1 /******************************************************************************
2 *******************************************************************************
3 **
4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
5 ** Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved.
6 **
7 ** This copyrighted material is made available to anyone wishing to use,
8 ** modify, copy, or redistribute it subject to the terms and conditions
9 ** of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13
14 /*
15 * lowcomms.c
16 *
17 * This is the "low-level" comms layer.
18 *
19 * It is responsible for sending/receiving messages
20 * from other nodes in the cluster.
21 *
22 * Cluster nodes are referred to by their nodeids. nodeids are
23 * simply 32 bit numbers to the locking module - if they need to
24 * be expanded for the cluster infrastructure then that is it's
25 * responsibility. It is this layer's
26 * responsibility to resolve these into IP address or
27 * whatever it needs for inter-node communication.
28 *
29 * The comms level is two kernel threads that deal mainly with
30 * the receiving of messages from other nodes and passing them
31 * up to the mid-level comms layer (which understands the
32 * message format) for execution by the locking core, and
33 * a send thread which does all the setting up of connections
34 * to remote nodes and the sending of data. Threads are not allowed
35 * to send their own data because it may cause them to wait in times
36 * of high load. Also, this way, the sending thread can collect together
37 * messages bound for one node and send them in one block.
38 *
39 * lowcomms will choose to use wither TCP or SCTP as its transport layer
40 * depending on the configuration variable 'protocol'. This should be set
41 * to 0 (default) for TCP or 1 for SCTP. It shouldbe configured using a
42 * cluster-wide mechanism as it must be the same on all nodes of the cluster
43 * for the DLM to function.
44 *
45 */
46
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/idr.h>
52 #include <linux/file.h>
53 #include <linux/mutex.h>
54 #include <linux/sctp.h>
55 #include <net/sctp/user.h>
56
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
61
62 #define NEEDED_RMEM (4*1024*1024)
63
64 struct cbuf {
65 unsigned int base;
66 unsigned int len;
67 unsigned int mask;
68 };
69
cbuf_add(struct cbuf * cb,int n)70 static void cbuf_add(struct cbuf *cb, int n)
71 {
72 cb->len += n;
73 }
74
cbuf_data(struct cbuf * cb)75 static int cbuf_data(struct cbuf *cb)
76 {
77 return ((cb->base + cb->len) & cb->mask);
78 }
79
cbuf_init(struct cbuf * cb,int size)80 static void cbuf_init(struct cbuf *cb, int size)
81 {
82 cb->base = cb->len = 0;
83 cb->mask = size-1;
84 }
85
cbuf_eat(struct cbuf * cb,int n)86 static void cbuf_eat(struct cbuf *cb, int n)
87 {
88 cb->len -= n;
89 cb->base += n;
90 cb->base &= cb->mask;
91 }
92
cbuf_empty(struct cbuf * cb)93 static bool cbuf_empty(struct cbuf *cb)
94 {
95 return cb->len == 0;
96 }
97
98 struct connection {
99 struct socket *sock; /* NULL if not connected */
100 uint32_t nodeid; /* So we know who we are in the list */
101 struct mutex sock_mutex;
102 unsigned long flags;
103 #define CF_READ_PENDING 1
104 #define CF_WRITE_PENDING 2
105 #define CF_CONNECT_PENDING 3
106 #define CF_INIT_PENDING 4
107 #define CF_IS_OTHERCON 5
108 struct list_head writequeue; /* List of outgoing writequeue_entries */
109 spinlock_t writequeue_lock;
110 int (*rx_action) (struct connection *); /* What to do when active */
111 void (*connect_action) (struct connection *); /* What to do to connect */
112 struct page *rx_page;
113 struct cbuf cb;
114 int retries;
115 #define MAX_CONNECT_RETRIES 3
116 int sctp_assoc;
117 struct connection *othercon;
118 struct work_struct rwork; /* Receive workqueue */
119 struct work_struct swork; /* Send workqueue */
120 };
121 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
122
123 /* An entry waiting to be sent */
124 struct writequeue_entry {
125 struct list_head list;
126 struct page *page;
127 int offset;
128 int len;
129 int end;
130 int users;
131 struct connection *con;
132 };
133
134 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
135 static int dlm_local_count;
136
137 /* Work queues */
138 static struct workqueue_struct *recv_workqueue;
139 static struct workqueue_struct *send_workqueue;
140
141 static DEFINE_IDR(connections_idr);
142 static DEFINE_MUTEX(connections_lock);
143 static int max_nodeid;
144 static struct kmem_cache *con_cache;
145
146 static void process_recv_sockets(struct work_struct *work);
147 static void process_send_sockets(struct work_struct *work);
148
149 /*
150 * If 'allocation' is zero then we don't attempt to create a new
151 * connection structure for this node.
