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3596 		return 1;
3597 	return 0;
3598 }
3599 
kvm_task_switch_16(struct kvm_vcpu * vcpu,u16 tss_selector,u32 old_tss_base,struct desc_struct * nseg_desc)3600 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3601 		       u32 old_tss_base,
3602 		       struct desc_struct *nseg_desc)
3603 {
3604 	struct tss_segment_16 tss_segment_16;
3605 	int ret = 0;
3606 
3607 	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3608 			   sizeof tss_segment_16))
3609 		goto out;
3610 
3611 	save_state_to_tss16(vcpu, &tss_segment_16);
3612 
3613 	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3614 			    sizeof tss_segment_16))
3615 		goto out;
3616 
3617 	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3618 			   &tss_segment_16, sizeof tss_segment_16))
3619 		goto out;
3620 
3621 	if (load_state_from_tss16(vcpu, &tss_segment_16))
3622 		goto out;
3623 
3624 	ret = 1;
3625 out:
3626 	return ret;
3627 }
3628 
kvm_task_switch_32(struct kvm_vcpu * vcpu,u16 tss_selector,u32 old_tss_base,struct desc_struct * nseg_desc)3629 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3630 		       u32 old_tss_base,
3631 		       struct desc_struct *nseg_desc)
3632 {
3633 	struct tss_segment_32 tss_segment_32;
3634 	int ret = 0;
3635 
3636 	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3637 			   sizeof tss_segment_32))
3638 		goto out;
3639 
3640 	save_state_to_tss32(vcpu, &tss_segment_32);
3641 
3642 	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3643 			    sizeof tss_segment_32))
3644 		goto out;
3645 
3646 	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3647 			   &tss_segment_32, sizeof tss_segment_32))
3648 		goto out;
3649 
3650 	if (load_state_from_tss32(vcpu, &tss_segment_32))
3651 		goto out;
3652 
3653 	ret = 1;
3654 out:
3655 	return ret;
3656 }
3657 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int reason)3658 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3659 {
3660 	struct kvm_segment tr_seg;
3661 	struct desc_struct cseg_desc;
3662 	struct desc_struct nseg_desc;
3663 	int ret = 0;
3664 	u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3665 	u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3666 
3667 	old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3668 
3669 	/* FIXME: Handle errors. Failure to read either TSS or their
3670 	 * descriptors should generate a pagefault.
3671 	 */
3672 	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3673 		goto out;
3674 
3675 	if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3676 		goto out;
3677 
3678 	if (reason != TASK_SWITCH_IRET) {
3679 		int cpl;
3680 
3681 		cpl = kvm_x86_ops->get_cpl(vcpu);
3682 		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3683 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3684 			return 1;
3685 		}
3686 	}
3687 
3688 	if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3689 		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3690 		return 1;
3691 	}
3692 
3693 	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3694 		cseg_desc.type &= ~(1 << 1); //clear the B flag
3695 		save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3696 	}
3697 
3698 	if (reason == TASK_SWITCH_IRET) {
3699 		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3700 		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3701 	}
3702 
3703 	kvm_x86_ops->skip_emulated_instruction(vcpu);
3704 
3705 	if (nseg_desc.type & 8)
3706 		ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3707 					 &nseg_desc);
3708 	else
3709 		ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3710 					 &nseg_desc);
3711 
3712 	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3713 		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3714 		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3715 	}
3716 
3717 	if (reason != TASK_SWITCH_IRET) {
3718 		nseg_desc.type |= (1 << 1);
3719 		save_guest_segment_descriptor(vcpu, tss_selector,
3720 					      &nseg_desc);
3721 	}
3722 
3723 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3724 	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3725 	tr_seg.type = 11;
