1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42
43 /* #define NFS_DEBUG_VERBOSE 1 */
44
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .readdir = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_release,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct inode_operations nfs_dir_inode_operations = {
70 .create = nfs_create,
71 .lookup = nfs_lookup,
72 .link = nfs_link,
73 .unlink = nfs_unlink,
74 .symlink = nfs_symlink,
75 .mkdir = nfs_mkdir,
76 .rmdir = nfs_rmdir,
77 .mknod = nfs_mknod,
78 .rename = nfs_rename,
79 .permission = nfs_permission,
80 .getattr = nfs_getattr,
81 .setattr = nfs_setattr,
82 };
83
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 .create = nfs_create,
87 .lookup = nfs_lookup,
88 .link = nfs_link,
89 .unlink = nfs_unlink,
90 .symlink = nfs_symlink,
91 .mkdir = nfs_mkdir,
92 .rmdir = nfs_rmdir,
93 .mknod = nfs_mknod,
94 .rename = nfs_rename,
95 .permission = nfs_permission,
96 .getattr = nfs_getattr,
97 .setattr = nfs_setattr,
98 .listxattr = nfs3_listxattr,
99 .getxattr = nfs3_getxattr,
100 .setxattr = nfs3_setxattr,
101 .removexattr = nfs3_removexattr,
102 };
103 #endif /* CONFIG_NFS_V3 */
104
105 #ifdef CONFIG_NFS_V4
106
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 .create = nfs_create,
110 .lookup = nfs_atomic_lookup,
111 .link = nfs_link,
112 .unlink = nfs_unlink,
113 .symlink = nfs_symlink,
114 .mkdir = nfs_mkdir,
115 .rmdir = nfs_rmdir,
116 .mknod = nfs_mknod,
117 .rename = nfs_rename,
118 .permission = nfs_permission,
119 .getattr = nfs_getattr,
120 .setattr = nfs_setattr,
121 .getxattr = nfs4_getxattr,
122 .setxattr = nfs4_setxattr,
123 .listxattr = nfs4_listxattr,
124 };
125
126 #endif /* CONFIG_NFS_V4 */
127
128 /*
129 * Open file
130 */
131 static int
nfs_opendir(struct inode * inode,struct file * filp)132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 int res;
135
136 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 filp->f_path.dentry->d_parent->d_name.name,
138 filp->f_path.dentry->d_name.name);
139
140 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141
142 /* Call generic open code in order to cache credentials */
143 res = nfs_open(inode, filp);
144 return res;
145 }
146
147 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
148 typedef struct {
149 struct file *file;
150 struct page *page;
151 unsigned long page_index;
152 __be32 *ptr;
153 u64 *dir_cookie;
154 loff_t current_index;
155 struct nfs_entry *entry;
156 decode_dirent_t decode;
157 int plus;
158 unsigned long timestamp;
159 unsigned long gencount;
160 int timestamp_valid;
161 } nfs_readdir_descriptor_t;
162
163 /* Now we cache directories properly, by stuffing the dirent
164 * data directly in the page cache.
165 *
166 * Inode invalidation due to refresh etc. takes care of
167 * _everything_, no sloppy entry flushing logic, no extraneous
168 * copying, network direct to page cache, the way it was meant
169 * to be.
170 *
171 * NOTE: Dirent information verification is done always by the
172 * page-in of the RPC reply, nowhere else, this simplies
173 * things substantially.
174 */
175 static
nfs_readdir_filler(nfs_readdir_descriptor_t * desc,struct page * page)176 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
177 {
178 struct file *file = desc->file;
179 struct inode *inode = file->f_path.dentry->d_inode;
180 struct rpc_cred *cred = nfs_file_cred(file);
181 unsigned long timestamp, gencount;
182 int error;
183
184 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
185 __func__, (long long)desc->entry->cookie,
186 page->index);
187
188 again:
189 timestamp = jiffies;
190 gencount = nfs_inc_attr_generation_counter();
191 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
192 NFS_SERVER(inode)->dtsize, desc->plus);
193 if (error < 0) {
194 /* We requested READDIRPLUS, but the server doesn't grok it */
195 if (error == -ENOTSUPP && desc->plus) {
196 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
197 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
198 desc->plus = 0;
199 goto again;
200 }
201 goto error;
202 }
203 desc->timestamp = timestamp;
204 desc->gencount = gencount;
205 desc->timestamp_valid = 1;
206 SetPageUptodate(page);
207 /* Ensure consistent page alignment of the data.
208 * Note: assumes we have exclusive access to this mapping either
209 * through inode->i_mutex or some other mechanism.
210 */
211 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
212 /* Should never happen */
213 nfs_zap_mapping(inode, inode->i_mapping);
214 }
215 unlock_page(page);
216 return 0;
217 error:
218 unlock_page(page);
219 return -EIO;
220 }
221
222 static inline
dir_decode(nfs_readdir_descriptor_t * desc)223 int dir_decode(nfs_readdir_descriptor_t *desc)
224 {
225 __be32 *p = desc->ptr;
226 p = desc->decode(p, desc->entry, desc->plus);
227 if (IS_ERR(p))
228 return PTR_ERR(p);
229 desc->ptr = p;
230 if (desc->timestamp_valid) {
231 desc->entry->fattr->time_start = desc->timestamp;
232 desc->entry->fattr->gencount = desc->gencount;
233 } else
234 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
235 return 0;
236 }
237
238 static inline
dir_page_release(nfs_readdir_descriptor_t * desc)239 void dir_page_release(nfs_readdir_descriptor_t *desc)
240 {
241 kunmap(desc->page);
242 page_cache_release(desc->page);
243 desc->page = NULL;
244 desc->ptr = NULL;
245 }
246
247 /*
248 * Given a pointer to a buffer that has already been filled by a call
249 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
250 *
251 * If the end of the buffer has been reached, return -EAGAIN, if not,
252 * return the offset within the buffer of the next entry to be
253 * read.
254 */
255 static inline
find_dirent(nfs_readdir_descriptor_t * desc)256 int find_dirent(nfs_readdir_descriptor_t *desc)
257 {
258 struct nfs_entry *entry = desc->entry;
259 int loop_count = 0,
260 status;
261
262 while((status = dir_decode(desc)) == 0) {
263 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
264 __func__, (unsigned long long)entry->cookie);
265 if (entry->prev_cookie == *desc->dir_cookie)
266 break;
267 if (loop_count++ > 200) {
268 loop_count = 0;
269 schedule();
270 }
271 }
272 return status;
273 }
274
275 /*
276 * Given a pointer to a buffer that has already been filled by a call
277 * to readdir, find the entry at offset 'desc->file->f_pos'.
278 *
279 * If the end of the buffer has been reached, return -EAGAIN, if not,
280 * return the offset within the buffer of the next entry to be
281 * read.
282 */
283 static inline
find_dirent_index(nfs_readdir_descriptor_t * desc)284 int find_dirent_index(nfs_readdir_descriptor_t *desc)
285 {
286 struct nfs_entry *entry = desc->entry;
287 int loop_count = 0,
288 status;
289
290 for(;;) {
291 status = dir_decode(desc);
292 if (status)
293 break;
294
295 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
296 (unsigned long long)entry->cookie, desc->current_index);
297
298 if (desc->file->f_pos == desc->current_index) {
299 *desc->dir_cookie = entry->cookie;
300 break;
301 }
302 desc->current_index++;
303 if (loop_count++ > 200) {
304 loop_count = 0;
305 schedule();
306 }
307 }
308 return status;
309 }
310
311 /*
312 * Find the given page, and call find_dirent() or find_dirent_index in
313 * order to try to return the next entry.