152 */
__nodeid2con(int nodeid,gfp_t alloc)153 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
154 {
155 struct connection *con = NULL;
156 int r;
157 int n;
158
159 con = idr_find(&connections_idr, nodeid);
160 if (con || !alloc)
161 return con;
162
163 r = idr_pre_get(&connections_idr, alloc);
164 if (!r)
165 return NULL;
166
167 con = kmem_cache_zalloc(con_cache, alloc);
168 if (!con)
169 return NULL;
170
171 r = idr_get_new_above(&connections_idr, con, nodeid, &n);
172 if (r) {
173 kmem_cache_free(con_cache, con);
174 return NULL;
175 }
176
177 if (n != nodeid) {
178 idr_remove(&connections_idr, n);
179 kmem_cache_free(con_cache, con);
180 return NULL;
181 }
182
183 con->nodeid = nodeid;
184 mutex_init(&con->sock_mutex);
185 INIT_LIST_HEAD(&con->writequeue);
186 spin_lock_init(&con->writequeue_lock);
187 INIT_WORK(&con->swork, process_send_sockets);
188 INIT_WORK(&con->rwork, process_recv_sockets);
189
190 /* Setup action pointers for child sockets */
191 if (con->nodeid) {
192 struct connection *zerocon = idr_find(&connections_idr, 0);
193
194 con->connect_action = zerocon->connect_action;
195 if (!con->rx_action)
196 con->rx_action = zerocon->rx_action;
197 }
198
199 if (nodeid > max_nodeid)
200 max_nodeid = nodeid;
201
202 return con;
203 }
204
nodeid2con(int nodeid,gfp_t allocation)205 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
206 {
207 struct connection *con;
208
209 mutex_lock(&connections_lock);
210 con = __nodeid2con(nodeid, allocation);
211 mutex_unlock(&connections_lock);
212
213 return con;
214 }
215
216 /* This is a bit drastic, but only called when things go wrong */
assoc2con(int assoc_id)217 static struct connection *assoc2con(int assoc_id)
218 {
219 int i;
220 struct connection *con;
221
222 mutex_lock(&connections_lock);
223 for (i=0; i<=max_nodeid; i++) {
224 con = __nodeid2con(i, 0);
225 if (con && con->sctp_assoc == assoc_id) {
226 mutex_unlock(&connections_lock);
227 return con;
228 }
229 }
230 mutex_unlock(&connections_lock);
231 return NULL;
232 }
233
nodeid_to_addr(int nodeid,struct sockaddr * retaddr)234 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
235 {
236 struct sockaddr_storage addr;
237 int error;
238
239 if (!dlm_local_count)
240 return -1;
241
242 error = dlm_nodeid_to_addr(nodeid, &addr);
243 if (error)
244 return error;
245
246 if (dlm_local_addr[0]->ss_family == AF_INET) {
247 struct sockaddr_in *in4 = (struct sockaddr_in *) &addr;
248 struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
249 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
250 } else {
251 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &addr;
252 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
253 memcpy(&ret6->sin6_addr, &in6->sin6_addr,
254 sizeof(in6->sin6_addr));
255 }
256
257 return 0;
258 }
259
260 /* Data available on socket or listen socket received a connect */
lowcomms_data_ready(struct sock * sk,int count_unused)261 static void lowcomms_data_ready(struct sock *sk, int count_unused)
262 {
263 struct connection *con = sock2con(sk);
264 if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
265 queue_work(recv_workqueue, &con->rwork);
266 }
267
lowcomms_write_space(struct sock * sk)268 static void lowcomms_write_space(struct sock *sk)
269 {
270 struct connection *con = sock2con(sk);
271
272 if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
273 queue_work(send_workqueue, &con->swork);
274 }
275
lowcomms_connect_sock(struct connection * con)276 static inline void lowcomms_connect_sock(struct connection *con)
277 {
278 if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
279 queue_work(send_workqueue, &con->swork);
280 }
281
lowcomms_state_change(struct sock * sk)282 static void lowcomms_state_change(struct sock *sk)
283 {
284 if (sk->sk_state == TCP_ESTABLISHED)
285 lowcomms_write_space(sk);
286 }
287
288 /* Make a socket active */
add_sock(struct socket * sock,struct connection * con)289 static int add_sock(struct socket *sock, struct connection *con)
290 {
291 con->sock = sock;
292
293 /* Install a data_ready callback */
294 con->sock->sk->sk_data_ready = lowcomms_data_ready;
295 con->sock->sk->sk_write_space = lowcomms_write_space;
296 con->sock->sk->sk_state_change = lowcomms_state_change;
297 con->sock->sk->sk_user_data = con;
298 con->sock->sk->sk_allocation = GFP_NOFS;
299 return 0;
300 }
301
302 /* Add the port number to an IPv6 or 4 sockaddr and return the address
303 length */
make_sockaddr(struct sockaddr_storage * saddr,uint16_t port,int * addr_len)304 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
305 int *addr_len)
306 {
307 saddr->ss_family = dlm_local_addr[0]->ss_family;
308 if (saddr->ss_family == AF_INET) {
309 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
310 in4_addr->sin_port = cpu_to_be16(port);
311 *addr_len = sizeof(struct sockaddr_in);
312 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
313 } else {
314 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
315 in6_addr->sin6_port = cpu_to_be16(port);
316 *addr_len = sizeof(struct sockaddr_in6);
317 }
318 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
319 }
320
321 /* Close a remote connection and tidy up */
close_connection(struct connection * con,bool and_other)322 static void close_connection(struct connection *con, bool and_other)
323 {
324 mutex_lock(&con->sock_mutex);
325
326 if (con->sock) {
327 sock_release(con->sock);
328 con->sock = NULL;
329 }
330 if (con->othercon && and_other) {
331 /* Will only re-enter once. */
332 close_connection(con->othercon, false);
333 }
334 if (con->rx_page) {
335 __free_page(con->rx_page);
336 con->rx_page = NULL;
337 }
338
339 con->retries = 0;
340 mutex_unlock(&con->sock_mutex);
341 }
342
343 /* We only send shutdown messages to nodes that are not part of the cluster */
sctp_send_shutdown(sctp_assoc_t associd)344 static void sctp_send_shutdown(sctp_assoc_t associd)
345 {
346 static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
347 struct msghdr outmessage;
348 struct cmsghdr *cmsg;
349 struct sctp_sndrcvinfo *sinfo;
350 int ret;
351 struct connection *con;
352
353 con = nodeid2con(0,0);
354 BUG_ON(con == NULL);
355
356 outmessage.msg_name = NULL;
357 outmessage.msg_namelen = 0;
358 outmessage.msg_control = outcmsg;
359 outmessage.msg_controllen = sizeof(outcmsg);
360 outmessage.msg_flags = MSG_EOR;
361
362 cmsg = CMSG_FIRSTHDR(&outmessage);
363 cmsg->cmsg_level = IPPROTO_SCTP;
364 cmsg->cmsg_type = SCTP_SNDRCV;
365 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
366 outmessage.msg_controllen = cmsg->cmsg_len;
367 sinfo = CMSG_DATA(cmsg);
368 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
369
370 sinfo->sinfo_flags |= MSG_EOF;
371 sinfo->sinfo_assoc_id = associd;
372
373 ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
374
375 if (ret != 0)
376 log_print("send EOF to node failed: %d", ret);
377 }
378
379 /* INIT failed but we don't know which node...
