• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/kernel_stat.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/mmu.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/time.h>
47 #include <asm/syscalls.h>
48 #ifdef CONFIG_PPC64
49 #include <asm/firmware.h>
50 #endif
51 #include <linux/kprobes.h>
52 #include <linux/kdebug.h>
53 
54 extern unsigned long _get_SP(void);
55 
56 #ifndef CONFIG_SMP
57 struct task_struct *last_task_used_math = NULL;
58 struct task_struct *last_task_used_altivec = NULL;
59 struct task_struct *last_task_used_vsx = NULL;
60 struct task_struct *last_task_used_spe = NULL;
61 #endif
62 
63 /*
64  * Make sure the floating-point register state in the
65  * the thread_struct is up to date for task tsk.
66  */
flush_fp_to_thread(struct task_struct * tsk)67 void flush_fp_to_thread(struct task_struct *tsk)
68 {
69 	if (tsk->thread.regs) {
70 		/*
71 		 * We need to disable preemption here because if we didn't,
72 		 * another process could get scheduled after the regs->msr
73 		 * test but before we have finished saving the FP registers
74 		 * to the thread_struct.  That process could take over the
75 		 * FPU, and then when we get scheduled again we would store
76 		 * bogus values for the remaining FP registers.
77 		 */
78 		preempt_disable();
79 		if (tsk->thread.regs->msr & MSR_FP) {
80 #ifdef CONFIG_SMP
81 			/*
82 			 * This should only ever be called for current or
83 			 * for a stopped child process.  Since we save away
84 			 * the FP register state on context switch on SMP,
85 			 * there is something wrong if a stopped child appears
86 			 * to still have its FP state in the CPU registers.
87 			 */
88 			BUG_ON(tsk != current);
89 #endif
90 			giveup_fpu(tsk);
91 		}
92 		preempt_enable();
93 	}
94 }
95 
enable_kernel_fp(void)96 void enable_kernel_fp(void)
97 {
98 	WARN_ON(preemptible());
99 
100 #ifdef CONFIG_SMP
101 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
102 		giveup_fpu(current);
103 	else
104 		giveup_fpu(NULL);	/* just enables FP for kernel */
105 #else
106 	giveup_fpu(last_task_used_math);
107 #endif /* CONFIG_SMP */
108 }
109 EXPORT_SYMBOL(enable_kernel_fp);
110 
111 #ifdef CONFIG_ALTIVEC
enable_kernel_altivec(void)112 void enable_kernel_altivec(void)
113 {
114 	WARN_ON(preemptible());
115 
116 #ifdef CONFIG_SMP
117 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
118 		giveup_altivec(current);
119 	else
120 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
121 #else
122 	giveup_altivec(last_task_used_altivec);
123 #endif /* CONFIG_SMP */
124 }
125 EXPORT_SYMBOL(enable_kernel_altivec);
126 
127 /*
128  * Make sure the VMX/Altivec register state in the
129  * the thread_struct is up to date for task tsk.
130  */
flush_altivec_to_thread(struct task_struct * tsk)131 void flush_altivec_to_thread(struct task_struct *tsk)
132 {
133 	if (tsk->thread.regs) {
134 		preempt_disable();
135 		if (tsk->thread.regs->msr & MSR_VEC) {
136 #ifdef CONFIG_SMP
137 			BUG_ON(tsk != current);
138 #endif
139 			giveup_altivec(tsk);
140 		}
141 		preempt_enable();
142 	}
143 }
144 #endif /* CONFIG_ALTIVEC */
145 
146 #ifdef CONFIG_VSX
147 #if 0
148 /* not currently used, but some crazy RAID module might want to later */
149 void enable_kernel_vsx(void)
150 {
151 	WARN_ON(preemptible());
152 
153 #ifdef CONFIG_SMP
154 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
155 		giveup_vsx(current);
156 	else
157 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
158 #else
159 	giveup_vsx(last_task_used_vsx);
160 #endif /* CONFIG_SMP */
161 }
162 EXPORT_SYMBOL(enable_kernel_vsx);
163 #endif
164 
giveup_vsx(struct task_struct * tsk)165 void giveup_vsx(struct task_struct *tsk)
166 {
167 	giveup_fpu(tsk);
168 	giveup_altivec(tsk);
169 	__giveup_vsx(tsk);
170 }
171 
flush_vsx_to_thread(struct task_struct * tsk)172 void flush_vsx_to_thread(struct task_struct *tsk)
173 {