314 */
315 static inline
find_dirent_page(nfs_readdir_descriptor_t * desc)316 int find_dirent_page(nfs_readdir_descriptor_t *desc)
317 {
318 struct inode *inode = desc->file->f_path.dentry->d_inode;
319 struct page *page;
320 int status;
321
322 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
323 __func__, desc->page_index,
324 (long long) *desc->dir_cookie);
325
326 /* If we find the page in the page_cache, we cannot be sure
327 * how fresh the data is, so we will ignore readdir_plus attributes.
328 */
329 desc->timestamp_valid = 0;
330 page = read_cache_page(inode->i_mapping, desc->page_index,
331 (filler_t *)nfs_readdir_filler, desc);
332 if (IS_ERR(page)) {
333 status = PTR_ERR(page);
334 goto out;
335 }
336
337 /* NOTE: Someone else may have changed the READDIRPLUS flag */
338 desc->page = page;
339 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
340 if (*desc->dir_cookie != 0)
341 status = find_dirent(desc);
342 else
343 status = find_dirent_index(desc);
344 if (status < 0)
345 dir_page_release(desc);
346 out:
347 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
348 return status;
349 }
350
351 /*
352 * Recurse through the page cache pages, and return a
353 * filled nfs_entry structure of the next directory entry if possible.
354 *
355 * The target for the search is '*desc->dir_cookie' if non-0,
356 * 'desc->file->f_pos' otherwise
357 */
358 static inline
readdir_search_pagecache(nfs_readdir_descriptor_t * desc)359 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
360 {
361 int loop_count = 0;
362 int res;
363
364 /* Always search-by-index from the beginning of the cache */
365 if (*desc->dir_cookie == 0) {
366 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
367 (long long)desc->file->f_pos);
368 desc->page_index = 0;
369 desc->entry->cookie = desc->entry->prev_cookie = 0;
370 desc->entry->eof = 0;
371 desc->current_index = 0;
372 } else
373 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
374 (unsigned long long)*desc->dir_cookie);
375
376 for (;;) {
377 res = find_dirent_page(desc);
378 if (res != -EAGAIN)
379 break;
380 /* Align to beginning of next page */
381 desc->page_index ++;
382 if (loop_count++ > 200) {
383 loop_count = 0;
384 schedule();
385 }
386 }
387
388 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
389 return res;
390 }
391
dt_type(struct inode * inode)392 static inline unsigned int dt_type(struct inode *inode)
393 {
394 return (inode->i_mode >> 12) & 15;
395 }
396
397 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
398
399 /*
400 * Once we've found the start of the dirent within a page: fill 'er up...
401 */
402 static
nfs_do_filldir(nfs_readdir_descriptor_t * desc,void * dirent,filldir_t filldir)403 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
404 filldir_t filldir)
405 {
406 struct file *file = desc->file;
407 struct nfs_entry *entry = desc->entry;
408 struct dentry *dentry = NULL;
409 u64 fileid;
410 int loop_count = 0,
411 res;
412
413 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
414 (unsigned long long)entry->cookie);
415
416 for(;;) {
417 unsigned d_type = DT_UNKNOWN;
418 /* Note: entry->prev_cookie contains the cookie for
419 * retrieving the current dirent on the server */
420 fileid = entry->ino;
421
422 /* Get a dentry if we have one */
423 if (dentry != NULL)
424 dput(dentry);
425 dentry = nfs_readdir_lookup(desc);
426
427 /* Use readdirplus info */
428 if (dentry != NULL && dentry->d_inode != NULL) {
429 d_type = dt_type(dentry->d_inode);
430 fileid = NFS_FILEID(dentry->d_inode);
431 }
432
433 res = filldir(dirent, entry->name, entry->len,
434 file->f_pos, nfs_compat_user_ino64(fileid),
435 d_type);
436 if (res < 0)
437 break;
438 file->f_pos++;
439 *desc->dir_cookie = entry->cookie;
440 if (dir_decode(desc) != 0) {
441 desc->page_index ++;
442 break;
443 }
444 if (loop_count++ > 200) {
445 loop_count = 0;
446 schedule();
447 }
448 }
449 dir_page_release(desc);
450 if (dentry != NULL)
451 dput(dentry);
452 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453 (unsigned long long)*desc->dir_cookie, res);
454 return res;
455 }
456
457 /*
458 * If we cannot find a cookie in our cache, we suspect that this is
459 * because it points to a deleted file, so we ask the server to return
460 * whatever it thinks is the next entry. We then feed this to filldir.
461 * If all goes well, we should then be able to find our way round the
462 * cache on the next call to readdir_search_pagecache();
463 *
464 * NOTE: we cannot add the anonymous page to the pagecache because
465 * the data it contains might not be page aligned. Besides,
466 * we should already have a complete representation of the
467 * directory in the page cache by the time we get here.
468 */
469 static inline
uncached_readdir(nfs_readdir_descriptor_t * desc,void * dirent,filldir_t filldir)470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
471 filldir_t filldir)
472 {
473 struct file *file = desc->file;
474 struct inode *inode = file->f_path.dentry->d_inode;
475 struct rpc_cred *cred = nfs_file_cred(file);
476 struct page *page = NULL;
477 int status;
478 unsigned long timestamp, gencount;
479
480 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
481 (unsigned long long)*desc->dir_cookie);
482
483 page = alloc_page(GFP_HIGHUSER);
484 if (!page) {
485 status = -ENOMEM;
486 goto out;
487 }
488 timestamp = jiffies;
489 gencount = nfs_inc_attr_generation_counter();
490 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
491 *desc->dir_cookie, page,
492 NFS_SERVER(inode)->dtsize,
493 desc->plus);
494 desc->page = page;
495 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
496 if (status >= 0) {
497 desc->timestamp = timestamp;
498 desc->gencount = gencount;
499 desc->timestamp_valid = 1;
500 if ((status = dir_decode(desc)) == 0)
501 desc->entry->prev_cookie = *desc->dir_cookie;
502 } else
503 status = -EIO;
504 if (status < 0)
505 goto out_release;
506
507 status = nfs_do_filldir(desc, dirent, filldir);
508
509 /* Reset read descriptor so it searches the page cache from
510 * the start upon the next call to readdir_search_pagecache() */
511 desc->page_index = 0;
512 desc->entry->cookie = desc->entry->prev_cookie = 0;
513 desc->entry->eof = 0;
514 out:
515 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
516 __func__, status);
517 return status;
518 out_release:
519 dir_page_release(desc);
520 goto out;
521 }
522
523 /* The file offset position represents the dirent entry number. A
524 last cookie cache takes care of the common case of reading the
525 whole directory.
526 */
nfs_readdir(struct file * filp,void * dirent,filldir_t filldir)527 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
528 {
529 struct dentry *dentry = filp->f_path.dentry;
530 struct inode *inode = dentry->d_inode;
531 nfs_readdir_descriptor_t my_desc,
532 *desc = &my_desc;
533 struct nfs_entry my_entry;
534 struct nfs_fh fh;
535 struct nfs_fattr fattr;
536 long res;
537
538 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
539 dentry->d_parent->d_name.name, dentry->d_name.name,
540 (long long)filp->f_pos);
541 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
542
543 /*
544 * filp->f_pos points to the dirent entry number.
