1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include "pnode.h"
33 #include "internal.h"
34
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
37
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40
41 static int event;
42 static DEFINE_IDA(mnt_id_ida);
43 static DEFINE_IDA(mnt_group_ida);
44
45 static struct list_head *mount_hashtable __read_mostly;
46 static struct kmem_cache *mnt_cache __read_mostly;
47 static struct rw_semaphore namespace_sem;
48
49 /* /sys/fs */
50 struct kobject *fs_kobj;
51 EXPORT_SYMBOL_GPL(fs_kobj);
52
hash(struct vfsmount * mnt,struct dentry * dentry)53 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
54 {
55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
57 tmp = tmp + (tmp >> HASH_SHIFT);
58 return tmp & (HASH_SIZE - 1);
59 }
60
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
62
63 /* allocation is serialized by namespace_sem */
mnt_alloc_id(struct vfsmount * mnt)64 static int mnt_alloc_id(struct vfsmount *mnt)
65 {
66 int res;
67
68 retry:
69 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 spin_lock(&vfsmount_lock);
71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 spin_unlock(&vfsmount_lock);
73 if (res == -EAGAIN)
74 goto retry;
75
76 return res;
77 }
78
mnt_free_id(struct vfsmount * mnt)79 static void mnt_free_id(struct vfsmount *mnt)
80 {
81 spin_lock(&vfsmount_lock);
82 ida_remove(&mnt_id_ida, mnt->mnt_id);
83 spin_unlock(&vfsmount_lock);
84 }
85
86 /*
87 * Allocate a new peer group ID
88 *
89 * mnt_group_ida is protected by namespace_sem
90 */
mnt_alloc_group_id(struct vfsmount * mnt)91 static int mnt_alloc_group_id(struct vfsmount *mnt)
92 {
93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 return -ENOMEM;
95
96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
97 }
98
99 /*
100 * Release a peer group ID
101 */
mnt_release_group_id(struct vfsmount * mnt)102 void mnt_release_group_id(struct vfsmount *mnt)
103 {
104 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 mnt->mnt_group_id = 0;
106 }
107
alloc_vfsmnt(const char * name)108 struct vfsmount *alloc_vfsmnt(const char *name)
109 {
110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
111 if (mnt) {
112 int err;
113
114 err = mnt_alloc_id(mnt);
115 if (err)
116 goto out_free_cache;
117
118 if (name) {
119 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
120 if (!mnt->mnt_devname)
121 goto out_free_id;
122 }
123
124 atomic_set(&mnt->mnt_count, 1);
125 INIT_LIST_HEAD(&mnt->mnt_hash);
126 INIT_LIST_HEAD(&mnt->mnt_child);
127 INIT_LIST_HEAD(&mnt->mnt_mounts);
128 INIT_LIST_HEAD(&mnt->mnt_list);
129 INIT_LIST_HEAD(&mnt->mnt_expire);
130 INIT_LIST_HEAD(&mnt->mnt_share);
131 INIT_LIST_HEAD(&mnt->mnt_slave_list);
132 INIT_LIST_HEAD(&mnt->mnt_slave);
133 atomic_set(&mnt->__mnt_writers, 0);
134 }
135 return mnt;
136
137 out_free_id:
138 mnt_free_id(mnt);
139 out_free_cache:
140 kmem_cache_free(mnt_cache, mnt);
141 return NULL;
142 }
143
144 /*
145 * Most r/o checks on a fs are for operations that take
146 * discrete amounts of time, like a write() or unlink().
147 * We must keep track of when those operations start
148 * (for permission checks) and when they end, so that
149 * we can determine when writes are able to occur to
150 * a filesystem.
151 */
152 /*
153 * __mnt_is_readonly: check whether a mount is read-only
154 * @mnt: the mount to check for its write status
155 *
156 * This shouldn't be used directly ouside of the VFS.
157 * It does not guarantee that the filesystem will stay
158 * r/w, just that it is right *now*. This can not and
159 * should not be used in place of IS_RDONLY(inode).
160 * mnt_want/drop_write() will _keep_ the filesystem
161 * r/w.
