• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * net/sched/ematch.c		Extended Match API
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Thomas Graf <tgraf@suug.ch>
10  *
11  * ==========================================================================
12  *
13  * An extended match (ematch) is a small classification tool not worth
14  * writing a full classifier for. Ematches can be interconnected to form
15  * a logic expression and get attached to classifiers to extend their
16  * functionatlity.
17  *
18  * The userspace part transforms the logic expressions into an array
19  * consisting of multiple sequences of interconnected ematches separated
20  * by markers. Precedence is implemented by a special ematch kind
21  * referencing a sequence beyond the marker of the current sequence
22  * causing the current position in the sequence to be pushed onto a stack
23  * to allow the current position to be overwritten by the position referenced
24  * in the special ematch. Matching continues in the new sequence until a
25  * marker is reached causing the position to be restored from the stack.
26  *
27  * Example:
28  *          A AND (B1 OR B2) AND C AND D
29  *
30  *              ------->-PUSH-------
31  *    -->--    /         -->--      \   -->--
32  *   /     \  /         /     \      \ /     \
33  * +-------+-------+-------+-------+-------+--------+
34  * | A AND | B AND | C AND | D END | B1 OR | B2 END |
35  * +-------+-------+-------+-------+-------+--------+
36  *                    \                      /
37  *                     --------<-POP---------
38  *
39  * where B is a virtual ematch referencing to sequence starting with B1.
40  *
41  * ==========================================================================
42  *
43  * How to write an ematch in 60 seconds
44  * ------------------------------------
45  *
46  *   1) Provide a matcher function:
47  *      static int my_match(struct sk_buff *skb, struct tcf_ematch *m,
48  *                          struct tcf_pkt_info *info)
49  *      {
50  *      	struct mydata *d = (struct mydata *) m->data;
51  *
52  *      	if (...matching goes here...)
53  *      		return 1;
54  *      	else
55  *      		return 0;
56  *      }
57  *
58  *   2) Fill out a struct tcf_ematch_ops:
59  *      static struct tcf_ematch_ops my_ops = {
60  *      	.kind = unique id,
61  *      	.datalen = sizeof(struct mydata),
62  *      	.match = my_match,
63  *      	.owner = THIS_MODULE,
64  *      };
65  *
66  *   3) Register/Unregister your ematch:
67  *      static int __init init_my_ematch(void)
68  *      {
69  *      	return tcf_em_register(&my_ops);
70  *      }
71  *
72  *      static void __exit exit_my_ematch(void)
73  *      {
74  *      	tcf_em_unregister(&my_ops);
75  *      }
76  *
77  *      module_init(init_my_ematch);
78  *      module_exit(exit_my_ematch);
79  *
80  *   4) By now you should have two more seconds left, barely enough to
81  *      open up a beer to watch the compilation going.
82  */
83 
84 #include <linux/module.h>
85 #include <linux/types.h>
86 #include <linux/kernel.h>
87 #include <linux/errno.h>
88 #include <linux/rtnetlink.h>
89 #include <linux/skbuff.h>
90 #include <net/pkt_cls.h>
91 
92 static LIST_HEAD(ematch_ops);
93 static DEFINE_RWLOCK(ematch_mod_lock);
94 
tcf_em_lookup(u16 kind)95 static inline struct tcf_ematch_ops * tcf_em_lookup(u16 kind)
96 {
97 	struct tcf_ematch_ops *e = NULL;
98 
99 	read_lock(&ematch_mod_lock);
100 	list_for_each_entry(e, &ematch_ops, link) {
101 		if (kind == e->kind) {
102 			if (!try_module_get(e->owner))
103 				e = NULL;
104 			read_unlock(&ematch_mod_lock);
105 			return e;
106 		}
107 	}
108 	read_unlock(&ematch_mod_lock);
109 
110 	return NULL;
111 }
112 
113 /**
114  * tcf_em_register - register an extended match
115  *
116  * @ops: ematch operations lookup table
117  *
118  * This function must be called by ematches to announce their presence.
119  * The given @ops must have kind set to a unique identifier and the
120  * callback match() must be implemented. All other callbacks are optional
121  * and a fallback implementation is used instead.