545 * *desc->dir_cookie has the cookie for the next entry. We have
546 * to either find the entry with the appropriate number or
547 * revalidate the cookie.
548 */
549 memset(desc, 0, sizeof(*desc));
550
551 desc->file = filp;
552 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
553 desc->decode = NFS_PROTO(inode)->decode_dirent;
554 desc->plus = NFS_USE_READDIRPLUS(inode);
555
556 my_entry.cookie = my_entry.prev_cookie = 0;
557 my_entry.eof = 0;
558 my_entry.fh = &fh;
559 my_entry.fattr = &fattr;
560 nfs_fattr_init(&fattr);
561 desc->entry = &my_entry;
562
563 nfs_block_sillyrename(dentry);
564 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
565 if (res < 0)
566 goto out;
567
568 while(!desc->entry->eof) {
569 res = readdir_search_pagecache(desc);
570
571 if (res == -EBADCOOKIE) {
572 /* This means either end of directory */
573 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
574 /* Or that the server has 'lost' a cookie */
575 res = uncached_readdir(desc, dirent, filldir);
576 if (res >= 0)
577 continue;
578 }
579 res = 0;
580 break;
581 }
582 if (res == -ETOOSMALL && desc->plus) {
583 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
584 nfs_zap_caches(inode);
585 desc->plus = 0;
586 desc->entry->eof = 0;
587 continue;
588 }
589 if (res < 0)
590 break;
591
592 res = nfs_do_filldir(desc, dirent, filldir);
593 if (res < 0) {
594 res = 0;
595 break;
596 }
597 }
598 out:
599 nfs_unblock_sillyrename(dentry);
600 if (res > 0)
601 res = 0;
602 dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n",
603 dentry->d_parent->d_name.name, dentry->d_name.name,
604 res);
605 return res;
606 }
607
nfs_llseek_dir(struct file * filp,loff_t offset,int origin)608 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
609 {
610 struct dentry *dentry = filp->f_path.dentry;
611 struct inode *inode = dentry->d_inode;
612
613 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
614 dentry->d_parent->d_name.name,
615 dentry->d_name.name,
616 offset, origin);
617
618 mutex_lock(&inode->i_mutex);
619 switch (origin) {
620 case 1:
621 offset += filp->f_pos;
622 case 0:
623 if (offset >= 0)
624 break;
625 default:
626 offset = -EINVAL;
627 goto out;
628 }
629 if (offset != filp->f_pos) {
630 filp->f_pos = offset;
631 nfs_file_open_context(filp)->dir_cookie = 0;
632 }
633 out:
634 mutex_unlock(&inode->i_mutex);
635 return offset;
636 }
637
638 /*
639 * All directory operations under NFS are synchronous, so fsync()
640 * is a dummy operation.
641 */
nfs_fsync_dir(struct file * filp,struct dentry * dentry,int datasync)642 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
643 {
644 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
645 dentry->d_parent->d_name.name, dentry->d_name.name,
646 datasync);
647
648 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
649 return 0;
650 }
651
652 /**
653 * nfs_force_lookup_revalidate - Mark the directory as having changed
654 * @dir - pointer to directory inode
655 *
656 * This forces the revalidation code in nfs_lookup_revalidate() to do a
657 * full lookup on all child dentries of 'dir' whenever a change occurs
658 * on the server that might have invalidated our dcache.
659 *
660 * The caller should be holding dir->i_lock
661 */
nfs_force_lookup_revalidate(struct inode * dir)662 void nfs_force_lookup_revalidate(struct inode *dir)
663 {
664 NFS_I(dir)->cache_change_attribute++;
665 }
666
667 /*
668 * A check for whether or not the parent directory has changed.
669 * In the case it has, we assume that the dentries are untrustworthy
670 * and may need to be looked up again.
671 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry)672 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
673 {
674 if (IS_ROOT(dentry))
675 return 1;
676 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
677 return 0;
678 if (!nfs_verify_change_attribute(dir, dentry->d_time))
679 return 0;
680 /* Revalidate nfsi->cache_change_attribute before we declare a match */
681 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
682 return 0;
683 if (!nfs_verify_change_attribute(dir, dentry->d_time))
684 return 0;
685 return 1;
686 }
687
688 /*
689 * Return the intent data that applies to this particular path component
690 *
691 * Note that the current set of intents only apply to the very last
692 * component of the path.
693 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
694 */
nfs_lookup_check_intent(struct nameidata * nd,unsigned int mask)695 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
696 {
697 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
698 return 0;
699 return nd->flags & mask;
700 }
701
702 /*
703 * Use intent information to check whether or not we're going to do
704 * an O_EXCL create using this path component.
705 */
nfs_is_exclusive_create(struct inode * dir,struct nameidata * nd)706 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
707 {
708 if (NFS_PROTO(dir)->version == 2)
709 return 0;
710 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
711 }
712
713 /*
714 * Inode and filehandle revalidation for lookups.
715 *
716 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
717 * or if the intent information indicates that we're about to open this
718 * particular file and the "nocto" mount flag is not set.
719 *
720 */
721 static inline
nfs_lookup_verify_inode(struct inode * inode,struct nameidata * nd)722 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
723 {
724 struct nfs_server *server = NFS_SERVER(inode);
725
726 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
727 return 0;
728 if (nd != NULL) {
729 /* VFS wants an on-the-wire revalidation */
730 if (nd->flags & LOOKUP_REVAL)
731 goto out_force;
732 /* This is an open(2) */
733 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
734 !(server->flags & NFS_MOUNT_NOCTO) &&
735 (S_ISREG(inode->i_mode) ||
736 S_ISDIR(inode->i_mode)))
737 goto out_force;
738 return 0;
739 }
740 return nfs_revalidate_inode(server, inode);
741 out_force:
742 return __nfs_revalidate_inode(server, inode);
743 }
744
745 /*
746 * We judge how long we want to trust negative
747 * dentries by looking at the parent inode mtime.
748 *
749 * If parent mtime has changed, we revalidate, else we wait for a
750 * period corresponding to the parent's attribute cache timeout value.
751 */
752 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,struct nameidata * nd)753 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
754 struct nameidata *nd)
755 {
756 /* Don't revalidate a negative dentry if we're creating a new file */
757 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
758 return 0;
759 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
760 return 1;
761 return !nfs_check_verifier(dir, dentry);
762 }
763
764 /*
765 * This is called every time the dcache has a lookup hit,
766 * and we should check whether we can really trust that
767 * lookup.
768 *
769 * NOTE! The hit can be a negative hit too, don't assume
770 * we have an inode!
771 *
772 * If the parent directory is seen to have changed, we throw out the
773 * cached dentry and do a new lookup.
