• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "pnode.h"
33 #include "internal.h"
34 
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
37 
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40 
41 static int event;
42 static DEFINE_IDA(mnt_id_ida);
43 static DEFINE_IDA(mnt_group_ida);
44 
45 static struct list_head *mount_hashtable __read_mostly;
46 static struct kmem_cache *mnt_cache __read_mostly;
47 static struct rw_semaphore namespace_sem;
48 
49 /* /sys/fs */
50 struct kobject *fs_kobj;
51 EXPORT_SYMBOL_GPL(fs_kobj);
52 
hash(struct vfsmount * mnt,struct dentry * dentry)53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
54 {
55 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
57 	tmp = tmp + (tmp >> HASH_SHIFT);
58 	return tmp & (HASH_SIZE - 1);
59 }
60 
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
62 
63 /* allocation is serialized by namespace_sem */
mnt_alloc_id(struct vfsmount * mnt)64 static int mnt_alloc_id(struct vfsmount *mnt)
65 {
66 	int res;
67 
68 retry:
69 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 	spin_lock(&vfsmount_lock);
71 	res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 	spin_unlock(&vfsmount_lock);
73 	if (res == -EAGAIN)
74 		goto retry;
75 
76 	return res;
77 }
78 
mnt_free_id(struct vfsmount * mnt)79 static void mnt_free_id(struct vfsmount *mnt)
80 {
81 	spin_lock(&vfsmount_lock);
82 	ida_remove(&mnt_id_ida, mnt->mnt_id);
83 	spin_unlock(&vfsmount_lock);
84 }
85 
86 /*
87  * Allocate a new peer group ID
88  *
89  * mnt_group_ida is protected by namespace_sem
90  */
mnt_alloc_group_id(struct vfsmount * mnt)91 static int mnt_alloc_group_id(struct vfsmount *mnt)
92 {
93 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 		return -ENOMEM;
95 
96 	return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
97 }
98 
99 /*
100  * Release a peer group ID
101  */
mnt_release_group_id(struct vfsmount * mnt)102 void mnt_release_group_id(struct vfsmount *mnt)
103 {
104 	ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 	mnt->mnt_group_id = 0;
106 }
107 
alloc_vfsmnt(const char * name)108 struct vfsmount *alloc_vfsmnt(const char *name)
109 {
110 	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
111 	if (mnt) {
112 		int err;
113 
114 		err = mnt_alloc_id(mnt);
115 		if (err)
116 			goto out_free_cache;
117 
118 		if (name) {
119 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
120 			if (!mnt->mnt_devname)
121 				goto out_free_id;
122 		}
123 
124 		atomic_set(&mnt->mnt_count, 1);
125 		INIT_LIST_HEAD(&mnt->mnt_hash);
126 		INIT_LIST_HEAD(&mnt->mnt_child);
127 		INIT_LIST_HEAD(&mnt->mnt_mounts);
128 		INIT_LIST_HEAD(&mnt->mnt_list);
129 		INIT_LIST_HEAD(&mnt->mnt_expire);
130 		INIT_LIST_HEAD(&mnt->mnt_share);
131 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
132 		INIT_LIST_HEAD(&mnt->mnt_slave);
133 		atomic_set(&mnt->__mnt_writers, 0);
134 	}
135 	return mnt;
136 
137 out_free_id:
138 	mnt_free_id(mnt);
139 out_free_cache:
140 	kmem_cache_free(mnt_cache, mnt);
141 	return NULL;
142 }
143 
144 /*
145  * Most r/o checks on a fs are for operations that take
146  * discrete amounts of time, like a write() or unlink().
147  * We must keep track of when those operations start
148  * (for permission checks) and when they end, so that
149  * we can determine when writes are able to occur to
150  * a filesystem.
151  */
152 /*
153  * __mnt_is_readonly: check whether a mount is read-only
154  * @mnt: the mount to check for its write status
155  *
156  * This shouldn't be used directly ouside of the VFS.
157  * It does not guarantee that the filesystem will stay
158  * r/w, just that it is right *now*.  This can not and
159  * should not be used in place of IS_RDONLY(inode).
160  * mnt_want/drop_write() will _keep_ the filesystem
161  * r/w.
162  */
__mnt_is_readonly(struct vfsmount * mnt)163 int __mnt_is_readonly(struct vfsmount *mnt)
164 {
165 	if (mnt->mnt_flags & MNT_READONLY)
166 		return 1;
167 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
168 		return 1;
169 	return 0;
170 }
171 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
172 
173 struct mnt_writer {
174 	/*
175 	 * If holding multiple instances of this lock, they
176 	 * must be ordered by cpu number.
177 	 */
178 	spinlock_t lock;
179 	struct lock_class_key lock_class; /* compiles out with !lockdep */
180 	unsigned long count;
181 	struct vfsmount *mnt;
182 } ____cacheline_aligned_in_smp;
183 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
184 
init_mnt_writers(void)185 static int __init init_mnt_writers(void)
186 {
187 	int cpu;
188 	for_each_possible_cpu(cpu) {
189 		struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
190 		spin_lock_init(&writer->lock);
191 		lockdep_set_class(&writer->lock, &writer->lock_class);
192 		writer->count = 0;
193 	}
194 	return 0;
195 }
196 fs_initcall(init_mnt_writers);
197 
unlock_mnt_writers(void)198 static void unlock_mnt_writers(void)
199 {
200 	int cpu;
201 	struct mnt_writer *cpu_writer;
202 
203 	for_each_possible_cpu(cpu) {
204 		cpu_writer = &per_cpu(mnt_writers, cpu);
205 		spin_unlock(&cpu_writer->lock);
206 	}
207 }
208 
__clear_mnt_count(struct mnt_writer * cpu_writer)209 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
210 {
211 	if (!cpu_writer->mnt)
212 		return;
213 	/*
214 	 * This is in case anyone ever leaves an invalid,
215 	 * old ->mnt and a count of 0.
216 	 */
217 	if (!cpu_writer->count)
218 		return;
219 	atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
220 	cpu_writer->count = 0;
221 }
222  /*
223  * must hold cpu_writer->lock
224  */
use_cpu_writer_for_mount(struct mnt_writer * cpu_writer,struct vfsmount * mnt)225 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
226 					  struct vfsmount *mnt)
227 {
228 	if (cpu_writer->mnt == mnt)
229 		return;
230 	__clear_mnt_count(cpu_writer);
231 	cpu_writer->mnt = mnt;
232 }
233 
234 /*
235  * Most r/o checks on a fs are for operations that take
236  * discrete amounts of time, like a write() or unlink().
237  * We must keep track of when those operations start
238  * (for permission checks) and when they end, so that
239  * we can determine when writes are able to occur to
240  * a filesystem.
241  */
242 /**
243  * mnt_want_write - get write access to a mount
244  * @mnt: the mount on which to take a write
245  *
246  * This tells the low-level filesystem that a write is
247  * about to be performed to it, and makes sure that
248  * writes are allowed before returning success.  When
249  * the write operation is finished, mnt_drop_write()
250  * must be called.  This is effectively a refcount.
251  */
mnt_want_write(struct vfsmount * mnt)252 int mnt_want_write(struct vfsmount *mnt)
253 {
254 	int ret = 0;
255 	struct mnt_writer *cpu_writer;
256 
257 	cpu_writer = &get_cpu_var(mnt_writers);
258 	spin_lock(&cpu_writer->lock);
259 	if (__mnt_is_readonly(mnt)) {
260 		ret = -EROFS;
261 		goto out;
262 	}
263 	use_cpu_writer_for_mount(cpu_writer, mnt);
264 	cpu_writer->count++;
265 out:
266 	spin_unlock(&cpu_writer->lock);
267 	put_cpu_var(mnt_writers);
268 	return ret;
269 }
270 EXPORT_SYMBOL_GPL(mnt_want_write);
271 
lock_mnt_writers(void)272 static void lock_mnt_writers(void)
273 {
274 	int cpu;
275 	struct mnt_writer *cpu_writer;
276 
277 	for_each_possible_cpu(cpu) {
278 		cpu_writer = &per_cpu(mnt_writers, cpu);
279 		spin_lock(&cpu_writer->lock);
280 		__clear_mnt_count(cpu_writer);
281 		cpu_writer->mnt = NULL;
282 	}
283 }
284 
285 /*
286  * These per-cpu write counts are not guaranteed to have
287  * matched increments and decrements on any given cpu.
288  * A file open()ed for write on one cpu and close()d on
289  * another cpu will imbalance this count.  Make sure it
290  * does not get too far out of whack.
291  */
handle_write_count_underflow(struct vfsmount * mnt)292 static void handle_write_count_underflow(struct vfsmount *mnt)
293 {
294 	if (atomic_read(&mnt->__mnt_writers) >=
295 	    MNT_WRITER_UNDERFLOW_LIMIT)
296 		return;
297 	/*
298 	 * It isn't necessary to hold all of the locks
299 	 * at the same time, but doing it this way makes
300 	 * us share a lot more code.
301 	 */
302 	lock_mnt_writers();
303 	/*
304 	 * vfsmount_lock is for mnt_flags.
305 	 */
306 	spin_lock(&vfsmount_lock);
307 	/*
308 	 * If coalescing the per-cpu writer counts did not
309 	 * get us back to a positive writer count, we have
310 	 * a bug.
311 	 */
312 	if ((atomic_read(&mnt->__mnt_writers) < 0) &&
313 	    !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
314 		WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
315 				"count: %d\n",
316 			mnt, atomic_read(&mnt->__mnt_writers));
317 		/* use the flag to keep the dmesg spam down */
318 		mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
319 	}
320 	spin_unlock(&vfsmount_lock);
321 	unlock_mnt_writers();
322 }
323 
324 /**
325  * mnt_drop_write - give up write access to a mount
326  * @mnt: the mount on which to give up write access
327  *
328  * Tells the low-level filesystem that we are done
329  * performing writes to it.  Must be matched with
330  * mnt_want_write() call above.