122  *
123  * Returns -EEXISTS if an ematch of the same kind has already registered.
124  */
tcf_em_register(struct tcf_ematch_ops * ops)125 int tcf_em_register(struct tcf_ematch_ops *ops)
126 {
127 	int err = -EEXIST;
128 	struct tcf_ematch_ops *e;
129 
130 	if (ops->match == NULL)
131 		return -EINVAL;
132 
133 	write_lock(&ematch_mod_lock);
134 	list_for_each_entry(e, &ematch_ops, link)
135 		if (ops->kind == e->kind)
136 			goto errout;
137 
138 	list_add_tail(&ops->link, &ematch_ops);
139 	err = 0;
140 errout:
141 	write_unlock(&ematch_mod_lock);
142 	return err;
143 }
144 EXPORT_SYMBOL(tcf_em_register);
145 
146 /**
147  * tcf_em_unregister - unregster and extended match
148  *
149  * @ops: ematch operations lookup table
150  *
151  * This function must be called by ematches to announce their disappearance
152  * for examples when the module gets unloaded. The @ops parameter must be
153  * the same as the one used for registration.
154  *
155  * Returns -ENOENT if no matching ematch was found.
156  */
tcf_em_unregister(struct tcf_ematch_ops * ops)157 void tcf_em_unregister(struct tcf_ematch_ops *ops)
158 {
159 	write_lock(&ematch_mod_lock);
160 	list_del(&ops->link);
161 	write_unlock(&ematch_mod_lock);
162 }
163 EXPORT_SYMBOL(tcf_em_unregister);
164 
tcf_em_get_match(struct tcf_ematch_tree * tree,int index)165 static inline struct tcf_ematch * tcf_em_get_match(struct tcf_ematch_tree *tree,
166 						   int index)
167 {
168 	return &tree->matches[index];
169 }
170 
171 
tcf_em_validate(struct tcf_proto * tp,struct tcf_ematch_tree_hdr * tree_hdr,struct tcf_ematch * em,struct nlattr * nla,int idx)172 static int tcf_em_validate(struct tcf_proto *tp,
173 			   struct tcf_ematch_tree_hdr *tree_hdr,
174 			   struct tcf_ematch *em, struct nlattr *nla, int idx)
175 {
176 	int err = -EINVAL;
177 	struct tcf_ematch_hdr *em_hdr = nla_data(nla);
178 	int data_len = nla_len(nla) - sizeof(*em_hdr);
179 	void *data = (void *) em_hdr + sizeof(*em_hdr);
180 
181 	if (!TCF_EM_REL_VALID(em_hdr->flags))
182 		goto errout;
183 
184 	if (em_hdr->kind == TCF_EM_CONTAINER) {
185 		/* Special ematch called "container", carries an index
186 		 * referencing an external ematch sequence. */
187 		u32 ref;
188 
189 		if (data_len < sizeof(ref))
190 			goto errout;
191 		ref = *(u32 *) data;
192 
193 		if (ref >= tree_hdr->nmatches)
194 			goto errout;
195 
196 		/* We do not allow backward jumps to avoid loops and jumps
197 		 * to our own position are of course illegal. */
198 		if (ref <= idx)
199 			goto errout;
200 
201 
202 		em->data = ref;
203 	} else {
204 		/* Note: This lookup will increase the module refcnt
205 		 * of the ematch module referenced. In case of a failure,
206 		 * a destroy function is called by the underlying layer
207 		 * which automatically releases the reference again, therefore
208 		 * the module MUST not be given back under any circumstances
209 		 * here. Be aware, the destroy function assumes that the
210 		 * module is held if the ops field is non zero. */
211 		em->ops = tcf_em_lookup(em_hdr->kind);
212 
213 		if (em->ops == NULL) {
214 			err = -ENOENT;
215 #ifdef CONFIG_MODULES
216 			__rtnl_unlock();
217 			request_module("ematch-kind-%u", em_hdr->kind);
218 			rtnl_lock();
219 			em->ops = tcf_em_lookup(em_hdr->kind);
220 			if (em->ops) {
221 				/* We dropped the RTNL mutex in order to
222 				 * perform the module load. Tell the caller
223 				 * to replay the request. */
224 				module_put(em->ops->owner);
225 				err = -EAGAIN;
226 			}
227 #endif
228 			goto errout;
229 		}
230 
231 		/* ematch module provides expected length of data, so we
232 		 * can do a basic sanity check. */
233 		if (em->ops->datalen && data_len < em->ops->datalen)
234 			goto errout;
235 
236 		if (em->ops->change) {
237 			err = em->ops->change(tp, data, data_len, em);
238 			if (err < 0)
239 				goto errout;
240 		} else if (data_len > 0) {
241 			/* ematch module doesn't provide an own change
242 			 * procedure and expects us to allocate and copy
243 			 * the ematch data.