774 */
nfs_lookup_revalidate(struct dentry * dentry,struct nameidata * nd)775 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
776 {
777 struct inode *dir;
778 struct inode *inode;
779 struct dentry *parent;
780 int error;
781 struct nfs_fh fhandle;
782 struct nfs_fattr fattr;
783
784 parent = dget_parent(dentry);
785 dir = parent->d_inode;
786 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
787 inode = dentry->d_inode;
788
789 if (!inode) {
790 if (nfs_neg_need_reval(dir, dentry, nd))
791 goto out_bad;
792 goto out_valid;
793 }
794
795 if (is_bad_inode(inode)) {
796 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
797 __func__, dentry->d_parent->d_name.name,
798 dentry->d_name.name);
799 goto out_bad;
800 }
801
802 if (nfs_have_delegation(inode, FMODE_READ))
803 goto out_set_verifier;
804
805 /* Force a full look up iff the parent directory has changed */
806 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
807 if (nfs_lookup_verify_inode(inode, nd))
808 goto out_zap_parent;
809 goto out_valid;
810 }
811
812 if (NFS_STALE(inode))
813 goto out_bad;
814
815 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
816 if (error)
817 goto out_bad;
818 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
819 goto out_bad;
820 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
821 goto out_bad;
822
823 out_set_verifier:
824 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
825 out_valid:
826 dput(parent);
827 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
828 __func__, dentry->d_parent->d_name.name,
829 dentry->d_name.name);
830 return 1;
831 out_zap_parent:
832 nfs_zap_caches(dir);
833 out_bad:
834 nfs_mark_for_revalidate(dir);
835 if (inode && S_ISDIR(inode->i_mode)) {
836 /* Purge readdir caches. */
837 nfs_zap_caches(inode);
838 /* If we have submounts, don't unhash ! */
839 if (have_submounts(dentry))
840 goto out_valid;
841 shrink_dcache_parent(dentry);
842 }
843 d_drop(dentry);
844 dput(parent);
845 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
846 __func__, dentry->d_parent->d_name.name,
847 dentry->d_name.name);
848 return 0;
849 }
850
851 /*
852 * This is called from dput() when d_count is going to 0.
853 */
nfs_dentry_delete(struct dentry * dentry)854 static int nfs_dentry_delete(struct dentry *dentry)
855 {
856 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
857 dentry->d_parent->d_name.name, dentry->d_name.name,
858 dentry->d_flags);
859
860 /* Unhash any dentry with a stale inode */
861 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
862 return 1;
863
864 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
865 /* Unhash it, so that ->d_iput() would be called */
866 return 1;
867 }
868 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
869 /* Unhash it, so that ancestors of killed async unlink
870 * files will be cleaned up during umount */
871 return 1;
872 }
873 return 0;
874
875 }
876
nfs_drop_nlink(struct inode * inode)877 static void nfs_drop_nlink(struct inode *inode)
878 {
879 spin_lock(&inode->i_lock);
880 if (inode->i_nlink > 0)
881 drop_nlink(inode);
882 spin_unlock(&inode->i_lock);
883 }
884
885 /*
886 * Called when the dentry loses inode.
887 * We use it to clean up silly-renamed files.
888 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)889 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
890 {
891 if (S_ISDIR(inode->i_mode))
892 /* drop any readdir cache as it could easily be old */
893 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
894
895 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
896 drop_nlink(inode);
897 nfs_complete_unlink(dentry, inode);
898 }
899 iput(inode);
900 }
901
902 struct dentry_operations nfs_dentry_operations = {
903 .d_revalidate = nfs_lookup_revalidate,
904 .d_delete = nfs_dentry_delete,
905 .d_iput = nfs_dentry_iput,
906 };
907
nfs_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)908 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
909 {
910 struct dentry *res;
911 struct dentry *parent;
912 struct inode *inode = NULL;
913 int error;
914 struct nfs_fh fhandle;
915 struct nfs_fattr fattr;
916
917 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
918 dentry->d_parent->d_name.name, dentry->d_name.name);
919 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
920
921 res = ERR_PTR(-ENAMETOOLONG);
922 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
923 goto out;
924
925 res = ERR_PTR(-ENOMEM);
926 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
927
928 /*
929 * If we're doing an exclusive create, optimize away the lookup
930 * but don't hash the dentry.
931 */
932 if (nfs_is_exclusive_create(dir, nd)) {
933 d_instantiate(dentry, NULL);
934 res = NULL;
935 goto out;
936 }
937
938 parent = dentry->d_parent;
939 /* Protect against concurrent sillydeletes */
940 nfs_block_sillyrename(parent);
941 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
942 if (error == -ENOENT)
943 goto no_entry;
944 if (error < 0) {
945 res = ERR_PTR(error);
946 goto out_unblock_sillyrename;
947 }
948 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
949 res = (struct dentry *)inode;
950 if (IS_ERR(res))
951 goto out_unblock_sillyrename;
952
953 no_entry:
954 res = d_materialise_unique(dentry, inode);
955 if (res != NULL) {
956 if (IS_ERR(res))
957 goto out_unblock_sillyrename;
958 dentry = res;
959 }
960 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
961 out_unblock_sillyrename:
962 nfs_unblock_sillyrename(parent);
963 out:
964 return res;
965 }
966
967 #ifdef CONFIG_NFS_V4
968 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
969
970 struct dentry_operations nfs4_dentry_operations = {
971 .d_revalidate = nfs_open_revalidate,
972 .d_delete = nfs_dentry_delete,
973 .d_iput = nfs_dentry_iput,
974 };
975
976 /*
977 * Use intent information to determine whether we need to substitute
978 * the NFSv4-style stateful OPEN for the LOOKUP call
979 */
is_atomic_open(struct nameidata * nd)980 static int is_atomic_open(struct nameidata *nd)
981 {
982 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
983 return 0;
984 /* NFS does not (yet) have a stateful open for directories */
985 if (nd->flags & LOOKUP_DIRECTORY)
986 return 0;
987 /* Are we trying to write to a read only partition? */
988 if (__mnt_is_readonly(nd->path.mnt) &&
989 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
990 return 0;
991 return 1;
992 }
993
nfs_atomic_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)994 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
995 {
996 struct dentry *res = NULL;
997 int error;
998
999 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1000 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1001
1002 /* Check that we are indeed trying to open this file */
1003 if (!is_atomic_open(nd))
1004 goto no_open;
1005
1006 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1007 res = ERR_PTR(-ENAMETOOLONG);
1008 goto out;
1009 }
1010 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1011
1012 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1013 * the dentry. */
1014 if (nd->flags & LOOKUP_EXCL) {
1015 d_instantiate(dentry, NULL);
1016 goto out;
1017 }
1018
1019 /* Open the file on the server */
1020 res = nfs4_atomic_open(dir, dentry, nd);
1021 if (IS_ERR(res)) {
1022 error = PTR_ERR(res);
1023 switch (error) {
1024 /* Make a negative dentry */
1025 case -ENOENT:
1026 res = NULL;
1027 goto out;
1028 /* This turned out not to be a regular file */
1029 case -EISDIR:
1030 case -ENOTDIR:
1031 goto no_open;
1032 case -ELOOP:
1033 if (!(nd->intent.open.flags & O_NOFOLLOW))
1034 goto no_open;
1035 /* case -EINVAL: */
1036 default:
1037 goto out;
1038 }
1039 } else if (res != NULL)
1040 dentry = res;
1041 out:
1042 return res;
1043 no_open:
1044 return nfs_lookup(dir, dentry, nd);
1045 }
1046
nfs_open_revalidate(struct dentry * dentry,struct nameidata * nd)1047 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1048 {
1049 struct dentry *parent = NULL;
1050 struct inode *inode = dentry->d_inode;
1051 struct inode *dir;
1052 int openflags, ret = 0;
1053
1054 if (!is_atomic_open(nd))
1055 goto no_open;
1056 parent = dget_parent(dentry);
1057 dir = parent->d_inode;
1058 /* We can't create new files in nfs_open_revalidate(), so we
1059 * optimize away revalidation of negative dentries.