3726 	kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3727 out:
3728 	return ret;
3729 }
3730 EXPORT_SYMBOL_GPL(kvm_task_switch);
3731 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)3732 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3733 				  struct kvm_sregs *sregs)
3734 {
3735 	int mmu_reset_needed = 0;
3736 	int i, pending_vec, max_bits;
3737 	struct descriptor_table dt;
3738 
3739 	vcpu_load(vcpu);
3740 
3741 	dt.limit = sregs->idt.limit;
3742 	dt.base = sregs->idt.base;
3743 	kvm_x86_ops->set_idt(vcpu, &dt);
3744 	dt.limit = sregs->gdt.limit;
3745 	dt.base = sregs->gdt.base;
3746 	kvm_x86_ops->set_gdt(vcpu, &dt);
3747 
3748 	vcpu->arch.cr2 = sregs->cr2;
3749 	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3750 	vcpu->arch.cr3 = sregs->cr3;
3751 
3752 	kvm_set_cr8(vcpu, sregs->cr8);
3753 
3754 	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3755 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
3756 	kvm_set_apic_base(vcpu, sregs->apic_base);
3757 
3758 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3759 
3760 	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3761 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3762 	vcpu->arch.cr0 = sregs->cr0;
3763 
3764 	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3765 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3766 	if (!is_long_mode(vcpu) && is_pae(vcpu))
3767 		load_pdptrs(vcpu, vcpu->arch.cr3);
3768 
3769 	if (mmu_reset_needed)
3770 		kvm_mmu_reset_context(vcpu);
3771 
3772 	if (!irqchip_in_kernel(vcpu->kvm)) {
3773 		memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3774 		       sizeof vcpu->arch.irq_pending);
3775 		vcpu->arch.irq_summary = 0;
3776 		for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3777 			if (vcpu->arch.irq_pending[i])
3778 				__set_bit(i, &vcpu->arch.irq_summary);
3779 	} else {
3780 		max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3781 		pending_vec = find_first_bit(
3782 			(const unsigned long *)sregs->interrupt_bitmap,
3783 			max_bits);
3784 		/* Only pending external irq is handled here */
3785 		if (pending_vec < max_bits) {
3786 			kvm_x86_ops->set_irq(vcpu, pending_vec);
3787 			pr_debug("Set back pending irq %d\n",
3788 				 pending_vec);
3789 		}
3790 		kvm_pic_clear_isr_ack(vcpu->kvm);
3791 	}
3792 
3793 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3794 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3795 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3796 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3797 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3798 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3799 
3800 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3801 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3802 
3803 	/* Older userspace won't unhalt the vcpu on reset. */
3804 	if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3805 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3806 	    !(vcpu->arch.cr0 & X86_CR0_PE))
3807 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3808 
3809 	vcpu_put(vcpu);
3810 
3811 	return 0;
3812 }
3813 
kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu * vcpu,struct kvm_debug_guest * dbg)3814 int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
3815 				    struct kvm_debug_guest *dbg)
3816 {
3817 	int r;
3818 
3819 	vcpu_load(vcpu);
3820 
3821 	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3822 
3823 	vcpu_put(vcpu);
3824 
3825 	return r;
3826 }
3827 
3828 /*
3829  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
3830  * we have asm/x86/processor.h
3831  */
3832 struct fxsave {
3833 	u16	cwd;
3834 	u16	swd;
3835 	u16	twd;
3836 	u16	fop;
3837 	u64	rip;
3838 	u64	rdp;
3839 	u32	mxcsr;
3840 	u32	mxcsr_mask;
3841 	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
3842 #ifdef CONFIG_X86_64
3843 	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
3844 #else
3845 	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
3846 #endif
3847 };
3848 
3849 /*
3850  * Translate a guest virtual address to a guest physical address.
