• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29  *	This program is free software; you can redistribute it and/or modify
30  *	it under the terms of the GNU General Public License as published by
31  *	the Free Software Foundation, version 2.
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
39 #include <linux/in.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <linux/selinux.h>
44 #include <net/netlabel.h>
45 
46 #include "flask.h"
47 #include "avc.h"
48 #include "avc_ss.h"
49 #include "security.h"
50 #include "context.h"
51 #include "policydb.h"
52 #include "sidtab.h"
53 #include "services.h"
54 #include "conditional.h"
55 #include "mls.h"
56 #include "objsec.h"
57 #include "netlabel.h"
58 #include "xfrm.h"
59 #include "ebitmap.h"
60 #include "audit.h"
61 
62 extern void selnl_notify_policyload(u32 seqno);
63 unsigned int policydb_loaded_version;
64 
65 int selinux_policycap_netpeer;
66 int selinux_policycap_openperm;
67 
68 /*
69  * This is declared in avc.c
70  */
71 extern const struct selinux_class_perm selinux_class_perm;
72 
73 static DEFINE_RWLOCK(policy_rwlock);
74 
75 static struct sidtab sidtab;
76 struct policydb policydb;
77 int ss_initialized;
78 
79 /*
80  * The largest sequence number that has been used when
81  * providing an access decision to the access vector cache.
82  * The sequence number only changes when a policy change
83  * occurs.
84  */
85 static u32 latest_granting;
86 
87 /* Forward declaration. */
88 static int context_struct_to_string(struct context *context, char **scontext,
89 				    u32 *scontext_len);
90 
91 static int context_struct_compute_av(struct context *scontext,
92 				     struct context *tcontext,
93 				     u16 tclass,
94 				     u32 requested,
95 				     struct av_decision *avd);
96 /*
97  * Return the boolean value of a constraint expression
98  * when it is applied to the specified source and target
99  * security contexts.
100  *
101  * xcontext is a special beast...  It is used by the validatetrans rules
102  * only.  For these rules, scontext is the context before the transition,
103  * tcontext is the context after the transition, and xcontext is the context
104  * of the process performing the transition.  All other callers of
105  * constraint_expr_eval should pass in NULL for xcontext.
106  */
constraint_expr_eval(struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)107 static int constraint_expr_eval(struct context *scontext,
108 				struct context *tcontext,
109 				struct context *xcontext,
110 				struct constraint_expr *cexpr)
111 {
112 	u32 val1, val2;
113 	struct context *c;
114 	struct role_datum *r1, *r2;
115 	struct mls_level *l1, *l2;
116 	struct constraint_expr *e;
117 	int s[CEXPR_MAXDEPTH];
118 	int sp = -1;
119 
120 	for (e = cexpr; e; e = e->next) {
121 		switch (e->expr_type) {
122 		case CEXPR_NOT:
123 			BUG_ON(sp < 0);
124 			s[sp] = !s[sp];
125 			break;
126 		case CEXPR_AND:
127 			BUG_ON(sp < 1);
128 			sp--;
129 			s[sp] &= s[sp+1];
130 			break;
131 		case CEXPR_OR:
132 			BUG_ON(sp < 1);
133 			sp--;
134 			s[sp] |= s[sp+1];
135 			break;
136 		case CEXPR_ATTR:
137 			if (sp == (CEXPR_MAXDEPTH-1))
138 				return 0;
139 			switch (e->attr) {
140 			case CEXPR_USER:
141 				val1 = scontext->user;
142 				val2 = tcontext->user;
143 				break;
144 			case CEXPR_TYPE:
145 				val1 = scontext->type;
146 				val2 = tcontext->type;
147 				break;
148 			case CEXPR_ROLE:
149 				val1 = scontext->role;
150 				val2 = tcontext->role;
151 				r1 = policydb.role_val_to_struct[val1 - 1];
152 				r2 = policydb.role_val_to_struct[val2 - 1];
153 				switch (e->op) {
154 				case CEXPR_DOM:
155 					s[++sp] = ebitmap_get_bit(&r1->dominates,
156 								  val2 - 1);
157 					continue;
158 				case CEXPR_DOMBY:
159 					s[++sp] = ebitmap_get_bit(&r2->dominates,
160 								  val1 - 1);
161 					continue;
162 				case CEXPR_INCOMP:
163 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
164 								    val2 - 1) &&
165 						   !ebitmap_get_bit(&r2->dominates,
166 								    val1 - 1));
167 					continue;
168 				default:
169 					break;
170 				}
171 				break;
172 			case CEXPR_L1L2:
173 				l1 = &(scontext->range.level[0]);
174 				l2 = &(tcontext->range.level[0]);
175 				goto mls_ops;
176 			case CEXPR_L1H2:
177 				l1 = &(scontext->range.level[0]);
178 				l2 = &(tcontext->range.level[1]);
179 				goto mls_ops;
180 			case CEXPR_H1L2:
181 				l1 = &(scontext->range.level[1]);
182 				l2 = &(tcontext->range.level[0]);
183 				goto mls_ops;
184 			case CEXPR_H1H2:
185 				l1 = &(scontext->range.level[1]);
186 				l2 = &(tcontext->range.level[1]);
187 				goto mls_ops;
188 			case CEXPR_L1H1:
189 				l1 = &(scontext->range.level[0]);
190 				l2 = &(scontext->range.level[1]);
191 				goto mls_ops;
192 			case CEXPR_L2H2:
193 				l1 = &(tcontext->range.level[0]);
194 				l2 = &(tcontext->range.level[1]);
195 				goto mls_ops;
196 mls_ops:
197 			switch (e->op) {
198 			case CEXPR_EQ:
199 				s[++sp] = mls_level_eq(l1, l2);
200 				continue;
201 			case CEXPR_NEQ:
202 				s[++sp] = !mls_level_eq(l1, l2);
203 				continue;
204 			case CEXPR_DOM:
205 				s[++sp] = mls_level_dom(l1, l2);
206 				continue;
207 			case CEXPR_DOMBY:
208 				s[++sp] = mls_level_dom(l2, l1);
209 				continue;
210 			case CEXPR_INCOMP:
211 				s[++sp] = mls_level_incomp(l2, l1);
212 				continue;
213 			default:
214 				BUG();
215 				return 0;
216 			}
217 			break;
218 			default:
219 				BUG();
220 				return 0;
221 			}
222 
223 			switch (e->op) {
224 			case CEXPR_EQ:
225 				s[++sp] = (val1 == val2);
226 				break;
227 			case CEXPR_NEQ:
228 				s[++sp] = (val1 != val2);
229 				break;
230 			default:
231 				BUG();
232 				return 0;
233 			}
234 			break;
235 		case CEXPR_NAMES:
236 			if (sp == (CEXPR_MAXDEPTH-1))
237 				return 0;
238 			c = scontext;
239 			if (e->attr & CEXPR_TARGET)
240 				c = tcontext;
241 			else if (e->attr & CEXPR_XTARGET) {
242 				c = xcontext;
243 				if (!c) {
244 					BUG();
245 					return 0;
246 				}
247 			}
248 			if (e->attr & CEXPR_USER)
249 				val1 = c->user;
250 			else if (e->attr & CEXPR_ROLE)
251 				val1 = c->role;
252 			else if (e->attr & CEXPR_TYPE)
253 				val1 = c->type;
254 			else {
255 				BUG();
256 				return 0;
257 			}
258 
259 			switch (e->op) {
260 			case CEXPR_EQ:
261 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
262 				break;
263 			case CEXPR_NEQ:
264 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
265 				break;
266 			default:
267 				BUG();
268 				return 0;
269 			}
270 			break;
271 		default:
272 			BUG();
273 			return 0;
274 		}
275 	}
276 
277 	BUG_ON(sp != 0);
278 	return s[0];
279 }
280 
281 /*
282  * security_boundary_permission - drops violated permissions
283  * on boundary constraint.
284  */
type_attribute_bounds_av(struct context * scontext,struct context * tcontext,u16 tclass,u32 requested,struct av_decision * avd)285 static void type_attribute_bounds_av(struct context *scontext,
286 				     struct context *tcontext,
287 				     u16 tclass,
288 				     u32 requested,
289 				     struct av_decision *avd)
290 {
291 	struct context lo_scontext;
292 	struct context lo_tcontext;
293 	struct av_decision lo_avd;
294 	struct type_datum *source
295 		= policydb.type_val_to_struct[scontext->type - 1];
296 	struct type_datum *target
297 		= policydb.type_val_to_struct[tcontext->type - 1];
298 	u32 masked = 0;
299 
300 	if (source->bounds) {
301 		memset(&lo_avd, 0, sizeof(lo_avd));
302 
303 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
304 		lo_scontext.type = source->bounds;
305 
306 		context_struct_compute_av(&lo_scontext,
307 					  tcontext,
308 					  tclass,
309 					  requested,
310 					  &lo_avd);
311 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
312 			return;		/* no masked permission */
313 		masked = ~lo_avd.allowed & avd->allowed;
314 	}
315 
316 	if (target->bounds) {
317 		memset(&lo_avd, 0, sizeof(lo_avd));
318 
319 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
320 		lo_tcontext.type = target->bounds;
321 
322 		context_struct_compute_av(scontext,
323 					  &lo_tcontext,
324 					  tclass,
325 					  requested,
326 					  &lo_avd);
327 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
328 			return;		/* no masked permission */
329 		masked = ~lo_avd.allowed & avd->allowed;
330 	}
331 
332 	if (source->bounds && target->bounds) {
333 		memset(&lo_avd, 0, sizeof(lo_avd));
334 		/*
335 		 * lo_scontext and lo_tcontext are already
336 		 * set up.
337 		 */
338 
339 		context_struct_compute_av(&lo_scontext,
340 					  &lo_tcontext,
341 					  tclass,
342 					  requested,
343 					  &lo_avd);
344 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
345 			return;		/* no masked permission */
346 		masked = ~lo_avd.allowed & avd->allowed;
347 	}
348 
349 	if (masked) {
350 		struct audit_buffer *ab;
351 		char *stype_name
352 			= policydb.p_type_val_to_name[source->value - 1];
353 		char *ttype_name
354 			= policydb.p_type_val_to_name[target->value - 1];
355 		char *tclass_name
356 			= policydb.p_class_val_to_name[tclass - 1];
357 
358 		/* mask violated permissions */
359 		avd->allowed &= ~masked;
360 
361 		/* notice to userspace via audit message */
362 		ab = audit_log_start(current->audit_context,
363 				     GFP_ATOMIC, AUDIT_SELINUX_ERR);
364 		if (!ab)
365 			return;
366 
367 		audit_log_format(ab, "av boundary violation: "
368 				 "source=%s target=%s tclass=%s",
369 				 stype_name, ttype_name, tclass_name);
370 		avc_dump_av(ab, tclass, masked);
371 		audit_log_end(ab);
372 	}
373 }
374 
375 /*
376  * Compute access vectors based on a context structure pair for
377  * the permissions in a particular class.
378  */
context_struct_compute_av(struct context * scontext,struct context * tcontext,u16 tclass,u32 requested,struct av_decision * avd)379 static int context_struct_compute_av(struct context *scontext,
380 				     struct context *tcontext,
381 				     u16 tclass,
382 				     u32 requested,
383 				     struct av_decision *avd)
384 {
385 	struct constraint_node *constraint;
386 	struct role_allow *ra;
387 	struct avtab_key avkey;
388 	struct avtab_node *node;
389 	struct class_datum *tclass_datum;
390 	struct ebitmap *sattr, *tattr;
391 	struct ebitmap_node *snode, *tnode;
392 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
393 	unsigned int i, j;
394 
395 	/*
396 	 * Remap extended Netlink classes for old policy versions.