380 restart INIT on all pending nodes */
sctp_init_failed(void)381 static void sctp_init_failed(void)
382 {
383 int i;
384 struct connection *con;
385
386 mutex_lock(&connections_lock);
387 for (i=1; i<=max_nodeid; i++) {
388 con = __nodeid2con(i, 0);
389 if (!con)
390 continue;
391 con->sctp_assoc = 0;
392 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
393 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
394 queue_work(send_workqueue, &con->swork);
395 }
396 }
397 }
398 mutex_unlock(&connections_lock);
399 }
400
401 /* Something happened to an association */
process_sctp_notification(struct connection * con,struct msghdr * msg,char * buf)402 static void process_sctp_notification(struct connection *con,
403 struct msghdr *msg, char *buf)
404 {
405 union sctp_notification *sn = (union sctp_notification *)buf;
406
407 if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
408 switch (sn->sn_assoc_change.sac_state) {
409
410 case SCTP_COMM_UP:
411 case SCTP_RESTART:
412 {
413 /* Check that the new node is in the lockspace */
414 struct sctp_prim prim;
415 int nodeid;
416 int prim_len, ret;
417 int addr_len;
418 struct connection *new_con;
419 struct file *file;
420 sctp_peeloff_arg_t parg;
421 int parglen = sizeof(parg);
422
423 /*
424 * We get this before any data for an association.
425 * We verify that the node is in the cluster and
426 * then peel off a socket for it.
427 */
428 if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
429 log_print("COMM_UP for invalid assoc ID %d",
430 (int)sn->sn_assoc_change.sac_assoc_id);
431 sctp_init_failed();
432 return;
433 }
434 memset(&prim, 0, sizeof(struct sctp_prim));
435 prim_len = sizeof(struct sctp_prim);
436 prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
437
438 ret = kernel_getsockopt(con->sock,
439 IPPROTO_SCTP,
440 SCTP_PRIMARY_ADDR,
441 (char*)&prim,
442 &prim_len);
443 if (ret < 0) {
444 log_print("getsockopt/sctp_primary_addr on "
445 "new assoc %d failed : %d",
446 (int)sn->sn_assoc_change.sac_assoc_id,
447 ret);
448
449 /* Retry INIT later */
450 new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
451 if (new_con)
452 clear_bit(CF_CONNECT_PENDING, &con->flags);
453 return;
454 }
455 make_sockaddr(&prim.ssp_addr, 0, &addr_len);
456 if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
457 int i;
458 unsigned char *b=(unsigned char *)&prim.ssp_addr;
459 log_print("reject connect from unknown addr");
460 for (i=0; i<sizeof(struct sockaddr_storage);i++)
461 printk("%02x ", b[i]);
462 printk("\n");
463 sctp_send_shutdown(prim.ssp_assoc_id);
464 return;
465 }
466
467 new_con = nodeid2con(nodeid, GFP_KERNEL);
468 if (!new_con)
469 return;
470
471 /* Peel off a new sock */
472 parg.associd = sn->sn_assoc_change.sac_assoc_id;
473 ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
474 SCTP_SOCKOPT_PEELOFF,
475 (void *)&parg, &parglen);
476 if (ret) {
477 log_print("Can't peel off a socket for "
478 "connection %d to node %d: err=%d\n",
479 parg.associd, nodeid, ret);
480 }
481 file = fget(parg.sd);
482 new_con->sock = SOCKET_I(file->f_dentry->d_inode);
483 add_sock(new_con->sock, new_con);
484 fput(file);
485 put_unused_fd(parg.sd);
486
487 log_print("got new/restarted association %d nodeid %d",
488 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
489
490 /* Send any pending writes */
491 clear_bit(CF_CONNECT_PENDING, &new_con->flags);
492 clear_bit(CF_INIT_PENDING, &con->flags);
493 if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
494 queue_work(send_workqueue, &new_con->swork);
495 }
496 if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
497 queue_work(recv_workqueue, &new_con->rwork);
498 }
499 break;
500
501 case SCTP_COMM_LOST:
502 case SCTP_SHUTDOWN_COMP:
503 {
504 con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
505 if (con) {
506 con->sctp_assoc = 0;
507 }
508 }
509 break;
510
511 /* We don't know which INIT failed, so clear the PENDING flags
512 * on them all. if assoc_id is zero then it will then try
513 * again */
514
515 case SCTP_CANT_STR_ASSOC:
516 {
517 log_print("Can't start SCTP association - retrying");
518 sctp_init_failed();
519 }
520 break;
521
522 default:
523 log_print("unexpected SCTP assoc change id=%d state=%d",
524 (int)sn->sn_assoc_change.sac_assoc_id,
525 sn->sn_assoc_change.sac_state);
526 }
527 }
528 }
529
530 /* Data received from remote end */
receive_from_sock(struct connection * con)531 static int receive_from_sock(struct connection *con)
532 {
533 int ret = 0;
534 struct msghdr msg = {};
535 struct kvec iov[2];
536 unsigned len;
537 int r;
538 int call_again_soon = 0;
539 int nvec;
540 char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
541
542 mutex_lock(&con->sock_mutex);
543
544 if (con->sock == NULL) {
545 ret = -EAGAIN;
546 goto out_close;
547 }
548
549 if (con->rx_page == NULL) {
550 /*
551 * This doesn't need to be atomic, but I think it should
552 * improve performance if it is.