244 			 *
245 			 * TCF_EM_SIMPLE may be specified stating that the
246 			 * data only consists of a u32 integer and the module
247 			 * does not expected a memory reference but rather
248 			 * the value carried. */
249 			if (em_hdr->flags & TCF_EM_SIMPLE) {
250 				if (data_len < sizeof(u32))
251 					goto errout;
252 				em->data = *(u32 *) data;
253 			} else {
254 				void *v = kmemdup(data, data_len, GFP_KERNEL);
255 				if (v == NULL) {
256 					err = -ENOBUFS;
257 					goto errout;
258 				}
259 				em->data = (unsigned long) v;
260 			}
261 		}
262 	}
263 
264 	em->matchid = em_hdr->matchid;
265 	em->flags = em_hdr->flags;
266 	em->datalen = data_len;
267 
268 	err = 0;
269 errout:
270 	return err;
271 }
272 
273 static const struct nla_policy em_policy[TCA_EMATCH_TREE_MAX + 1] = {
274 	[TCA_EMATCH_TREE_HDR]	= { .len = sizeof(struct tcf_ematch_tree_hdr) },
275 	[TCA_EMATCH_TREE_LIST]	= { .type = NLA_NESTED },
276 };
277 
278 /**
279  * tcf_em_tree_validate - validate ematch config TLV and build ematch tree
280  *
281  * @tp: classifier kind handle
282  * @nla: ematch tree configuration TLV
283  * @tree: destination ematch tree variable to store the resulting
284  *        ematch tree.
285  *
286  * This function validates the given configuration TLV @nla and builds an
287  * ematch tree in @tree. The resulting tree must later be copied into
288  * the private classifier data using tcf_em_tree_change(). You MUST NOT
289  * provide the ematch tree variable of the private classifier data directly,
290  * the changes would not be locked properly.
291  *
292  * Returns a negative error code if the configuration TLV contains errors.
293  */
tcf_em_tree_validate(struct tcf_proto * tp,struct nlattr * nla,struct tcf_ematch_tree * tree)294 int tcf_em_tree_validate(struct tcf_proto *tp, struct nlattr *nla,
295 			 struct tcf_ematch_tree *tree)
296 {
297 	int idx, list_len, matches_len, err;
298 	struct nlattr *tb[TCA_EMATCH_TREE_MAX + 1];
299 	struct nlattr *rt_match, *rt_hdr, *rt_list;
300 	struct tcf_ematch_tree_hdr *tree_hdr;
301 	struct tcf_ematch *em;
302 
303 	memset(tree, 0, sizeof(*tree));
304 	if (!nla)
305 		return 0;
306 
307 	err = nla_parse_nested(tb, TCA_EMATCH_TREE_MAX, nla, em_policy);
308 	if (err < 0)
309 		goto errout;
310 
311 	err = -EINVAL;
312 	rt_hdr = tb[TCA_EMATCH_TREE_HDR];
313 	rt_list = tb[TCA_EMATCH_TREE_LIST];
314 
315 	if (rt_hdr == NULL || rt_list == NULL)
316 		goto errout;
317 
318 	tree_hdr = nla_data(rt_hdr);
319 	memcpy(&tree->hdr, tree_hdr, sizeof(*tree_hdr));
320 
321 	rt_match = nla_data(rt_list);
322 	list_len = nla_len(rt_list);
323 	matches_len = tree_hdr->nmatches * sizeof(*em);
324 
325 	tree->matches = kzalloc(matches_len, GFP_KERNEL);
326 	if (tree->matches == NULL)
327 		goto errout;
328 
329 	/* We do not use nla_parse_nested here because the maximum
330 	 * number of attributes is unknown. This saves us the allocation
331 	 * for a tb buffer which would serve no purpose at all.