3851  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)3852 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3853 				    struct kvm_translation *tr)
3854 {
3855 	unsigned long vaddr = tr->linear_address;
3856 	gpa_t gpa;
3857 
3858 	vcpu_load(vcpu);
3859 	down_read(&vcpu->kvm->slots_lock);
3860 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3861 	up_read(&vcpu->kvm->slots_lock);
3862 	tr->physical_address = gpa;
3863 	tr->valid = gpa != UNMAPPED_GVA;
3864 	tr->writeable = 1;
3865 	tr->usermode = 0;
3866 	vcpu_put(vcpu);
3867 
3868 	return 0;
3869 }
3870 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)3871 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3872 {
3873 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3874 
3875 	vcpu_load(vcpu);
3876 
3877 	memcpy(fpu->fpr, fxsave->st_space, 128);
3878 	fpu->fcw = fxsave->cwd;
3879 	fpu->fsw = fxsave->swd;
3880 	fpu->ftwx = fxsave->twd;
3881 	fpu->last_opcode = fxsave->fop;
3882 	fpu->last_ip = fxsave->rip;
3883 	fpu->last_dp = fxsave->rdp;
3884 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3885 
3886 	vcpu_put(vcpu);
3887 
3888 	return 0;
3889 }
3890 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)3891 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3892 {
3893 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3894 
3895 	vcpu_load(vcpu);
3896 
3897 	memcpy(fxsave->st_space, fpu->fpr, 128);
3898 	fxsave->cwd = fpu->fcw;
3899 	fxsave->swd = fpu->fsw;
3900 	fxsave->twd = fpu->ftwx;
3901 	fxsave->fop = fpu->last_opcode;
3902 	fxsave->rip = fpu->last_ip;
3903 	fxsave->rdp = fpu->last_dp;
3904 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3905 
3906 	vcpu_put(vcpu);
3907 
3908 	return 0;
3909 }
3910 
fx_init(struct kvm_vcpu * vcpu)3911 void fx_init(struct kvm_vcpu *vcpu)
3912 {
3913 	unsigned after_mxcsr_mask;
3914 
3915 	/*
3916 	 * Touch the fpu the first time in non atomic context as if
3917 	 * this is the first fpu instruction the exception handler
3918 	 * will fire before the instruction returns and it'll have to
3919 	 * allocate ram with GFP_KERNEL.
3920 	 */
3921 	if (!used_math())
3922 		kvm_fx_save(&vcpu->arch.host_fx_image);
3923 
3924 	/* Initialize guest FPU by resetting ours and saving into guest's */
3925 	preempt_disable();
3926 	kvm_fx_save(&vcpu->arch.host_fx_image);
3927 	kvm_fx_finit();
3928 	kvm_fx_save(&vcpu->arch.guest_fx_image);
3929 	kvm_fx_restore(&vcpu->arch.host_fx_image);
3930 	preempt_enable();
3931 
3932 	vcpu->arch.cr0 |= X86_CR0_ET;
3933 	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
3934 	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
3935 	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
3936 	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
3937 }
3938 EXPORT_SYMBOL_GPL(fx_init);
3939 
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)3940 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
3941 {
3942 	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
3943 		return;
3944 
3945 	vcpu->guest_fpu_loaded = 1;
3946 	kvm_fx_save(&vcpu->arch.host_fx_image);
3947 	kvm_fx_restore(&vcpu->arch.guest_fx_image);
3948 }
3949 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
3950 
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)3951 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
3952 {
3953 	if (!vcpu->guest_fpu_loaded)
3954 		return;
3955 
3956 	vcpu->guest_fpu_loaded = 0;
3957 	kvm_fx_save(&vcpu->arch.guest_fx_image);
3958 	kvm_fx_restore(&vcpu->arch.host_fx_image);
3959 	++vcpu->stat.fpu_reload;
3960 }
3961 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
3962 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)3963 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
3964 {
3965 	kvm_x86_ops->vcpu_free(vcpu);
3966 }
3967 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)3968 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
3969 						unsigned int id)
3970 {
3971 	return kvm_x86_ops->vcpu_create(kvm, id);
3972 }
3973 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)3974 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