553 */
554 con->rx_page = alloc_page(GFP_ATOMIC);
555 if (con->rx_page == NULL)
556 goto out_resched;
557 cbuf_init(&con->cb, PAGE_CACHE_SIZE);
558 }
559
560 /* Only SCTP needs these really */
561 memset(&incmsg, 0, sizeof(incmsg));
562 msg.msg_control = incmsg;
563 msg.msg_controllen = sizeof(incmsg);
564
565 /*
566 * iov[0] is the bit of the circular buffer between the current end
567 * point (cb.base + cb.len) and the end of the buffer.
568 */
569 iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
570 iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
571 iov[1].iov_len = 0;
572 nvec = 1;
573
574 /*
575 * iov[1] is the bit of the circular buffer between the start of the
576 * buffer and the start of the currently used section (cb.base)
577 */
578 if (cbuf_data(&con->cb) >= con->cb.base) {
579 iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
580 iov[1].iov_len = con->cb.base;
581 iov[1].iov_base = page_address(con->rx_page);
582 nvec = 2;
583 }
584 len = iov[0].iov_len + iov[1].iov_len;
585
586 r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
587 MSG_DONTWAIT | MSG_NOSIGNAL);
588 if (ret <= 0)
589 goto out_close;
590
591 /* Process SCTP notifications */
592 if (msg.msg_flags & MSG_NOTIFICATION) {
593 msg.msg_control = incmsg;
594 msg.msg_controllen = sizeof(incmsg);
595
596 process_sctp_notification(con, &msg,
597 page_address(con->rx_page) + con->cb.base);
598 mutex_unlock(&con->sock_mutex);
599 return 0;
600 }
601 BUG_ON(con->nodeid == 0);
602
603 if (ret == len)
604 call_again_soon = 1;
605 cbuf_add(&con->cb, ret);
606 ret = dlm_process_incoming_buffer(con->nodeid,
607 page_address(con->rx_page),
608 con->cb.base, con->cb.len,
609 PAGE_CACHE_SIZE);
610 if (ret == -EBADMSG) {
611 log_print("lowcomms: addr=%p, base=%u, len=%u, "
612 "iov_len=%u, iov_base[0]=%p, read=%d",
613 page_address(con->rx_page), con->cb.base, con->cb.len,
614 len, iov[0].iov_base, r);
615 }
616 if (ret < 0)
617 goto out_close;
618 cbuf_eat(&con->cb, ret);
619
620 if (cbuf_empty(&con->cb) && !call_again_soon) {
621 __free_page(con->rx_page);
622 con->rx_page = NULL;
623 }
624
625 if (call_again_soon)
626 goto out_resched;
627 mutex_unlock(&con->sock_mutex);
628 return 0;
629
630 out_resched:
631 if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
632 queue_work(recv_workqueue, &con->rwork);
633 mutex_unlock(&con->sock_mutex);
634 return -EAGAIN;
635
636 out_close:
637 mutex_unlock(&con->sock_mutex);
638 if (ret != -EAGAIN) {
639 close_connection(con, false);
640 /* Reconnect when there is something to send */
641 }
642 /* Don't return success if we really got EOF */
643 if (ret == 0)
644 ret = -EAGAIN;
645
646 return ret;
647 }
648
649 /* Listening socket is busy, accept a connection */
tcp_accept_from_sock(struct connection * con)650 static int tcp_accept_from_sock(struct connection *con)
651 {
652 int result;
653 struct sockaddr_storage peeraddr;
654 struct socket *newsock;
655 int len;
656 int nodeid;
657 struct connection *newcon;
658 struct connection *addcon;
659
660 memset(&peeraddr, 0, sizeof(peeraddr));
661 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
662 IPPROTO_TCP, &newsock);
663 if (result < 0)
664 return -ENOMEM;
665
666 mutex_lock_nested(&con->sock_mutex, 0);
667
668 result = -ENOTCONN;
669 if (con->sock == NULL)
670 goto accept_err;
671
672 newsock->type = con->sock->type;
673 newsock->ops = con->sock->ops;
674
675 result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
676 if (result < 0)
677 goto accept_err;
678
679 /* Get the connected socket's peer */
680 memset(&peeraddr, 0, sizeof(peeraddr));
681 if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
682 &len, 2)) {
683 result = -ECONNABORTED;
684 goto accept_err;
685 }
686
687 /* Get the new node's NODEID */
688 make_sockaddr(&peeraddr, 0, &len);
689 if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
690 log_print("connect from non cluster node");
691 sock_release(newsock);
692 mutex_unlock(&con->sock_mutex);
693 return -1;
694 }
695
696 log_print("got connection from %d", nodeid);
697
698 /* Check to see if we already have a connection to this node. This
699 * could happen if the two nodes initiate a connection at roughly
700 * the same time and the connections cross on the wire.