397 	 * Do this here rather than socket_type_to_security_class()
398 	 * in case a newer policy version is loaded, allowing sockets
399 	 * to remain in the correct class.
400 	 */
401 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
402 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
403 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
404 			tclass = SECCLASS_NETLINK_SOCKET;
405 
406 	/*
407 	 * Initialize the access vectors to the default values.
408 	 */
409 	avd->allowed = 0;
410 	avd->decided = 0xffffffff;
411 	avd->auditallow = 0;
412 	avd->auditdeny = 0xffffffff;
413 	avd->seqno = latest_granting;
414 
415 	/*
416 	 * Check for all the invalid cases.
417 	 * - tclass 0
418 	 * - tclass > policy and > kernel
419 	 * - tclass > policy but is a userspace class
420 	 * - tclass > policy but we do not allow unknowns
421 	 */
422 	if (unlikely(!tclass))
423 		goto inval_class;
424 	if (unlikely(tclass > policydb.p_classes.nprim))
425 		if (tclass > kdefs->cts_len ||
426 		    !kdefs->class_to_string[tclass] ||
427 		    !policydb.allow_unknown)
428 			goto inval_class;
429 
430 	/*
431 	 * Kernel class and we allow unknown so pad the allow decision
432 	 * the pad will be all 1 for unknown classes.
433 	 */
434 	if (tclass <= kdefs->cts_len && policydb.allow_unknown)
435 		avd->allowed = policydb.undefined_perms[tclass - 1];
436 
437 	/*
438 	 * Not in policy. Since decision is completed (all 1 or all 0) return.
439 	 */
440 	if (unlikely(tclass > policydb.p_classes.nprim))
441 		return 0;
442 
443 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
444 
445 	/*
446 	 * If a specific type enforcement rule was defined for
447 	 * this permission check, then use it.
448 	 */
449 	avkey.target_class = tclass;
450 	avkey.specified = AVTAB_AV;
451 	sattr = &policydb.type_attr_map[scontext->type - 1];
452 	tattr = &policydb.type_attr_map[tcontext->type - 1];
453 	ebitmap_for_each_positive_bit(sattr, snode, i) {
454 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
455 			avkey.source_type = i + 1;
456 			avkey.target_type = j + 1;
457 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
458 			     node;
459 			     node = avtab_search_node_next(node, avkey.specified)) {
460 				if (node->key.specified == AVTAB_ALLOWED)
461 					avd->allowed |= node->datum.data;
462 				else if (node->key.specified == AVTAB_AUDITALLOW)
463 					avd->auditallow |= node->datum.data;
464 				else if (node->key.specified == AVTAB_AUDITDENY)
465 					avd->auditdeny &= node->datum.data;
466 			}
467 
468 			/* Check conditional av table for additional permissions */
469 			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
470 
471 		}
472 	}
473 
474 	/*
475 	 * Remove any permissions prohibited by a constraint (this includes
476 	 * the MLS policy).
477 	 */
478 	constraint = tclass_datum->constraints;
479 	while (constraint) {
480 		if ((constraint->permissions & (avd->allowed)) &&
481 		    !constraint_expr_eval(scontext, tcontext, NULL,
482 					  constraint->expr)) {
483 			avd->allowed = (avd->allowed) & ~(constraint->permissions);
484 		}
485 		constraint = constraint->next;
486 	}
487 
488 	/*
489 	 * If checking process transition permission and the
490 	 * role is changing, then check the (current_role, new_role)
491 	 * pair.
492 	 */
493 	if (tclass == SECCLASS_PROCESS &&
494 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
495 	    scontext->role != tcontext->role) {
496 		for (ra = policydb.role_allow; ra; ra = ra->next) {
497 			if (scontext->role == ra->role &&
498 			    tcontext->role == ra->new_role)
499 				break;
500 		}
501 		if (!ra)
502 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
503 							PROCESS__DYNTRANSITION);
504 	}
505 
506 	/*
507 	 * If the given source and target types have boundary
508 	 * constraint, lazy checks have to mask any violated
509 	 * permission and notice it to userspace via audit.
510 	 */
511 	type_attribute_bounds_av(scontext, tcontext,
512 				 tclass, requested, avd);
513 
514 	return 0;
515 
516 inval_class:
517 	if (!tclass || tclass > kdefs->cts_len ||
518 	    !kdefs->class_to_string[tclass]) {
519 		if (printk_ratelimit())
520 			printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
521 			       __func__, tclass);
522 		return -EINVAL;
523 	}
524 
525 	/*
526 	 * Known to the kernel, but not to the policy.
527 	 * Handle as a denial (allowed is 0).
528 	 */
529 	return 0;
530 }
531 
532 /*
533  * Given a sid find if the type has the permissive flag set
534  */
security_permissive_sid(u32 sid)535 int security_permissive_sid(u32 sid)
536 {
537 	struct context *context;
538 	u32 type;
539 	int rc;
540 
541 	read_lock(&policy_rwlock);
542 
543 	context = sidtab_search(&sidtab, sid);
544 	BUG_ON(!context);
545 
546 	type = context->type;
547 	/*
548 	 * we are intentionally using type here, not type-1, the 0th bit may
549 	 * someday indicate that we are globally setting permissive in policy.
550 	 */
551 	rc = ebitmap_get_bit(&policydb.permissive_map, type);
552 
553 	read_unlock(&policy_rwlock);
554 	return rc;
555 }
556 
security_validtrans_handle_fail(struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)557 static int security_validtrans_handle_fail(struct context *ocontext,
558 					   struct context *ncontext,
559 					   struct context *tcontext,
560 					   u16 tclass)
561 {
562 	char *o = NULL, *n = NULL, *t = NULL;
563 	u32 olen, nlen, tlen;
564 
565 	if (context_struct_to_string(ocontext, &o, &olen) < 0)
566 		goto out;
567 	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
568 		goto out;
569 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
570 		goto out;
571 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
572 		  "security_validate_transition:  denied for"
573 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
574 		  o, n, t, policydb.p_class_val_to_name[tclass-1]);
575 out:
576 	kfree(o);
577 	kfree(n);
578 	kfree(t);
579 
580 	if (!selinux_enforcing)
581 		return 0;
582 	return -EPERM;
583 }
584 
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)585 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
586 				 u16 tclass)
587 {
588 	struct context *ocontext;
589 	struct context *ncontext;
590 	struct context *tcontext;
591 	struct class_datum *tclass_datum;
592 	struct constraint_node *constraint;
593 	int rc = 0;
594 
595 	if (!ss_initialized)
596 		return 0;
597 
598 	read_lock(&policy_rwlock);
599 
600 	/*
601 	 * Remap extended Netlink classes for old policy versions.
602 	 * Do this here rather than socket_type_to_security_class()
603 	 * in case a newer policy version is loaded, allowing sockets
604 	 * to remain in the correct class.
605 	 */
606 	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
607 		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
608 		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
609 			tclass = SECCLASS_NETLINK_SOCKET;
610 
611 	if (!tclass || tclass > policydb.p_classes.nprim) {
612 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
613 			__func__, tclass);
614 		rc = -EINVAL;
615 		goto out;
616 	}
617 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
618 
619 	ocontext = sidtab_search(&sidtab, oldsid);
620 	if (!ocontext) {
621 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
622 			__func__, oldsid);
623 		rc = -EINVAL;
624 		goto out;
625 	}
626 
627 	ncontext = sidtab_search(&sidtab, newsid);
628 	if (!ncontext) {
629 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
630 			__func__, newsid);
631 		rc = -EINVAL;
632 		goto out;
633 	}
634 
635 	tcontext = sidtab_search(&sidtab, tasksid);
636 	if (!tcontext) {
637 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
638 			__func__, tasksid);
639 		rc = -EINVAL;
640 		goto out;
641 	}
642 
643 	constraint = tclass_datum->validatetrans;
644 	while (constraint) {
645 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
646 					  constraint->expr)) {
647 			rc = security_validtrans_handle_fail(ocontext, ncontext,
648 							     tcontext, tclass);
649 			goto out;
650 		}
651 		constraint = constraint->next;
652 	}
653 
654 out:
655 	read_unlock(&policy_rwlock);
656 	return rc;
657 }
658 
659 /*
660  * security_bounded_transition - check whether the given
661  * transition is directed to bounded, or not.
662  * It returns 0, if @newsid is bounded by @oldsid.
663  * Otherwise, it returns error code.
664  *
665  * @oldsid : current security identifier
666  * @newsid : destinated security identifier
667  */
security_bounded_transition(u32 old_sid,u32 new_sid)668 int security_bounded_transition(u32 old_sid, u32 new_sid)
669 {
670 	struct context *old_context, *new_context;
671 	struct type_datum *type;
672 	int index;
673 	int rc = -EINVAL;
674 
675 	read_lock(&policy_rwlock);
676 
677 	old_context = sidtab_search(&sidtab, old_sid);
678 	if (!old_context) {
679 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
680 		       __func__, old_sid);
681 		goto out;
682 	}
683 
684 	new_context = sidtab_search(&sidtab, new_sid);
685 	if (!new_context) {
686 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
687 		       __func__, new_sid);
688 		goto out;
689 	}
690 
691 	/* type/domain unchaned */
692 	if (old_context->type == new_context->type) {
693 		rc = 0;
694 		goto out;
695 	}
696 
697 	index = new_context->type;
698 	while (true) {
699 		type = policydb.type_val_to_struct[index - 1];
700 		BUG_ON(!type);
701 
702 		/* not bounded anymore */
703 		if (!type->bounds) {
704 			rc = -EPERM;
705 			break;
706 		}
707 
708 		/* @newsid is bounded by @oldsid */
709 		if (type->bounds == old_context->type) {
710 			rc = 0;
711 			break;
712 		}
713 		index = type->bounds;
714 	}
715 out:
716 	read_unlock(&policy_rwlock);
717 
718 	return rc;
719 }
720 
721 
722 /**
723  * security_compute_av - Compute access vector decisions.
724  * @ssid: source security identifier
725  * @tsid: target security identifier
726  * @tclass: target security class
727  * @requested: requested permissions
728  * @avd: access vector decisions
729  *
730  * Compute a set of access vector decisions based on the
731  * SID pair (@ssid, @tsid) for the permissions in @tclass.
732  * Return -%EINVAL if any of the parameters are invalid or %0
733  * if the access vector decisions were computed successfully.
734  */
security_compute_av(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd)735 int security_compute_av(u32 ssid,
736 			u32 tsid,
737 			u16 tclass,
738 			u32 requested,
739 			struct av_decision *avd)
740 {
741 	struct context *scontext = NULL, *tcontext = NULL;
742 	int rc = 0;
743 
744 	if (!ss_initialized) {
745 		avd->allowed = 0xffffffff;
746 		avd->decided = 0xffffffff;
747 		avd->auditallow = 0;
748 		avd->auditdeny = 0xffffffff;
749 		avd->seqno = latest_granting;
750 		return 0;
751 	}
752 
753 	read_lock(&policy_rwlock);
754 
755 	scontext = sidtab_search(&sidtab, ssid);
756 	if (!scontext) {
757 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
758 		       __func__, ssid);
759 		rc = -EINVAL;
760 		goto out;
761 	}
762 	tcontext = sidtab_search(&sidtab, tsid);
763 	if (!tcontext) {
764 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
765 		       __func__, tsid);
766 		rc = -EINVAL;
767 		goto out;
768 	}
769 
770 	rc = context_struct_compute_av(scontext, tcontext, tclass,
771 				       requested, avd);
772 out:
773 	read_unlock(&policy_rwlock);
774 	return rc;
775 }
776 
777 /*
778  * Write the security context string representation of
779  * the context structure `context' into a dynamically
780  * allocated string of the correct size.  Set `*scontext'
781  * to point to this string and set `*scontext_len' to
782  * the length of the string.