3975 {
3976 	int r;
3977 
3978 	/* We do fxsave: this must be aligned. */
3979 	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
3980 
3981 	vcpu->arch.mtrr_state.have_fixed = 1;
3982 	vcpu_load(vcpu);
3983 	r = kvm_arch_vcpu_reset(vcpu);
3984 	if (r == 0)
3985 		r = kvm_mmu_setup(vcpu);
3986 	vcpu_put(vcpu);
3987 	if (r < 0)
3988 		goto free_vcpu;
3989 
3990 	return 0;
3991 free_vcpu:
3992 	kvm_x86_ops->vcpu_free(vcpu);
3993 	return r;
3994 }
3995 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)3996 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3997 {
3998 	vcpu_load(vcpu);
3999 	kvm_mmu_unload(vcpu);
4000 	vcpu_put(vcpu);
4001 
4002 	kvm_x86_ops->vcpu_free(vcpu);
4003 }
4004 
kvm_arch_vcpu_reset(struct kvm_vcpu * vcpu)4005 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4006 {
4007 	vcpu->arch.nmi_pending = false;
4008 	vcpu->arch.nmi_injected = false;
4009 
4010 	return kvm_x86_ops->vcpu_reset(vcpu);
4011 }
4012 
kvm_arch_hardware_enable(void * garbage)4013 void kvm_arch_hardware_enable(void *garbage)
4014 {
4015 	kvm_x86_ops->hardware_enable(garbage);
4016 }
4017 
kvm_arch_hardware_disable(void * garbage)4018 void kvm_arch_hardware_disable(void *garbage)
4019 {
4020 	kvm_x86_ops->hardware_disable(garbage);
4021 }
4022 
kvm_arch_hardware_setup(void)4023 int kvm_arch_hardware_setup(void)
4024 {
4025 	return kvm_x86_ops->hardware_setup();
4026 }
4027 
kvm_arch_hardware_unsetup(void)4028 void kvm_arch_hardware_unsetup(void)
4029 {
4030 	kvm_x86_ops->hardware_unsetup();
4031 }
4032 
kvm_arch_check_processor_compat(void * rtn)4033 void kvm_arch_check_processor_compat(void *rtn)
4034 {
4035 	kvm_x86_ops->check_processor_compatibility(rtn);
4036 }
4037 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)4038 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4039 {
4040 	struct page *page;
4041 	struct kvm *kvm;
4042 	int r;
4043 
4044 	BUG_ON(vcpu->kvm == NULL);
4045 	kvm = vcpu->kvm;
4046 
4047 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4048 	if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4049 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4050 	else
4051 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4052 
4053 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4054 	if (!page) {
4055 		r = -ENOMEM;
4056 		goto fail;
4057 	}
4058 	vcpu->arch.pio_data = page_address(page);
4059 
4060 	r = kvm_mmu_create(vcpu);
4061 	if (r < 0)
4062 		goto fail_free_pio_data;
4063 
4064 	if (irqchip_in_kernel(kvm)) {
4065 		r = kvm_create_lapic(vcpu);
4066 		if (r < 0)
4067 			goto fail_mmu_destroy;
4068 	}
4069 
4070 	return 0;
4071 
4072 fail_mmu_destroy:
4073 	kvm_mmu_destroy(vcpu);
4074 fail_free_pio_data:
4075 	free_page((unsigned long)vcpu->arch.pio_data);
4076 fail:
4077 	return r;
4078 }
4079 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)4080 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4081 {
4082 	kvm_free_lapic(vcpu);
4083 	down_read(&vcpu->kvm->slots_lock);
4084 	kvm_mmu_destroy(vcpu);
4085 	up_read(&vcpu->kvm->slots_lock);
4086 	free_page((unsigned long)vcpu->arch.pio_data);
4087 }
4088 
kvm_arch_create_vm(void)4089 struct  kvm *kvm_arch_create_vm(void)
4090 {
4091 	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4092 
4093 	if (!kvm)
4094 		return ERR_PTR(-ENOMEM);
4095 
4096 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4097 	INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4098 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4099 
4100 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4101 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4102 
4103 	return kvm;
4104 }
4105 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)4106 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4107 {
4108 	vcpu_load(vcpu);
4109 	kvm_mmu_unload(vcpu);
4110 	vcpu_put(vcpu);
4111 }
4112 
kvm_free_vcpus(struct kvm * kvm)4113 static void kvm_free_vcpus(struct kvm *kvm)
4114 {
4115 	unsigned int i;
4116 
4117 	/*
4118 	 * Unpin any mmu pages first.