162 */
__mnt_is_readonly(struct vfsmount * mnt)163 int __mnt_is_readonly(struct vfsmount *mnt)
164 {
165 if (mnt->mnt_flags & MNT_READONLY)
166 return 1;
167 if (mnt->mnt_sb->s_flags & MS_RDONLY)
168 return 1;
169 return 0;
170 }
171 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
172
173 struct mnt_writer {
174 /*
175 * If holding multiple instances of this lock, they
176 * must be ordered by cpu number.
177 */
178 spinlock_t lock;
179 struct lock_class_key lock_class; /* compiles out with !lockdep */
180 unsigned long count;
181 struct vfsmount *mnt;
182 } ____cacheline_aligned_in_smp;
183 static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
184
init_mnt_writers(void)185 static int __init init_mnt_writers(void)
186 {
187 int cpu;
188 for_each_possible_cpu(cpu) {
189 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
190 spin_lock_init(&writer->lock);
191 lockdep_set_class(&writer->lock, &writer->lock_class);
192 writer->count = 0;
193 }
194 return 0;
195 }
196 fs_initcall(init_mnt_writers);
197
unlock_mnt_writers(void)198 static void unlock_mnt_writers(void)
199 {
200 int cpu;
201 struct mnt_writer *cpu_writer;
202
203 for_each_possible_cpu(cpu) {
204 cpu_writer = &per_cpu(mnt_writers, cpu);
205 spin_unlock(&cpu_writer->lock);
206 }
207 }
208
__clear_mnt_count(struct mnt_writer * cpu_writer)209 static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
210 {
211 if (!cpu_writer->mnt)
212 return;
213 /*
214 * This is in case anyone ever leaves an invalid,
215 * old ->mnt and a count of 0.
216 */
217 if (!cpu_writer->count)
218 return;
219 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
220 cpu_writer->count = 0;
221 }
222 /*
223 * must hold cpu_writer->lock
224 */
use_cpu_writer_for_mount(struct mnt_writer * cpu_writer,struct vfsmount * mnt)225 static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
226 struct vfsmount *mnt)
227 {
228 if (cpu_writer->mnt == mnt)
229 return;
230 __clear_mnt_count(cpu_writer);
231 cpu_writer->mnt = mnt;
232 }
233
234 /*
235 * Most r/o checks on a fs are for operations that take
236 * discrete amounts of time, like a write() or unlink().
237 * We must keep track of when those operations start
238 * (for permission checks) and when they end, so that
239 * we can determine when writes are able to occur to
240 * a filesystem.
241 */
242 /**
243 * mnt_want_write - get write access to a mount
244 * @mnt: the mount on which to take a write
245 *
246 * This tells the low-level filesystem that a write is
247 * about to be performed to it, and makes sure that
248 * writes are allowed before returning success. When
249 * the write operation is finished, mnt_drop_write()
250 * must be called. This is effectively a refcount.
251 */
mnt_want_write(struct vfsmount * mnt)252 int mnt_want_write(struct vfsmount *mnt)
253 {
254 int ret = 0;
255 struct mnt_writer *cpu_writer;
256
257 cpu_writer = &get_cpu_var(mnt_writers);
258 spin_lock(&cpu_writer->lock);
259 if (__mnt_is_readonly(mnt)) {
260 ret = -EROFS;
261 goto out;
262 }
263 use_cpu_writer_for_mount(cpu_writer, mnt);
264 cpu_writer->count++;
265 out:
266 spin_unlock(&cpu_writer->lock);
267 put_cpu_var(mnt_writers);
268 return ret;
269 }
270 EXPORT_SYMBOL_GPL(mnt_want_write);
271
lock_mnt_writers(void)272 static void lock_mnt_writers(void)
273 {
274 int cpu;
275 struct mnt_writer *cpu_writer;
276
277 for_each_possible_cpu(cpu) {
278 cpu_writer = &per_cpu(mnt_writers, cpu);
279 spin_lock(&cpu_writer->lock);
280 __clear_mnt_count(cpu_writer);
281 cpu_writer->mnt = NULL;
282 }
283 }
284
285 /*
286 * These per-cpu write counts are not guaranteed to have
287 * matched increments and decrements on any given cpu.