783  */
context_struct_to_string(struct context * context,char ** scontext,u32 * scontext_len)784 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
785 {
786 	char *scontextp;
787 
788 	*scontext = NULL;
789 	*scontext_len = 0;
790 
791 	if (context->len) {
792 		*scontext_len = context->len;
793 		*scontext = kstrdup(context->str, GFP_ATOMIC);
794 		if (!(*scontext))
795 			return -ENOMEM;
796 		return 0;
797 	}
798 
799 	/* Compute the size of the context. */
800 	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
801 	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
802 	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
803 	*scontext_len += mls_compute_context_len(context);
804 
805 	/* Allocate space for the context; caller must free this space. */
806 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
807 	if (!scontextp)
808 		return -ENOMEM;
809 	*scontext = scontextp;
810 
811 	/*
812 	 * Copy the user name, role name and type name into the context.
813 	 */
814 	sprintf(scontextp, "%s:%s:%s",
815 		policydb.p_user_val_to_name[context->user - 1],
816 		policydb.p_role_val_to_name[context->role - 1],
817 		policydb.p_type_val_to_name[context->type - 1]);
818 	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
819 		     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
820 		     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
821 
822 	mls_sid_to_context(context, &scontextp);
823 
824 	*scontextp = 0;
825 
826 	return 0;
827 }
828 
829 #include "initial_sid_to_string.h"
830 
security_get_initial_sid_context(u32 sid)831 const char *security_get_initial_sid_context(u32 sid)
832 {
833 	if (unlikely(sid > SECINITSID_NUM))
834 		return NULL;
835 	return initial_sid_to_string[sid];
836 }
837 
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force)838 static int security_sid_to_context_core(u32 sid, char **scontext,
839 					u32 *scontext_len, int force)
840 {
841 	struct context *context;
842 	int rc = 0;
843 
844 	*scontext = NULL;
845 	*scontext_len  = 0;
846 
847 	if (!ss_initialized) {
848 		if (sid <= SECINITSID_NUM) {
849 			char *scontextp;
850 
851 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
852 			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
853 			if (!scontextp) {
854 				rc = -ENOMEM;
855 				goto out;
856 			}
857 			strcpy(scontextp, initial_sid_to_string[sid]);
858 			*scontext = scontextp;
859 			goto out;
860 		}
861 		printk(KERN_ERR "SELinux: %s:  called before initial "
862 		       "load_policy on unknown SID %d\n", __func__, sid);
863 		rc = -EINVAL;
864 		goto out;
865 	}
866 	read_lock(&policy_rwlock);
867 	if (force)
868 		context = sidtab_search_force(&sidtab, sid);
869 	else
870 		context = sidtab_search(&sidtab, sid);
871 	if (!context) {
872 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
873 			__func__, sid);
874 		rc = -EINVAL;
875 		goto out_unlock;
876 	}
877 	rc = context_struct_to_string(context, scontext, scontext_len);
878 out_unlock:
879 	read_unlock(&policy_rwlock);
880 out:
881 	return rc;
882 
883 }
884 
885 /**
886  * security_sid_to_context - Obtain a context for a given SID.
887  * @sid: security identifier, SID
888  * @scontext: security context
889  * @scontext_len: length in bytes
890  *
891  * Write the string representation of the context associated with @sid
892  * into a dynamically allocated string of the correct size.  Set @scontext
893  * to point to this string and set @scontext_len to the length of the string.
894  */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)895 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
896 {
897 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
898 }
899 
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)900 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
901 {
902 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
903 }
904 
905 /*
906  * Caveat:  Mutates scontext.
907  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,u32 scontext_len,struct context * ctx,u32 def_sid)908 static int string_to_context_struct(struct policydb *pol,
909 				    struct sidtab *sidtabp,
910 				    char *scontext,
911 				    u32 scontext_len,
912 				    struct context *ctx,
913 				    u32 def_sid)
914 {
915 	struct role_datum *role;
916 	struct type_datum *typdatum;
917 	struct user_datum *usrdatum;
918 	char *scontextp, *p, oldc;
919 	int rc = 0;
920 
921 	context_init(ctx);
922 
923 	/* Parse the security context. */
924 
925 	rc = -EINVAL;
926 	scontextp = (char *) scontext;
927 
928 	/* Extract the user. */
929 	p = scontextp;
930 	while (*p && *p != ':')
931 		p++;
932 
933 	if (*p == 0)
934 		goto out;
935 
936 	*p++ = 0;
937 
938 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
939 	if (!usrdatum)
940 		goto out;
941 
942 	ctx->user = usrdatum->value;
943 
944 	/* Extract role. */
945 	scontextp = p;
946 	while (*p && *p != ':')
947 		p++;
948 
949 	if (*p == 0)
950 		goto out;
951 
952 	*p++ = 0;
953 
954 	role = hashtab_search(pol->p_roles.table, scontextp);
955 	if (!role)
956 		goto out;
957 	ctx->role = role->value;
958 
959 	/* Extract type. */
960 	scontextp = p;
961 	while (*p && *p != ':')
962 		p++;
963 	oldc = *p;
964 	*p++ = 0;
965 
966 	typdatum = hashtab_search(pol->p_types.table, scontextp);
967 	if (!typdatum || typdatum->attribute)
968 		goto out;
969 
970 	ctx->type = typdatum->value;
971 
972 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
973 	if (rc)
974 		goto out;
975 
976 	if ((p - scontext) < scontext_len) {
977 		rc = -EINVAL;
978 		goto out;
979 	}
980 
981 	/* Check the validity of the new context. */
982 	if (!policydb_context_isvalid(pol, ctx)) {
983 		rc = -EINVAL;
984 		goto out;
985 	}
986 	rc = 0;
987 out:
988 	if (rc)
989 		context_destroy(ctx);
990 	return rc;
991 }
992 
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)993 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
994 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
995 					int force)
996 {
997 	char *scontext2, *str = NULL;
998 	struct context context;
999 	int rc = 0;
1000 
1001 	if (!ss_initialized) {
1002 		int i;
1003 
1004 		for (i = 1; i < SECINITSID_NUM; i++) {
1005 			if (!strcmp(initial_sid_to_string[i], scontext)) {
1006 				*sid = i;
1007 				return 0;
1008 			}
1009 		}
1010 		*sid = SECINITSID_KERNEL;
1011 		return 0;
1012 	}
1013 	*sid = SECSID_NULL;
1014 
1015 	/* Copy the string so that we can modify the copy as we parse it. */
1016 	scontext2 = kmalloc(scontext_len+1, gfp_flags);
1017 	if (!scontext2)
1018 		return -ENOMEM;
1019 	memcpy(scontext2, scontext, scontext_len);
1020 	scontext2[scontext_len] = 0;
1021 
1022 	if (force) {
1023 		/* Save another copy for storing in uninterpreted form */
1024 		str = kstrdup(scontext2, gfp_flags);
1025 		if (!str) {
1026 			kfree(scontext2);
1027 			return -ENOMEM;
1028 		}
1029 	}
1030 
1031 	read_lock(&policy_rwlock);
1032 	rc = string_to_context_struct(&policydb, &sidtab,
1033 				      scontext2, scontext_len,
1034 				      &context, def_sid);
1035 	if (rc == -EINVAL && force) {
1036 		context.str = str;
1037 		context.len = scontext_len;
1038 		str = NULL;
1039 	} else if (rc)
1040 		goto out;
1041 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1042 	context_destroy(&context);
1043 out:
1044 	read_unlock(&policy_rwlock);
1045 	kfree(scontext2);
1046 	kfree(str);
1047 	return rc;
1048 }
1049 
1050 /**
1051  * security_context_to_sid - Obtain a SID for a given security context.
1052  * @scontext: security context
1053  * @scontext_len: length in bytes
1054  * @sid: security identifier, SID
1055  *
1056  * Obtains a SID associated with the security context that
1057  * has the string representation specified by @scontext.
1058  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1059  * memory is available, or 0 on success.
1060  */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid)1061 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1062 {
1063 	return security_context_to_sid_core(scontext, scontext_len,
1064 					    sid, SECSID_NULL, GFP_KERNEL, 0);
1065 }
1066 
1067 /**
1068  * security_context_to_sid_default - Obtain a SID for a given security context,
1069  * falling back to specified default if needed.
1070  *
1071  * @scontext: security context
1072  * @scontext_len: length in bytes
1073  * @sid: security identifier, SID
1074  * @def_sid: default SID to assign on error
1075  *
1076  * Obtains a SID associated with the security context that
1077  * has the string representation specified by @scontext.
1078  * The default SID is passed to the MLS layer to be used to allow
1079  * kernel labeling of the MLS field if the MLS field is not present
1080  * (for upgrading to MLS without full relabel).
1081  * Implicitly forces adding of the context even if it cannot be mapped yet.
1082  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1083  * memory is available, or 0 on success.
1084  */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1085 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1086 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1087 {
1088 	return security_context_to_sid_core(scontext, scontext_len,
1089 					    sid, def_sid, gfp_flags, 1);
1090 }
1091 
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1092 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1093 				  u32 *sid)
1094 {
1095 	return security_context_to_sid_core(scontext, scontext_len,
1096 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1097 }
1098 
compute_sid_handle_invalid_context(struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1099 static int compute_sid_handle_invalid_context(
1100 	struct context *scontext,
1101 	struct context *tcontext,
1102 	u16 tclass,
1103 	struct context *newcontext)
1104 {
1105 	char *s = NULL, *t = NULL, *n = NULL;
1106 	u32 slen, tlen, nlen;
1107 
1108 	if (context_struct_to_string(scontext, &s, &slen) < 0)
1109 		goto out;
1110 	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1111 		goto out;
1112 	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1113 		goto out;
1114 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1115 		  "security_compute_sid:  invalid context %s"
1116 		  " for scontext=%s"
1117 		  " tcontext=%s"
1118 		  " tclass=%s",
1119 		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
1120 out:
1121 	kfree(s);
1122 	kfree(t);
1123 	kfree(n);
1124 	if (!selinux_enforcing)
1125 		return 0;
1126 	return -EACCES;
1127 }
1128 
security_compute_sid(u32 ssid,u32 tsid,u16 tclass,u32 specified,u32 * out_sid)1129 static int security_compute_sid(u32 ssid,
1130 				u32 tsid,
1131 				u16 tclass,
1132 				u32 specified,
1133 				u32 *out_sid)
1134 {
1135 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1136 	struct role_trans *roletr = NULL;
1137 	struct avtab_key avkey;
1138 	struct avtab_datum *avdatum;
1139 	struct avtab_node *node;
1140 	int rc = 0;
1141 
1142 	if (!ss_initialized) {
1143 		switch (tclass) {
1144 		case SECCLASS_PROCESS:
1145 			*out_sid = ssid;
1146 			break;
1147 		default:
1148 			*out_sid = tsid;
1149 			break;
1150 		}
1151 		goto out;
1152 	}
1153 
1154 	context_init(&newcontext);
1155 
1156 	read_lock(&policy_rwlock);
1157 
1158 	scontext = sidtab_search(&sidtab, ssid);
1159 	if (!scontext) {
1160 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1161 		       __func__, ssid);
1162 		rc = -EINVAL;
1163 		goto out_unlock;
1164 	}
1165 	tcontext = sidtab_search(&sidtab, tsid);
1166 	if (!tcontext) {
1167 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1168 		       __func__, tsid);
1169 		rc = -EINVAL;
1170 		goto out_unlock;
1171 	}
1172 
1173 	/* Set the user identity. */
1174 	switch (specified) {
1175 	case AVTAB_TRANSITION:
1176 	case AVTAB_CHANGE:
1177 		/* Use the process user identity. */
1178 		newcontext.user = scontext->user;
1179 		break;
1180 	case AVTAB_MEMBER:
1181 		/* Use the related object owner. */
1182 		newcontext.user = tcontext->user;
1183 		break;
1184 	}
1185 
1186 	/* Set the role and type to default values. */
1187 	switch (tclass) {
1188 	case SECCLASS_PROCESS:
1189 		/* Use the current role and type of process. */
1190 		newcontext.role = scontext->role;
1191 		newcontext.type = scontext->type;
1192 		break;
1193 	default:
1194 		/* Use the well-defined object role. */
1195 		newcontext.role = OBJECT_R_VAL;
1196 		/* Use the type of the related object. */
1197 		newcontext.type = tcontext->type;
1198 	}
1199 
1200 	/* Look for a type transition/member/change rule. */
1201 	avkey.source_type = scontext->type;
1202 	avkey.target_type = tcontext->type;
1203 	avkey.target_class = tclass;
1204 	avkey.specified = specified;
1205 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1206 
1207 	/* If no permanent rule, also check for enabled conditional rules */
1208 	if (!avdatum) {
1209 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1210 		for (; node; node = avtab_search_node_next(node, specified)) {
1211 			if (node->key.specified & AVTAB_ENABLED) {
1212 				avdatum = &node->datum;
1213 				break;
1214 			}
1215 		}
1216 	}
1217 
1218 	if (avdatum) {
1219 		/* Use the type from the type transition/member/change rule. */
1220 		newcontext.type = avdatum->data;
1221 	}
1222 
1223 	/* Check for class-specific changes. */
1224 	switch (tclass) {
1225 	case SECCLASS_PROCESS:
1226 		if (specified & AVTAB_TRANSITION) {
1227 			/* Look for a role transition rule. */
1228 			for (roletr = policydb.role_tr; roletr;
1229 			     roletr = roletr->next) {
1230 				if (roletr->role == scontext->role &&
1231 				    roletr->type == tcontext->type) {
1232 					/* Use the role transition rule. */
1233 					newcontext.role = roletr->new_role;
1234 					break;
1235 				}
1236 			}
1237 		}
1238 		break;
1239 	default:
1240 		break;
1241 	}
1242 
1243 	/* Set the MLS attributes.