174 	if (tsk->thread.regs) {
175 		preempt_disable();
176 		if (tsk->thread.regs->msr & MSR_VSX) {
177 #ifdef CONFIG_SMP
178 			BUG_ON(tsk != current);
179 #endif
180 			giveup_vsx(tsk);
181 		}
182 		preempt_enable();
183 	}
184 }
185 #endif /* CONFIG_VSX */
186 
187 #ifdef CONFIG_SPE
188 
enable_kernel_spe(void)189 void enable_kernel_spe(void)
190 {
191 	WARN_ON(preemptible());
192 
193 #ifdef CONFIG_SMP
194 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
195 		giveup_spe(current);
196 	else
197 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
198 #else
199 	giveup_spe(last_task_used_spe);
200 #endif /* __SMP __ */
201 }
202 EXPORT_SYMBOL(enable_kernel_spe);
203 
flush_spe_to_thread(struct task_struct * tsk)204 void flush_spe_to_thread(struct task_struct *tsk)
205 {
206 	if (tsk->thread.regs) {
207 		preempt_disable();
208 		if (tsk->thread.regs->msr & MSR_SPE) {
209 #ifdef CONFIG_SMP
210 			BUG_ON(tsk != current);
211 #endif
212 			giveup_spe(tsk);
213 		}
214 		preempt_enable();
215 	}
216 }
217 #endif /* CONFIG_SPE */
218 
219 #ifndef CONFIG_SMP
220 /*
221  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
222  * and the current task has some state, discard it.
223  */
discard_lazy_cpu_state(void)224 void discard_lazy_cpu_state(void)
225 {
226 	preempt_disable();
227 	if (last_task_used_math == current)
228 		last_task_used_math = NULL;
229 #ifdef CONFIG_ALTIVEC
230 	if (last_task_used_altivec == current)
231 		last_task_used_altivec = NULL;
232 #endif /* CONFIG_ALTIVEC */
233 #ifdef CONFIG_VSX
234 	if (last_task_used_vsx == current)
235 		last_task_used_vsx = NULL;
236 #endif /* CONFIG_VSX */
237 #ifdef CONFIG_SPE
238 	if (last_task_used_spe == current)
239 		last_task_used_spe = NULL;
240 #endif
241 	preempt_enable();
242 }
243 #endif /* CONFIG_SMP */
244 
do_dabr(struct pt_regs * regs,unsigned long address,unsigned long error_code)245 void do_dabr(struct pt_regs *regs, unsigned long address,
246 		    unsigned long error_code)
247 {
248 	siginfo_t info;
249 
250 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
251 			11, SIGSEGV) == NOTIFY_STOP)
252 		return;
253 
254 	if (debugger_dabr_match(regs))
255 		return;
256 
257 	/* Clear the DAC and struct entries.  One shot trigger */
258 #if defined(CONFIG_BOOKE)
259 	mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | DBSR_DAC1W
260 							| DBCR0_IDM));
261 #endif
262 
263 	/* Clear the DABR */
264 	set_dabr(0);
265 
266 	/* Deliver the signal to userspace */
267 	info.si_signo = SIGTRAP;
268 	info.si_errno = 0;
269 	info.si_code = TRAP_HWBKPT;
270 	info.si_addr = (void __user *)address;
271 	force_sig_info(SIGTRAP, &info, current);
272 }
273 
274 static DEFINE_PER_CPU(unsigned long, current_dabr);
275 
set_dabr(unsigned long dabr)276 int set_dabr(unsigned long dabr)
277 {
278 	__get_cpu_var(current_dabr) = dabr;
279 
280 	if (ppc_md.set_dabr)
281 		return ppc_md.set_dabr(dabr);
282 
283 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
284 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
285 	mtspr(SPRN_DABR, dabr);
286 #endif
287 
288 #if defined(CONFIG_BOOKE)
289 	mtspr(SPRN_DAC1, dabr);
290 #endif
291 
292 	return 0;
293 }
294 
295 #ifdef CONFIG_PPC64
296 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
297 #endif
298 
__switch_to(struct task_struct * prev,struct task_struct * new)299 struct task_struct *__switch_to(struct task_struct *prev,
300 	struct task_struct *new)
301 {
302 	struct thread_struct *new_thread, *old_thread;
303 	unsigned long flags;
304 	struct task_struct *last;
305 
306 #ifdef CONFIG_SMP
307 	/* avoid complexity of lazy save/restore of fpu
308 	 * by just saving it every time we switch out if
309 	 * this task used the fpu during the last quantum.
310 	 *
311 	 * If it tries to use the fpu again, it'll trap and
312 	 * reload its fp regs.  So we don't have to do a restore
313 	 * every switch, just a save.