331  */
mnt_drop_write(struct vfsmount * mnt)332 void mnt_drop_write(struct vfsmount *mnt)
333 {
334 	int must_check_underflow = 0;
335 	struct mnt_writer *cpu_writer;
336 
337 	cpu_writer = &get_cpu_var(mnt_writers);
338 	spin_lock(&cpu_writer->lock);
339 
340 	use_cpu_writer_for_mount(cpu_writer, mnt);
341 	if (cpu_writer->count > 0) {
342 		cpu_writer->count--;
343 	} else {
344 		must_check_underflow = 1;
345 		atomic_dec(&mnt->__mnt_writers);
346 	}
347 
348 	spin_unlock(&cpu_writer->lock);
349 	/*
350 	 * Logically, we could call this each time,
351 	 * but the __mnt_writers cacheline tends to
352 	 * be cold, and makes this expensive.
353 	 */
354 	if (must_check_underflow)
355 		handle_write_count_underflow(mnt);
356 	/*
357 	 * This could be done right after the spinlock
358 	 * is taken because the spinlock keeps us on
359 	 * the cpu, and disables preemption.  However,
360 	 * putting it here bounds the amount that
361 	 * __mnt_writers can underflow.  Without it,
362 	 * we could theoretically wrap __mnt_writers.
363 	 */
364 	put_cpu_var(mnt_writers);
365 }
366 EXPORT_SYMBOL_GPL(mnt_drop_write);
367 
mnt_make_readonly(struct vfsmount * mnt)368 static int mnt_make_readonly(struct vfsmount *mnt)
369 {
370 	int ret = 0;
371 
372 	lock_mnt_writers();
373 	/*
374 	 * With all the locks held, this value is stable
375 	 */
376 	if (atomic_read(&mnt->__mnt_writers) > 0) {
377 		ret = -EBUSY;
378 		goto out;
379 	}
380 	/*
381 	 * nobody can do a successful mnt_want_write() with all
382 	 * of the counts in MNT_DENIED_WRITE and the locks held.
383 	 */
384 	spin_lock(&vfsmount_lock);
385 	if (!ret)
386 		mnt->mnt_flags |= MNT_READONLY;
387 	spin_unlock(&vfsmount_lock);
388 out:
389 	unlock_mnt_writers();
390 	return ret;
391 }
392 
__mnt_unmake_readonly(struct vfsmount * mnt)393 static void __mnt_unmake_readonly(struct vfsmount *mnt)
394 {
395 	spin_lock(&vfsmount_lock);
396 	mnt->mnt_flags &= ~MNT_READONLY;
397 	spin_unlock(&vfsmount_lock);
398 }
399 
simple_set_mnt(struct vfsmount * mnt,struct super_block * sb)400 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
401 {
402 	mnt->mnt_sb = sb;
403 	mnt->mnt_root = dget(sb->s_root);
404 	return 0;
405 }
406 
407 EXPORT_SYMBOL(simple_set_mnt);
408 
free_vfsmnt(struct vfsmount * mnt)409 void free_vfsmnt(struct vfsmount *mnt)
410 {
411 	kfree(mnt->mnt_devname);
412 	mnt_free_id(mnt);
413 	kmem_cache_free(mnt_cache, mnt);
414 }
415 
416 /*
417  * find the first or last mount at @dentry on vfsmount @mnt depending on
418  * @dir. If @dir is set return the first mount else return the last mount.
419  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry,int dir)420 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 			      int dir)
422 {
423 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
424 	struct list_head *tmp = head;
425 	struct vfsmount *p, *found = NULL;
426 
427 	for (;;) {
428 		tmp = dir ? tmp->next : tmp->prev;
429 		p = NULL;
430 		if (tmp == head)
431 			break;
432 		p = list_entry(tmp, struct vfsmount, mnt_hash);
433 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
434 			found = p;
435 			break;
436 		}
437 	}
438 	return found;
439 }
440 
441 /*
442  * lookup_mnt increments the ref count before returning
443  * the vfsmount struct.
444  */
lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)445 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
446 {
447 	struct vfsmount *child_mnt;
448 	spin_lock(&vfsmount_lock);
449 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
450 		mntget(child_mnt);
451 	spin_unlock(&vfsmount_lock);
452 	return child_mnt;
453 }
454 
check_mnt(struct vfsmount * mnt)455 static inline int check_mnt(struct vfsmount *mnt)
456 {
457 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
458 }
459 
touch_mnt_namespace(struct mnt_namespace * ns)460 static void touch_mnt_namespace(struct mnt_namespace *ns)
461 {
462 	if (ns) {
463 		ns->event = ++event;
464 		wake_up_interruptible(&ns->poll);
465 	}
466 }
467 
__touch_mnt_namespace(struct mnt_namespace * ns)468 static void __touch_mnt_namespace(struct mnt_namespace *ns)
469 {
470 	if (ns && ns->event != event) {
471 		ns->event = event;
472 		wake_up_interruptible(&ns->poll);
473 	}
474 }
475 
detach_mnt(struct vfsmount * mnt,struct path * old_path)476 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
477 {
478 	old_path->dentry = mnt->mnt_mountpoint;
479 	old_path->mnt = mnt->mnt_parent;
480 	mnt->mnt_parent = mnt;
481 	mnt->mnt_mountpoint = mnt->mnt_root;
482 	list_del_init(&mnt->mnt_child);
483 	list_del_init(&mnt->mnt_hash);
484 	old_path->dentry->d_mounted--;
485 }
486 
mnt_set_mountpoint(struct vfsmount * mnt,struct dentry * dentry,struct vfsmount * child_mnt)487 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
488 			struct vfsmount *child_mnt)
489 {
490 	child_mnt->mnt_parent = mntget(mnt);
491 	child_mnt->mnt_mountpoint = dget(dentry);
492 	dentry->d_mounted++;
493 }
494 
attach_mnt(struct vfsmount * mnt,struct path * path)495 static void attach_mnt(struct vfsmount *mnt, struct path *path)
496 {
497 	mnt_set_mountpoint(path->mnt, path->dentry, mnt);
498 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
499 			hash(path->mnt, path->dentry));
500 	list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
501 }
502 
503 /*
504  * the caller must hold vfsmount_lock
505  */
commit_tree(struct vfsmount * mnt)506 static void commit_tree(struct vfsmount *mnt)
507 {
508 	struct vfsmount *parent = mnt->mnt_parent;
509 	struct vfsmount *m;
510 	LIST_HEAD(head);
511 	struct mnt_namespace *n = parent->mnt_ns;
512 
513 	BUG_ON(parent == mnt);
514 
515 	list_add_tail(&head, &mnt->mnt_list);
516 	list_for_each_entry(m, &head, mnt_list)
517 		m->mnt_ns = n;
518 	list_splice(&head, n->list.prev);
519 
520 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
521 				hash(parent, mnt->mnt_mountpoint));
522 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
523 	touch_mnt_namespace(n);
524 }
525 
next_mnt(struct vfsmount * p,struct vfsmount * root)526 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
527 {
528 	struct list_head *next = p->mnt_mounts.next;
529 	if (next == &p->mnt_mounts) {
530 		while (1) {
531 			if (p == root)
532 				return NULL;
533 			next = p->mnt_child.next;
534 			if (next != &p->mnt_parent->mnt_mounts)
535 				break;
536 			p = p->mnt_parent;
537 		}
538 	}
539 	return list_entry(next, struct vfsmount, mnt_child);
540 }
541 
skip_mnt_tree(struct vfsmount * p)542 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
543 {
544 	struct list_head *prev = p->mnt_mounts.prev;
545 	while (prev != &p->mnt_mounts) {
546 		p = list_entry(prev, struct vfsmount, mnt_child);
547 		prev = p->mnt_mounts.prev;
548 	}
549 	return p;
550 }
551 
clone_mnt(struct vfsmount * old,struct dentry * root,int flag)552 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 					int flag)
554 {
555 	struct super_block *sb = old->mnt_sb;
556 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557 
558 	if (mnt) {
559 		if (flag & (CL_SLAVE | CL_PRIVATE))
560 			mnt->mnt_group_id = 0; /* not a peer of original */
561 		else
562 			mnt->mnt_group_id = old->mnt_group_id;
563 
564 		if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 			int err = mnt_alloc_group_id(mnt);
566 			if (err)
567 				goto out_free;
568 		}
569 
570 		mnt->mnt_flags = old->mnt_flags;
571 		atomic_inc(&sb->s_active);
572 		mnt->mnt_sb = sb;
573 		mnt->mnt_root = dget(root);
574 		mnt->mnt_mountpoint = mnt->mnt_root;
575 		mnt->mnt_parent = mnt;
576 
577 		if (flag & CL_SLAVE) {
578 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
579 			mnt->mnt_master = old;
580 			CLEAR_MNT_SHARED(mnt);
581 		} else if (!(flag & CL_PRIVATE)) {
582 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
583 				list_add(&mnt->mnt_share, &old->mnt_share);
584 			if (IS_MNT_SLAVE(old))
585 				list_add(&mnt->mnt_slave, &old->mnt_slave);
586 			mnt->mnt_master = old->mnt_master;
587 		}
588 		if (flag & CL_MAKE_SHARED)
589 			set_mnt_shared(mnt);
590 
591 		/* stick the duplicate mount on the same expiry list
592 		 * as the original if that was on one */
593 		if (flag & CL_EXPIRE) {
594 			if (!list_empty(&old->mnt_expire))
595 				list_add(&mnt->mnt_expire, &old->mnt_expire);
596 		}
597 	}
598 	return mnt;
599 
600  out_free:
601 	free_vfsmnt(mnt);
602 	return NULL;
603 }
604 
__mntput(struct vfsmount * mnt)605 static inline void __mntput(struct vfsmount *mnt)
606 {
607 	int cpu;
608 	struct super_block *sb = mnt->mnt_sb;
609 	/*
610 	 * We don't have to hold all of the locks at the
611 	 * same time here because we know that we're the
612 	 * last reference to mnt and that no new writers
613 	 * can come in.