1244 	   This is done last because it may allocate memory. */
1245 	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1246 	if (rc)
1247 		goto out_unlock;
1248 
1249 	/* Check the validity of the context. */
1250 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1251 		rc = compute_sid_handle_invalid_context(scontext,
1252 							tcontext,
1253 							tclass,
1254 							&newcontext);
1255 		if (rc)
1256 			goto out_unlock;
1257 	}
1258 	/* Obtain the sid for the context. */
1259 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1260 out_unlock:
1261 	read_unlock(&policy_rwlock);
1262 	context_destroy(&newcontext);
1263 out:
1264 	return rc;
1265 }
1266 
1267 /**
1268  * security_transition_sid - Compute the SID for a new subject/object.
1269  * @ssid: source security identifier
1270  * @tsid: target security identifier
1271  * @tclass: target security class
1272  * @out_sid: security identifier for new subject/object
1273  *
1274  * Compute a SID to use for labeling a new subject or object in the
1275  * class @tclass based on a SID pair (@ssid, @tsid).
1276  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1277  * if insufficient memory is available, or %0 if the new SID was
1278  * computed successfully.
1279  */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1280 int security_transition_sid(u32 ssid,
1281 			    u32 tsid,
1282 			    u16 tclass,
1283 			    u32 *out_sid)
1284 {
1285 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1286 }
1287 
1288 /**
1289  * security_member_sid - Compute the SID for member selection.
1290  * @ssid: source security identifier
1291  * @tsid: target security identifier
1292  * @tclass: target security class
1293  * @out_sid: security identifier for selected member
1294  *
1295  * Compute a SID to use when selecting a member of a polyinstantiated
1296  * object of class @tclass based on a SID pair (@ssid, @tsid).
1297  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1298  * if insufficient memory is available, or %0 if the SID was
1299  * computed successfully.
1300  */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1301 int security_member_sid(u32 ssid,
1302 			u32 tsid,
1303 			u16 tclass,
1304 			u32 *out_sid)
1305 {
1306 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1307 }
1308 
1309 /**
1310  * security_change_sid - Compute the SID for object relabeling.
1311  * @ssid: source security identifier
1312  * @tsid: target security identifier
1313  * @tclass: target security class
1314  * @out_sid: security identifier for selected member
1315  *
1316  * Compute a SID to use for relabeling an object of class @tclass
1317  * based on a SID pair (@ssid, @tsid).
1318  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1319  * if insufficient memory is available, or %0 if the SID was
1320  * computed successfully.
1321  */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1322 int security_change_sid(u32 ssid,
1323 			u32 tsid,
1324 			u16 tclass,
1325 			u32 *out_sid)
1326 {
1327 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1328 }
1329 
1330 /*
1331  * Verify that each kernel class that is defined in the
1332  * policy is correct
1333  */
validate_classes(struct policydb * p)1334 static int validate_classes(struct policydb *p)
1335 {
1336 	int i, j;
1337 	struct class_datum *cladatum;
1338 	struct perm_datum *perdatum;
1339 	u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1340 	u16 class_val;
1341 	const struct selinux_class_perm *kdefs = &selinux_class_perm;
1342 	const char *def_class, *def_perm, *pol_class;
1343 	struct symtab *perms;
1344 	bool print_unknown_handle = 0;
1345 
1346 	if (p->allow_unknown) {
1347 		u32 num_classes = kdefs->cts_len;
1348 		p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1349 		if (!p->undefined_perms)
1350 			return -ENOMEM;
1351 	}
1352 
1353 	for (i = 1; i < kdefs->cts_len; i++) {
1354 		def_class = kdefs->class_to_string[i];
1355 		if (!def_class)
1356 			continue;
1357 		if (i > p->p_classes.nprim) {
1358 			printk(KERN_INFO
1359 			       "SELinux:  class %s not defined in policy\n",
1360 			       def_class);
1361 			if (p->reject_unknown)
1362 				return -EINVAL;
1363 			if (p->allow_unknown)
1364 				p->undefined_perms[i-1] = ~0U;
1365 			print_unknown_handle = 1;
1366 			continue;
1367 		}
1368 		pol_class = p->p_class_val_to_name[i-1];
1369 		if (strcmp(pol_class, def_class)) {
1370 			printk(KERN_ERR
1371 			       "SELinux:  class %d is incorrect, found %s but should be %s\n",
1372 			       i, pol_class, def_class);
1373 			return -EINVAL;
1374 		}
1375 	}
1376 	for (i = 0; i < kdefs->av_pts_len; i++) {
1377 		class_val = kdefs->av_perm_to_string[i].tclass;
1378 		perm_val = kdefs->av_perm_to_string[i].value;
1379 		def_perm = kdefs->av_perm_to_string[i].name;
1380 		if (class_val > p->p_classes.nprim)
1381 			continue;
1382 		pol_class = p->p_class_val_to_name[class_val-1];
1383 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1384 		BUG_ON(!cladatum);
1385 		perms = &cladatum->permissions;
1386 		nprim = 1 << (perms->nprim - 1);
1387 		if (perm_val > nprim) {
1388 			printk(KERN_INFO
1389 			       "SELinux:  permission %s in class %s not defined in policy\n",
1390 			       def_perm, pol_class);
1391 			if (p->reject_unknown)
1392 				return -EINVAL;
1393 			if (p->allow_unknown)
1394 				p->undefined_perms[class_val-1] |= perm_val;
1395 			print_unknown_handle = 1;
1396 			continue;
1397 		}
1398 		perdatum = hashtab_search(perms->table, def_perm);
1399 		if (perdatum == NULL) {
1400 			printk(KERN_ERR
1401 			       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1402 			       def_perm, pol_class);
1403 			return -EINVAL;
1404 		}
1405 		pol_val = 1 << (perdatum->value - 1);
1406 		if (pol_val != perm_val) {
1407 			printk(KERN_ERR
1408 			       "SELinux:  permission %s in class %s has incorrect value\n",
1409 			       def_perm, pol_class);
1410 			return -EINVAL;
1411 		}
1412 	}
1413 	for (i = 0; i < kdefs->av_inherit_len; i++) {
1414 		class_val = kdefs->av_inherit[i].tclass;
1415 		if (class_val > p->p_classes.nprim)
1416 			continue;
1417 		pol_class = p->p_class_val_to_name[class_val-1];
1418 		cladatum = hashtab_search(p->p_classes.table, pol_class);
1419 		BUG_ON(!cladatum);
1420 		if (!cladatum->comdatum) {
1421 			printk(KERN_ERR
1422 			       "SELinux:  class %s should have an inherits clause but does not\n",
1423 			       pol_class);
1424 			return -EINVAL;
1425 		}
1426 		tmp = kdefs->av_inherit[i].common_base;
1427 		common_pts_len = 0;
1428 		while (!(tmp & 0x01)) {
1429 			common_pts_len++;
1430 			tmp >>= 1;
1431 		}
1432 		perms = &cladatum->comdatum->permissions;
1433 		for (j = 0; j < common_pts_len; j++) {
1434 			def_perm = kdefs->av_inherit[i].common_pts[j];
1435 			if (j >= perms->nprim) {
1436 				printk(KERN_INFO
1437 				       "SELinux:  permission %s in class %s not defined in policy\n",
1438 				       def_perm, pol_class);
1439 				if (p->reject_unknown)
1440 					return -EINVAL;
1441 				if (p->allow_unknown)
1442 					p->undefined_perms[class_val-1] |= (1 << j);
1443 				print_unknown_handle = 1;
1444 				continue;
1445 			}
1446 			perdatum = hashtab_search(perms->table, def_perm);
1447 			if (perdatum == NULL) {
1448 				printk(KERN_ERR
1449 				       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1450 				       def_perm, pol_class);
1451 				return -EINVAL;
1452 			}
1453 			if (perdatum->value != j + 1) {
1454 				printk(KERN_ERR
1455 				       "SELinux:  permission %s in class %s has incorrect value\n",
1456 				       def_perm, pol_class);
1457 				return -EINVAL;
1458 			}
1459 		}
1460 	}
1461 	if (print_unknown_handle)
1462 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
1463 			(security_get_allow_unknown() ? "allowed" : "denied"));
1464 	return 0;
1465 }
1466 
1467 /* Clone the SID into the new SID table. */
clone_sid(u32 sid,struct context * context,void * arg)1468 static int clone_sid(u32 sid,
1469 		     struct context *context,
1470 		     void *arg)
1471 {
1472 	struct sidtab *s = arg;
1473 
1474 	return sidtab_insert(s, sid, context);
1475 }
1476 
convert_context_handle_invalid_context(struct context * context)1477 static inline int convert_context_handle_invalid_context(struct context *context)
1478 {
1479 	int rc = 0;
1480 
1481 	if (selinux_enforcing) {
1482 		rc = -EINVAL;
1483 	} else {
1484 		char *s;
1485 		u32 len;
1486 
1487 		if (!context_struct_to_string(context, &s, &len)) {
1488 			printk(KERN_WARNING
1489 		       "SELinux:  Context %s would be invalid if enforcing\n",
1490 			       s);
1491 			kfree(s);
1492 		}
1493 	}
1494 	return rc;
1495 }
1496 
1497 struct convert_context_args {
1498 	struct policydb *oldp;
1499 	struct policydb *newp;
1500 };
1501 
1502 /*
1503  * Convert the values in the security context
1504  * structure `c' from the values specified
1505  * in the policy `p->oldp' to the values specified
1506  * in the policy `p->newp'.  Verify that the
1507  * context is valid under the new policy.