314 	 *  -- Cort
315 	 */
316 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
317 		giveup_fpu(prev);
318 #ifdef CONFIG_ALTIVEC
319 	/*
320 	 * If the previous thread used altivec in the last quantum
321 	 * (thus changing altivec regs) then save them.
322 	 * We used to check the VRSAVE register but not all apps
323 	 * set it, so we don't rely on it now (and in fact we need
324 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
325 	 *
326 	 * On SMP we always save/restore altivec regs just to avoid the
327 	 * complexity of changing processors.
328 	 *  -- Cort
329 	 */
330 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
331 		giveup_altivec(prev);
332 #endif /* CONFIG_ALTIVEC */
333 #ifdef CONFIG_VSX
334 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
335 		/* VMX and FPU registers are already save here */
336 		__giveup_vsx(prev);
337 #endif /* CONFIG_VSX */
338 #ifdef CONFIG_SPE
339 	/*
340 	 * If the previous thread used spe in the last quantum
341 	 * (thus changing spe regs) then save them.
342 	 *
343 	 * On SMP we always save/restore spe regs just to avoid the
344 	 * complexity of changing processors.
345 	 */
346 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
347 		giveup_spe(prev);
348 #endif /* CONFIG_SPE */
349 
350 #else  /* CONFIG_SMP */
351 #ifdef CONFIG_ALTIVEC
352 	/* Avoid the trap.  On smp this this never happens since
353 	 * we don't set last_task_used_altivec -- Cort
354 	 */
355 	if (new->thread.regs && last_task_used_altivec == new)
356 		new->thread.regs->msr |= MSR_VEC;
357 #endif /* CONFIG_ALTIVEC */
358 #ifdef CONFIG_VSX
359 	if (new->thread.regs && last_task_used_vsx == new)
360 		new->thread.regs->msr |= MSR_VSX;
361 #endif /* CONFIG_VSX */
362 #ifdef CONFIG_SPE
363 	/* Avoid the trap.  On smp this this never happens since
364 	 * we don't set last_task_used_spe
365 	 */
366 	if (new->thread.regs && last_task_used_spe == new)
367 		new->thread.regs->msr |= MSR_SPE;
368 #endif /* CONFIG_SPE */
369 
370 #endif /* CONFIG_SMP */
371 
372 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
373 		set_dabr(new->thread.dabr);
374 
375 #if defined(CONFIG_BOOKE)
376 	/* If new thread DAC (HW breakpoint) is the same then leave it */
377 	if (new->thread.dabr)
378 		set_dabr(new->thread.dabr);
379 #endif
380 
381 	new_thread = &new->thread;
382 	old_thread = &current->thread;
383 
384 #ifdef CONFIG_PPC64
385 	/*
386 	 * Collect processor utilization data per process
387 	 */
388 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
389 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
390 		long unsigned start_tb, current_tb;
391 		start_tb = old_thread->start_tb;
392 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
393 		old_thread->accum_tb += (current_tb - start_tb);
394 		new_thread->start_tb = current_tb;
395 	}
396 #endif
397 
398 	local_irq_save(flags);
399 
400 	account_system_vtime(current);
401 	account_process_vtime(current);
402 	calculate_steal_time();
403 
404 	/*
405 	 * We can't take a PMU exception inside _switch() since there is a
406 	 * window where the kernel stack SLB and the kernel stack are out
407 	 * of sync. Hard disable here.
408 	 */
409 	hard_irq_disable();
410 	last = _switch(old_thread, new_thread);
411 
412 	local_irq_restore(flags);
413 
414 	return last;
415 }
416 
417 static int instructions_to_print = 16;
418 
show_instructions(struct pt_regs * regs)419 static void show_instructions(struct pt_regs *regs)
420 {
421 	int i;
422 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
423 			sizeof(int));
424 
425 	printk("Instruction dump:");
426 
427 	for (i = 0; i < instructions_to_print; i++) {
428 		int instr;
429 
430 		if (!(i % 8))
431 			printk("\n");
432 
433 #if !defined(CONFIG_BOOKE)
434 		/* If executing with the IMMU off, adjust pc rather
435 		 * than print XXXXXXXX.
436 		 */
437 		if (!(regs->msr & MSR_IR))
438 			pc = (unsigned long)phys_to_virt(pc);
439 #endif
440 
441 		/* We use __get_user here *only* to avoid an OOPS on a
442 		 * bad address because the pc *should* only be a
443 		 * kernel address.