614 	 */
615 	for_each_possible_cpu(cpu) {
616 		struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
617 		spin_lock(&cpu_writer->lock);
618 		if (cpu_writer->mnt != mnt) {
619 			spin_unlock(&cpu_writer->lock);
620 			continue;
621 		}
622 		atomic_add(cpu_writer->count, &mnt->__mnt_writers);
623 		cpu_writer->count = 0;
624 		/*
625 		 * Might as well do this so that no one
626 		 * ever sees the pointer and expects
627 		 * it to be valid.
628 		 */
629 		cpu_writer->mnt = NULL;
630 		spin_unlock(&cpu_writer->lock);
631 	}
632 	/*
633 	 * This probably indicates that somebody messed
634 	 * up a mnt_want/drop_write() pair.  If this
635 	 * happens, the filesystem was probably unable
636 	 * to make r/w->r/o transitions.
637 	 */
638 	WARN_ON(atomic_read(&mnt->__mnt_writers));
639 	dput(mnt->mnt_root);
640 	free_vfsmnt(mnt);
641 	deactivate_super(sb);
642 }
643 
mntput_no_expire(struct vfsmount * mnt)644 void mntput_no_expire(struct vfsmount *mnt)
645 {
646 repeat:
647 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
648 		if (likely(!mnt->mnt_pinned)) {
649 			spin_unlock(&vfsmount_lock);
650 			__mntput(mnt);
651 			return;
652 		}
653 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
654 		mnt->mnt_pinned = 0;
655 		spin_unlock(&vfsmount_lock);
656 		acct_auto_close_mnt(mnt);
657 		security_sb_umount_close(mnt);
658 		goto repeat;
659 	}
660 }
661 
662 EXPORT_SYMBOL(mntput_no_expire);
663 
mnt_pin(struct vfsmount * mnt)664 void mnt_pin(struct vfsmount *mnt)
665 {
666 	spin_lock(&vfsmount_lock);
667 	mnt->mnt_pinned++;
668 	spin_unlock(&vfsmount_lock);
669 }
670 
671 EXPORT_SYMBOL(mnt_pin);
672 
mnt_unpin(struct vfsmount * mnt)673 void mnt_unpin(struct vfsmount *mnt)
674 {
675 	spin_lock(&vfsmount_lock);
676 	if (mnt->mnt_pinned) {
677 		atomic_inc(&mnt->mnt_count);
678 		mnt->mnt_pinned--;
679 	}
680 	spin_unlock(&vfsmount_lock);
681 }
682 
683 EXPORT_SYMBOL(mnt_unpin);
684 
mangle(struct seq_file * m,const char * s)685 static inline void mangle(struct seq_file *m, const char *s)
686 {
687 	seq_escape(m, s, " \t\n\\");
688 }
689 
690 /*
691  * Simple .show_options callback for filesystems which don't want to
692  * implement more complex mount option showing.
693  *
694  * See also save_mount_options().
695  */
generic_show_options(struct seq_file * m,struct vfsmount * mnt)696 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
697 {
698 	const char *options = mnt->mnt_sb->s_options;
699 
700 	if (options != NULL && options[0]) {
701 		seq_putc(m, ',');
702 		mangle(m, options);
703 	}
704 
705 	return 0;
706 }
707 EXPORT_SYMBOL(generic_show_options);
708 
709 /*
710  * If filesystem uses generic_show_options(), this function should be
711  * called from the fill_super() callback.
712  *
713  * The .remount_fs callback usually needs to be handled in a special
714  * way, to make sure, that previous options are not overwritten if the
715  * remount fails.
716  *
717  * Also note, that if the filesystem's .remount_fs function doesn't
718  * reset all options to their default value, but changes only newly
719  * given options, then the displayed options will not reflect reality
720  * any more.
721  */
save_mount_options(struct super_block * sb,char * options)722 void save_mount_options(struct super_block *sb, char *options)
723 {
724 	kfree(sb->s_options);
725 	sb->s_options = kstrdup(options, GFP_KERNEL);
726 }
727 EXPORT_SYMBOL(save_mount_options);
728 
729 #ifdef CONFIG_PROC_FS
730 /* iterator */
m_start(struct seq_file * m,loff_t * pos)731 static void *m_start(struct seq_file *m, loff_t *pos)
732 {
733 	struct proc_mounts *p = m->private;
734 
735 	down_read(&namespace_sem);
736 	return seq_list_start(&p->ns->list, *pos);
737 }
738 
m_next(struct seq_file * m,void * v,loff_t * pos)739 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
740 {
741 	struct proc_mounts *p = m->private;
742 
743 	return seq_list_next(v, &p->ns->list, pos);
744 }
745 
m_stop(struct seq_file * m,void * v)746 static void m_stop(struct seq_file *m, void *v)
747 {
748 	up_read(&namespace_sem);
749 }
750 
751 struct proc_fs_info {
752 	int flag;
753 	const char *str;
754 };
755 
show_sb_opts(struct seq_file * m,struct super_block * sb)756 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
757 {
758 	static const struct proc_fs_info fs_info[] = {
759 		{ MS_SYNCHRONOUS, ",sync" },
760 		{ MS_DIRSYNC, ",dirsync" },
761 		{ MS_MANDLOCK, ",mand" },
762 		{ 0, NULL }
763 	};
764 	const struct proc_fs_info *fs_infop;
765 
766 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
767 		if (sb->s_flags & fs_infop->flag)
768 			seq_puts(m, fs_infop->str);
769 	}
770 
771 	return security_sb_show_options(m, sb);
772 }
773 
show_mnt_opts(struct seq_file * m,struct vfsmount * mnt)774 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
775 {
776 	static const struct proc_fs_info mnt_info[] = {
777 		{ MNT_NOSUID, ",nosuid" },
778 		{ MNT_NODEV, ",nodev" },
779 		{ MNT_NOEXEC, ",noexec" },
780 		{ MNT_NOATIME, ",noatime" },
781 		{ MNT_NODIRATIME, ",nodiratime" },
782 		{ MNT_RELATIME, ",relatime" },
783 		{ 0, NULL }
784 	};
785 	const struct proc_fs_info *fs_infop;
786 
787 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
788 		if (mnt->mnt_flags & fs_infop->flag)
789 			seq_puts(m, fs_infop->str);
790 	}
791 }
792 
show_type(struct seq_file * m,struct super_block * sb)793 static void show_type(struct seq_file *m, struct super_block *sb)
794 {
795 	mangle(m, sb->s_type->name);
796 	if (sb->s_subtype && sb->s_subtype[0]) {
797 		seq_putc(m, '.');
798 		mangle(m, sb->s_subtype);
799 	}
800 }
801 
show_vfsmnt(struct seq_file * m,void * v)802 static int show_vfsmnt(struct seq_file *m, void *v)
803 {
804 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
805 	int err = 0;
806 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
807 
808 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
809 	seq_putc(m, ' ');
810 	seq_path(m, &mnt_path, " \t\n\\");
811 	seq_putc(m, ' ');
812 	show_type(m, mnt->mnt_sb);
813 	seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
814 	err = show_sb_opts(m, mnt->mnt_sb);
815 	if (err)
816 		goto out;
817 	show_mnt_opts(m, mnt);
818 	if (mnt->mnt_sb->s_op->show_options)
819 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
820 	seq_puts(m, " 0 0\n");
821 out:
822 	return err;
823 }
824 
825 const struct seq_operations mounts_op = {
826 	.start	= m_start,
827 	.next	= m_next,
828 	.stop	= m_stop,
829 	.show	= show_vfsmnt
830 };
831 
show_mountinfo(struct seq_file * m,void * v)832 static int show_mountinfo(struct seq_file *m, void *v)
833 {
834 	struct proc_mounts *p = m->private;
835 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
836 	struct super_block *sb = mnt->mnt_sb;
837 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
838 	struct path root = p->root;
839 	int err = 0;
840 
841 	seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
842 		   MAJOR(sb->s_dev), MINOR(sb->s_dev));
843 	seq_dentry(m, mnt->mnt_root, " \t\n\\");
844 	seq_putc(m, ' ');
845 	seq_path_root(m, &mnt_path, &root, " \t\n\\");
846 	if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
847 		/*
848 		 * Mountpoint is outside root, discard that one.  Ugly,
849 		 * but less so than trying to do that in iterator in a
850 		 * race-free way (due to renames).