1508  */
convert_context(u32 key,struct context * c,void * p)1509 static int convert_context(u32 key,
1510 			   struct context *c,
1511 			   void *p)
1512 {
1513 	struct convert_context_args *args;
1514 	struct context oldc;
1515 	struct role_datum *role;
1516 	struct type_datum *typdatum;
1517 	struct user_datum *usrdatum;
1518 	char *s;
1519 	u32 len;
1520 	int rc;
1521 
1522 	args = p;
1523 
1524 	if (c->str) {
1525 		struct context ctx;
1526 		s = kstrdup(c->str, GFP_KERNEL);
1527 		if (!s) {
1528 			rc = -ENOMEM;
1529 			goto out;
1530 		}
1531 		rc = string_to_context_struct(args->newp, NULL, s,
1532 					      c->len, &ctx, SECSID_NULL);
1533 		kfree(s);
1534 		if (!rc) {
1535 			printk(KERN_INFO
1536 		       "SELinux:  Context %s became valid (mapped).\n",
1537 			       c->str);
1538 			/* Replace string with mapped representation. */
1539 			kfree(c->str);
1540 			memcpy(c, &ctx, sizeof(*c));
1541 			goto out;
1542 		} else if (rc == -EINVAL) {
1543 			/* Retain string representation for later mapping. */
1544 			rc = 0;
1545 			goto out;
1546 		} else {
1547 			/* Other error condition, e.g. ENOMEM. */
1548 			printk(KERN_ERR
1549 		       "SELinux:   Unable to map context %s, rc = %d.\n",
1550 			       c->str, -rc);
1551 			goto out;
1552 		}
1553 	}
1554 
1555 	rc = context_cpy(&oldc, c);
1556 	if (rc)
1557 		goto out;
1558 
1559 	rc = -EINVAL;
1560 
1561 	/* Convert the user. */
1562 	usrdatum = hashtab_search(args->newp->p_users.table,
1563 				  args->oldp->p_user_val_to_name[c->user - 1]);
1564 	if (!usrdatum)
1565 		goto bad;
1566 	c->user = usrdatum->value;
1567 
1568 	/* Convert the role. */
1569 	role = hashtab_search(args->newp->p_roles.table,
1570 			      args->oldp->p_role_val_to_name[c->role - 1]);
1571 	if (!role)
1572 		goto bad;
1573 	c->role = role->value;
1574 
1575 	/* Convert the type. */
1576 	typdatum = hashtab_search(args->newp->p_types.table,
1577 				  args->oldp->p_type_val_to_name[c->type - 1]);
1578 	if (!typdatum)
1579 		goto bad;
1580 	c->type = typdatum->value;
1581 
1582 	rc = mls_convert_context(args->oldp, args->newp, c);
1583 	if (rc)
1584 		goto bad;
1585 
1586 	/* Check the validity of the new context. */
1587 	if (!policydb_context_isvalid(args->newp, c)) {
1588 		rc = convert_context_handle_invalid_context(&oldc);
1589 		if (rc)
1590 			goto bad;
1591 	}
1592 
1593 	context_destroy(&oldc);
1594 	rc = 0;
1595 out:
1596 	return rc;
1597 bad:
1598 	/* Map old representation to string and save it. */
1599 	if (context_struct_to_string(&oldc, &s, &len))
1600 		return -ENOMEM;
1601 	context_destroy(&oldc);
1602 	context_destroy(c);
1603 	c->str = s;
1604 	c->len = len;
1605 	printk(KERN_INFO
1606 	       "SELinux:  Context %s became invalid (unmapped).\n",
1607 	       c->str);
1608 	rc = 0;
1609 	goto out;
1610 }
1611 
security_load_policycaps(void)1612 static void security_load_policycaps(void)
1613 {
1614 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1615 						  POLICYDB_CAPABILITY_NETPEER);
1616 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1617 						  POLICYDB_CAPABILITY_OPENPERM);
1618 }
1619 
1620 extern void selinux_complete_init(void);
1621 static int security_preserve_bools(struct policydb *p);
1622 
1623 /**
1624  * security_load_policy - Load a security policy configuration.
1625  * @data: binary policy data
1626  * @len: length of data in bytes
1627  *
1628  * Load a new set of security policy configuration data,
1629  * validate it and convert the SID table as necessary.
1630  * This function will flush the access vector cache after
1631  * loading the new policy.
1632  */
security_load_policy(void * data,size_t len)1633 int security_load_policy(void *data, size_t len)
1634 {
1635 	struct policydb oldpolicydb, newpolicydb;
1636 	struct sidtab oldsidtab, newsidtab;
1637 	struct convert_context_args args;
1638 	u32 seqno;
1639 	int rc = 0;
1640 	struct policy_file file = { data, len }, *fp = &file;
1641 
1642 	if (!ss_initialized) {
1643 		avtab_cache_init();
1644 		if (policydb_read(&policydb, fp)) {
1645 			avtab_cache_destroy();
1646 			return -EINVAL;
1647 		}
1648 		if (policydb_load_isids(&policydb, &sidtab)) {
1649 			policydb_destroy(&policydb);
1650 			avtab_cache_destroy();
1651 			return -EINVAL;
1652 		}
1653 		/* Verify that the kernel defined classes are correct. */
1654 		if (validate_classes(&policydb)) {
1655 			printk(KERN_ERR
1656 			       "SELinux:  the definition of a class is incorrect\n");
1657 			sidtab_destroy(&sidtab);
1658 			policydb_destroy(&policydb);
1659 			avtab_cache_destroy();
1660 			return -EINVAL;
1661 		}
1662 		security_load_policycaps();
1663 		policydb_loaded_version = policydb.policyvers;
1664 		ss_initialized = 1;
1665 		seqno = ++latest_granting;
1666 		selinux_complete_init();
1667 		avc_ss_reset(seqno);
1668 		selnl_notify_policyload(seqno);
1669 		selinux_netlbl_cache_invalidate();
1670 		selinux_xfrm_notify_policyload();
1671 		return 0;
1672 	}
1673 
1674 #if 0
1675 	sidtab_hash_eval(&sidtab, "sids");
1676 #endif
1677 
1678 	if (policydb_read(&newpolicydb, fp))
1679 		return -EINVAL;
1680 
1681 	if (sidtab_init(&newsidtab)) {
1682 		policydb_destroy(&newpolicydb);
1683 		return -ENOMEM;
1684 	}
1685 
1686 	/* Verify that the kernel defined classes are correct. */
1687 	if (validate_classes(&newpolicydb)) {
1688 		printk(KERN_ERR
1689 		       "SELinux:  the definition of a class is incorrect\n");
1690 		rc = -EINVAL;
1691 		goto err;
1692 	}
1693 
1694 	rc = security_preserve_bools(&newpolicydb);
1695 	if (rc) {
1696 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1697 		goto err;
1698 	}
1699 
1700 	/* Clone the SID table. */
1701 	sidtab_shutdown(&sidtab);
1702 	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1703 		rc = -ENOMEM;
1704 		goto err;
1705 	}
1706 
1707 	/*
1708 	 * Convert the internal representations of contexts
1709 	 * in the new SID table.
1710 	 */
1711 	args.oldp = &policydb;
1712 	args.newp = &newpolicydb;
1713 	rc = sidtab_map(&newsidtab, convert_context, &args);
1714 	if (rc)
1715 		goto err;
1716 
1717 	/* Save the old policydb and SID table to free later. */
1718 	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1719 	sidtab_set(&oldsidtab, &sidtab);
1720 
1721 	/* Install the new policydb and SID table. */
1722 	write_lock_irq(&policy_rwlock);
1723 	memcpy(&policydb, &newpolicydb, sizeof policydb);
1724 	sidtab_set(&sidtab, &newsidtab);
1725 	security_load_policycaps();
1726 	seqno = ++latest_granting;
1727 	policydb_loaded_version = policydb.policyvers;
1728 	write_unlock_irq(&policy_rwlock);
1729 
1730 	/* Free the old policydb and SID table. */
1731 	policydb_destroy(&oldpolicydb);
1732 	sidtab_destroy(&oldsidtab);
1733 
1734 	avc_ss_reset(seqno);
1735 	selnl_notify_policyload(seqno);
1736 	selinux_netlbl_cache_invalidate();
1737 	selinux_xfrm_notify_policyload();
1738 
1739 	return 0;
1740 
1741 err:
1742 	sidtab_destroy(&newsidtab);
1743 	policydb_destroy(&newpolicydb);
1744 	return rc;
1745 
1746 }
1747 
1748 /**
1749  * security_port_sid - Obtain the SID for a port.
1750  * @protocol: protocol number
1751  * @port: port number
1752  * @out_sid: security identifier
1753  */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)1754 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1755 {
1756 	struct ocontext *c;
1757 	int rc = 0;
1758 
1759 	read_lock(&policy_rwlock);
1760 
1761 	c = policydb.ocontexts[OCON_PORT];
1762 	while (c) {
1763 		if (c->u.port.protocol == protocol &&
1764 		    c->u.port.low_port <= port &&
1765 		    c->u.port.high_port >= port)
1766 			break;
1767 		c = c->next;
1768 	}
1769 
1770 	if (c) {
1771 		if (!c->sid[0]) {
1772 			rc = sidtab_context_to_sid(&sidtab,
1773 						   &c->context[0],
1774 						   &c->sid[0]);
1775 			if (rc)
1776 				goto out;
1777 		}
1778 		*out_sid = c->sid[0];
1779 	} else {
1780 		*out_sid = SECINITSID_PORT;
1781 	}
1782 
1783 out:
1784 	read_unlock(&policy_rwlock);
1785 	return rc;
1786 }
1787 
1788 /**
1789  * security_netif_sid - Obtain the SID for a network interface.
1790  * @name: interface name
1791  * @if_sid: interface SID
1792  */
security_netif_sid(char * name,u32 * if_sid)1793 int security_netif_sid(char *name, u32 *if_sid)
1794 {
1795 	int rc = 0;
1796 	struct ocontext *c;
1797 
1798 	read_lock(&policy_rwlock);
1799 
1800 	c = policydb.ocontexts[OCON_NETIF];
1801 	while (c) {
1802 		if (strcmp(name, c->u.name) == 0)
1803 			break;
1804 		c = c->next;
1805 	}
1806 
1807 	if (c) {
1808 		if (!c->sid[0] || !c->sid[1]) {
1809 			rc = sidtab_context_to_sid(&sidtab,
1810 						  &c->context[0],
1811 						  &c->sid[0]);
1812 			if (rc)
1813 				goto out;
1814 			rc = sidtab_context_to_sid(&sidtab,
1815 						   &c->context[1],
1816 						   &c->sid[1]);
1817 			if (rc)
1818 				goto out;
1819 		}
1820 		*if_sid = c->sid[0];
1821 	} else
1822 		*if_sid = SECINITSID_NETIF;
1823 
1824 out:
1825 	read_unlock(&policy_rwlock);
1826 	return rc;
1827 }
1828 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)1829 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1830 {
1831 	int i, fail = 0;
1832 
1833 	for (i = 0; i < 4; i++)
1834 		if (addr[i] != (input[i] & mask[i])) {
1835 			fail = 1;
1836 			break;
1837 		}
1838 
1839 	return !fail;
1840 }
1841 
1842 /**
1843  * security_node_sid - Obtain the SID for a node (host).