444 		 */
445 		if (!__kernel_text_address(pc) ||
446 		     __get_user(instr, (unsigned int __user *)pc)) {
447 			printk("XXXXXXXX ");
448 		} else {
449 			if (regs->nip == pc)
450 				printk("<%08x> ", instr);
451 			else
452 				printk("%08x ", instr);
453 		}
454 
455 		pc += sizeof(int);
456 	}
457 
458 	printk("\n");
459 }
460 
461 static struct regbit {
462 	unsigned long bit;
463 	const char *name;
464 } msr_bits[] = {
465 	{MSR_EE,	"EE"},
466 	{MSR_PR,	"PR"},
467 	{MSR_FP,	"FP"},
468 	{MSR_VEC,	"VEC"},
469 	{MSR_VSX,	"VSX"},
470 	{MSR_ME,	"ME"},
471 	{MSR_CE,	"CE"},
472 	{MSR_DE,	"DE"},
473 	{MSR_IR,	"IR"},
474 	{MSR_DR,	"DR"},
475 	{0,		NULL}
476 };
477 
printbits(unsigned long val,struct regbit * bits)478 static void printbits(unsigned long val, struct regbit *bits)
479 {
480 	const char *sep = "";
481 
482 	printk("<");
483 	for (; bits->bit; ++bits)
484 		if (val & bits->bit) {
485 			printk("%s%s", sep, bits->name);
486 			sep = ",";
487 		}
488 	printk(">");
489 }
490 
491 #ifdef CONFIG_PPC64
492 #define REG		"%016lx"
493 #define REGS_PER_LINE	4
494 #define LAST_VOLATILE	13
495 #else
496 #define REG		"%08lx"
497 #define REGS_PER_LINE	8
498 #define LAST_VOLATILE	12
499 #endif
500 
show_regs(struct pt_regs * regs)501 void show_regs(struct pt_regs * regs)
502 {
503 	int i, trap;
504 
505 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
506 	       regs->nip, regs->link, regs->ctr);
507 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
508 	       regs, regs->trap, print_tainted(), init_utsname()->release);
509 	printk("MSR: "REG" ", regs->msr);
510 	printbits(regs->msr, msr_bits);
511 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
512 	trap = TRAP(regs);
513 	if (trap == 0x300 || trap == 0x600)
514 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
515 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
516 #else
517 		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
518 #endif
519 	printk("TASK = %p[%d] '%s' THREAD: %p",
520 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
521 
522 #ifdef CONFIG_SMP
523 	printk(" CPU: %d", raw_smp_processor_id());
524 #endif /* CONFIG_SMP */
525 
526 	for (i = 0;  i < 32;  i++) {
527 		if ((i % REGS_PER_LINE) == 0)
528 			printk("\n" KERN_INFO "GPR%02d: ", i);
529 		printk(REG " ", regs->gpr[i]);
530 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
531 			break;
532 	}
533 	printk("\n");
534 #ifdef CONFIG_KALLSYMS
535 	/*
536 	 * Lookup NIP late so we have the best change of getting the
537 	 * above info out without failing
538 	 */
539 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
540 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
541 #endif
542 	show_stack(current, (unsigned long *) regs->gpr[1]);
543 	if (!user_mode(regs))
544 		show_instructions(regs);
545 }
546 
exit_thread(void)547 void exit_thread(void)
548 {
549 	discard_lazy_cpu_state();
550 }
551 
flush_thread(void)552 void flush_thread(void)
553 {
554 #ifdef CONFIG_PPC64
555 	struct thread_info *t = current_thread_info();
556 
557 	if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
558 		clear_ti_thread_flag(t, TIF_ABI_PENDING);
559 		if (test_ti_thread_flag(t, TIF_32BIT))
560 			clear_ti_thread_flag(t, TIF_32BIT);
561 		else
562 			set_ti_thread_flag(t, TIF_32BIT);
563 	}
564 #endif
565 
566 	discard_lazy_cpu_state();
567 
568 	if (current->thread.dabr) {
569 		current->thread.dabr = 0;
570 		set_dabr(0);
571 
572 #if defined(CONFIG_BOOKE)
573 		current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W);
574 #endif
575 	}
576 }
577 
578 void
release_thread(struct task_struct * t)579 release_thread(struct task_struct *t)
580 {
581 }
582 
583 /*
584  * This gets called before we allocate a new thread and copy
585  * the current task into it.
586  */
prepare_to_copy(struct task_struct * tsk)587 void prepare_to_copy(struct task_struct *tsk)
588 {
589 	flush_fp_to_thread(current);
590 	flush_altivec_to_thread(current);
591 	flush_vsx_to_thread(current);
592 	flush_spe_to_thread(current);
593 }
594 
595 /*
596  * Copy a thread..