851 		 */
852 		return SEQ_SKIP;
853 	}
854 	seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
855 	show_mnt_opts(m, mnt);
856 
857 	/* Tagged fields ("foo:X" or "bar") */
858 	if (IS_MNT_SHARED(mnt))
859 		seq_printf(m, " shared:%i", mnt->mnt_group_id);
860 	if (IS_MNT_SLAVE(mnt)) {
861 		int master = mnt->mnt_master->mnt_group_id;
862 		int dom = get_dominating_id(mnt, &p->root);
863 		seq_printf(m, " master:%i", master);
864 		if (dom && dom != master)
865 			seq_printf(m, " propagate_from:%i", dom);
866 	}
867 	if (IS_MNT_UNBINDABLE(mnt))
868 		seq_puts(m, " unbindable");
869 
870 	/* Filesystem specific data */
871 	seq_puts(m, " - ");
872 	show_type(m, sb);
873 	seq_putc(m, ' ');
874 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
875 	seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
876 	err = show_sb_opts(m, sb);
877 	if (err)
878 		goto out;
879 	if (sb->s_op->show_options)
880 		err = sb->s_op->show_options(m, mnt);
881 	seq_putc(m, '\n');
882 out:
883 	return err;
884 }
885 
886 const struct seq_operations mountinfo_op = {
887 	.start	= m_start,
888 	.next	= m_next,
889 	.stop	= m_stop,
890 	.show	= show_mountinfo,
891 };
892 
show_vfsstat(struct seq_file * m,void * v)893 static int show_vfsstat(struct seq_file *m, void *v)
894 {
895 	struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
896 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
897 	int err = 0;
898 
899 	/* device */
900 	if (mnt->mnt_devname) {
901 		seq_puts(m, "device ");
902 		mangle(m, mnt->mnt_devname);
903 	} else
904 		seq_puts(m, "no device");
905 
906 	/* mount point */
907 	seq_puts(m, " mounted on ");
908 	seq_path(m, &mnt_path, " \t\n\\");
909 	seq_putc(m, ' ');
910 
911 	/* file system type */
912 	seq_puts(m, "with fstype ");
913 	show_type(m, mnt->mnt_sb);
914 
915 	/* optional statistics */
916 	if (mnt->mnt_sb->s_op->show_stats) {
917 		seq_putc(m, ' ');
918 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
919 	}
920 
921 	seq_putc(m, '\n');
922 	return err;
923 }
924 
925 const struct seq_operations mountstats_op = {
926 	.start	= m_start,
927 	.next	= m_next,
928 	.stop	= m_stop,
929 	.show	= show_vfsstat,
930 };
931 #endif  /* CONFIG_PROC_FS */
932 
933 /**
934  * may_umount_tree - check if a mount tree is busy
935  * @mnt: root of mount tree
936  *
937  * This is called to check if a tree of mounts has any
938  * open files, pwds, chroots or sub mounts that are
939  * busy.
940  */
may_umount_tree(struct vfsmount * mnt)941 int may_umount_tree(struct vfsmount *mnt)
942 {
943 	int actual_refs = 0;
944 	int minimum_refs = 0;
945 	struct vfsmount *p;
946 
947 	spin_lock(&vfsmount_lock);
948 	for (p = mnt; p; p = next_mnt(p, mnt)) {
949 		actual_refs += atomic_read(&p->mnt_count);
950 		minimum_refs += 2;
951 	}
952 	spin_unlock(&vfsmount_lock);
953 
954 	if (actual_refs > minimum_refs)
955 		return 0;
956 
957 	return 1;
958 }
959 
960 EXPORT_SYMBOL(may_umount_tree);
961 
962 /**
963  * may_umount - check if a mount point is busy
964  * @mnt: root of mount
965  *
966  * This is called to check if a mount point has any
967  * open files, pwds, chroots or sub mounts. If the
968  * mount has sub mounts this will return busy
969  * regardless of whether the sub mounts are busy.
970  *
971  * Doesn't take quota and stuff into account. IOW, in some cases it will
972  * give false negatives. The main reason why it's here is that we need
973  * a non-destructive way to look for easily umountable filesystems.
974  */
may_umount(struct vfsmount * mnt)975 int may_umount(struct vfsmount *mnt)
976 {
977 	int ret = 1;
978 	spin_lock(&vfsmount_lock);
979 	if (propagate_mount_busy(mnt, 2))
980 		ret = 0;
981 	spin_unlock(&vfsmount_lock);
982 	return ret;
983 }
984 
985 EXPORT_SYMBOL(may_umount);
986 
release_mounts(struct list_head * head)987 void release_mounts(struct list_head *head)
988 {
989 	struct vfsmount *mnt;
990 	while (!list_empty(head)) {
991 		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
992 		list_del_init(&mnt->mnt_hash);
993 		if (mnt->mnt_parent != mnt) {
994 			struct dentry *dentry;
995 			struct vfsmount *m;
996 			spin_lock(&vfsmount_lock);
997 			dentry = mnt->mnt_mountpoint;
998 			m = mnt->mnt_parent;
999 			mnt->mnt_mountpoint = mnt->mnt_root;
1000 			mnt->mnt_parent = mnt;
1001 			m->mnt_ghosts--;
1002 			spin_unlock(&vfsmount_lock);
1003 			dput(dentry);
1004 			mntput(m);
1005 		}
1006 		mntput(mnt);
1007 	}
1008 }
1009 
umount_tree(struct vfsmount * mnt,int propagate,struct list_head * kill)1010 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1011 {
1012 	struct vfsmount *p;
1013 
1014 	for (p = mnt; p; p = next_mnt(p, mnt))
1015 		list_move(&p->mnt_hash, kill);
1016 
1017 	if (propagate)
1018 		propagate_umount(kill);
1019 
1020 	list_for_each_entry(p, kill, mnt_hash) {
1021 		list_del_init(&p->mnt_expire);
1022 		list_del_init(&p->mnt_list);
1023 		__touch_mnt_namespace(p->mnt_ns);
1024 		p->mnt_ns = NULL;
1025 		list_del_init(&p->mnt_child);
1026 		if (p->mnt_parent != p) {
1027 			p->mnt_parent->mnt_ghosts++;
1028 			p->mnt_mountpoint->d_mounted--;
1029 		}
1030 		change_mnt_propagation(p, MS_PRIVATE);
1031 	}
1032 }
1033 
1034 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1035 
do_umount(struct vfsmount * mnt,int flags)1036 static int do_umount(struct vfsmount *mnt, int flags)
1037 {
1038 	struct super_block *sb = mnt->mnt_sb;
1039 	int retval;
1040 	LIST_HEAD(umount_list);
1041 
1042 	retval = security_sb_umount(mnt, flags);
1043 	if (retval)
1044 		return retval;
1045 
1046 	/*
1047 	 * Allow userspace to request a mountpoint be expired rather than
1048 	 * unmounting unconditionally. Unmount only happens if:
1049 	 *  (1) the mark is already set (the mark is cleared by mntput())
1050 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1051 	 */
1052 	if (flags & MNT_EXPIRE) {
1053 		if (mnt == current->fs->root.mnt ||
1054 		    flags & (MNT_FORCE | MNT_DETACH))
1055 			return -EINVAL;
1056 
1057 		if (atomic_read(&mnt->mnt_count) != 2)
1058 			return -EBUSY;
1059 
1060 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1061 			return -EAGAIN;
1062 	}
1063 
1064 	/*
1065 	 * If we may have to abort operations to get out of this
1066 	 * mount, and they will themselves hold resources we must
1067 	 * allow the fs to do things. In the Unix tradition of
1068 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1069 	 * might fail to complete on the first run through as other tasks
1070 	 * must return, and the like. Thats for the mount program to worry
1071 	 * about for the moment.
1072 	 */
1073 
1074 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1075 		lock_kernel();
1076 		sb->s_op->umount_begin(sb);
1077 		unlock_kernel();
1078 	}
1079 
1080 	/*
1081 	 * No sense to grab the lock for this test, but test itself looks
1082 	 * somewhat bogus. Suggestions for better replacement?
1083 	 * Ho-hum... In principle, we might treat that as umount + switch
1084 	 * to rootfs. GC would eventually take care of the old vfsmount.
1085 	 * Actually it makes sense, especially if rootfs would contain a
1086 	 * /reboot - static binary that would close all descriptors and
1087 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1088 	 */
1089 	if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1090 		/*
1091 		 * Special case for "unmounting" root ...
1092 		 * we just try to remount it readonly.
1093 		 */
1094 		down_write(&sb->s_umount);
1095 		if (!(sb->s_flags & MS_RDONLY)) {
1096 			lock_kernel();
1097 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1098 			unlock_kernel();
1099 		}
1100 		up_write(&sb->s_umount);
1101 		return retval;
1102 	}
1103 
1104 	down_write(&namespace_sem);
1105 	spin_lock(&vfsmount_lock);
1106 	event++;
1107 
1108 	if (!(flags & MNT_DETACH))
1109 		shrink_submounts(mnt, &umount_list);
1110 
1111 	retval = -EBUSY;
1112 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1113 		if (!list_empty(&mnt->mnt_list))
1114 			umount_tree(mnt, 1, &umount_list);
1115 		retval = 0;
1116 	}
1117 	spin_unlock(&vfsmount_lock);
1118 	if (retval)
1119 		security_sb_umount_busy(mnt);
1120 	up_write(&namespace_sem);
1121 	release_mounts(&umount_list);
1122 	return retval;
1123 }
1124 
1125 /*
1126  * Now umount can handle mount points as well as block devices.
1127  * This is important for filesystems which use unnamed block devices.
1128  *
1129  * We now support a flag for forced unmount like the other 'big iron'
1130  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1131  */
1132 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1133 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1134 {
1135 	struct path path;
1136 	int retval;
1137 
1138 	retval = user_path(name, &path);
1139 	if (retval)
1140 		goto out;
1141 	retval = -EINVAL;
1142 	if (path.dentry != path.mnt->mnt_root)
1143 		goto dput_and_out;
1144 	if (!check_mnt(path.mnt))
1145 		goto dput_and_out;
1146 
1147 	retval = -EPERM;
1148 	if (!capable(CAP_SYS_ADMIN))
1149 		goto dput_and_out;
1150 
1151 	retval = do_umount(path.mnt, flags);
1152 dput_and_out:
1153 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1154 	dput(path.dentry);
1155 	mntput_no_expire(path.mnt);
1156 out:
1157 	return retval;
1158 }
1159 
1160 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1161 
1162 /*
1163  *	The 2.0 compatible umount. No flags.