288 * A file open()ed for write on one cpu and close()d on
289 * another cpu will imbalance this count. Make sure it
290 * does not get too far out of whack.
291 */
handle_write_count_underflow(struct vfsmount * mnt)292 static void handle_write_count_underflow(struct vfsmount *mnt)
293 {
294 if (atomic_read(&mnt->__mnt_writers) >=
295 MNT_WRITER_UNDERFLOW_LIMIT)
296 return;
297 /*
298 * It isn't necessary to hold all of the locks
299 * at the same time, but doing it this way makes
300 * us share a lot more code.
301 */
302 lock_mnt_writers();
303 /*
304 * vfsmount_lock is for mnt_flags.
305 */
306 spin_lock(&vfsmount_lock);
307 /*
308 * If coalescing the per-cpu writer counts did not
309 * get us back to a positive writer count, we have
310 * a bug.
311 */
312 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
313 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
314 WARN(1, KERN_DEBUG "leak detected on mount(%p) writers "
315 "count: %d\n",
316 mnt, atomic_read(&mnt->__mnt_writers));
317 /* use the flag to keep the dmesg spam down */
318 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
319 }
320 spin_unlock(&vfsmount_lock);
321 unlock_mnt_writers();
322 }
323
324 /**
325 * mnt_drop_write - give up write access to a mount
326 * @mnt: the mount on which to give up write access
327 *
328 * Tells the low-level filesystem that we are done
329 * performing writes to it. Must be matched with
330 * mnt_want_write() call above.
331 */
mnt_drop_write(struct vfsmount * mnt)332 void mnt_drop_write(struct vfsmount *mnt)
333 {
334 int must_check_underflow = 0;
335 struct mnt_writer *cpu_writer;
336
337 cpu_writer = &get_cpu_var(mnt_writers);
338 spin_lock(&cpu_writer->lock);
339
340 use_cpu_writer_for_mount(cpu_writer, mnt);
341 if (cpu_writer->count > 0) {
342 cpu_writer->count--;
343 } else {
344 must_check_underflow = 1;
345 atomic_dec(&mnt->__mnt_writers);
346 }
347
348 spin_unlock(&cpu_writer->lock);
349 /*
350 * Logically, we could call this each time,
351 * but the __mnt_writers cacheline tends to
352 * be cold, and makes this expensive.
353 */
354 if (must_check_underflow)
355 handle_write_count_underflow(mnt);
356 /*
357 * This could be done right after the spinlock
358 * is taken because the spinlock keeps us on
359 * the cpu, and disables preemption. However,
360 * putting it here bounds the amount that
361 * __mnt_writers can underflow. Without it,
362 * we could theoretically wrap __mnt_writers.
363 */
364 put_cpu_var(mnt_writers);
365 }
366 EXPORT_SYMBOL_GPL(mnt_drop_write);
367
mnt_make_readonly(struct vfsmount * mnt)368 static int mnt_make_readonly(struct vfsmount *mnt)
369 {
370 int ret = 0;
371
372 lock_mnt_writers();
373 /*
374 * With all the locks held, this value is stable
375 */
376 if (atomic_read(&mnt->__mnt_writers) > 0) {
377 ret = -EBUSY;
378 goto out;
379 }
380 /*
381 * nobody can do a successful mnt_want_write() with all
382 * of the counts in MNT_DENIED_WRITE and the locks held.
383 */
384 spin_lock(&vfsmount_lock);
385 if (!ret)
386 mnt->mnt_flags |= MNT_READONLY;
387 spin_unlock(&vfsmount_lock);
388 out:
389 unlock_mnt_writers();
390 return ret;
391 }
392
__mnt_unmake_readonly(struct vfsmount * mnt)393 static void __mnt_unmake_readonly(struct vfsmount *mnt)
394 {
395 spin_lock(&vfsmount_lock);
396 mnt->mnt_flags &= ~MNT_READONLY;
397 spin_unlock(&vfsmount_lock);
398 }
399
simple_set_mnt(struct vfsmount * mnt,struct super_block * sb)400 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
401 {
402 mnt->mnt_sb = sb;
403 mnt->mnt_root = dget(sb->s_root);
404 return 0;
405 }
406
407 EXPORT_SYMBOL(simple_set_mnt);
408
free_vfsmnt(struct vfsmount * mnt)409 void free_vfsmnt(struct vfsmount *mnt)
410 {
411 kfree(mnt->mnt_devname);
412 mnt_free_id(mnt);
413 kmem_cache_free(mnt_cache, mnt);
414 }
415
416 /*
417 * find the first or last mount at @dentry on vfsmount @mnt depending on
418 * @dir. If @dir is set return the first mount else return the last mount.