597  */
copy_thread(int nr,unsigned long clone_flags,unsigned long usp,unsigned long unused,struct task_struct * p,struct pt_regs * regs)598 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
599 		unsigned long unused, struct task_struct *p,
600 		struct pt_regs *regs)
601 {
602 	struct pt_regs *childregs, *kregs;
603 	extern void ret_from_fork(void);
604 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
605 
606 	CHECK_FULL_REGS(regs);
607 	/* Copy registers */
608 	sp -= sizeof(struct pt_regs);
609 	childregs = (struct pt_regs *) sp;
610 	*childregs = *regs;
611 	if ((childregs->msr & MSR_PR) == 0) {
612 		/* for kernel thread, set `current' and stackptr in new task */
613 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
614 #ifdef CONFIG_PPC32
615 		childregs->gpr[2] = (unsigned long) p;
616 #else
617 		clear_tsk_thread_flag(p, TIF_32BIT);
618 #endif
619 		p->thread.regs = NULL;	/* no user register state */
620 	} else {
621 		childregs->gpr[1] = usp;
622 		p->thread.regs = childregs;
623 		if (clone_flags & CLONE_SETTLS) {
624 #ifdef CONFIG_PPC64
625 			if (!test_thread_flag(TIF_32BIT))
626 				childregs->gpr[13] = childregs->gpr[6];
627 			else
628 #endif
629 				childregs->gpr[2] = childregs->gpr[6];
630 		}
631 	}
632 	childregs->gpr[3] = 0;  /* Result from fork() */
633 	sp -= STACK_FRAME_OVERHEAD;
634 
635 	/*
636 	 * The way this works is that at some point in the future
637 	 * some task will call _switch to switch to the new task.
638 	 * That will pop off the stack frame created below and start
639 	 * the new task running at ret_from_fork.  The new task will
640 	 * do some house keeping and then return from the fork or clone
641 	 * system call, using the stack frame created above.
642 	 */
643 	sp -= sizeof(struct pt_regs);
644 	kregs = (struct pt_regs *) sp;
645 	sp -= STACK_FRAME_OVERHEAD;
646 	p->thread.ksp = sp;
647 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
648 				_ALIGN_UP(sizeof(struct thread_info), 16);
649 
650 #ifdef CONFIG_PPC64
651 	if (cpu_has_feature(CPU_FTR_SLB)) {
652 		unsigned long sp_vsid;
653 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
654 
655 		if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
656 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
657 				<< SLB_VSID_SHIFT_1T;
658 		else
659 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
660 				<< SLB_VSID_SHIFT;
661 		sp_vsid |= SLB_VSID_KERNEL | llp;
662 		p->thread.ksp_vsid = sp_vsid;
663 	}
664 
665 	/*
666 	 * The PPC64 ABI makes use of a TOC to contain function
667 	 * pointers.  The function (ret_from_except) is actually a pointer
668 	 * to the TOC entry.  The first entry is a pointer to the actual
669 	 * function.
670  	 */
671 	kregs->nip = *((unsigned long *)ret_from_fork);
672 #else
673 	kregs->nip = (unsigned long)ret_from_fork;
674 #endif
675 
676 	return 0;
677 }
678 
679 /*
680  * Set up a thread for executing a new program
681  */
start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)682 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
683 {
684 #ifdef CONFIG_PPC64
685 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
686 #endif
687 
688 	set_fs(USER_DS);
689 
690 	/*
691 	 * If we exec out of a kernel thread then thread.regs will not be
692 	 * set.  Do it now.
693 	 */
694 	if (!current->thread.regs) {
695 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
696 		current->thread.regs = regs - 1;
697 	}
698 
699 	memset(regs->gpr, 0, sizeof(regs->gpr));
700 	regs->ctr = 0;
701 	regs->link = 0;
702 	regs->xer = 0;
703 	regs->ccr = 0;
704 	regs->gpr[1] = sp;
705 
706 	/*
707 	 * We have just cleared all the nonvolatile GPRs, so make
708 	 * FULL_REGS(regs) return true.  This is necessary to allow
709 	 * ptrace to examine the thread immediately after exec.
710 	 */
711 	regs->trap &= ~1UL;
712 
713 #ifdef CONFIG_PPC32
714 	regs->mq = 0;
715 	regs->nip = start;
716 	regs->msr = MSR_USER;
717 #else
718 	if (!test_thread_flag(TIF_32BIT)) {
719 		unsigned long entry, toc;
720 
721 		/* start is a relocated pointer to the function descriptor for
722 		 * the elf _start routine.  The first entry in the function
723 		 * descriptor is the entry address of _start and the second
724 		 * entry is the TOC value we need to use.