1164  */
SYSCALL_DEFINE1(oldumount,char __user *,name)1165 SYSCALL_DEFINE1(oldumount, char __user *, name)
1166 {
1167 	return sys_umount(name, 0);
1168 }
1169 
1170 #endif
1171 
mount_is_safe(struct path * path)1172 static int mount_is_safe(struct path *path)
1173 {
1174 	if (capable(CAP_SYS_ADMIN))
1175 		return 0;
1176 	return -EPERM;
1177 #ifdef notyet
1178 	if (S_ISLNK(path->dentry->d_inode->i_mode))
1179 		return -EPERM;
1180 	if (path->dentry->d_inode->i_mode & S_ISVTX) {
1181 		if (current_uid() != path->dentry->d_inode->i_uid)
1182 			return -EPERM;
1183 	}
1184 	if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1185 		return -EPERM;
1186 	return 0;
1187 #endif
1188 }
1189 
copy_tree(struct vfsmount * mnt,struct dentry * dentry,int flag)1190 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1191 					int flag)
1192 {
1193 	struct vfsmount *res, *p, *q, *r, *s;
1194 	struct path path;
1195 
1196 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1197 		return NULL;
1198 
1199 	res = q = clone_mnt(mnt, dentry, flag);
1200 	if (!q)
1201 		goto Enomem;
1202 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1203 
1204 	p = mnt;
1205 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1206 		if (!is_subdir(r->mnt_mountpoint, dentry))
1207 			continue;
1208 
1209 		for (s = r; s; s = next_mnt(s, r)) {
1210 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1211 				s = skip_mnt_tree(s);
1212 				continue;
1213 			}
1214 			while (p != s->mnt_parent) {
1215 				p = p->mnt_parent;
1216 				q = q->mnt_parent;
1217 			}
1218 			p = s;
1219 			path.mnt = q;
1220 			path.dentry = p->mnt_mountpoint;
1221 			q = clone_mnt(p, p->mnt_root, flag);
1222 			if (!q)
1223 				goto Enomem;
1224 			spin_lock(&vfsmount_lock);
1225 			list_add_tail(&q->mnt_list, &res->mnt_list);
1226 			attach_mnt(q, &path);
1227 			spin_unlock(&vfsmount_lock);
1228 		}
1229 	}
1230 	return res;
1231 Enomem:
1232 	if (res) {
1233 		LIST_HEAD(umount_list);
1234 		spin_lock(&vfsmount_lock);
1235 		umount_tree(res, 0, &umount_list);
1236 		spin_unlock(&vfsmount_lock);
1237 		release_mounts(&umount_list);
1238 	}
1239 	return NULL;
1240 }
1241 
collect_mounts(struct vfsmount * mnt,struct dentry * dentry)1242 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1243 {
1244 	struct vfsmount *tree;
1245 	down_write(&namespace_sem);
1246 	tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1247 	up_write(&namespace_sem);
1248 	return tree;
1249 }
1250 
drop_collected_mounts(struct vfsmount * mnt)1251 void drop_collected_mounts(struct vfsmount *mnt)
1252 {
1253 	LIST_HEAD(umount_list);
1254 	down_write(&namespace_sem);
1255 	spin_lock(&vfsmount_lock);
1256 	umount_tree(mnt, 0, &umount_list);
1257 	spin_unlock(&vfsmount_lock);
1258 	up_write(&namespace_sem);
1259 	release_mounts(&umount_list);
1260 }
1261 
cleanup_group_ids(struct vfsmount * mnt,struct vfsmount * end)1262 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1263 {
1264 	struct vfsmount *p;
1265 
1266 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1267 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1268 			mnt_release_group_id(p);
1269 	}
1270 }
1271 
invent_group_ids(struct vfsmount * mnt,bool recurse)1272 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1273 {
1274 	struct vfsmount *p;
1275 
1276 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1277 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1278 			int err = mnt_alloc_group_id(p);
1279 			if (err) {
1280 				cleanup_group_ids(mnt, p);
1281 				return err;
1282 			}
1283 		}
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 /*
1290  *  @source_mnt : mount tree to be attached
1291  *  @nd         : place the mount tree @source_mnt is attached
1292  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1293  *  		   store the parent mount and mountpoint dentry.
1294  *  		   (done when source_mnt is moved)
1295  *
1296  *  NOTE: in the table below explains the semantics when a source mount
1297  *  of a given type is attached to a destination mount of a given type.
1298  * ---------------------------------------------------------------------------
1299  * |         BIND MOUNT OPERATION                                            |
1300  * |**************************************************************************
1301  * | source-->| shared        |       private  |       slave    | unbindable |
1302  * | dest     |               |                |                |            |
1303  * |   |      |               |                |                |            |
1304  * |   v      |               |                |                |            |
1305  * |**************************************************************************
1306  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1307  * |          |               |                |                |            |
1308  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1309  * ***************************************************************************
1310  * A bind operation clones the source mount and mounts the clone on the
1311  * destination mount.
1312  *
1313  * (++)  the cloned mount is propagated to all the mounts in the propagation
1314  * 	 tree of the destination mount and the cloned mount is added to
1315  * 	 the peer group of the source mount.
1316  * (+)   the cloned mount is created under the destination mount and is marked
1317  *       as shared. The cloned mount is added to the peer group of the source
1318  *       mount.
1319  * (+++) the mount is propagated to all the mounts in the propagation tree
1320  *       of the destination mount and the cloned mount is made slave
1321  *       of the same master as that of the source mount. The cloned mount
1322  *       is marked as 'shared and slave'.
1323  * (*)   the cloned mount is made a slave of the same master as that of the
1324  * 	 source mount.
1325  *
1326  * ---------------------------------------------------------------------------
1327  * |         		MOVE MOUNT OPERATION                                 |
1328  * |**************************************************************************
1329  * | source-->| shared        |       private  |       slave    | unbindable |
1330  * | dest     |               |                |                |            |
1331  * |   |      |               |                |                |            |
1332  * |   v      |               |                |                |            |
1333  * |**************************************************************************
1334  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1335  * |          |               |                |                |            |
1336  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1337  * ***************************************************************************
1338  *
1339  * (+)  the mount is moved to the destination. And is then propagated to
1340  * 	all the mounts in the propagation tree of the destination mount.
1341  * (+*)  the mount is moved to the destination.
1342  * (+++)  the mount is moved to the destination and is then propagated to
1343  * 	all the mounts belonging to the destination mount's propagation tree.
1344  * 	the mount is marked as 'shared and slave'.
1345  * (*)	the mount continues to be a slave at the new location.
1346  *
1347  * if the source mount is a tree, the operations explained above is
1348  * applied to each mount in the tree.
1349  * Must be called without spinlocks held, since this function can sleep
1350  * in allocations.
1351  */
attach_recursive_mnt(struct vfsmount * source_mnt,struct path * path,struct path * parent_path)1352 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1353 			struct path *path, struct path *parent_path)
1354 {
1355 	LIST_HEAD(tree_list);
1356 	struct vfsmount *dest_mnt = path->mnt;
1357 	struct dentry *dest_dentry = path->dentry;
1358 	struct vfsmount *child, *p;
1359 	int err;
1360 
1361 	if (IS_MNT_SHARED(dest_mnt)) {
1362 		err = invent_group_ids(source_mnt, true);
1363 		if (err)
1364 			goto out;
1365 	}
1366 	err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1367 	if (err)
1368 		goto out_cleanup_ids;
1369 
1370 	if (IS_MNT_SHARED(dest_mnt)) {
1371 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1372 			set_mnt_shared(p);
1373 	}
1374 
1375 	spin_lock(&vfsmount_lock);
1376 	if (parent_path) {
1377 		detach_mnt(source_mnt, parent_path);
1378 		attach_mnt(source_mnt, path);
1379 		touch_mnt_namespace(current->nsproxy->mnt_ns);
1380 	} else {
1381 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1382 		commit_tree(source_mnt);
1383 	}
1384 
1385 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1386 		list_del_init(&child->mnt_hash);
1387 		commit_tree(child);
1388 	}
1389 	spin_unlock(&vfsmount_lock);
1390 	return 0;
1391 
1392  out_cleanup_ids:
1393 	if (IS_MNT_SHARED(dest_mnt))
1394 		cleanup_group_ids(source_mnt, NULL);
1395  out:
1396 	return err;
1397 }
1398 
graft_tree(struct vfsmount * mnt,struct path * path)1399 static int graft_tree(struct vfsmount *mnt, struct path *path)
1400 {
1401 	int err;
1402 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
1403 		return -EINVAL;
1404 
1405 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1406 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1407 		return -ENOTDIR;
1408 
1409 	err = -ENOENT;
1410 	mutex_lock(&path->dentry->d_inode->i_mutex);
1411 	if (IS_DEADDIR(path->dentry->d_inode))
1412 		goto out_unlock;
1413 
1414 	err = security_sb_check_sb(mnt, path);
1415 	if (err)
1416 		goto out_unlock;
1417 
1418 	err = -ENOENT;
1419 	if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1420 		err = attach_recursive_mnt(mnt, path, NULL);
1421 out_unlock:
1422 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1423 	if (!err)
1424 		security_sb_post_addmount(mnt, path);
1425 	return err;
1426 }
1427 
1428 /*
1429  * recursively change the type of the mountpoint.
1430  */
do_change_type(struct path * path,int flag)1431 static int do_change_type(struct path *path, int flag)
1432 {
1433 	struct vfsmount *m, *mnt = path->mnt;
1434 	int recurse = flag & MS_REC;
1435 	int type = flag & ~MS_REC;
1436 	int err = 0;
1437 
1438 	if (!capable(CAP_SYS_ADMIN))
1439 		return -EPERM;
1440 
1441 	if (path->dentry != path->mnt->mnt_root)
1442 		return -EINVAL;
1443 
1444 	down_write(&namespace_sem);
1445 	if (type == MS_SHARED) {
1446 		err = invent_group_ids(mnt, recurse);
1447 		if (err)
1448 			goto out_unlock;
1449 	}
1450 
1451 	spin_lock(&vfsmount_lock);
1452 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1453 		change_mnt_propagation(m, type);
1454 	spin_unlock(&vfsmount_lock);
1455 
1456  out_unlock:
1457 	up_write(&namespace_sem);
1458 	return err;
1459 }
1460 
1461 /*
1462  * do loopback mount.