1844  * @domain: communication domain aka address family
1845  * @addrp: address
1846  * @addrlen: address length in bytes
1847  * @out_sid: security identifier
1848  */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)1849 int security_node_sid(u16 domain,
1850 		      void *addrp,
1851 		      u32 addrlen,
1852 		      u32 *out_sid)
1853 {
1854 	int rc = 0;
1855 	struct ocontext *c;
1856 
1857 	read_lock(&policy_rwlock);
1858 
1859 	switch (domain) {
1860 	case AF_INET: {
1861 		u32 addr;
1862 
1863 		if (addrlen != sizeof(u32)) {
1864 			rc = -EINVAL;
1865 			goto out;
1866 		}
1867 
1868 		addr = *((u32 *)addrp);
1869 
1870 		c = policydb.ocontexts[OCON_NODE];
1871 		while (c) {
1872 			if (c->u.node.addr == (addr & c->u.node.mask))
1873 				break;
1874 			c = c->next;
1875 		}
1876 		break;
1877 	}
1878 
1879 	case AF_INET6:
1880 		if (addrlen != sizeof(u64) * 2) {
1881 			rc = -EINVAL;
1882 			goto out;
1883 		}
1884 		c = policydb.ocontexts[OCON_NODE6];
1885 		while (c) {
1886 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1887 						c->u.node6.mask))
1888 				break;
1889 			c = c->next;
1890 		}
1891 		break;
1892 
1893 	default:
1894 		*out_sid = SECINITSID_NODE;
1895 		goto out;
1896 	}
1897 
1898 	if (c) {
1899 		if (!c->sid[0]) {
1900 			rc = sidtab_context_to_sid(&sidtab,
1901 						   &c->context[0],
1902 						   &c->sid[0]);
1903 			if (rc)
1904 				goto out;
1905 		}
1906 		*out_sid = c->sid[0];
1907 	} else {
1908 		*out_sid = SECINITSID_NODE;
1909 	}
1910 
1911 out:
1912 	read_unlock(&policy_rwlock);
1913 	return rc;
1914 }
1915 
1916 #define SIDS_NEL 25
1917 
1918 /**
1919  * security_get_user_sids - Obtain reachable SIDs for a user.
1920  * @fromsid: starting SID
1921  * @username: username
1922  * @sids: array of reachable SIDs for user
1923  * @nel: number of elements in @sids
1924  *
1925  * Generate the set of SIDs for legal security contexts
1926  * for a given user that can be reached by @fromsid.
1927  * Set *@sids to point to a dynamically allocated
1928  * array containing the set of SIDs.  Set *@nel to the
1929  * number of elements in the array.
1930  */
1931 
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)1932 int security_get_user_sids(u32 fromsid,
1933 			   char *username,
1934 			   u32 **sids,
1935 			   u32 *nel)
1936 {
1937 	struct context *fromcon, usercon;
1938 	u32 *mysids = NULL, *mysids2, sid;
1939 	u32 mynel = 0, maxnel = SIDS_NEL;
1940 	struct user_datum *user;
1941 	struct role_datum *role;
1942 	struct ebitmap_node *rnode, *tnode;
1943 	int rc = 0, i, j;
1944 
1945 	*sids = NULL;
1946 	*nel = 0;
1947 
1948 	if (!ss_initialized)
1949 		goto out;
1950 
1951 	read_lock(&policy_rwlock);
1952 
1953 	context_init(&usercon);
1954 
1955 	fromcon = sidtab_search(&sidtab, fromsid);
1956 	if (!fromcon) {
1957 		rc = -EINVAL;
1958 		goto out_unlock;
1959 	}
1960 
1961 	user = hashtab_search(policydb.p_users.table, username);
1962 	if (!user) {
1963 		rc = -EINVAL;
1964 		goto out_unlock;
1965 	}
1966 	usercon.user = user->value;
1967 
1968 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1969 	if (!mysids) {
1970 		rc = -ENOMEM;
1971 		goto out_unlock;
1972 	}
1973 
1974 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1975 		role = policydb.role_val_to_struct[i];
1976 		usercon.role = i+1;
1977 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
1978 			usercon.type = j+1;
1979 
1980 			if (mls_setup_user_range(fromcon, user, &usercon))
1981 				continue;
1982 
1983 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1984 			if (rc)
1985 				goto out_unlock;
1986 			if (mynel < maxnel) {
1987 				mysids[mynel++] = sid;
1988 			} else {
1989 				maxnel += SIDS_NEL;
1990 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1991 				if (!mysids2) {
1992 					rc = -ENOMEM;
1993 					goto out_unlock;
1994 				}
1995 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1996 				kfree(mysids);
1997 				mysids = mysids2;
1998 				mysids[mynel++] = sid;
1999 			}
2000 		}
2001 	}
2002 
2003 out_unlock:
2004 	read_unlock(&policy_rwlock);
2005 	if (rc || !mynel) {
2006 		kfree(mysids);
2007 		goto out;
2008 	}
2009 
2010 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2011 	if (!mysids2) {
2012 		rc = -ENOMEM;
2013 		kfree(mysids);
2014 		goto out;
2015 	}
2016 	for (i = 0, j = 0; i < mynel; i++) {
2017 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2018 					  SECCLASS_PROCESS,
2019 					  PROCESS__TRANSITION, AVC_STRICT,
2020 					  NULL);
2021 		if (!rc)
2022 			mysids2[j++] = mysids[i];
2023 		cond_resched();
2024 	}
2025 	rc = 0;
2026 	kfree(mysids);
2027 	*sids = mysids2;
2028 	*nel = j;
2029 out:
2030 	return rc;
2031 }
2032 
2033 /**
2034  * security_genfs_sid - Obtain a SID for a file in a filesystem
2035  * @fstype: filesystem type
2036  * @path: path from root of mount
2037  * @sclass: file security class
2038  * @sid: SID for path
2039  *
2040  * Obtain a SID to use for a file in a filesystem that
2041  * cannot support xattr or use a fixed labeling behavior like
2042  * transition SIDs or task SIDs.
2043  */
security_genfs_sid(const char * fstype,char * path,u16 sclass,u32 * sid)2044 int security_genfs_sid(const char *fstype,
2045 		       char *path,
2046 		       u16 sclass,
2047 		       u32 *sid)
2048 {
2049 	int len;
2050 	struct genfs *genfs;
2051 	struct ocontext *c;
2052 	int rc = 0, cmp = 0;
2053 
2054 	while (path[0] == '/' && path[1] == '/')
2055 		path++;
2056 
2057 	read_lock(&policy_rwlock);
2058 
2059 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2060 		cmp = strcmp(fstype, genfs->fstype);
2061 		if (cmp <= 0)
2062 			break;
2063 	}
2064 
2065 	if (!genfs || cmp) {
2066 		*sid = SECINITSID_UNLABELED;
2067 		rc = -ENOENT;
2068 		goto out;
2069 	}
2070 
2071 	for (c = genfs->head; c; c = c->next) {
2072 		len = strlen(c->u.name);
2073 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2074 		    (strncmp(c->u.name, path, len) == 0))
2075 			break;
2076 	}
2077 
2078 	if (!c) {
2079 		*sid = SECINITSID_UNLABELED;
2080 		rc = -ENOENT;
2081 		goto out;
2082 	}
2083 
2084 	if (!c->sid[0]) {
2085 		rc = sidtab_context_to_sid(&sidtab,
2086 					   &c->context[0],
2087 					   &c->sid[0]);
2088 		if (rc)
2089 			goto out;
2090 	}
2091 
2092 	*sid = c->sid[0];
2093 out:
2094 	read_unlock(&policy_rwlock);
2095 	return rc;
2096 }
2097 
2098 /**
2099  * security_fs_use - Determine how to handle labeling for a filesystem.
2100  * @fstype: filesystem type
2101  * @behavior: labeling behavior
2102  * @sid: SID for filesystem (superblock)
2103  */
security_fs_use(const char * fstype,unsigned int * behavior,u32 * sid)2104 int security_fs_use(
2105 	const char *fstype,
2106 	unsigned int *behavior,
2107 	u32 *sid)
2108 {
2109 	int rc = 0;
2110 	struct ocontext *c;
2111 
2112 	read_lock(&policy_rwlock);
2113 
2114 	c = policydb.ocontexts[OCON_FSUSE];
2115 	while (c) {
2116 		if (strcmp(fstype, c->u.name) == 0)
2117 			break;
2118 		c = c->next;
2119 	}
2120 
2121 	if (c) {
2122 		*behavior = c->v.behavior;
2123 		if (!c->sid[0]) {
2124 			rc = sidtab_context_to_sid(&sidtab,
2125 						   &c->context[0],
2126 						   &c->sid[0]);
2127 			if (rc)
2128 				goto out;
2129 		}
2130 		*sid = c->sid[0];
2131 	} else {
2132 		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2133 		if (rc) {
2134 			*behavior = SECURITY_FS_USE_NONE;
2135 			rc = 0;
2136 		} else {
2137 			*behavior = SECURITY_FS_USE_GENFS;
2138 		}
2139 	}
2140 
2141 out:
2142 	read_unlock(&policy_rwlock);
2143 	return rc;
2144 }
2145 
security_get_bools(int * len,char *** names,int ** values)2146 int security_get_bools(int *len, char ***names, int **values)
2147 {
2148 	int i, rc = -ENOMEM;
2149 
2150 	read_lock(&policy_rwlock);
2151 	*names = NULL;
2152 	*values = NULL;
2153 
2154 	*len = policydb.p_bools.nprim;
2155 	if (!*len) {
2156 		rc = 0;
2157 		goto out;
2158 	}
2159 
2160        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2161 	if (!*names)
2162 		goto err;
2163 
2164        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2165 	if (!*values)
2166 		goto err;
2167 
2168 	for (i = 0; i < *len; i++) {
2169 		size_t name_len;
2170 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2171 		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2172 	       (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2173 		if (!(*names)[i])
2174 			goto err;
2175 		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2176 		(*names)[i][name_len - 1] = 0;
2177 	}
2178 	rc = 0;
2179 out:
2180 	read_unlock(&policy_rwlock);
2181 	return rc;
2182 err:
2183 	if (*names) {
2184 		for (i = 0; i < *len; i++)
2185 			kfree((*names)[i]);
2186 	}
2187 	kfree(*values);
2188 	goto out;
2189 }
2190 
2191 
security_set_bools(int len,int * values)2192 int security_set_bools(int len, int *values)
2193 {
2194 	int i, rc = 0;
2195 	int lenp, seqno = 0;
2196 	struct cond_node *cur;
2197 
2198 	write_lock_irq(&policy_rwlock);
2199 
2200 	lenp = policydb.p_bools.nprim;
2201 	if (len != lenp) {
2202 		rc = -EFAULT;
2203 		goto out;
2204 	}
2205 
2206 	for (i = 0; i < len; i++) {
2207 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2208 			audit_log(current->audit_context, GFP_ATOMIC,
2209 				AUDIT_MAC_CONFIG_CHANGE,
2210 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2211 				policydb.p_bool_val_to_name[i],
2212 				!!values[i],
2213 				policydb.bool_val_to_struct[i]->state,
2214 				audit_get_loginuid(current),
2215 				audit_get_sessionid(current));
2216 		}
2217 		if (values[i])
2218 			policydb.bool_val_to_struct[i]->state = 1;
2219 		else
2220 			policydb.bool_val_to_struct[i]->state = 0;
2221 	}
2222 
2223 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2224 		rc = evaluate_cond_node(&policydb, cur);
2225 		if (rc)
2226 			goto out;
2227 	}
2228 
2229 	seqno = ++latest_granting;
2230 
2231 out:
2232 	write_unlock_irq(&policy_rwlock);
2233 	if (!rc) {
2234 		avc_ss_reset(seqno);
2235 		selnl_notify_policyload(seqno);
2236 		selinux_xfrm_notify_policyload();
2237 	}
2238 	return rc;
2239 }
2240 
security_get_bool_value(int bool)2241 int security_get_bool_value(int bool)
2242 {
2243 	int rc = 0;
2244 	int len;
2245 
2246 	read_lock(&policy_rwlock);
2247 
2248 	len = policydb.p_bools.nprim;
2249 	if (bool >= len) {
2250 		rc = -EFAULT;
2251 		goto out;
2252 	}
2253 
2254 	rc = policydb.bool_val_to_struct[bool]->state;
2255 out:
2256 	read_unlock(&policy_rwlock);
2257 	return rc;
2258 }
2259 
security_preserve_bools(struct policydb * p)2260 static int security_preserve_bools(struct policydb *p)
2261 {
2262 	int rc, nbools = 0, *bvalues = NULL, i;
2263 	char **bnames = NULL;
2264 	struct cond_bool_datum *booldatum;
2265 	struct cond_node *cur;
2266 
2267 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2268 	if (rc)
2269 		goto out;
2270 	for (i = 0; i < nbools; i++) {
2271 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2272 		if (booldatum)
2273 			booldatum->state = bvalues[i];
2274 	}
2275 	for (cur = p->cond_list; cur; cur = cur->next) {
2276 		rc = evaluate_cond_node(p, cur);
2277 		if (rc)
2278 			goto out;
2279 	}
2280 
2281 out:
2282 	if (bnames) {
2283 		for (i = 0; i < nbools; i++)
2284 			kfree(bnames[i]);
2285 	}
2286 	kfree(bnames);
2287 	kfree(bvalues);
2288 	return rc;
2289 }
2290 
2291 /*
2292  * security_sid_mls_copy() - computes a new sid based on the given
2293  * sid and the mls portion of mls_sid.