725 		 */
726 		__get_user(entry, (unsigned long __user *)start);
727 		__get_user(toc, (unsigned long __user *)start+1);
728 
729 		/* Check whether the e_entry function descriptor entries
730 		 * need to be relocated before we can use them.
731 		 */
732 		if (load_addr != 0) {
733 			entry += load_addr;
734 			toc   += load_addr;
735 		}
736 		regs->nip = entry;
737 		regs->gpr[2] = toc;
738 		regs->msr = MSR_USER64;
739 	} else {
740 		regs->nip = start;
741 		regs->gpr[2] = 0;
742 		regs->msr = MSR_USER32;
743 	}
744 #endif
745 
746 	discard_lazy_cpu_state();
747 #ifdef CONFIG_VSX
748 	current->thread.used_vsr = 0;
749 #endif
750 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
751 	current->thread.fpscr.val = 0;
752 #ifdef CONFIG_ALTIVEC
753 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
754 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
755 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
756 	current->thread.vrsave = 0;
757 	current->thread.used_vr = 0;
758 #endif /* CONFIG_ALTIVEC */
759 #ifdef CONFIG_SPE
760 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
761 	current->thread.acc = 0;
762 	current->thread.spefscr = 0;
763 	current->thread.used_spe = 0;
764 #endif /* CONFIG_SPE */
765 }
766 
767 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
768 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
769 
set_fpexc_mode(struct task_struct * tsk,unsigned int val)770 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
771 {
772 	struct pt_regs *regs = tsk->thread.regs;
773 
774 	/* This is a bit hairy.  If we are an SPE enabled  processor
775 	 * (have embedded fp) we store the IEEE exception enable flags in
776 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
777 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
778 	if (val & PR_FP_EXC_SW_ENABLE) {
779 #ifdef CONFIG_SPE
780 		if (cpu_has_feature(CPU_FTR_SPE)) {
781 			tsk->thread.fpexc_mode = val &
782 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
783 			return 0;
784 		} else {
785 			return -EINVAL;
786 		}
787 #else
788 		return -EINVAL;
789 #endif
790 	}
791 
792 	/* on a CONFIG_SPE this does not hurt us.  The bits that
793 	 * __pack_fe01 use do not overlap with bits used for
794 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
795 	 * on CONFIG_SPE implementations are reserved so writing to
796 	 * them does not change anything */
797 	if (val > PR_FP_EXC_PRECISE)
798 		return -EINVAL;
799 	tsk->thread.fpexc_mode = __pack_fe01(val);
800 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
801 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
802 			| tsk->thread.fpexc_mode;
803 	return 0;
804 }
805 
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)806 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
807 {
808 	unsigned int val;
809 
810 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
811 #ifdef CONFIG_SPE
812 		if (cpu_has_feature(CPU_FTR_SPE))
813 			val = tsk->thread.fpexc_mode;
814 		else
815 			return -EINVAL;
816 #else
817 		return -EINVAL;
818 #endif
819 	else
820 		val = __unpack_fe01(tsk->thread.fpexc_mode);
821 	return put_user(val, (unsigned int __user *) adr);
822 }
823 
set_endian(struct task_struct * tsk,unsigned int val)824 int set_endian(struct task_struct *tsk, unsigned int val)
825 {
826 	struct pt_regs *regs = tsk->thread.regs;
827 
828 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
829 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
830 		return -EINVAL;
831 
832 	if (regs == NULL)
833 		return -EINVAL;
834 
835 	if (val == PR_ENDIAN_BIG)
836 		regs->msr &= ~MSR_LE;
837 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
838 		regs->msr |= MSR_LE;
839 	else
840 		return -EINVAL;
841 
842 	return 0;
843 }
844 
get_endian(struct task_struct * tsk,unsigned long adr)845 int get_endian(struct task_struct *tsk, unsigned long adr)
846 {
847 	struct pt_regs *regs = tsk->thread.regs;
848 	unsigned int val;
849 
850 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
851 	    !cpu_has_feature(CPU_FTR_REAL_LE))
852 		return -EINVAL;
853 
854 	if (regs == NULL)
855 		return -EINVAL;
856 
857 	if (regs->msr & MSR_LE) {