1463  */
do_loopback(struct path * path,char * old_name,int recurse)1464 static int do_loopback(struct path *path, char *old_name,
1465 				int recurse)
1466 {
1467 	struct path old_path;
1468 	struct vfsmount *mnt = NULL;
1469 	int err = mount_is_safe(path);
1470 	if (err)
1471 		return err;
1472 	if (!old_name || !*old_name)
1473 		return -EINVAL;
1474 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1475 	if (err)
1476 		return err;
1477 
1478 	down_write(&namespace_sem);
1479 	err = -EINVAL;
1480 	if (IS_MNT_UNBINDABLE(old_path.mnt))
1481 		goto out;
1482 
1483 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1484 		goto out;
1485 
1486 	err = -ENOMEM;
1487 	if (recurse)
1488 		mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1489 	else
1490 		mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1491 
1492 	if (!mnt)
1493 		goto out;
1494 
1495 	err = graft_tree(mnt, path);
1496 	if (err) {
1497 		LIST_HEAD(umount_list);
1498 		spin_lock(&vfsmount_lock);
1499 		umount_tree(mnt, 0, &umount_list);
1500 		spin_unlock(&vfsmount_lock);
1501 		release_mounts(&umount_list);
1502 	}
1503 
1504 out:
1505 	up_write(&namespace_sem);
1506 	path_put(&old_path);
1507 	return err;
1508 }
1509 
change_mount_flags(struct vfsmount * mnt,int ms_flags)1510 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1511 {
1512 	int error = 0;
1513 	int readonly_request = 0;
1514 
1515 	if (ms_flags & MS_RDONLY)
1516 		readonly_request = 1;
1517 	if (readonly_request == __mnt_is_readonly(mnt))
1518 		return 0;
1519 
1520 	if (readonly_request)
1521 		error = mnt_make_readonly(mnt);
1522 	else
1523 		__mnt_unmake_readonly(mnt);
1524 	return error;
1525 }
1526 
1527 /*
1528  * change filesystem flags. dir should be a physical root of filesystem.
1529  * If you've mounted a non-root directory somewhere and want to do remount
1530  * on it - tough luck.
1531  */
do_remount(struct path * path,int flags,int mnt_flags,void * data)1532 static int do_remount(struct path *path, int flags, int mnt_flags,
1533 		      void *data)
1534 {
1535 	int err;
1536 	struct super_block *sb = path->mnt->mnt_sb;
1537 
1538 	if (!capable(CAP_SYS_ADMIN))
1539 		return -EPERM;
1540 
1541 	if (!check_mnt(path->mnt))
1542 		return -EINVAL;
1543 
1544 	if (path->dentry != path->mnt->mnt_root)
1545 		return -EINVAL;
1546 
1547 	down_write(&sb->s_umount);
1548 	if (flags & MS_BIND)
1549 		err = change_mount_flags(path->mnt, flags);
1550 	else
1551 		err = do_remount_sb(sb, flags, data, 0);
1552 	if (!err)
1553 		path->mnt->mnt_flags = mnt_flags;
1554 	up_write(&sb->s_umount);
1555 	if (!err) {
1556 		security_sb_post_remount(path->mnt, flags, data);
1557 
1558 		spin_lock(&vfsmount_lock);
1559 		touch_mnt_namespace(path->mnt->mnt_ns);
1560 		spin_unlock(&vfsmount_lock);
1561 	}
1562 	return err;
1563 }
1564 
tree_contains_unbindable(struct vfsmount * mnt)1565 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1566 {
1567 	struct vfsmount *p;
1568 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1569 		if (IS_MNT_UNBINDABLE(p))
1570 			return 1;
1571 	}
1572 	return 0;
1573 }
1574 
do_move_mount(struct path * path,char * old_name)1575 static int do_move_mount(struct path *path, char *old_name)
1576 {
1577 	struct path old_path, parent_path;
1578 	struct vfsmount *p;
1579 	int err = 0;
1580 	if (!capable(CAP_SYS_ADMIN))
1581 		return -EPERM;
1582 	if (!old_name || !*old_name)
1583 		return -EINVAL;
1584 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1585 	if (err)
1586 		return err;
1587 
1588 	down_write(&namespace_sem);
1589 	while (d_mountpoint(path->dentry) &&
1590 	       follow_down(&path->mnt, &path->dentry))
1591 		;
1592 	err = -EINVAL;
1593 	if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1594 		goto out;
1595 
1596 	err = -ENOENT;
1597 	mutex_lock(&path->dentry->d_inode->i_mutex);
1598 	if (IS_DEADDIR(path->dentry->d_inode))
1599 		goto out1;
1600 
1601 	if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
1602 		goto out1;
1603 
1604 	err = -EINVAL;
1605 	if (old_path.dentry != old_path.mnt->mnt_root)
1606 		goto out1;
1607 
1608 	if (old_path.mnt == old_path.mnt->mnt_parent)
1609 		goto out1;
1610 
1611 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1612 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
1613 		goto out1;
1614 	/*
1615 	 * Don't move a mount residing in a shared parent.
1616 	 */
1617 	if (old_path.mnt->mnt_parent &&
1618 	    IS_MNT_SHARED(old_path.mnt->mnt_parent))
1619 		goto out1;
1620 	/*
1621 	 * Don't move a mount tree containing unbindable mounts to a destination
1622 	 * mount which is shared.
1623 	 */
1624 	if (IS_MNT_SHARED(path->mnt) &&
1625 	    tree_contains_unbindable(old_path.mnt))
1626 		goto out1;
1627 	err = -ELOOP;
1628 	for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1629 		if (p == old_path.mnt)
1630 			goto out1;
1631 
1632 	err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1633 	if (err)
1634 		goto out1;
1635 
1636 	/* if the mount is moved, it should no longer be expire
1637 	 * automatically */
1638 	list_del_init(&old_path.mnt->mnt_expire);
1639 out1:
1640 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1641 out:
1642 	up_write(&namespace_sem);
1643 	if (!err)
1644 		path_put(&parent_path);
1645 	path_put(&old_path);
1646 	return err;
1647 }
1648 
1649 /*
1650  * create a new mount for userspace and request it to be added into the
1651  * namespace's tree
1652  */
do_new_mount(struct path * path,char * type,int flags,int mnt_flags,char * name,void * data)1653 static int do_new_mount(struct path *path, char *type, int flags,
1654 			int mnt_flags, char *name, void *data)
1655 {
1656 	struct vfsmount *mnt;
1657 
1658 	if (!type || !memchr(type, 0, PAGE_SIZE))
1659 		return -EINVAL;
1660 
1661 	/* we need capabilities... */
1662 	if (!capable(CAP_SYS_ADMIN))
1663 		return -EPERM;
1664 
1665 	mnt = do_kern_mount(type, flags, name, data);
1666 	if (IS_ERR(mnt))
1667 		return PTR_ERR(mnt);
1668 
1669 	return do_add_mount(mnt, path, mnt_flags, NULL);
1670 }
1671 
1672 /*
1673  * add a mount into a namespace's mount tree
1674  * - provide the option of adding the new mount to an expiration list
1675  */
do_add_mount(struct vfsmount * newmnt,struct path * path,int mnt_flags,struct list_head * fslist)1676 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1677 		 int mnt_flags, struct list_head *fslist)
1678 {
1679 	int err;
1680 
1681 	down_write(&namespace_sem);
1682 	/* Something was mounted here while we slept */
1683 	while (d_mountpoint(path->dentry) &&
1684 	       follow_down(&path->mnt, &path->dentry))
1685 		;
1686 	err = -EINVAL;
1687 	if (!check_mnt(path->mnt))
1688 		goto unlock;
1689 
1690 	/* Refuse the same filesystem on the same mount point */
1691 	err = -EBUSY;
1692 	if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1693 	    path->mnt->mnt_root == path->dentry)
1694 		goto unlock;
1695 
1696 	err = -EINVAL;
1697 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1698 		goto unlock;
1699 
1700 	newmnt->mnt_flags = mnt_flags;
1701 	if ((err = graft_tree(newmnt, path)))
1702 		goto unlock;
1703 
1704 	if (fslist) /* add to the specified expiration list */
1705 		list_add_tail(&newmnt->mnt_expire, fslist);
1706 
1707 	up_write(&namespace_sem);
1708 	return 0;
1709 
1710 unlock:
1711 	up_write(&namespace_sem);
1712 	mntput(newmnt);
1713 	return err;
1714 }
1715 
1716 EXPORT_SYMBOL_GPL(do_add_mount);
1717 
1718 /*
1719  * process a list of expirable mountpoints with the intent of discarding any
1720  * mountpoints that aren't in use and haven't been touched since last we came
1721  * here
1722  */
mark_mounts_for_expiry(struct list_head * mounts)1723 void mark_mounts_for_expiry(struct list_head *mounts)
1724 {
1725 	struct vfsmount *mnt, *next;
1726 	LIST_HEAD(graveyard);
1727 	LIST_HEAD(umounts);
1728 
1729 	if (list_empty(mounts))
1730 		return;
1731 
1732 	down_write(&namespace_sem);
1733 	spin_lock(&vfsmount_lock);
1734 
1735 	/* extract from the expiration list every vfsmount that matches the
1736 	 * following criteria:
1737 	 * - only referenced by its parent vfsmount
1738 	 * - still marked for expiry (marked on the last call here; marks are
1739 	 *   cleared by mntput())
1740 	 */
1741 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1742 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1743 			propagate_mount_busy(mnt, 1))
1744 			continue;
1745 		list_move(&mnt->mnt_expire, &graveyard);
1746 	}
1747 	while (!list_empty(&graveyard)) {
1748 		mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1749 		touch_mnt_namespace(mnt->mnt_ns);
1750 		umount_tree(mnt, 1, &umounts);
1751 	}
1752 	spin_unlock(&vfsmount_lock);
1753 	up_write(&namespace_sem);
1754 
1755 	release_mounts(&umounts);
1756 }
1757 
1758 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1759 
1760 /*
1761  * Ripoff of 'select_parent()'
1762  *
1763  * search the list of submounts for a given mountpoint, and move any
1764  * shrinkable submounts to the 'graveyard' list.