2294  */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)2295 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2296 {
2297 	struct context *context1;
2298 	struct context *context2;
2299 	struct context newcon;
2300 	char *s;
2301 	u32 len;
2302 	int rc = 0;
2303 
2304 	if (!ss_initialized || !selinux_mls_enabled) {
2305 		*new_sid = sid;
2306 		goto out;
2307 	}
2308 
2309 	context_init(&newcon);
2310 
2311 	read_lock(&policy_rwlock);
2312 	context1 = sidtab_search(&sidtab, sid);
2313 	if (!context1) {
2314 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2315 			__func__, sid);
2316 		rc = -EINVAL;
2317 		goto out_unlock;
2318 	}
2319 
2320 	context2 = sidtab_search(&sidtab, mls_sid);
2321 	if (!context2) {
2322 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2323 			__func__, mls_sid);
2324 		rc = -EINVAL;
2325 		goto out_unlock;
2326 	}
2327 
2328 	newcon.user = context1->user;
2329 	newcon.role = context1->role;
2330 	newcon.type = context1->type;
2331 	rc = mls_context_cpy(&newcon, context2);
2332 	if (rc)
2333 		goto out_unlock;
2334 
2335 	/* Check the validity of the new context. */
2336 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2337 		rc = convert_context_handle_invalid_context(&newcon);
2338 		if (rc)
2339 			goto bad;
2340 	}
2341 
2342 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2343 	goto out_unlock;
2344 
2345 bad:
2346 	if (!context_struct_to_string(&newcon, &s, &len)) {
2347 		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2348 			  "security_sid_mls_copy: invalid context %s", s);
2349 		kfree(s);
2350 	}
2351 
2352 out_unlock:
2353 	read_unlock(&policy_rwlock);
2354 	context_destroy(&newcon);
2355 out:
2356 	return rc;
2357 }
2358 
2359 /**
2360  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2361  * @nlbl_sid: NetLabel SID
2362  * @nlbl_type: NetLabel labeling protocol type
2363  * @xfrm_sid: XFRM SID
2364  *
2365  * Description:
2366  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2367  * resolved into a single SID it is returned via @peer_sid and the function
2368  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2369  * returns a negative value.  A table summarizing the behavior is below:
2370  *
2371  *                                 | function return |      @sid
2372  *   ------------------------------+-----------------+-----------------
2373  *   no peer labels                |        0        |    SECSID_NULL
2374  *   single peer label             |        0        |    <peer_label>
2375  *   multiple, consistent labels   |        0        |    <peer_label>
2376  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2377  *
2378  */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)2379 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2380 				 u32 xfrm_sid,
2381 				 u32 *peer_sid)
2382 {
2383 	int rc;
2384 	struct context *nlbl_ctx;
2385 	struct context *xfrm_ctx;
2386 
2387 	/* handle the common (which also happens to be the set of easy) cases
2388 	 * right away, these two if statements catch everything involving a
2389 	 * single or absent peer SID/label */
2390 	if (xfrm_sid == SECSID_NULL) {
2391 		*peer_sid = nlbl_sid;
2392 		return 0;
2393 	}
2394 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2395 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2396 	 * is present */
2397 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2398 		*peer_sid = xfrm_sid;
2399 		return 0;
2400 	}
2401 
2402 	/* we don't need to check ss_initialized here since the only way both
2403 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2404 	 * security server was initialized and ss_initialized was true */
2405 	if (!selinux_mls_enabled) {
2406 		*peer_sid = SECSID_NULL;
2407 		return 0;
2408 	}
2409 
2410 	read_lock(&policy_rwlock);
2411 
2412 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2413 	if (!nlbl_ctx) {
2414 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2415 		       __func__, nlbl_sid);
2416 		rc = -EINVAL;
2417 		goto out_slowpath;
2418 	}
2419 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2420 	if (!xfrm_ctx) {
2421 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2422 		       __func__, xfrm_sid);
2423 		rc = -EINVAL;
2424 		goto out_slowpath;
2425 	}
2426 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2427 
2428 out_slowpath:
2429 	read_unlock(&policy_rwlock);
2430 	if (rc == 0)
2431 		/* at present NetLabel SIDs/labels really only carry MLS
2432 		 * information so if the MLS portion of the NetLabel SID
2433 		 * matches the MLS portion of the labeled XFRM SID/label
2434 		 * then pass along the XFRM SID as it is the most
2435 		 * expressive */
2436 		*peer_sid = xfrm_sid;
2437 	else
2438 		*peer_sid = SECSID_NULL;
2439 	return rc;
2440 }
2441 
get_classes_callback(void * k,void * d,void * args)2442 static int get_classes_callback(void *k, void *d, void *args)
2443 {
2444 	struct class_datum *datum = d;
2445 	char *name = k, **classes = args;
2446 	int value = datum->value - 1;
2447 
2448 	classes[value] = kstrdup(name, GFP_ATOMIC);
2449 	if (!classes[value])
2450 		return -ENOMEM;
2451 
2452 	return 0;
2453 }
2454 
security_get_classes(char *** classes,int * nclasses)2455 int security_get_classes(char ***classes, int *nclasses)
2456 {
2457 	int rc = -ENOMEM;
2458 
2459 	read_lock(&policy_rwlock);
2460 
2461 	*nclasses = policydb.p_classes.nprim;
2462 	*classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2463 	if (!*classes)
2464 		goto out;
2465 
2466 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2467 			*classes);
2468 	if (rc < 0) {
2469 		int i;
2470 		for (i = 0; i < *nclasses; i++)
2471 			kfree((*classes)[i]);
2472 		kfree(*classes);
2473 	}
2474 
2475 out:
2476 	read_unlock(&policy_rwlock);
2477 	return rc;
2478 }
2479 
get_permissions_callback(void * k,void * d,void * args)2480 static int get_permissions_callback(void *k, void *d, void *args)
2481 {
2482 	struct perm_datum *datum = d;
2483 	char *name = k, **perms = args;
2484 	int value = datum->value - 1;
2485 
2486 	perms[value] = kstrdup(name, GFP_ATOMIC);
2487 	if (!perms[value])
2488 		return -ENOMEM;
2489 
2490 	return 0;
2491 }
2492 
security_get_permissions(char * class,char *** perms,int * nperms)2493 int security_get_permissions(char *class, char ***perms, int *nperms)
2494 {
2495 	int rc = -ENOMEM, i;
2496 	struct class_datum *match;
2497 
2498 	read_lock(&policy_rwlock);
2499 
2500 	match = hashtab_search(policydb.p_classes.table, class);
2501 	if (!match) {
2502 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2503 			__func__, class);
2504 		rc = -EINVAL;
2505 		goto out;
2506 	}
2507 
2508 	*nperms = match->permissions.nprim;
2509 	*perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2510 	if (!*perms)
2511 		goto out;
2512 
2513 	if (match->comdatum) {
2514 		rc = hashtab_map(match->comdatum->permissions.table,
2515 				get_permissions_callback, *perms);
2516 		if (rc < 0)
2517 			goto err;
2518 	}
2519 
2520 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2521 			*perms);
2522 	if (rc < 0)
2523 		goto err;
2524 
2525 out:
2526 	read_unlock(&policy_rwlock);
2527 	return rc;
2528 
2529 err:
2530 	read_unlock(&policy_rwlock);
2531 	for (i = 0; i < *nperms; i++)
2532 		kfree((*perms)[i]);
2533 	kfree(*perms);
2534 	return rc;
2535 }
2536 
security_get_reject_unknown(void)2537 int security_get_reject_unknown(void)
2538 {
2539 	return policydb.reject_unknown;
2540 }
2541 
security_get_allow_unknown(void)2542 int security_get_allow_unknown(void)
2543 {
2544 	return policydb.allow_unknown;
2545 }
2546 
2547 /**
2548  * security_policycap_supported - Check for a specific policy capability
2549  * @req_cap: capability
2550  *
2551  * Description:
2552  * This function queries the currently loaded policy to see if it supports the
2553  * capability specified by @req_cap.  Returns true (1) if the capability is
2554  * supported, false (0) if it isn't supported.