1060 */
1061 if (inode == NULL) {
1062 if (!nfs_neg_need_reval(dir, dentry, nd))
1063 ret = 1;
1064 goto out;
1065 }
1066
1067 /* NFS only supports OPEN on regular files */
1068 if (!S_ISREG(inode->i_mode))
1069 goto no_open_dput;
1070 openflags = nd->intent.open.flags;
1071 /* We cannot do exclusive creation on a positive dentry */
1072 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1073 goto no_open_dput;
1074 /* We can't create new files, or truncate existing ones here */
1075 openflags &= ~(O_CREAT|O_TRUNC);
1076
1077 /*
1078 * Note: we're not holding inode->i_mutex and so may be racing with
1079 * operations that change the directory. We therefore save the
1080 * change attribute *before* we do the RPC call.
1081 */
1082 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1083 out:
1084 dput(parent);
1085 if (!ret)
1086 d_drop(dentry);
1087 return ret;
1088 no_open_dput:
1089 dput(parent);
1090 no_open:
1091 return nfs_lookup_revalidate(dentry, nd);
1092 }
1093 #endif /* CONFIG_NFSV4 */
1094
nfs_readdir_lookup(nfs_readdir_descriptor_t * desc)1095 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1096 {
1097 struct dentry *parent = desc->file->f_path.dentry;
1098 struct inode *dir = parent->d_inode;
1099 struct nfs_entry *entry = desc->entry;
1100 struct dentry *dentry, *alias;
1101 struct qstr name = {
1102 .name = entry->name,
1103 .len = entry->len,
1104 };
1105 struct inode *inode;
1106 unsigned long verf = nfs_save_change_attribute(dir);
1107
1108 switch (name.len) {
1109 case 2:
1110 if (name.name[0] == '.' && name.name[1] == '.')
1111 return dget_parent(parent);
1112 break;
1113 case 1:
1114 if (name.name[0] == '.')
1115 return dget(parent);
1116 }
1117
1118 spin_lock(&dir->i_lock);
1119 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1120 spin_unlock(&dir->i_lock);
1121 return NULL;
1122 }
1123 spin_unlock(&dir->i_lock);
1124
1125 name.hash = full_name_hash(name.name, name.len);
1126 dentry = d_lookup(parent, &name);
1127 if (dentry != NULL) {
1128 /* Is this a positive dentry that matches the readdir info? */
1129 if (dentry->d_inode != NULL &&
1130 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1131 d_mountpoint(dentry))) {
1132 if (!desc->plus || entry->fh->size == 0)
1133 return dentry;
1134 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1135 entry->fh) == 0)
1136 goto out_renew;
1137 }
1138 /* No, so d_drop to allow one to be created */
1139 d_drop(dentry);
1140 dput(dentry);
1141 }
1142 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1143 return NULL;
1144 if (name.len > NFS_SERVER(dir)->namelen)
1145 return NULL;
1146 /* Note: caller is already holding the dir->i_mutex! */
1147 dentry = d_alloc(parent, &name);
1148 if (dentry == NULL)
1149 return NULL;
1150 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1151 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1152 if (IS_ERR(inode)) {
1153 dput(dentry);
1154 return NULL;
1155 }
1156
1157 alias = d_materialise_unique(dentry, inode);
1158 if (alias != NULL) {
1159 dput(dentry);
1160 if (IS_ERR(alias))
1161 return NULL;
1162 dentry = alias;
1163 }
1164
1165 out_renew:
1166 nfs_set_verifier(dentry, verf);
1167 return dentry;
1168 }
1169
1170 /*
1171 * Code common to create, mkdir, and mknod.
1172 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)1173 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1174 struct nfs_fattr *fattr)
1175 {
1176 struct dentry *parent = dget_parent(dentry);
1177 struct inode *dir = parent->d_inode;
1178 struct inode *inode;
1179 int error = -EACCES;
1180
1181 d_drop(dentry);
1182
1183 /* We may have been initialized further down */
1184 if (dentry->d_inode)
1185 goto out;
1186 if (fhandle->size == 0) {
1187 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1188 if (error)
1189 goto out_error;
1190 }
1191 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1192 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1193 struct nfs_server *server = NFS_SB(dentry->d_sb);
1194 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1195 if (error < 0)
1196 goto out_error;
1197 }
1198 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1199 error = PTR_ERR(inode);
1200 if (IS_ERR(inode))
1201 goto out_error;
1202 d_add(dentry, inode);
1203 out:
1204 dput(parent);
1205 return 0;
1206 out_error:
1207 nfs_mark_for_revalidate(dir);
1208 dput(parent);
1209 return error;
1210 }
1211
1212 /*
1213 * Following a failed create operation, we drop the dentry rather
1214 * than retain a negative dentry. This avoids a problem in the event
1215 * that the operation succeeded on the server, but an error in the
1216 * reply path made it appear to have failed.
1217 */
nfs_create(struct inode * dir,struct dentry * dentry,int mode,struct nameidata * nd)1218 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1219 struct nameidata *nd)
1220 {
1221 struct iattr attr;
1222 int error;
1223 int open_flags = 0;
1224
1225 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1226 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1227
1228 attr.ia_mode = mode;
1229 attr.ia_valid = ATTR_MODE;
1230
1231 if ((nd->flags & LOOKUP_CREATE) != 0)
1232 open_flags = nd->intent.open.flags;
1233
1234 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1235 if (error != 0)
1236 goto out_err;
1237 return 0;
1238 out_err:
1239 d_drop(dentry);
1240 return error;
1241 }
1242
1243 /*
1244 * See comments for nfs_proc_create regarding failed operations.
1245 */
1246 static int
nfs_mknod(struct inode * dir,struct dentry * dentry,int mode,dev_t rdev)1247 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1248 {
1249 struct iattr attr;
1250 int status;
1251
1252 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1253 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1254
1255 if (!new_valid_dev(rdev))
1256 return -EINVAL;
1257
1258 attr.ia_mode = mode;
1259 attr.ia_valid = ATTR_MODE;
1260
1261 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1262 if (status != 0)
1263 goto out_err;
1264 return 0;
1265 out_err:
1266 d_drop(dentry);
1267 return status;
1268 }
1269
1270 /*
1271 * See comments for nfs_proc_create regarding failed operations.
1272 */
nfs_mkdir(struct inode * dir,struct dentry * dentry,int mode)1273 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1274 {
1275 struct iattr attr;
1276 int error;
1277
1278 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1279 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1280
1281 attr.ia_valid = ATTR_MODE;
1282 attr.ia_mode = mode | S_IFDIR;
1283
1284 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1285 if (error != 0)
1286 goto out_err;
1287 return 0;
1288 out_err:
1289 d_drop(dentry);
1290 return error;
1291 }
1292
nfs_dentry_handle_enoent(struct dentry * dentry)1293 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1294 {
1295 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1296 d_delete(dentry);
1297 }
1298
nfs_rmdir(struct inode * dir,struct dentry * dentry)1299 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1300 {
1301 int error;
1302
1303 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1304 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1305
1306 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1307 /* Ensure the VFS deletes this inode */
1308 if (error == 0 && dentry->d_inode != NULL)
1309 clear_nlink(dentry->d_inode);
1310 else if (error == -ENOENT)
1311 nfs_dentry_handle_enoent(dentry);
1312
1313 return error;
1314 }
1315
nfs_sillyrename(struct inode * dir,struct dentry * dentry)1316 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1317 {
1318 static unsigned int sillycounter;
1319 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1320 const int countersize = sizeof(sillycounter)*2;
1321 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1322 char silly[slen+1];
1323 struct qstr qsilly;
1324 struct dentry *sdentry;
1325 int error = -EIO;
1326
1327 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1328 dentry->d_parent->d_name.name, dentry->d_name.name,
1329 atomic_read(&dentry->d_count));
1330 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1331
1332 /*
1333 * We don't allow a dentry to be silly-renamed twice.