1765  */
select_submounts(struct vfsmount * parent,struct list_head * graveyard)1766 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1767 {
1768 	struct vfsmount *this_parent = parent;
1769 	struct list_head *next;
1770 	int found = 0;
1771 
1772 repeat:
1773 	next = this_parent->mnt_mounts.next;
1774 resume:
1775 	while (next != &this_parent->mnt_mounts) {
1776 		struct list_head *tmp = next;
1777 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1778 
1779 		next = tmp->next;
1780 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1781 			continue;
1782 		/*
1783 		 * Descend a level if the d_mounts list is non-empty.
1784 		 */
1785 		if (!list_empty(&mnt->mnt_mounts)) {
1786 			this_parent = mnt;
1787 			goto repeat;
1788 		}
1789 
1790 		if (!propagate_mount_busy(mnt, 1)) {
1791 			list_move_tail(&mnt->mnt_expire, graveyard);
1792 			found++;
1793 		}
1794 	}
1795 	/*
1796 	 * All done at this level ... ascend and resume the search
1797 	 */
1798 	if (this_parent != parent) {
1799 		next = this_parent->mnt_child.next;
1800 		this_parent = this_parent->mnt_parent;
1801 		goto resume;
1802 	}
1803 	return found;
1804 }
1805 
1806 /*
1807  * process a list of expirable mountpoints with the intent of discarding any
1808  * submounts of a specific parent mountpoint
1809  */
shrink_submounts(struct vfsmount * mnt,struct list_head * umounts)1810 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1811 {
1812 	LIST_HEAD(graveyard);
1813 	struct vfsmount *m;
1814 
1815 	/* extract submounts of 'mountpoint' from the expiration list */
1816 	while (select_submounts(mnt, &graveyard)) {
1817 		while (!list_empty(&graveyard)) {
1818 			m = list_first_entry(&graveyard, struct vfsmount,
1819 						mnt_expire);
1820 			touch_mnt_namespace(m->mnt_ns);
1821 			umount_tree(m, 1, umounts);
1822 		}
1823 	}
1824 }
1825 
1826 /*
1827  * Some copy_from_user() implementations do not return the exact number of
1828  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1829  * Note that this function differs from copy_from_user() in that it will oops
1830  * on bad values of `to', rather than returning a short copy.
1831  */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)1832 static long exact_copy_from_user(void *to, const void __user * from,
1833 				 unsigned long n)
1834 {
1835 	char *t = to;
1836 	const char __user *f = from;
1837 	char c;
1838 
1839 	if (!access_ok(VERIFY_READ, from, n))
1840 		return n;
1841 
1842 	while (n) {
1843 		if (__get_user(c, f)) {
1844 			memset(t, 0, n);
1845 			break;
1846 		}
1847 		*t++ = c;
1848 		f++;
1849 		n--;
1850 	}
1851 	return n;
1852 }
1853 
copy_mount_options(const void __user * data,unsigned long * where)1854 int copy_mount_options(const void __user * data, unsigned long *where)
1855 {
1856 	int i;
1857 	unsigned long page;
1858 	unsigned long size;
1859 
1860 	*where = 0;
1861 	if (!data)
1862 		return 0;
1863 
1864 	if (!(page = __get_free_page(GFP_KERNEL)))
1865 		return -ENOMEM;
1866 
1867 	/* We only care that *some* data at the address the user
1868 	 * gave us is valid.  Just in case, we'll zero
1869 	 * the remainder of the page.
1870 	 */
1871 	/* copy_from_user cannot cross TASK_SIZE ! */
1872 	size = TASK_SIZE - (unsigned long)data;
1873 	if (size > PAGE_SIZE)
1874 		size = PAGE_SIZE;
1875 
1876 	i = size - exact_copy_from_user((void *)page, data, size);
1877 	if (!i) {
1878 		free_page(page);
1879 		return -EFAULT;
1880 	}
1881 	if (i != PAGE_SIZE)
1882 		memset((char *)page + i, 0, PAGE_SIZE - i);
1883 	*where = page;
1884 	return 0;
1885 }
1886 
1887 /*
1888  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1889  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1890  *
1891  * data is a (void *) that can point to any structure up to
1892  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1893  * information (or be NULL).
1894  *
1895  * Pre-0.97 versions of mount() didn't have a flags word.
1896  * When the flags word was introduced its top half was required
1897  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1898  * Therefore, if this magic number is present, it carries no information
1899  * and must be discarded.
1900  */
do_mount(char * dev_name,char * dir_name,char * type_page,unsigned long flags,void * data_page)1901 long do_mount(char *dev_name, char *dir_name, char *type_page,
1902 		  unsigned long flags, void *data_page)
1903 {
1904 	struct path path;
1905 	int retval = 0;
1906 	int mnt_flags = 0;
1907 
1908 	/* Discard magic */
1909 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1910 		flags &= ~MS_MGC_MSK;
1911 
1912 	/* Basic sanity checks */
1913 
1914 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1915 		return -EINVAL;
1916 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1917 		return -EINVAL;
1918 
1919 	if (data_page)
1920 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1921 
1922 	/* Separate the per-mountpoint flags */
1923 	if (flags & MS_NOSUID)
1924 		mnt_flags |= MNT_NOSUID;
1925 	if (flags & MS_NODEV)
1926 		mnt_flags |= MNT_NODEV;
1927 	if (flags & MS_NOEXEC)
1928 		mnt_flags |= MNT_NOEXEC;
1929 	if (flags & MS_NOATIME)
1930 		mnt_flags |= MNT_NOATIME;
1931 	if (flags & MS_NODIRATIME)
1932 		mnt_flags |= MNT_NODIRATIME;
1933 	if (flags & MS_RELATIME)
1934 		mnt_flags |= MNT_RELATIME;
1935 	if (flags & MS_RDONLY)
1936 		mnt_flags |= MNT_READONLY;
1937 
1938 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1939 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1940 
1941 	/* ... and get the mountpoint */
1942 	retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1943 	if (retval)
1944 		return retval;
1945 
1946 	retval = security_sb_mount(dev_name, &path,
1947 				   type_page, flags, data_page);
1948 	if (retval)
1949 		goto dput_out;
1950 
1951 	if (flags & MS_REMOUNT)
1952 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1953 				    data_page);
1954 	else if (flags & MS_BIND)
1955 		retval = do_loopback(&path, dev_name, flags & MS_REC);
1956 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1957 		retval = do_change_type(&path, flags);
1958 	else if (flags & MS_MOVE)
1959 		retval = do_move_mount(&path, dev_name);
1960 	else
1961 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
1962 				      dev_name, data_page);
1963 dput_out:
1964 	path_put(&path);
1965 	return retval;
1966 }
1967 
1968 /*
1969  * Allocate a new namespace structure and populate it with contents
1970  * copied from the namespace of the passed in task structure.
1971  */
dup_mnt_ns(struct mnt_namespace * mnt_ns,struct fs_struct * fs)1972 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1973 		struct fs_struct *fs)
1974 {
1975 	struct mnt_namespace *new_ns;
1976 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1977 	struct vfsmount *p, *q;
1978 
1979 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1980 	if (!new_ns)
1981 		return ERR_PTR(-ENOMEM);
1982 
1983 	atomic_set(&new_ns->count, 1);
1984 	INIT_LIST_HEAD(&new_ns->list);
1985 	init_waitqueue_head(&new_ns->poll);
1986 	new_ns->event = 0;
1987 
1988 	down_write(&namespace_sem);
1989 	/* First pass: copy the tree topology */
1990 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1991 					CL_COPY_ALL | CL_EXPIRE);
1992 	if (!new_ns->root) {
1993 		up_write(&namespace_sem);
1994 		kfree(new_ns);
1995 		return ERR_PTR(-ENOMEM);
1996 	}
1997 	spin_lock(&vfsmount_lock);
1998 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1999 	spin_unlock(&vfsmount_lock);
2000 
2001 	/*
2002 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2003 	 * as belonging to new namespace.  We have already acquired a private
2004 	 * fs_struct, so tsk->fs->lock is not needed.
2005 	 */
2006 	p = mnt_ns->root;
2007 	q = new_ns->root;
2008 	while (p) {
2009 		q->mnt_ns = new_ns;
2010 		if (fs) {
2011 			if (p == fs->root.mnt) {
2012 				rootmnt = p;
2013 				fs->root.mnt = mntget(q);
2014 			}
2015 			if (p == fs->pwd.mnt) {
2016 				pwdmnt = p;
2017 				fs->pwd.mnt = mntget(q);
2018 			}
2019 		}
2020 		p = next_mnt(p, mnt_ns->root);
2021 		q = next_mnt(q, new_ns->root);
2022 	}
2023 	up_write(&namespace_sem);
2024 
2025 	if (rootmnt)
2026 		mntput(rootmnt);
2027 	if (pwdmnt)
2028 		mntput(pwdmnt);
2029 
2030 	return new_ns;
2031 }
2032 
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct fs_struct * new_fs)2033 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2034 		struct fs_struct *new_fs)
2035 {
2036 	struct mnt_namespace *new_ns;
2037 
2038 	BUG_ON(!ns);
2039 	get_mnt_ns(ns);
2040 
2041 	if (!(flags & CLONE_NEWNS))
2042 		return ns;
2043 
2044 	new_ns = dup_mnt_ns(ns, new_fs);
2045 
2046 	put_mnt_ns(ns);
2047 	return new_ns;
2048 }
2049 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)2050 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2051 		char __user *, type, unsigned long, flags, void __user *, data)
2052 {
2053 	int retval;
2054 	unsigned long data_page;
2055 	unsigned long type_page;
2056 	unsigned long dev_page;
2057 	char *dir_page;
2058 
2059 	retval = copy_mount_options(type, &type_page);
2060 	if (retval < 0)
2061 		return retval;
2062 
2063 	dir_page = getname(dir_name);
2064 	retval = PTR_ERR(dir_page);
2065 	if (IS_ERR(dir_page))
2066 		goto out1;
2067 
2068 	retval = copy_mount_options(dev_name, &dev_page);
2069 	if (retval < 0)
2070 		goto out2;
2071 
2072 	retval = copy_mount_options(data, &data_page);
2073 	if (retval < 0)
2074 		goto out3;
2075 
2076 	lock_kernel();
2077 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2078 			  flags, (void *)data_page);
2079 	unlock_kernel();
2080 	free_page(data_page);
2081 
2082 out3:
2083 	free_page(dev_page);
2084 out2:
2085 	putname(dir_page);
2086 out1:
2087 	free_page(type_page);
2088 	return retval;
2089 }
2090 
2091 /*
2092  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2093  * It can block. Requires the big lock held.