2555  *
2556  */
security_policycap_supported(unsigned int req_cap)2557 int security_policycap_supported(unsigned int req_cap)
2558 {
2559 	int rc;
2560 
2561 	read_lock(&policy_rwlock);
2562 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2563 	read_unlock(&policy_rwlock);
2564 
2565 	return rc;
2566 }
2567 
2568 struct selinux_audit_rule {
2569 	u32 au_seqno;
2570 	struct context au_ctxt;
2571 };
2572 
selinux_audit_rule_free(void * vrule)2573 void selinux_audit_rule_free(void *vrule)
2574 {
2575 	struct selinux_audit_rule *rule = vrule;
2576 
2577 	if (rule) {
2578 		context_destroy(&rule->au_ctxt);
2579 		kfree(rule);
2580 	}
2581 }
2582 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)2583 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2584 {
2585 	struct selinux_audit_rule *tmprule;
2586 	struct role_datum *roledatum;
2587 	struct type_datum *typedatum;
2588 	struct user_datum *userdatum;
2589 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2590 	int rc = 0;
2591 
2592 	*rule = NULL;
2593 
2594 	if (!ss_initialized)
2595 		return -EOPNOTSUPP;
2596 
2597 	switch (field) {
2598 	case AUDIT_SUBJ_USER:
2599 	case AUDIT_SUBJ_ROLE:
2600 	case AUDIT_SUBJ_TYPE:
2601 	case AUDIT_OBJ_USER:
2602 	case AUDIT_OBJ_ROLE:
2603 	case AUDIT_OBJ_TYPE:
2604 		/* only 'equals' and 'not equals' fit user, role, and type */
2605 		if (op != Audit_equal && op != Audit_not_equal)
2606 			return -EINVAL;
2607 		break;
2608 	case AUDIT_SUBJ_SEN:
2609 	case AUDIT_SUBJ_CLR:
2610 	case AUDIT_OBJ_LEV_LOW:
2611 	case AUDIT_OBJ_LEV_HIGH:
2612 		/* we do not allow a range, indicated by the presense of '-' */
2613 		if (strchr(rulestr, '-'))
2614 			return -EINVAL;
2615 		break;
2616 	default:
2617 		/* only the above fields are valid */
2618 		return -EINVAL;
2619 	}
2620 
2621 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2622 	if (!tmprule)
2623 		return -ENOMEM;
2624 
2625 	context_init(&tmprule->au_ctxt);
2626 
2627 	read_lock(&policy_rwlock);
2628 
2629 	tmprule->au_seqno = latest_granting;
2630 
2631 	switch (field) {
2632 	case AUDIT_SUBJ_USER:
2633 	case AUDIT_OBJ_USER:
2634 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2635 		if (!userdatum)
2636 			rc = -EINVAL;
2637 		else
2638 			tmprule->au_ctxt.user = userdatum->value;
2639 		break;
2640 	case AUDIT_SUBJ_ROLE:
2641 	case AUDIT_OBJ_ROLE:
2642 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2643 		if (!roledatum)
2644 			rc = -EINVAL;
2645 		else
2646 			tmprule->au_ctxt.role = roledatum->value;
2647 		break;
2648 	case AUDIT_SUBJ_TYPE:
2649 	case AUDIT_OBJ_TYPE:
2650 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2651 		if (!typedatum)
2652 			rc = -EINVAL;
2653 		else
2654 			tmprule->au_ctxt.type = typedatum->value;
2655 		break;
2656 	case AUDIT_SUBJ_SEN:
2657 	case AUDIT_SUBJ_CLR:
2658 	case AUDIT_OBJ_LEV_LOW:
2659 	case AUDIT_OBJ_LEV_HIGH:
2660 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2661 		break;
2662 	}
2663 
2664 	read_unlock(&policy_rwlock);
2665 
2666 	if (rc) {
2667 		selinux_audit_rule_free(tmprule);
2668 		tmprule = NULL;
2669 	}
2670 
2671 	*rule = tmprule;
2672 
2673 	return rc;
2674 }
2675 
2676 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)2677 int selinux_audit_rule_known(struct audit_krule *rule)
2678 {
2679 	int i;
2680 
2681 	for (i = 0; i < rule->field_count; i++) {
2682 		struct audit_field *f = &rule->fields[i];
2683 		switch (f->type) {
2684 		case AUDIT_SUBJ_USER:
2685 		case AUDIT_SUBJ_ROLE:
2686 		case AUDIT_SUBJ_TYPE:
2687 		case AUDIT_SUBJ_SEN:
2688 		case AUDIT_SUBJ_CLR:
2689 		case AUDIT_OBJ_USER:
2690 		case AUDIT_OBJ_ROLE:
2691 		case AUDIT_OBJ_TYPE:
2692 		case AUDIT_OBJ_LEV_LOW:
2693 		case AUDIT_OBJ_LEV_HIGH:
2694 			return 1;
2695 		}
2696 	}
2697 
2698 	return 0;
2699 }
2700 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule,struct audit_context * actx)2701 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2702 			     struct audit_context *actx)
2703 {
2704 	struct context *ctxt;
2705 	struct mls_level *level;
2706 	struct selinux_audit_rule *rule = vrule;
2707 	int match = 0;
2708 
2709 	if (!rule) {
2710 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2711 			  "selinux_audit_rule_match: missing rule\n");
2712 		return -ENOENT;
2713 	}
2714 
2715 	read_lock(&policy_rwlock);
2716 
2717 	if (rule->au_seqno < latest_granting) {
2718 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2719 			  "selinux_audit_rule_match: stale rule\n");
2720 		match = -ESTALE;
2721 		goto out;
2722 	}
2723 
2724 	ctxt = sidtab_search(&sidtab, sid);
2725 	if (!ctxt) {
2726 		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2727 			  "selinux_audit_rule_match: unrecognized SID %d\n",
2728 			  sid);
2729 		match = -ENOENT;
2730 		goto out;
2731 	}
2732 
2733 	/* a field/op pair that is not caught here will simply fall through
2734 	   without a match */
2735 	switch (field) {
2736 	case AUDIT_SUBJ_USER:
2737 	case AUDIT_OBJ_USER:
2738 		switch (op) {
2739 		case Audit_equal:
2740 			match = (ctxt->user == rule->au_ctxt.user);
2741 			break;
2742 		case Audit_not_equal:
2743 			match = (ctxt->user != rule->au_ctxt.user);
2744 			break;
2745 		}
2746 		break;
2747 	case AUDIT_SUBJ_ROLE:
2748 	case AUDIT_OBJ_ROLE:
2749 		switch (op) {
2750 		case Audit_equal:
2751 			match = (ctxt->role == rule->au_ctxt.role);
2752 			break;
2753 		case Audit_not_equal:
2754 			match = (ctxt->role != rule->au_ctxt.role);
2755 			break;
2756 		}
2757 		break;
2758 	case AUDIT_SUBJ_TYPE:
2759 	case AUDIT_OBJ_TYPE:
2760 		switch (op) {
2761 		case Audit_equal:
2762 			match = (ctxt->type == rule->au_ctxt.type);
2763 			break;
2764 		case Audit_not_equal:
2765 			match = (ctxt->type != rule->au_ctxt.type);
2766 			break;
2767 		}
2768 		break;
2769 	case AUDIT_SUBJ_SEN:
2770 	case AUDIT_SUBJ_CLR:
2771 	case AUDIT_OBJ_LEV_LOW:
2772 	case AUDIT_OBJ_LEV_HIGH:
2773 		level = ((field == AUDIT_SUBJ_SEN ||
2774 			  field == AUDIT_OBJ_LEV_LOW) ?
2775 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2776 		switch (op) {
2777 		case Audit_equal:
2778 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2779 					     level);
2780 			break;
2781 		case Audit_not_equal:
2782 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2783 					      level);
2784 			break;
2785 		case Audit_lt:
2786 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2787 					       level) &&
2788 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2789 					       level));
2790 			break;
2791 		case Audit_le:
2792 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2793 					      level);
2794 			break;
2795 		case Audit_gt:
2796 			match = (mls_level_dom(level,
2797 					      &rule->au_ctxt.range.level[0]) &&
2798 				 !mls_level_eq(level,
2799 					       &rule->au_ctxt.range.level[0]));
2800 			break;
2801 		case Audit_ge:
2802 			match = mls_level_dom(level,
2803 					      &rule->au_ctxt.range.level[0]);
2804 			break;
2805 		}
2806 	}
2807 
2808 out:
2809 	read_unlock(&policy_rwlock);
2810 	return match;
2811 }
2812 
2813 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2814 
aurule_avc_callback(u32 event,u32 ssid,u32 tsid,u16 class,u32 perms,u32 * retained)2815 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2816 			       u16 class, u32 perms, u32 *retained)
2817 {
2818 	int err = 0;
2819 
2820 	if (event == AVC_CALLBACK_RESET && aurule_callback)
2821 		err = aurule_callback();
2822 	return err;
2823 }
2824 
aurule_init(void)2825 static int __init aurule_init(void)
2826 {
2827 	int err;
2828 
2829 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2830 			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2831 	if (err)
2832 		panic("avc_add_callback() failed, error %d\n", err);
2833 
2834 	return err;
2835 }
2836 __initcall(aurule_init);
2837 
2838 #ifdef CONFIG_NETLABEL
2839 /**
2840  * security_netlbl_cache_add - Add an entry to the NetLabel cache
2841  * @secattr: the NetLabel packet security attributes
2842  * @sid: the SELinux SID
2843  *
2844  * Description:
2845  * Attempt to cache the context in @ctx, which was derived from the packet in
2846  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2847  * already been initialized.
2848  *
2849  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)2850 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2851 				      u32 sid)
2852 {
2853 	u32 *sid_cache;
2854 
2855 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2856 	if (sid_cache == NULL)
2857 		return;
2858 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2859 	if (secattr->cache == NULL) {
2860 		kfree(sid_cache);
2861 		return;
2862 	}
2863 
2864 	*sid_cache = sid;
2865 	secattr->cache->free = kfree;
2866 	secattr->cache->data = sid_cache;
2867 	secattr->flags |= NETLBL_SECATTR_CACHE;
2868 }
2869 
2870 /**
2871  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2872  * @secattr: the NetLabel packet security attributes
2873  * @sid: the SELinux SID
2874  *
2875  * Description:
2876  * Convert the given NetLabel security attributes in @secattr into a
2877  * SELinux SID.  If the @secattr field does not contain a full SELinux
2878  * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
2879  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2880  * allow the @secattr to be used by NetLabel to cache the secattr to SID
2881  * conversion for future lookups.  Returns zero on success, negative values on
2882  * failure.
2883  *
2884  */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)2885 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2886 				   u32 *sid)
2887 {
2888 	int rc = -EIDRM;
2889 	struct context *ctx;
2890 	struct context ctx_new;
2891 
2892 	if (!ss_initialized) {
2893 		*sid = SECSID_NULL;
2894 		return 0;
2895 	}
2896 
2897 	read_lock(&policy_rwlock);
2898 
2899 	if (secattr->flags & NETLBL_SECATTR_CACHE) {
2900 		*sid = *(u32 *)secattr->cache->data;
2901 		rc = 0;
2902 	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
2903 		*sid = secattr->attr.secid;
2904 		rc = 0;
2905 	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2906 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2907 		if (ctx == NULL)
2908 			goto netlbl_secattr_to_sid_return;
2909 
2910 		context_init(&ctx_new);
2911 		ctx_new.user = ctx->user;
2912 		ctx_new.role = ctx->role;
2913 		ctx_new.type = ctx->type;
2914 		mls_import_netlbl_lvl(&ctx_new, secattr);
2915 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2916 			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2917 						  secattr->attr.mls.cat) != 0)
2918 				goto netlbl_secattr_to_sid_return;
2919 			memcpy(&ctx_new.range.level[1].cat,
2920 			       &ctx_new.range.level[0].cat,
2921 			       sizeof(ctx_new.range.level[0].cat));
2922 		}
2923 		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2924 			goto netlbl_secattr_to_sid_return_cleanup;
2925 
2926 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2927 		if (rc != 0)
2928 			goto netlbl_secattr_to_sid_return_cleanup;
2929 
2930 		security_netlbl_cache_add(secattr, *sid);
2931 
2932 		ebitmap_destroy(&ctx_new.range.level[0].cat);
2933 	} else {
2934 		*sid = SECSID_NULL;
2935 		rc = 0;
2936 	}
2937 
2938 netlbl_secattr_to_sid_return:
2939 	read_unlock(&policy_rwlock);
2940 	return rc;
2941 netlbl_secattr_to_sid_return_cleanup:
2942 	ebitmap_destroy(&ctx_new.range.level[0].cat);
2943 	goto netlbl_secattr_to_sid_return;
2944 }
2945 
2946 /**
2947  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2948  * @sid: the SELinux SID
2949  * @secattr: the NetLabel packet security attributes
2950  *
2951  * Description:
2952  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2953  * Returns zero on success, negative values on failure.
2954  *
2955  */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)2956 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2957 {
2958 	int rc;
2959 	struct context *ctx;
2960 
2961 	if (!ss_initialized)
2962 		return 0;
2963 
2964 	read_lock(&policy_rwlock);
2965 	ctx = sidtab_search(&sidtab, sid);
2966 	if (ctx == NULL) {
2967 		rc = -ENOENT;
2968 		goto netlbl_sid_to_secattr_failure;
2969 	}
2970 	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2971 				  GFP_ATOMIC);
2972 	if (secattr->domain == NULL) {
2973 		rc = -ENOMEM;
2974 		goto netlbl_sid_to_secattr_failure;
2975 	}
2976 	secattr->attr.secid = sid;
2977 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
2978 	mls_export_netlbl_lvl(ctx, secattr);
2979 	rc = mls_export_netlbl_cat(ctx, secattr);
2980 	if (rc != 0)
2981 		goto netlbl_sid_to_secattr_failure;
2982 	read_unlock(&policy_rwlock);
2983 
2984 	return 0;
2985 
2986 netlbl_sid_to_secattr_failure:
2987 	read_unlock(&policy_rwlock);
2988 	return rc;
2989 }
2990 #endif /* CONFIG_NETLABEL */
2991