1334 */
1335 error = -EBUSY;
1336 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1337 goto out;
1338
1339 sprintf(silly, ".nfs%*.*Lx",
1340 fileidsize, fileidsize,
1341 (unsigned long long)NFS_FILEID(dentry->d_inode));
1342
1343 /* Return delegation in anticipation of the rename */
1344 nfs_inode_return_delegation(dentry->d_inode);
1345
1346 sdentry = NULL;
1347 do {
1348 char *suffix = silly + slen - countersize;
1349
1350 dput(sdentry);
1351 sillycounter++;
1352 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1353
1354 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1355 dentry->d_name.name, silly);
1356
1357 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1358 /*
1359 * N.B. Better to return EBUSY here ... it could be
1360 * dangerous to delete the file while it's in use.
1361 */
1362 if (IS_ERR(sdentry))
1363 goto out;
1364 } while(sdentry->d_inode != NULL); /* need negative lookup */
1365
1366 qsilly.name = silly;
1367 qsilly.len = strlen(silly);
1368 if (dentry->d_inode) {
1369 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1370 dir, &qsilly);
1371 nfs_mark_for_revalidate(dentry->d_inode);
1372 } else
1373 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1374 dir, &qsilly);
1375 if (!error) {
1376 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1377 d_move(dentry, sdentry);
1378 error = nfs_async_unlink(dir, dentry);
1379 /* If we return 0 we don't unlink */
1380 }
1381 dput(sdentry);
1382 out:
1383 return error;
1384 }
1385
1386 /*
1387 * Remove a file after making sure there are no pending writes,
1388 * and after checking that the file has only one user.
1389 *
1390 * We invalidate the attribute cache and free the inode prior to the operation
1391 * to avoid possible races if the server reuses the inode.
1392 */
nfs_safe_remove(struct dentry * dentry)1393 static int nfs_safe_remove(struct dentry *dentry)
1394 {
1395 struct inode *dir = dentry->d_parent->d_inode;
1396 struct inode *inode = dentry->d_inode;
1397 int error = -EBUSY;
1398
1399 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1400 dentry->d_parent->d_name.name, dentry->d_name.name);
1401
1402 /* If the dentry was sillyrenamed, we simply call d_delete() */
1403 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1404 error = 0;
1405 goto out;
1406 }
1407
1408 if (inode != NULL) {
1409 nfs_inode_return_delegation(inode);
1410 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1411 /* The VFS may want to delete this inode */
1412 if (error == 0)
1413 nfs_drop_nlink(inode);
1414 nfs_mark_for_revalidate(inode);
1415 } else
1416 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1417 if (error == -ENOENT)
1418 nfs_dentry_handle_enoent(dentry);
1419 out:
1420 return error;
1421 }
1422
1423 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1424 * belongs to an active ".nfs..." file and we return -EBUSY.
1425 *
1426 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1427 */
nfs_unlink(struct inode * dir,struct dentry * dentry)1428 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1429 {
1430 int error;
1431 int need_rehash = 0;
1432
1433 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1434 dir->i_ino, dentry->d_name.name);
1435
1436 spin_lock(&dcache_lock);
1437 spin_lock(&dentry->d_lock);
1438 if (atomic_read(&dentry->d_count) > 1) {
1439 spin_unlock(&dentry->d_lock);
1440 spin_unlock(&dcache_lock);
1441 /* Start asynchronous writeout of the inode */
1442 write_inode_now(dentry->d_inode, 0);
1443 error = nfs_sillyrename(dir, dentry);
1444 return error;
1445 }
1446 if (!d_unhashed(dentry)) {
1447 __d_drop(dentry);
1448 need_rehash = 1;
1449 }
1450 spin_unlock(&dentry->d_lock);
1451 spin_unlock(&dcache_lock);
1452 error = nfs_safe_remove(dentry);
1453 if (!error || error == -ENOENT) {
1454 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1455 } else if (need_rehash)
1456 d_rehash(dentry);
1457 return error;
1458 }
1459
1460 /*
1461 * To create a symbolic link, most file systems instantiate a new inode,
1462 * add a page to it containing the path, then write it out to the disk
1463 * using prepare_write/commit_write.
1464 *
1465 * Unfortunately the NFS client can't create the in-core inode first
1466 * because it needs a file handle to create an in-core inode (see
1467 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1468 * symlink request has completed on the server.
1469 *
1470 * So instead we allocate a raw page, copy the symname into it, then do
1471 * the SYMLINK request with the page as the buffer. If it succeeds, we
1472 * now have a new file handle and can instantiate an in-core NFS inode
1473 * and move the raw page into its mapping.
1474 */
nfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)1475 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1476 {
1477 struct pagevec lru_pvec;
1478 struct page *page;
1479 char *kaddr;
1480 struct iattr attr;
1481 unsigned int pathlen = strlen(symname);
1482 int error;
1483
1484 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1485 dir->i_ino, dentry->d_name.name, symname);
1486
1487 if (pathlen > PAGE_SIZE)
1488 return -ENAMETOOLONG;
1489
1490 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1491 attr.ia_valid = ATTR_MODE;
1492
1493 page = alloc_page(GFP_HIGHUSER);
1494 if (!page)
1495 return -ENOMEM;
1496
1497 kaddr = kmap_atomic(page, KM_USER0);
1498 memcpy(kaddr, symname, pathlen);
1499 if (pathlen < PAGE_SIZE)
1500 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1501 kunmap_atomic(kaddr, KM_USER0);
1502
1503 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1504 if (error != 0) {
1505 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1506 dir->i_sb->s_id, dir->i_ino,
1507 dentry->d_name.name, symname, error);
1508 d_drop(dentry);
1509 __free_page(page);
1510 return error;
1511 }
1512
1513 /*
1514 * No big deal if we can't add this page to the page cache here.
1515 * READLINK will get the missing page from the server if needed.
1516 */
1517 pagevec_init(&lru_pvec, 0);
1518 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1519 GFP_KERNEL)) {
1520 pagevec_add(&lru_pvec, page);
1521 pagevec_lru_add_file(&lru_pvec);
1522 SetPageUptodate(page);
1523 unlock_page(page);
1524 } else
1525 __free_page(page);
1526
1527 return 0;
1528 }
1529
1530 static int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)1531 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1532 {
1533 struct inode *inode = old_dentry->d_inode;
1534 int error;
1535
1536 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1537 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1538 dentry->d_parent->d_name.name, dentry->d_name.name);
1539
1540 d_drop(dentry);
1541 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1542 if (error == 0) {
1543 atomic_inc(&inode->i_count);
1544 d_add(dentry, inode);
1545 }
1546 return error;
1547 }
1548
1549 /*
1550 * RENAME
1551 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1552 * different file handle for the same inode after a rename (e.g. when
1553 * moving to a different directory). A fail-safe method to do so would
1554 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1555 * rename the old file using the sillyrename stuff. This way, the original
1556 * file in old_dir will go away when the last process iput()s the inode.