701 * In this case we store the incoming one in "othercon"
702 */
703 newcon = nodeid2con(nodeid, GFP_KERNEL);
704 if (!newcon) {
705 result = -ENOMEM;
706 goto accept_err;
707 }
708 mutex_lock_nested(&newcon->sock_mutex, 1);
709 if (newcon->sock) {
710 struct connection *othercon = newcon->othercon;
711
712 if (!othercon) {
713 othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
714 if (!othercon) {
715 log_print("failed to allocate incoming socket");
716 mutex_unlock(&newcon->sock_mutex);
717 result = -ENOMEM;
718 goto accept_err;
719 }
720 othercon->nodeid = nodeid;
721 othercon->rx_action = receive_from_sock;
722 mutex_init(&othercon->sock_mutex);
723 INIT_WORK(&othercon->swork, process_send_sockets);
724 INIT_WORK(&othercon->rwork, process_recv_sockets);
725 set_bit(CF_IS_OTHERCON, &othercon->flags);
726 }
727 if (!othercon->sock) {
728 newcon->othercon = othercon;
729 othercon->sock = newsock;
730 newsock->sk->sk_user_data = othercon;
731 add_sock(newsock, othercon);
732 addcon = othercon;
733 }
734 else {
735 printk("Extra connection from node %d attempted\n", nodeid);
736 result = -EAGAIN;
737 mutex_unlock(&newcon->sock_mutex);
738 goto accept_err;
739 }
740 }
741 else {
742 newsock->sk->sk_user_data = newcon;
743 newcon->rx_action = receive_from_sock;
744 add_sock(newsock, newcon);
745 addcon = newcon;
746 }
747
748 mutex_unlock(&newcon->sock_mutex);
749
750 /*
751 * Add it to the active queue in case we got data
752 * beween processing the accept adding the socket
753 * to the read_sockets list
754 */
755 if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
756 queue_work(recv_workqueue, &addcon->rwork);
757 mutex_unlock(&con->sock_mutex);
758
759 return 0;
760
761 accept_err:
762 mutex_unlock(&con->sock_mutex);
763 sock_release(newsock);
764
765 if (result != -EAGAIN)
766 log_print("error accepting connection from node: %d", result);
767 return result;
768 }
769
free_entry(struct writequeue_entry * e)770 static void free_entry(struct writequeue_entry *e)
771 {
772 __free_page(e->page);
773 kfree(e);
774 }
775
776 /* Initiate an SCTP association.
777 This is a special case of send_to_sock() in that we don't yet have a
778 peeled-off socket for this association, so we use the listening socket
779 and add the primary IP address of the remote node.
780 */
sctp_init_assoc(struct connection * con)781 static void sctp_init_assoc(struct connection *con)
782 {
783 struct sockaddr_storage rem_addr;
784 char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
785 struct msghdr outmessage;
786 struct cmsghdr *cmsg;
787 struct sctp_sndrcvinfo *sinfo;
788 struct connection *base_con;
789 struct writequeue_entry *e;
790 int len, offset;
791 int ret;
792 int addrlen;
793 struct kvec iov[1];
794
795 if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
796 return;
797
798 if (con->retries++ > MAX_CONNECT_RETRIES)
799 return;
800
801 log_print("Initiating association with node %d", con->nodeid);
802
803 if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
804 log_print("no address for nodeid %d", con->nodeid);
805 return;
806 }
807 base_con = nodeid2con(0, 0);
808 BUG_ON(base_con == NULL);
809
810 make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
811
812 outmessage.msg_name = &rem_addr;
813 outmessage.msg_namelen = addrlen;
814 outmessage.msg_control = outcmsg;
815 outmessage.msg_controllen = sizeof(outcmsg);
816 outmessage.msg_flags = MSG_EOR;
817
818 spin_lock(&con->writequeue_lock);
819 e = list_entry(con->writequeue.next, struct writequeue_entry,
820 list);
821
822 BUG_ON((struct list_head *) e == &con->writequeue);
823
824 len = e->len;
825 offset = e->offset;
826 spin_unlock(&con->writequeue_lock);
827
828 /* Send the first block off the write queue */
829 iov[0].iov_base = page_address(e->page)+offset;
830 iov[0].iov_len = len;
831
832 cmsg = CMSG_FIRSTHDR(&outmessage);
833 cmsg->cmsg_level = IPPROTO_SCTP;
834 cmsg->cmsg_type = SCTP_SNDRCV;
835 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
836 sinfo = CMSG_DATA(cmsg);
837 memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
838 sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
839 outmessage.msg_controllen = cmsg->cmsg_len;
840
841 ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
842 if (ret < 0) {
843 log_print("Send first packet to node %d failed: %d",
844 con->nodeid, ret);
845
846 /* Try again later */
847 clear_bit(CF_CONNECT_PENDING, &con->flags);
848 clear_bit(CF_INIT_PENDING, &con->flags);
849 }
850 else {
851 spin_lock(&con->writequeue_lock);
852 e->offset += ret;
853 e->len -= ret;
854
855 if (e->len == 0 && e->users == 0) {
856 list_del(&e->list);
857 free_entry(e);
858 }
859 spin_unlock(&con->writequeue_lock);
860 }
861 }
862
863 /* Connect a new socket to its peer */
tcp_connect_to_sock(struct connection * con)864 static void tcp_connect_to_sock(struct connection *con)
865 {
866 int result = -EHOSTUNREACH;
867 struct sockaddr_storage saddr, src_addr;
868 int addr_len;
869 struct socket *sock;
870
871 if (con->nodeid == 0) {
872 log_print("attempt to connect sock 0 foiled");
873 return;
874 }
875
876 mutex_lock(&con->sock_mutex);
877 if (con->retries++ > MAX_CONNECT_RETRIES)
878 goto out;
879
880 /* Some odd races can cause double-connects, ignore them */
881 if (con->sock) {
882 result = 0;
883 goto out;
884 }
885
886 /* Create a socket to communicate with */
887 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
888 IPPROTO_TCP, &sock);
889 if (result < 0)
890 goto out_err;
891
892 memset(&saddr, 0, sizeof(saddr));
893 if (dlm_nodeid_to_addr(con->nodeid, &saddr)) {
894 sock_release(sock);
895 goto out_err;
896 }
897
898 sock->sk->sk_user_data = con;
899 con->rx_action = receive_from_sock;
900 con->connect_action = tcp_connect_to_sock;
901 add_sock(sock, con);
902
903 /* Bind to our cluster-known address connecting to avoid
904 routing problems */
905 memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
906 make_sockaddr(&src_addr, 0, &addr_len);
907 result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
908 addr_len);
909 if (result < 0) {
910 log_print("could not bind for connect: %d", result);
911 /* This *may* not indicate a critical error */
912 }
913
914 make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
915
916 log_print("connecting to %d", con->nodeid);
917 result =
918 sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
919 O_NONBLOCK);
920 if (result == -EINPROGRESS)
921 result = 0;
922 if (result == 0)
923 goto out;
924
925 out_err:
926 if (con->sock) {
927 sock_release(con->sock);
928 con->sock = NULL;
929 }
930 /*
931 * Some errors are fatal and this list might need adjusting. For other
932 * errors we try again until the max number of retries is reached.