332 	 *
333 	 * The array of rt attributes is parsed in the order as they are
334 	 * provided, their type must be incremental from 1 to n. Even
335 	 * if it does not serve any real purpose, a failure of sticking
336 	 * to this policy will result in parsing failure. */
337 	for (idx = 0; nla_ok(rt_match, list_len); idx++) {
338 		err = -EINVAL;
339 
340 		if (rt_match->nla_type != (idx + 1))
341 			goto errout_abort;
342 
343 		if (idx >= tree_hdr->nmatches)
344 			goto errout_abort;
345 
346 		if (nla_len(rt_match) < sizeof(struct tcf_ematch_hdr))
347 			goto errout_abort;
348 
349 		em = tcf_em_get_match(tree, idx);
350 
351 		err = tcf_em_validate(tp, tree_hdr, em, rt_match, idx);
352 		if (err < 0)
353 			goto errout_abort;
354 
355 		rt_match = nla_next(rt_match, &list_len);
356 	}
357 
358 	/* Check if the number of matches provided by userspace actually
359 	 * complies with the array of matches. The number was used for
360 	 * the validation of references and a mismatch could lead to
361 	 * undefined references during the matching process. */
362 	if (idx != tree_hdr->nmatches) {
363 		err = -EINVAL;
364 		goto errout_abort;
365 	}
366 
367 	err = 0;
368 errout:
369 	return err;
370 
371 errout_abort:
372 	tcf_em_tree_destroy(tp, tree);
373 	return err;
374 }
375 EXPORT_SYMBOL(tcf_em_tree_validate);
376 
377 /**
378  * tcf_em_tree_destroy - destroy an ematch tree
379  *
380  * @tp: classifier kind handle
381  * @tree: ematch tree to be deleted
382  *
383  * This functions destroys an ematch tree previously created by
384  * tcf_em_tree_validate()/tcf_em_tree_change(). You must ensure that
385  * the ematch tree is not in use before calling this function.
386  */
tcf_em_tree_destroy(struct tcf_proto * tp,struct tcf_ematch_tree * tree)387 void tcf_em_tree_destroy(struct tcf_proto *tp, struct tcf_ematch_tree *tree)
388 {
389 	int i;
390 
391 	if (tree->matches == NULL)
392 		return;
393 
394 	for (i = 0; i < tree->hdr.nmatches; i++) {
395 		struct tcf_ematch *em = tcf_em_get_match(tree, i);
396 
397 		if (em->ops) {
398 			if (em->ops->destroy)
399 				em->ops->destroy(tp, em);
400 			else if (!tcf_em_is_simple(em))
401 				kfree((void *) em->data);
402 			module_put(em->ops->owner);
403 		}
404 	}
405 
406 	tree->hdr.nmatches = 0;
407 	kfree(tree->matches);
408 	tree->matches = NULL;
409 }
410 EXPORT_SYMBOL(tcf_em_tree_destroy);
411 
412 /**
413  * tcf_em_tree_dump - dump ematch tree into a rtnl message
414  *
415  * @skb: skb holding the rtnl message
416  * @t: ematch tree to be dumped
417  * @tlv: TLV type to be used to encapsulate the tree
418  *
419  * This function dumps a ematch tree into a rtnl message. It is valid to
420  * call this function while the ematch tree is in use.
421  *
422  * Returns -1 if the skb tailroom is insufficient.