2094  */
set_fs_root(struct fs_struct * fs,struct path * path)2095 void set_fs_root(struct fs_struct *fs, struct path *path)
2096 {
2097 	struct path old_root;
2098 
2099 	write_lock(&fs->lock);
2100 	old_root = fs->root;
2101 	fs->root = *path;
2102 	path_get(path);
2103 	write_unlock(&fs->lock);
2104 	if (old_root.dentry)
2105 		path_put(&old_root);
2106 }
2107 
2108 /*
2109  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2110  * It can block. Requires the big lock held.
2111  */
set_fs_pwd(struct fs_struct * fs,struct path * path)2112 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2113 {
2114 	struct path old_pwd;
2115 
2116 	write_lock(&fs->lock);
2117 	old_pwd = fs->pwd;
2118 	fs->pwd = *path;
2119 	path_get(path);
2120 	write_unlock(&fs->lock);
2121 
2122 	if (old_pwd.dentry)
2123 		path_put(&old_pwd);
2124 }
2125 
chroot_fs_refs(struct path * old_root,struct path * new_root)2126 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2127 {
2128 	struct task_struct *g, *p;
2129 	struct fs_struct *fs;
2130 
2131 	read_lock(&tasklist_lock);
2132 	do_each_thread(g, p) {
2133 		task_lock(p);
2134 		fs = p->fs;
2135 		if (fs) {
2136 			atomic_inc(&fs->count);
2137 			task_unlock(p);
2138 			if (fs->root.dentry == old_root->dentry
2139 			    && fs->root.mnt == old_root->mnt)
2140 				set_fs_root(fs, new_root);
2141 			if (fs->pwd.dentry == old_root->dentry
2142 			    && fs->pwd.mnt == old_root->mnt)
2143 				set_fs_pwd(fs, new_root);
2144 			put_fs_struct(fs);
2145 		} else
2146 			task_unlock(p);
2147 	} while_each_thread(g, p);
2148 	read_unlock(&tasklist_lock);
2149 }
2150 
2151 /*
2152  * pivot_root Semantics:
2153  * Moves the root file system of the current process to the directory put_old,
2154  * makes new_root as the new root file system of the current process, and sets
2155  * root/cwd of all processes which had them on the current root to new_root.
2156  *
2157  * Restrictions:
2158  * The new_root and put_old must be directories, and  must not be on the
2159  * same file  system as the current process root. The put_old  must  be
2160  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2161  * pointed to by put_old must yield the same directory as new_root. No other
2162  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2163  *
2164  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2165  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2166  * in this situation.
2167  *
2168  * Notes:
2169  *  - we don't move root/cwd if they are not at the root (reason: if something
2170  *    cared enough to change them, it's probably wrong to force them elsewhere)
2171  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2172  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2173  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2174  *    first.
2175  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)2176 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2177 		const char __user *, put_old)
2178 {
2179 	struct vfsmount *tmp;
2180 	struct path new, old, parent_path, root_parent, root;
2181 	int error;
2182 
2183 	if (!capable(CAP_SYS_ADMIN))
2184 		return -EPERM;
2185 
2186 	error = user_path_dir(new_root, &new);
2187 	if (error)
2188 		goto out0;
2189 	error = -EINVAL;
2190 	if (!check_mnt(new.mnt))
2191 		goto out1;
2192 
2193 	error = user_path_dir(put_old, &old);
2194 	if (error)
2195 		goto out1;
2196 
2197 	error = security_sb_pivotroot(&old, &new);
2198 	if (error) {
2199 		path_put(&old);
2200 		goto out1;
2201 	}
2202 
2203 	read_lock(&current->fs->lock);
2204 	root = current->fs->root;
2205 	path_get(&current->fs->root);
2206 	read_unlock(&current->fs->lock);
2207 	down_write(&namespace_sem);
2208 	mutex_lock(&old.dentry->d_inode->i_mutex);
2209 	error = -EINVAL;
2210 	if (IS_MNT_SHARED(old.mnt) ||
2211 		IS_MNT_SHARED(new.mnt->mnt_parent) ||
2212 		IS_MNT_SHARED(root.mnt->mnt_parent))
2213 		goto out2;
2214 	if (!check_mnt(root.mnt))
2215 		goto out2;
2216 	error = -ENOENT;
2217 	if (IS_DEADDIR(new.dentry->d_inode))
2218 		goto out2;
2219 	if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
2220 		goto out2;
2221 	if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
2222 		goto out2;
2223 	error = -EBUSY;
2224 	if (new.mnt == root.mnt ||
2225 	    old.mnt == root.mnt)
2226 		goto out2; /* loop, on the same file system  */
2227 	error = -EINVAL;
2228 	if (root.mnt->mnt_root != root.dentry)
2229 		goto out2; /* not a mountpoint */
2230 	if (root.mnt->mnt_parent == root.mnt)
2231 		goto out2; /* not attached */
2232 	if (new.mnt->mnt_root != new.dentry)
2233 		goto out2; /* not a mountpoint */
2234 	if (new.mnt->mnt_parent == new.mnt)
2235 		goto out2; /* not attached */
2236 	/* make sure we can reach put_old from new_root */
2237 	tmp = old.mnt;
2238 	spin_lock(&vfsmount_lock);
2239 	if (tmp != new.mnt) {
2240 		for (;;) {
2241 			if (tmp->mnt_parent == tmp)
2242 				goto out3; /* already mounted on put_old */
2243 			if (tmp->mnt_parent == new.mnt)
2244 				break;
2245 			tmp = tmp->mnt_parent;
2246 		}
2247 		if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2248 			goto out3;
2249 	} else if (!is_subdir(old.dentry, new.dentry))
2250 		goto out3;
2251 	detach_mnt(new.mnt, &parent_path);
2252 	detach_mnt(root.mnt, &root_parent);
2253 	/* mount old root on put_old */
2254 	attach_mnt(root.mnt, &old);
2255 	/* mount new_root on / */
2256 	attach_mnt(new.mnt, &root_parent);
2257 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2258 	spin_unlock(&vfsmount_lock);
2259 	chroot_fs_refs(&root, &new);
2260 	security_sb_post_pivotroot(&root, &new);
2261 	error = 0;
2262 	path_put(&root_parent);
2263 	path_put(&parent_path);
2264 out2:
2265 	mutex_unlock(&old.dentry->d_inode->i_mutex);
2266 	up_write(&namespace_sem);
2267 	path_put(&root);
2268 	path_put(&old);
2269 out1:
2270 	path_put(&new);
2271 out0:
2272 	return error;
2273 out3:
2274 	spin_unlock(&vfsmount_lock);
2275 	goto out2;
2276 }
2277 
init_mount_tree(void)2278 static void __init init_mount_tree(void)
2279 {
2280 	struct vfsmount *mnt;
2281 	struct mnt_namespace *ns;
2282 	struct path root;
2283 
2284 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2285 	if (IS_ERR(mnt))
2286 		panic("Can't create rootfs");
2287 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2288 	if (!ns)
2289 		panic("Can't allocate initial namespace");
2290 	atomic_set(&ns->count, 1);
2291 	INIT_LIST_HEAD(&ns->list);
2292 	init_waitqueue_head(&ns->poll);
2293 	ns->event = 0;
2294 	list_add(&mnt->mnt_list, &ns->list);
2295 	ns->root = mnt;
2296 	mnt->mnt_ns = ns;
2297 
2298 	init_task.nsproxy->mnt_ns = ns;
2299 	get_mnt_ns(ns);
2300 
2301 	root.mnt = ns->root;
2302 	root.dentry = ns->root->mnt_root;
2303 
2304 	set_fs_pwd(current->fs, &root);
2305 	set_fs_root(current->fs, &root);
2306 }
2307 
mnt_init(void)2308 void __init mnt_init(void)
2309 {
2310 	unsigned u;
2311 	int err;
2312 
2313 	init_rwsem(&namespace_sem);
2314 
2315 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2316 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2317 
2318 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2319 
2320 	if (!mount_hashtable)
2321 		panic("Failed to allocate mount hash table\n");
2322 
2323 	printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2324 
2325 	for (u = 0; u < HASH_SIZE; u++)
2326 		INIT_LIST_HEAD(&mount_hashtable[u]);
2327 
2328 	err = sysfs_init();
2329 	if (err)
2330 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2331 			__func__, err);
2332 	fs_kobj = kobject_create_and_add("fs", NULL);
2333 	if (!fs_kobj)
2334 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
2335 	init_rootfs();
2336 	init_mount_tree();
2337 }
2338 
__put_mnt_ns(struct mnt_namespace * ns)2339 void __put_mnt_ns(struct mnt_namespace *ns)
2340 {
2341 	struct vfsmount *root = ns->root;
2342 	LIST_HEAD(umount_list);
2343 	ns->root = NULL;
2344 	spin_unlock(&vfsmount_lock);
2345 	down_write(&namespace_sem);
2346 	spin_lock(&vfsmount_lock);
2347 	umount_tree(root, 0, &umount_list);
2348 	spin_unlock(&vfsmount_lock);
2349 	up_write(&namespace_sem);
2350 	release_mounts(&umount_list);
2351 	kfree(ns);
2352 }
2353