933 */
934 if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
935 result != -ENETDOWN && result != -EINVAL
936 && result != -EPROTONOSUPPORT) {
937 lowcomms_connect_sock(con);
938 result = 0;
939 }
940 out:
941 mutex_unlock(&con->sock_mutex);
942 return;
943 }
944
tcp_create_listen_sock(struct connection * con,struct sockaddr_storage * saddr)945 static struct socket *tcp_create_listen_sock(struct connection *con,
946 struct sockaddr_storage *saddr)
947 {
948 struct socket *sock = NULL;
949 int result = 0;
950 int one = 1;
951 int addr_len;
952
953 if (dlm_local_addr[0]->ss_family == AF_INET)
954 addr_len = sizeof(struct sockaddr_in);
955 else
956 addr_len = sizeof(struct sockaddr_in6);
957
958 /* Create a socket to communicate with */
959 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
960 IPPROTO_TCP, &sock);
961 if (result < 0) {
962 log_print("Can't create listening comms socket");
963 goto create_out;
964 }
965
966 result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
967 (char *)&one, sizeof(one));
968
969 if (result < 0) {
970 log_print("Failed to set SO_REUSEADDR on socket: %d", result);
971 }
972 sock->sk->sk_user_data = con;
973 con->rx_action = tcp_accept_from_sock;
974 con->connect_action = tcp_connect_to_sock;
975 con->sock = sock;
976
977 /* Bind to our port */
978 make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
979 result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
980 if (result < 0) {
981 log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
982 sock_release(sock);
983 sock = NULL;
984 con->sock = NULL;
985 goto create_out;
986 }
987 result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
988 (char *)&one, sizeof(one));
989 if (result < 0) {
990 log_print("Set keepalive failed: %d", result);
991 }
992
993 result = sock->ops->listen(sock, 5);
994 if (result < 0) {
995 log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
996 sock_release(sock);
997 sock = NULL;
998 goto create_out;
999 }
1000
1001 create_out:
1002 return sock;
1003 }
1004
1005 /* Get local addresses */
init_local(void)1006 static void init_local(void)
1007 {
1008 struct sockaddr_storage sas, *addr;
1009 int i;
1010
1011 dlm_local_count = 0;
1012 for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1013 if (dlm_our_addr(&sas, i))
1014 break;
1015
1016 addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1017 if (!addr)
1018 break;
1019 memcpy(addr, &sas, sizeof(*addr));
1020 dlm_local_addr[dlm_local_count++] = addr;
1021 }
1022 }
1023
1024 /* Bind to an IP address. SCTP allows multiple address so it can do
1025 multi-homing */
add_sctp_bind_addr(struct connection * sctp_con,struct sockaddr_storage * addr,int addr_len,int num)1026 static int add_sctp_bind_addr(struct connection *sctp_con,
1027 struct sockaddr_storage *addr,
1028 int addr_len, int num)
1029 {
1030 int result = 0;
1031
1032 if (num == 1)
1033 result = kernel_bind(sctp_con->sock,
1034 (struct sockaddr *) addr,
1035 addr_len);
1036 else
1037 result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1038 SCTP_SOCKOPT_BINDX_ADD,
1039 (char *)addr, addr_len);
1040
1041 if (result < 0)
1042 log_print("Can't bind to port %d addr number %d",
1043 dlm_config.ci_tcp_port, num);
1044
1045 return result;
1046 }
1047
1048 /* Initialise SCTP socket and bind to all interfaces */
sctp_listen_for_all(void)1049 static int sctp_listen_for_all(void)
1050 {
1051 struct socket *sock = NULL;
1052 struct sockaddr_storage localaddr;
1053 struct sctp_event_subscribe subscribe;
1054 int result = -EINVAL, num = 1, i, addr_len;
1055 struct connection *con = nodeid2con(0, GFP_KERNEL);
1056 int bufsize = NEEDED_RMEM;
1057
1058 if (!con)
1059 return -ENOMEM;
1060
1061 log_print("Using SCTP for communications");
1062
1063 result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1064 IPPROTO_SCTP, &sock);
1065 if (result < 0) {
1066 log_print("Can't create comms socket, check SCTP is loaded");
1067 goto out;
1068 }
1069
1070 /* Listen for events */
1071 memset(&subscribe, 0, sizeof(subscribe));
1072 subscribe.sctp_data_io_event = 1;
1073 subscribe.sctp_association_event = 1;
1074 subscribe.sctp_send_failure_event = 1;
1075 subscribe.sctp_shutdown_event = 1;
1076 subscribe.sctp_partial_delivery_event = 1;
1077
1078 result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1079 (char *)&bufsize, sizeof(bufsize));
1080 if (result)
1081 log_print("Error increasing buffer space on socket %d", result);
1082
1083 result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1084 (char *)&subscribe, sizeof(subscribe));
1085 if (result < 0) {
1086 log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1087 result);
1088 goto create_delsock;
1089 }
1090
1091 /* Init con struct */
1092 sock->sk->sk_user_data = con;
1093 con->sock = sock;
1094 con->sock->sk->sk_data_ready = lowcomms_data_ready;
1095 con->rx_action = receive_from_sock;
1096 con->connect_action = sctp_init_assoc;