423  */
tcf_em_tree_dump(struct sk_buff * skb,struct tcf_ematch_tree * tree,int tlv)424 int tcf_em_tree_dump(struct sk_buff *skb, struct tcf_ematch_tree *tree, int tlv)
425 {
426 	int i;
427 	u8 *tail;
428 	struct nlattr *top_start;
429 	struct nlattr *list_start;
430 
431 	top_start = nla_nest_start(skb, tlv);
432 	if (top_start == NULL)
433 		goto nla_put_failure;
434 
435 	NLA_PUT(skb, TCA_EMATCH_TREE_HDR, sizeof(tree->hdr), &tree->hdr);
436 
437 	list_start = nla_nest_start(skb, TCA_EMATCH_TREE_LIST);
438 	if (list_start == NULL)
439 		goto nla_put_failure;
440 
441 	tail = skb_tail_pointer(skb);
442 	for (i = 0; i < tree->hdr.nmatches; i++) {
443 		struct nlattr *match_start = (struct nlattr *)tail;
444 		struct tcf_ematch *em = tcf_em_get_match(tree, i);
445 		struct tcf_ematch_hdr em_hdr = {
446 			.kind = em->ops ? em->ops->kind : TCF_EM_CONTAINER,
447 			.matchid = em->matchid,
448 			.flags = em->flags
449 		};
450 
451 		NLA_PUT(skb, i+1, sizeof(em_hdr), &em_hdr);
452 
453 		if (em->ops && em->ops->dump) {
454 			if (em->ops->dump(skb, em) < 0)
455 				goto nla_put_failure;
456 		} else if (tcf_em_is_container(em) || tcf_em_is_simple(em)) {
457 			u32 u = em->data;
458 			nla_put_nohdr(skb, sizeof(u), &u);
459 		} else if (em->datalen > 0)
460 			nla_put_nohdr(skb, em->datalen, (void *) em->data);
461 
462 		tail = skb_tail_pointer(skb);
463 		match_start->nla_len = tail - (u8 *)match_start;
464 	}
465 
466 	nla_nest_end(skb, list_start);
467 	nla_nest_end(skb, top_start);
468 
469 	return 0;
470 
471 nla_put_failure:
472 	return -1;
473 }
474 EXPORT_SYMBOL(tcf_em_tree_dump);
475 
tcf_em_match(struct sk_buff * skb,struct tcf_ematch * em,struct tcf_pkt_info * info)476 static inline int tcf_em_match(struct sk_buff *skb, struct tcf_ematch *em,
477 			       struct tcf_pkt_info *info)
478 {
479 	int r = em->ops->match(skb, em, info);
480 	return tcf_em_is_inverted(em) ? !r : r;
481 }
482 
483 /* Do not use this function directly, use tcf_em_tree_match instead */
__tcf_em_tree_match(struct sk_buff * skb,struct tcf_ematch_tree * tree,struct tcf_pkt_info * info)484 int __tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree,
485 			struct tcf_pkt_info *info)
486 {
487 	int stackp = 0, match_idx = 0, res = 0;
488 	struct tcf_ematch *cur_match;
489 	int stack[CONFIG_NET_EMATCH_STACK];
490 
491 proceed:
492 	while (match_idx < tree->hdr.nmatches) {
493 		cur_match = tcf_em_get_match(tree, match_idx);
494 
495 		if (tcf_em_is_container(cur_match)) {
496 			if (unlikely(stackp >= CONFIG_NET_EMATCH_STACK))
497 				goto stack_overflow;
498 
499 			stack[stackp++] = match_idx;
500 			match_idx = cur_match->data;
501 			goto proceed;
502 		}
503 
504 		res = tcf_em_match(skb, cur_match, info);
505 
506 		if (tcf_em_early_end(cur_match, res))
507 			break;
508 
509 		match_idx++;
510 	}
511 
512 pop_stack:
513 	if (stackp > 0) {
514 		match_idx = stack[--stackp];
515 		cur_match = tcf_em_get_match(tree, match_idx);
516 
517 		if (tcf_em_early_end(cur_match, res))
518 			goto pop_stack;
519 		else {
520 			match_idx++;
521 			goto proceed;
522 		}
523 	}
524 
525 	return res;
526 
527 stack_overflow:
528 	if (net_ratelimit())
529 		printk("Local stack overflow, increase NET_EMATCH_STACK\n");
530 	return -1;
531 }
532 EXPORT_SYMBOL(__tcf_em_tree_match);
533