4119 	 */
4120 	for (i = 0; i < KVM_MAX_VCPUS; ++i)
4121 		if (kvm->vcpus[i])
4122 			kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4123 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4124 		if (kvm->vcpus[i]) {
4125 			kvm_arch_vcpu_free(kvm->vcpus[i]);
4126 			kvm->vcpus[i] = NULL;
4127 		}
4128 	}
4129 
4130 }
4131 
kvm_arch_sync_events(struct kvm * kvm)4132 void kvm_arch_sync_events(struct kvm *kvm)
4133 {
4134 	kvm_free_all_assigned_devices(kvm);
4135 }
4136 
kvm_arch_destroy_vm(struct kvm * kvm)4137 void kvm_arch_destroy_vm(struct kvm *kvm)
4138 {
4139 	kvm_iommu_unmap_guest(kvm);
4140 	kvm_free_pit(kvm);
4141 	kfree(kvm->arch.vpic);
4142 	kfree(kvm->arch.vioapic);
4143 	kvm_free_vcpus(kvm);
4144 	kvm_free_physmem(kvm);
4145 	if (kvm->arch.apic_access_page)
4146 		put_page(kvm->arch.apic_access_page);
4147 	if (kvm->arch.ept_identity_pagetable)
4148 		put_page(kvm->arch.ept_identity_pagetable);
4149 	kfree(kvm);
4150 }
4151 
kvm_arch_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,struct kvm_memory_slot old,int user_alloc)4152 int kvm_arch_set_memory_region(struct kvm *kvm,
4153 				struct kvm_userspace_memory_region *mem,
4154 				struct kvm_memory_slot old,
4155 				int user_alloc)
4156 {
4157 	int npages = mem->memory_size >> PAGE_SHIFT;
4158 	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4159 
4160 	/*To keep backward compatibility with older userspace,
4161 	 *x86 needs to hanlde !user_alloc case.
4162 	 */
4163 	if (!user_alloc) {
4164 		if (npages && !old.rmap) {
4165 			unsigned long userspace_addr;
4166 
4167 			down_write(&current->mm->mmap_sem);
4168 			userspace_addr = do_mmap(NULL, 0,
4169 						 npages * PAGE_SIZE,
4170 						 PROT_READ | PROT_WRITE,
4171 						 MAP_PRIVATE | MAP_ANONYMOUS,
4172 						 0);
4173 			up_write(&current->mm->mmap_sem);
4174 
4175 			if (IS_ERR((void *)userspace_addr))
4176 				return PTR_ERR((void *)userspace_addr);
4177 
4178 			/* set userspace_addr atomically for kvm_hva_to_rmapp */
4179 			spin_lock(&kvm->mmu_lock);
4180 			memslot->userspace_addr = userspace_addr;
4181 			spin_unlock(&kvm->mmu_lock);
4182 		} else {
4183 			if (!old.user_alloc && old.rmap) {
4184 				int ret;
4185 
4186 				down_write(&current->mm->mmap_sem);
4187 				ret = do_munmap(current->mm, old.userspace_addr,
4188 						old.npages * PAGE_SIZE);
4189 				up_write(&current->mm->mmap_sem);
4190 				if (ret < 0)
4191 					printk(KERN_WARNING
4192 				       "kvm_vm_ioctl_set_memory_region: "
4193 				       "failed to munmap memory\n");
4194 			}
4195 		}
4196 	}
4197 
4198 	if (!kvm->arch.n_requested_mmu_pages) {
4199 		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4200 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4201 	}
4202 
4203 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4204 	kvm_flush_remote_tlbs(kvm);
4205 
4206 	return 0;
4207 }
4208 
kvm_arch_flush_shadow(struct kvm * kvm)4209 void kvm_arch_flush_shadow(struct kvm *kvm)
4210 {
4211 	kvm_mmu_zap_all(kvm);
4212 }
4213 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)4214 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4215 {
4216 	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4217 	       || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4218 	       || vcpu->arch.nmi_pending;
4219 }
4220 
vcpu_kick_intr(void * info)4221 static void vcpu_kick_intr(void *info)
4222 {
4223 #ifdef DEBUG
4224 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4225 	printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4226 #endif
4227 }
4228 
kvm_vcpu_kick(struct kvm_vcpu * vcpu)4229 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4230 {
4231 	int ipi_pcpu = vcpu->cpu;
4232 	int cpu = get_cpu();
4233 
4234 	if (waitqueue_active(&vcpu->wq)) {
4235 		wake_up_interruptible(&vcpu->wq);
4236 		++vcpu->stat.halt_wakeup;
4237 	}
4238 	/*
4239 	 * We may be called synchronously with irqs disabled in guest mode,
4240 	 * So need not to call smp_call_function_single() in that case.
4241 	 */
4242 	if (vcpu->guest_mode && vcpu->cpu != cpu)
4243 		smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4244 	put_cpu();
4245 }
4246