1097
1098 /* Bind to all interfaces. */
1099 for (i = 0; i < dlm_local_count; i++) {
1100 memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1101 make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1102
1103 result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1104 if (result)
1105 goto create_delsock;
1106 ++num;
1107 }
1108
1109 result = sock->ops->listen(sock, 5);
1110 if (result < 0) {
1111 log_print("Can't set socket listening");
1112 goto create_delsock;
1113 }
1114
1115 return 0;
1116
1117 create_delsock:
1118 sock_release(sock);
1119 con->sock = NULL;
1120 out:
1121 return result;
1122 }
1123
tcp_listen_for_all(void)1124 static int tcp_listen_for_all(void)
1125 {
1126 struct socket *sock = NULL;
1127 struct connection *con = nodeid2con(0, GFP_KERNEL);
1128 int result = -EINVAL;
1129
1130 if (!con)
1131 return -ENOMEM;
1132
1133 /* We don't support multi-homed hosts */
1134 if (dlm_local_addr[1] != NULL) {
1135 log_print("TCP protocol can't handle multi-homed hosts, "
1136 "try SCTP");
1137 return -EINVAL;
1138 }
1139
1140 log_print("Using TCP for communications");
1141
1142 sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1143 if (sock) {
1144 add_sock(sock, con);
1145 result = 0;
1146 }
1147 else {
1148 result = -EADDRINUSE;
1149 }
1150
1151 return result;
1152 }
1153
1154
1155
new_writequeue_entry(struct connection * con,gfp_t allocation)1156 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1157 gfp_t allocation)
1158 {
1159 struct writequeue_entry *entry;
1160
1161 entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1162 if (!entry)
1163 return NULL;
1164
1165 entry->page = alloc_page(allocation);
1166 if (!entry->page) {
1167 kfree(entry);
1168 return NULL;
1169 }
1170
1171 entry->offset = 0;
1172 entry->len = 0;
1173 entry->end = 0;
1174 entry->users = 0;
1175 entry->con = con;
1176
1177 return entry;
1178 }
1179
dlm_lowcomms_get_buffer(int nodeid,int len,gfp_t allocation,char ** ppc)1180 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1181 {
1182 struct connection *con;
1183 struct writequeue_entry *e;
1184 int offset = 0;
1185 int users = 0;
1186
1187 con = nodeid2con(nodeid, allocation);
1188 if (!con)
1189 return NULL;
1190
1191 spin_lock(&con->writequeue_lock);
1192 e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1193 if ((&e->list == &con->writequeue) ||
1194 (PAGE_CACHE_SIZE - e->end < len)) {
1195 e = NULL;
1196 } else {
1197 offset = e->end;
1198 e->end += len;
1199 users = e->users++;
1200 }
1201 spin_unlock(&con->writequeue_lock);
1202
1203 if (e) {
1204 got_one:
1205 *ppc = page_address(e->page) + offset;
1206 return e;
1207 }
1208
1209 e = new_writequeue_entry(con, allocation);
1210 if (e) {
1211 spin_lock(&con->writequeue_lock);
1212 offset = e->end;
1213 e->end += len;
1214 users = e->users++;
1215 list_add_tail(&e->list, &con->writequeue);
1216 spin_unlock(&con->writequeue_lock);
1217 goto got_one;
1218 }
1219 return NULL;
1220 }
1221
dlm_lowcomms_commit_buffer(void * mh)1222 void dlm_lowcomms_commit_buffer(void *mh)
1223 {
1224 struct writequeue_entry *e = (struct writequeue_entry *)mh;
1225 struct connection *con = e->con;
1226 int users;
1227
1228 spin_lock(&con->writequeue_lock);
1229 users = --e->users;
1230 if (users)
1231 goto out;
1232 e->len = e->end - e->offset;
1233 spin_unlock(&con->writequeue_lock);
1234
1235 if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1236 queue_work(send_workqueue, &con->swork);
1237 }
1238 return;
1239
1240 out:
1241 spin_unlock(&con->writequeue_lock);
1242 return;
1243 }
1244
1245 /* Send a message */
send_to_sock(struct connection * con)1246 static void send_to_sock(struct connection *con)
1247 {
1248 int ret = 0;
1249 ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1250 const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1251 struct writequeue_entry *e;
1252 int len, offset;
1253
1254 mutex_lock(&con->sock_mutex);
1255 if (con->sock == NULL)
1256 goto out_connect;
1257
1258 sendpage = con->sock->ops->sendpage;
1259
1260 spin_lock(&con->writequeue_lock);
1261 for (;;) {
1262 e = list_entry(con->writequeue.next, struct writequeue_entry,
1263 list);
1264 if ((struct list_head *) e == &con->writequeue)
1265 break;
1266
1267 len = e->len;
1268 offset = e->offset;
1269 BUG_ON(len == 0 && e->users == 0);
1270 spin_unlock(&con->writequeue_lock);
1271
1272 ret = 0;
1273 if (len) {
1274 ret = sendpage(con->sock, e->page, offset, len,
1275 msg_flags);
1276 if (ret == -EAGAIN || ret == 0) {
1277 cond_resched();
1278 goto out;
1279 }
1280 if (ret <= 0)
1281 goto send_error;
1282 }
1283 /* Don't starve people filling buffers */
1284 cond_resched();
1285
1286 spin_lock(&con->writequeue_lock);
1287 e->offset += ret;
1288 e->len -= ret;
1289
1290 if (e->len == 0 && e->users == 0) {
1291 list_del(&e->list);
1292 free_entry(e);
1293 continue;
1294 }
1295 }
1296 spin_unlock(&con->writequeue_lock);