858 		if (cpu_has_feature(CPU_FTR_REAL_LE))
859 			val = PR_ENDIAN_LITTLE;
860 		else
861 			val = PR_ENDIAN_PPC_LITTLE;
862 	} else
863 		val = PR_ENDIAN_BIG;
864 
865 	return put_user(val, (unsigned int __user *)adr);
866 }
867 
set_unalign_ctl(struct task_struct * tsk,unsigned int val)868 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
869 {
870 	tsk->thread.align_ctl = val;
871 	return 0;
872 }
873 
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)874 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
875 {
876 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
877 }
878 
879 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
880 
sys_clone(unsigned long clone_flags,unsigned long usp,int __user * parent_tidp,void __user * child_threadptr,int __user * child_tidp,int p6,struct pt_regs * regs)881 int sys_clone(unsigned long clone_flags, unsigned long usp,
882 	      int __user *parent_tidp, void __user *child_threadptr,
883 	      int __user *child_tidp, int p6,
884 	      struct pt_regs *regs)
885 {
886 	CHECK_FULL_REGS(regs);
887 	if (usp == 0)
888 		usp = regs->gpr[1];	/* stack pointer for child */
889 #ifdef CONFIG_PPC64
890 	if (test_thread_flag(TIF_32BIT)) {
891 		parent_tidp = TRUNC_PTR(parent_tidp);
892 		child_tidp = TRUNC_PTR(child_tidp);
893 	}
894 #endif
895  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
896 }
897 
sys_fork(unsigned long p1,unsigned long p2,unsigned long p3,unsigned long p4,unsigned long p5,unsigned long p6,struct pt_regs * regs)898 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
899 	     unsigned long p4, unsigned long p5, unsigned long p6,
900 	     struct pt_regs *regs)
901 {
902 	CHECK_FULL_REGS(regs);
903 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
904 }
905 
sys_vfork(unsigned long p1,unsigned long p2,unsigned long p3,unsigned long p4,unsigned long p5,unsigned long p6,struct pt_regs * regs)906 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
907 	      unsigned long p4, unsigned long p5, unsigned long p6,
908 	      struct pt_regs *regs)
909 {
910 	CHECK_FULL_REGS(regs);
911 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
912 			regs, 0, NULL, NULL);
913 }
914 
sys_execve(unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4,unsigned long a5,struct pt_regs * regs)915 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
916 	       unsigned long a3, unsigned long a4, unsigned long a5,
917 	       struct pt_regs *regs)
918 {
919 	int error;
920 	char *filename;
921 
922 	filename = getname((char __user *) a0);
923 	error = PTR_ERR(filename);
924 	if (IS_ERR(filename))
925 		goto out;
926 	flush_fp_to_thread(current);
927 	flush_altivec_to_thread(current);
928 	flush_spe_to_thread(current);
929 	error = do_execve(filename, (char __user * __user *) a1,
930 			  (char __user * __user *) a2, regs);
931 	putname(filename);
932 out:
933 	return error;
934 }
935 
936 #ifdef CONFIG_IRQSTACKS
valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)937 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
938 				  unsigned long nbytes)
939 {
940 	unsigned long stack_page;
941 	unsigned long cpu = task_cpu(p);
942 
943 	/*
944 	 * Avoid crashing if the stack has overflowed and corrupted
945 	 * task_cpu(p), which is in the thread_info struct.
946 	 */
947 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
948 		stack_page = (unsigned long) hardirq_ctx[cpu];
949 		if (sp >= stack_page + sizeof(struct thread_struct)
950 		    && sp <= stack_page + THREAD_SIZE - nbytes)
951 			return 1;
952 
953 		stack_page = (unsigned long) softirq_ctx[cpu];
954 		if (sp >= stack_page + sizeof(struct thread_struct)
955 		    && sp <= stack_page + THREAD_SIZE - nbytes)
956 			return 1;
957 	}
958 	return 0;
959 }
960 
961 #else
962 #define valid_irq_stack(sp, p, nb)	0
963 #endif /* CONFIG_IRQSTACKS */
964 
validate_sp(unsigned long sp,struct task_struct * p,unsigned long nbytes)965 int validate_sp(unsigned long sp, struct task_struct *p,
966 		       unsigned long nbytes)
967 {
968 	unsigned long stack_page = (unsigned long)task_stack_page(p);
969 
970 	if (sp >= stack_page + sizeof(struct thread_struct)