1557 *
1558 * FIXED.
1559 *
1560 * It actually works quite well. One needs to have the possibility for
1561 * at least one ".nfs..." file in each directory the file ever gets
1562 * moved or linked to which happens automagically with the new
1563 * implementation that only depends on the dcache stuff instead of
1564 * using the inode layer
1565 *
1566 * Unfortunately, things are a little more complicated than indicated
1567 * above. For a cross-directory move, we want to make sure we can get
1568 * rid of the old inode after the operation. This means there must be
1569 * no pending writes (if it's a file), and the use count must be 1.
1570 * If these conditions are met, we can drop the dentries before doing
1571 * the rename.
1572 */
nfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)1573 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1574 struct inode *new_dir, struct dentry *new_dentry)
1575 {
1576 struct inode *old_inode = old_dentry->d_inode;
1577 struct inode *new_inode = new_dentry->d_inode;
1578 struct dentry *dentry = NULL, *rehash = NULL;
1579 int error = -EBUSY;
1580
1581 /*
1582 * To prevent any new references to the target during the rename,
1583 * we unhash the dentry and free the inode in advance.
1584 */
1585 if (!d_unhashed(new_dentry)) {
1586 d_drop(new_dentry);
1587 rehash = new_dentry;
1588 }
1589
1590 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1591 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1592 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1593 atomic_read(&new_dentry->d_count));
1594
1595 /*
1596 * First check whether the target is busy ... we can't
1597 * safely do _any_ rename if the target is in use.
1598 *
1599 * For files, make a copy of the dentry and then do a
1600 * silly-rename. If the silly-rename succeeds, the
1601 * copied dentry is hashed and becomes the new target.
1602 */
1603 if (!new_inode)
1604 goto go_ahead;
1605 if (S_ISDIR(new_inode->i_mode)) {
1606 error = -EISDIR;
1607 if (!S_ISDIR(old_inode->i_mode))
1608 goto out;
1609 } else if (atomic_read(&new_dentry->d_count) > 2) {
1610 int err;
1611 /* copy the target dentry's name */
1612 dentry = d_alloc(new_dentry->d_parent,
1613 &new_dentry->d_name);
1614 if (!dentry)
1615 goto out;
1616
1617 /* silly-rename the existing target ... */
1618 err = nfs_sillyrename(new_dir, new_dentry);
1619 if (!err) {
1620 new_dentry = rehash = dentry;
1621 new_inode = NULL;
1622 /* instantiate the replacement target */
1623 d_instantiate(new_dentry, NULL);
1624 } else if (atomic_read(&new_dentry->d_count) > 1)
1625 /* dentry still busy? */
1626 goto out;
1627 } else
1628 nfs_drop_nlink(new_inode);
1629
1630 go_ahead:
1631 /*
1632 * ... prune child dentries and writebacks if needed.
1633 */
1634 if (atomic_read(&old_dentry->d_count) > 1) {
1635 if (S_ISREG(old_inode->i_mode))
1636 nfs_wb_all(old_inode);
1637 shrink_dcache_parent(old_dentry);
1638 }
1639 nfs_inode_return_delegation(old_inode);
1640
1641 if (new_inode != NULL) {
1642 nfs_inode_return_delegation(new_inode);
1643 d_delete(new_dentry);
1644 }
1645
1646 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1647 new_dir, &new_dentry->d_name);
1648 nfs_mark_for_revalidate(old_inode);
1649 out:
1650 if (rehash)
1651 d_rehash(rehash);
1652 if (!error) {
1653 d_move(old_dentry, new_dentry);
1654 nfs_set_verifier(new_dentry,
1655 nfs_save_change_attribute(new_dir));
1656 } else if (error == -ENOENT)
1657 nfs_dentry_handle_enoent(old_dentry);
1658
1659 /* new dentry created? */
1660 if (dentry)
1661 dput(dentry);
1662 return error;
1663 }
1664
1665 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1666 static LIST_HEAD(nfs_access_lru_list);
1667 static atomic_long_t nfs_access_nr_entries;
1668
nfs_access_free_entry(struct nfs_access_entry * entry)1669 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1670 {
1671 put_rpccred(entry->cred);
1672 kfree(entry);
1673 smp_mb__before_atomic_dec();
1674 atomic_long_dec(&nfs_access_nr_entries);
1675 smp_mb__after_atomic_dec();
1676 }
1677
nfs_access_cache_shrinker(int nr_to_scan,gfp_t gfp_mask)1678 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1679 {
1680 LIST_HEAD(head);
1681 struct nfs_inode *nfsi;
1682 struct nfs_access_entry *cache;
1683
1684 restart:
1685 spin_lock(&nfs_access_lru_lock);
1686 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1687 struct rw_semaphore *s_umount;
1688 struct inode *inode;
1689
1690 if (nr_to_scan-- == 0)
1691 break;
1692 s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1693 if (!down_read_trylock(s_umount))
1694 continue;
1695 inode = igrab(&nfsi->vfs_inode);
1696 if (inode == NULL) {
1697 up_read(s_umount);
1698 continue;
1699 }
1700 spin_lock(&inode->i_lock);
1701 if (list_empty(&nfsi->access_cache_entry_lru))
1702 goto remove_lru_entry;
1703 cache = list_entry(nfsi->access_cache_entry_lru.next,
1704 struct nfs_access_entry, lru);
1705 list_move(&cache->lru, &head);
1706 rb_erase(&cache->rb_node, &nfsi->access_cache);
1707 if (!list_empty(&nfsi->access_cache_entry_lru))
1708 list_move_tail(&nfsi->access_cache_inode_lru,
1709 &nfs_access_lru_list);
1710 else {
1711 remove_lru_entry:
1712 list_del_init(&nfsi->access_cache_inode_lru);
1713 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1714 }
1715 spin_unlock(&inode->i_lock);
1716 spin_unlock(&nfs_access_lru_lock);
1717 iput(inode);
1718 up_read(s_umount);
1719 goto restart;
1720 }
1721 spin_unlock(&nfs_access_lru_lock);
1722 while (!list_empty(&head)) {
1723 cache = list_entry(head.next, struct nfs_access_entry, lru);
1724 list_del(&cache->lru);
1725 nfs_access_free_entry(cache);
1726 }
1727 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1728 }
1729
__nfs_access_zap_cache(struct inode * inode)1730 static void __nfs_access_zap_cache(struct inode *inode)
1731 {
1732 struct nfs_inode *nfsi = NFS_I(inode);
1733 struct rb_root *root_node = &nfsi->access_cache;
1734 struct rb_node *n, *dispose = NULL;
1735 struct nfs_access_entry *entry;
1736
1737 /* Unhook entries from the cache */
1738 while ((n = rb_first(root_node)) != NULL) {
1739 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1740 rb_erase(n, root_node);
1741 list_del(&entry->lru);
1742 n->rb_left = dispose;
1743 dispose = n;
1744 }
1745 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1746 spin_unlock(&inode->i_lock);
1747
1748 /* Now kill them all! */
1749 while (dispose != NULL) {
1750 n = dispose;
1751 dispose = n->rb_left;
1752 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1753 }
1754 }
1755
nfs_access_zap_cache(struct inode * inode)1756 void nfs_access_zap_cache(struct inode *inode)
1757 {
1758 /* Remove from global LRU init */
1759 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1760 spin_lock(&nfs_access_lru_lock);