1297 out:
1298 mutex_unlock(&con->sock_mutex);
1299 return;
1300
1301 send_error:
1302 mutex_unlock(&con->sock_mutex);
1303 close_connection(con, false);
1304 lowcomms_connect_sock(con);
1305 return;
1306
1307 out_connect:
1308 mutex_unlock(&con->sock_mutex);
1309 if (!test_bit(CF_INIT_PENDING, &con->flags))
1310 lowcomms_connect_sock(con);
1311 return;
1312 }
1313
clean_one_writequeue(struct connection * con)1314 static void clean_one_writequeue(struct connection *con)
1315 {
1316 struct list_head *list;
1317 struct list_head *temp;
1318
1319 spin_lock(&con->writequeue_lock);
1320 list_for_each_safe(list, temp, &con->writequeue) {
1321 struct writequeue_entry *e =
1322 list_entry(list, struct writequeue_entry, list);
1323 list_del(&e->list);
1324 free_entry(e);
1325 }
1326 spin_unlock(&con->writequeue_lock);
1327 }
1328
1329 /* Called from recovery when it knows that a node has
1330 left the cluster */
dlm_lowcomms_close(int nodeid)1331 int dlm_lowcomms_close(int nodeid)
1332 {
1333 struct connection *con;
1334
1335 log_print("closing connection to node %d", nodeid);
1336 con = nodeid2con(nodeid, 0);
1337 if (con) {
1338 clean_one_writequeue(con);
1339 close_connection(con, true);
1340 }
1341 return 0;
1342 }
1343
1344 /* Receive workqueue function */
process_recv_sockets(struct work_struct * work)1345 static void process_recv_sockets(struct work_struct *work)
1346 {
1347 struct connection *con = container_of(work, struct connection, rwork);
1348 int err;
1349
1350 clear_bit(CF_READ_PENDING, &con->flags);
1351 do {
1352 err = con->rx_action(con);
1353 } while (!err);
1354 }
1355
1356 /* Send workqueue function */
process_send_sockets(struct work_struct * work)1357 static void process_send_sockets(struct work_struct *work)
1358 {
1359 struct connection *con = container_of(work, struct connection, swork);
1360
1361 if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1362 con->connect_action(con);
1363 }
1364 clear_bit(CF_WRITE_PENDING, &con->flags);
1365 send_to_sock(con);
1366 }
1367
1368
1369 /* Discard all entries on the write queues */
clean_writequeues(void)1370 static void clean_writequeues(void)
1371 {
1372 int nodeid;
1373
1374 for (nodeid = 1; nodeid <= max_nodeid; nodeid++) {
1375 struct connection *con = __nodeid2con(nodeid, 0);
1376
1377 if (con)
1378 clean_one_writequeue(con);
1379 }
1380 }
1381
work_stop(void)1382 static void work_stop(void)
1383 {
1384 destroy_workqueue(recv_workqueue);
1385 destroy_workqueue(send_workqueue);
1386 }
1387
work_start(void)1388 static int work_start(void)
1389 {
1390 int error;
1391 recv_workqueue = create_workqueue("dlm_recv");
1392 error = IS_ERR(recv_workqueue);
1393 if (error) {
1394 log_print("can't start dlm_recv %d", error);
1395 return error;
1396 }
1397
1398 send_workqueue = create_singlethread_workqueue("dlm_send");
1399 error = IS_ERR(send_workqueue);
1400 if (error) {
1401 log_print("can't start dlm_send %d", error);
1402 destroy_workqueue(recv_workqueue);
1403 return error;
1404 }
1405
1406 return 0;
1407 }
1408
dlm_lowcomms_stop(void)1409 void dlm_lowcomms_stop(void)
1410 {
1411 int i;
1412 struct connection *con;
1413
1414 /* Set all the flags to prevent any
1415 socket activity.
1416 */
1417 mutex_lock(&connections_lock);
1418 for (i = 0; i <= max_nodeid; i++) {
1419 con = __nodeid2con(i, 0);
1420 if (con) {
1421 con->flags |= 0x0F;
1422 if (con->sock)
1423 con->sock->sk->sk_user_data = NULL;
1424 }
1425 }
1426 mutex_unlock(&connections_lock);
1427
1428 work_stop();
1429
1430 mutex_lock(&connections_lock);
1431 clean_writequeues();
1432
1433 for (i = 0; i <= max_nodeid; i++) {
1434 con = __nodeid2con(i, 0);
1435 if (con) {
1436 close_connection(con, true);
1437 if (con->othercon)
1438 kmem_cache_free(con_cache, con->othercon);
1439 kmem_cache_free(con_cache, con);
1440 }
1441 }
1442 max_nodeid = 0;
1443 mutex_unlock(&connections_lock);
1444 kmem_cache_destroy(con_cache);
1445 idr_init(&connections_idr);
1446 }
1447
dlm_lowcomms_start(void)1448 int dlm_lowcomms_start(void)
1449 {
1450 int error = -EINVAL;
1451 struct connection *con;
1452
1453 init_local();
1454 if (!dlm_local_count) {
1455 error = -ENOTCONN;
1456 log_print("no local IP address has been set");
1457 goto out;
1458 }
1459
1460 error = -ENOMEM;
1461 con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1462 __alignof__(struct connection), 0,
1463 NULL);
1464 if (!con_cache)
1465 goto out;
1466
1467 /* Start listening */
1468 if (dlm_config.ci_protocol == 0)
1469 error = tcp_listen_for_all();
1470 else
1471 error = sctp_listen_for_all();
1472 if (error)
1473 goto fail_unlisten;
1474
1475 error = work_start();
1476 if (error)
1477 goto fail_unlisten;
1478
1479 return 0;
1480
1481 fail_unlisten:
1482 con = nodeid2con(0,0);
1483 if (con) {
1484 close_connection(con, false);
1485 kmem_cache_free(con_cache, con);
1486 }
1487 kmem_cache_destroy(con_cache);
1488
1489 out:
1490 return error;
1491 }
1492