971 	    && sp <= stack_page + THREAD_SIZE - nbytes)
972 		return 1;
973 
974 	return valid_irq_stack(sp, p, nbytes);
975 }
976 
977 EXPORT_SYMBOL(validate_sp);
978 
get_wchan(struct task_struct * p)979 unsigned long get_wchan(struct task_struct *p)
980 {
981 	unsigned long ip, sp;
982 	int count = 0;
983 
984 	if (!p || p == current || p->state == TASK_RUNNING)
985 		return 0;
986 
987 	sp = p->thread.ksp;
988 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
989 		return 0;
990 
991 	do {
992 		sp = *(unsigned long *)sp;
993 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
994 			return 0;
995 		if (count > 0) {
996 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
997 			if (!in_sched_functions(ip))
998 				return ip;
999 		}
1000 	} while (count++ < 16);
1001 	return 0;
1002 }
1003 
1004 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1005 
show_stack(struct task_struct * tsk,unsigned long * stack)1006 void show_stack(struct task_struct *tsk, unsigned long *stack)
1007 {
1008 	unsigned long sp, ip, lr, newsp;
1009 	int count = 0;
1010 	int firstframe = 1;
1011 
1012 	sp = (unsigned long) stack;
1013 	if (tsk == NULL)
1014 		tsk = current;
1015 	if (sp == 0) {
1016 		if (tsk == current)
1017 			asm("mr %0,1" : "=r" (sp));
1018 		else
1019 			sp = tsk->thread.ksp;
1020 	}
1021 
1022 	lr = 0;
1023 	printk("Call Trace:\n");
1024 	do {
1025 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1026 			return;
1027 
1028 		stack = (unsigned long *) sp;
1029 		newsp = stack[0];
1030 		ip = stack[STACK_FRAME_LR_SAVE];
1031 		if (!firstframe || ip != lr) {
1032 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1033 			if (firstframe)
1034 				printk(" (unreliable)");
1035 			printk("\n");
1036 		}
1037 		firstframe = 0;
1038 
1039 		/*
1040 		 * See if this is an exception frame.
1041 		 * We look for the "regshere" marker in the current frame.
1042 		 */
1043 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1044 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1045 			struct pt_regs *regs = (struct pt_regs *)
1046 				(sp + STACK_FRAME_OVERHEAD);
1047 			lr = regs->link;
1048 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1049 			       regs->trap, (void *)regs->nip, (void *)lr);
1050 			firstframe = 1;
1051 		}
1052 
1053 		sp = newsp;
1054 	} while (count++ < kstack_depth_to_print);
1055 }
1056 
dump_stack(void)1057 void dump_stack(void)
1058 {
1059 	show_stack(current, NULL);
1060 }
1061 EXPORT_SYMBOL(dump_stack);
1062 
1063 #ifdef CONFIG_PPC64
ppc64_runlatch_on(void)1064 void ppc64_runlatch_on(void)
1065 {
1066 	unsigned long ctrl;
1067 
1068 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1069 		HMT_medium();
1070 
1071 		ctrl = mfspr(SPRN_CTRLF);
1072 		ctrl |= CTRL_RUNLATCH;
1073 		mtspr(SPRN_CTRLT, ctrl);
1074 
1075 		set_thread_flag(TIF_RUNLATCH);
1076 	}
1077 }
1078 
ppc64_runlatch_off(void)1079 void ppc64_runlatch_off(void)
1080 {
1081 	unsigned long ctrl;
1082 
1083 	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1084 		HMT_medium();
1085 
1086 		clear_thread_flag(TIF_RUNLATCH);
1087 
1088 		ctrl = mfspr(SPRN_CTRLF);
1089 		ctrl &= ~CTRL_RUNLATCH;
1090 		mtspr(SPRN_CTRLT, ctrl);
1091 	}
1092 }
1093 #endif
1094 
1095 #if THREAD_SHIFT < PAGE_SHIFT
1096 
1097 static struct kmem_cache *thread_info_cache;
1098 
alloc_thread_info(struct task_struct * tsk)1099 struct thread_info *alloc_thread_info(struct task_struct *tsk)
1100 {
1101 	struct thread_info *ti;
1102 
1103 	ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1104 	if (unlikely(ti == NULL))
1105 		return NULL;
1106 #ifdef CONFIG_DEBUG_STACK_USAGE
1107 	memset(ti, 0, THREAD_SIZE);
1108 #endif
1109 	return ti;
1110 }
1111 
free_thread_info(struct thread_info * ti)1112 void free_thread_info(struct thread_info *ti)
1113 {
1114 	kmem_cache_free(thread_info_cache, ti);
1115 }
1116 
thread_info_cache_init(void)1117 void thread_info_cache_init(void)
1118 {
1119 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1120 					      THREAD_SIZE, 0, NULL);
1121 	BUG_ON(thread_info_cache == NULL);
1122 }
1123 
1124 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1125