1761 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1762 spin_unlock(&nfs_access_lru_lock);
1763 }
1764
1765 spin_lock(&inode->i_lock);
1766 /* This will release the spinlock */
1767 __nfs_access_zap_cache(inode);
1768 }
1769
nfs_access_search_rbtree(struct inode * inode,struct rpc_cred * cred)1770 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1771 {
1772 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1773 struct nfs_access_entry *entry;
1774
1775 while (n != NULL) {
1776 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1777
1778 if (cred < entry->cred)
1779 n = n->rb_left;
1780 else if (cred > entry->cred)
1781 n = n->rb_right;
1782 else
1783 return entry;
1784 }
1785 return NULL;
1786 }
1787
nfs_access_get_cached(struct inode * inode,struct rpc_cred * cred,struct nfs_access_entry * res)1788 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1789 {
1790 struct nfs_inode *nfsi = NFS_I(inode);
1791 struct nfs_access_entry *cache;
1792 int err = -ENOENT;
1793
1794 spin_lock(&inode->i_lock);
1795 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1796 goto out_zap;
1797 cache = nfs_access_search_rbtree(inode, cred);
1798 if (cache == NULL)
1799 goto out;
1800 if (!nfs_have_delegation(inode, FMODE_READ) &&
1801 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1802 goto out_stale;
1803 res->jiffies = cache->jiffies;
1804 res->cred = cache->cred;
1805 res->mask = cache->mask;
1806 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1807 err = 0;
1808 out:
1809 spin_unlock(&inode->i_lock);
1810 return err;
1811 out_stale:
1812 rb_erase(&cache->rb_node, &nfsi->access_cache);
1813 list_del(&cache->lru);
1814 spin_unlock(&inode->i_lock);
1815 nfs_access_free_entry(cache);
1816 return -ENOENT;
1817 out_zap:
1818 /* This will release the spinlock */
1819 __nfs_access_zap_cache(inode);
1820 return -ENOENT;
1821 }
1822
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)1823 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1824 {
1825 struct nfs_inode *nfsi = NFS_I(inode);
1826 struct rb_root *root_node = &nfsi->access_cache;
1827 struct rb_node **p = &root_node->rb_node;
1828 struct rb_node *parent = NULL;
1829 struct nfs_access_entry *entry;
1830
1831 spin_lock(&inode->i_lock);
1832 while (*p != NULL) {
1833 parent = *p;
1834 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1835
1836 if (set->cred < entry->cred)
1837 p = &parent->rb_left;
1838 else if (set->cred > entry->cred)
1839 p = &parent->rb_right;
1840 else
1841 goto found;
1842 }
1843 rb_link_node(&set->rb_node, parent, p);
1844 rb_insert_color(&set->rb_node, root_node);
1845 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1846 spin_unlock(&inode->i_lock);
1847 return;
1848 found:
1849 rb_replace_node(parent, &set->rb_node, root_node);
1850 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1851 list_del(&entry->lru);
1852 spin_unlock(&inode->i_lock);
1853 nfs_access_free_entry(entry);
1854 }
1855
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)1856 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1857 {
1858 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1859 if (cache == NULL)
1860 return;
1861 RB_CLEAR_NODE(&cache->rb_node);
1862 cache->jiffies = set->jiffies;
1863 cache->cred = get_rpccred(set->cred);
1864 cache->mask = set->mask;
1865
1866 nfs_access_add_rbtree(inode, cache);
1867
1868 /* Update accounting */
1869 smp_mb__before_atomic_inc();
1870 atomic_long_inc(&nfs_access_nr_entries);
1871 smp_mb__after_atomic_inc();
1872
1873 /* Add inode to global LRU list */
1874 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1875 spin_lock(&nfs_access_lru_lock);
1876 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1877 spin_unlock(&nfs_access_lru_lock);
1878 }
1879 }
1880
nfs_do_access(struct inode * inode,struct rpc_cred * cred,int mask)1881 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1882 {
1883 struct nfs_access_entry cache;
1884 int status;
1885
1886 status = nfs_access_get_cached(inode, cred, &cache);
1887 if (status == 0)
1888 goto out;
1889
1890 /* Be clever: ask server to check for all possible rights */
1891 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1892 cache.cred = cred;
1893 cache.jiffies = jiffies;
1894 status = NFS_PROTO(inode)->access(inode, &cache);
1895 if (status != 0) {
1896 if (status == -ESTALE) {
1897 nfs_zap_caches(inode);
1898 if (!S_ISDIR(inode->i_mode))
1899 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1900 }
1901 return status;
1902 }
1903 nfs_access_add_cache(inode, &cache);
1904 out:
1905 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1906 return 0;
1907 return -EACCES;
1908 }
1909
nfs_open_permission_mask(int openflags)1910 static int nfs_open_permission_mask(int openflags)
1911 {
1912 int mask = 0;
1913
1914 if (openflags & FMODE_READ)
1915 mask |= MAY_READ;
1916 if (openflags & FMODE_WRITE)
1917 mask |= MAY_WRITE;
1918 if (openflags & FMODE_EXEC)
1919 mask |= MAY_EXEC;
1920 return mask;
1921 }
1922
nfs_may_open(struct inode * inode,struct rpc_cred * cred,int openflags)1923 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1924 {
1925 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1926 }
1927
nfs_permission(struct inode * inode,int mask)1928 int nfs_permission(struct inode *inode, int mask)
1929 {
1930 struct rpc_cred *cred;
1931 int res = 0;
1932
1933 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1934
1935 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1936 goto out;
1937 /* Is this sys_access() ? */
1938 if (mask & MAY_ACCESS)
1939 goto force_lookup;
1940
1941 switch (inode->i_mode & S_IFMT) {
1942 case S_IFLNK:
1943 goto out;
1944 case S_IFREG:
1945 /* NFSv4 has atomic_open... */
1946 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1947 && (mask & MAY_OPEN))
1948 goto out;
1949 break;
1950 case S_IFDIR:
1951 /*
1952 * Optimize away all write operations, since the server
1953 * will check permissions when we perform the op.
1954 */
1955 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1956 goto out;
1957 }
1958
1959 force_lookup:
1960 if (!NFS_PROTO(inode)->access)
1961 goto out_notsup;
1962
1963 cred = rpc_lookup_cred();
1964 if (!IS_ERR(cred)) {
1965 res = nfs_do_access(inode, cred, mask);
1966 put_rpccred(cred);
1967 } else
1968 res = PTR_ERR(cred);
1969 out:
1970 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1971 res = -EACCES;
1972
1973 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1974 inode->i_sb->s_id, inode->i_ino, mask, res);
1975 return res;
1976 out_notsup:
1977 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1978 if (res == 0)
1979 res = generic_permission(inode, mask, NULL);
1980 goto out;
1981 }
1982
1983 /*
1984 * Local variables:
1985 * version-control: t
1986 * kept-new-versions: 5
1987 * End:
1988 */
1989