419 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry,int dir)420 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
421 int dir)
422 {
423 struct list_head *head = mount_hashtable + hash(mnt, dentry);
424 struct list_head *tmp = head;
425 struct vfsmount *p, *found = NULL;
426
427 for (;;) {
428 tmp = dir ? tmp->next : tmp->prev;
429 p = NULL;
430 if (tmp == head)
431 break;
432 p = list_entry(tmp, struct vfsmount, mnt_hash);
433 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
434 found = p;
435 break;
436 }
437 }
438 return found;
439 }
440
441 /*
442 * lookup_mnt increments the ref count before returning
443 * the vfsmount struct.
444 */
lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)445 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
446 {
447 struct vfsmount *child_mnt;
448 spin_lock(&vfsmount_lock);
449 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
450 mntget(child_mnt);
451 spin_unlock(&vfsmount_lock);
452 return child_mnt;
453 }
454
check_mnt(struct vfsmount * mnt)455 static inline int check_mnt(struct vfsmount *mnt)
456 {
457 return mnt->mnt_ns == current->nsproxy->mnt_ns;
458 }
459
touch_mnt_namespace(struct mnt_namespace * ns)460 static void touch_mnt_namespace(struct mnt_namespace *ns)
461 {
462 if (ns) {
463 ns->event = ++event;
464 wake_up_interruptible(&ns->poll);
465 }
466 }
467
__touch_mnt_namespace(struct mnt_namespace * ns)468 static void __touch_mnt_namespace(struct mnt_namespace *ns)
469 {
470 if (ns && ns->event != event) {
471 ns->event = event;
472 wake_up_interruptible(&ns->poll);
473 }
474 }
475
detach_mnt(struct vfsmount * mnt,struct path * old_path)476 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
477 {
478 old_path->dentry = mnt->mnt_mountpoint;
479 old_path->mnt = mnt->mnt_parent;
480 mnt->mnt_parent = mnt;
481 mnt->mnt_mountpoint = mnt->mnt_root;
482 list_del_init(&mnt->mnt_child);
483 list_del_init(&mnt->mnt_hash);
484 old_path->dentry->d_mounted--;
485 }
486
mnt_set_mountpoint(struct vfsmount * mnt,struct dentry * dentry,struct vfsmount * child_mnt)487 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
488 struct vfsmount *child_mnt)
489 {
490 child_mnt->mnt_parent = mntget(mnt);
491 child_mnt->mnt_mountpoint = dget(dentry);
492 dentry->d_mounted++;
493 }
494
attach_mnt(struct vfsmount * mnt,struct path * path)495 static void attach_mnt(struct vfsmount *mnt, struct path *path)
496 {
497 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
498 list_add_tail(&mnt->mnt_hash, mount_hashtable +
499 hash(path->mnt, path->dentry));
500 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
501 }
502
503 /*
504 * the caller must hold vfsmount_lock
505 */
commit_tree(struct vfsmount * mnt)506 static void commit_tree(struct vfsmount *mnt)
507 {
508 struct vfsmount *parent = mnt->mnt_parent;
509 struct vfsmount *m;
510 LIST_HEAD(head);
511 struct mnt_namespace *n = parent->mnt_ns;
512
513 BUG_ON(parent == mnt);
514
515 list_add_tail(&head, &mnt->mnt_list);
516 list_for_each_entry(m, &head, mnt_list)
517 m->mnt_ns = n;
518 list_splice(&head, n->list.prev);
519
520 list_add_tail(&mnt->mnt_hash, mount_hashtable +
521 hash(parent, mnt->mnt_mountpoint));
522 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
523 touch_mnt_namespace(n);
524 }
525
next_mnt(struct vfsmount * p,struct vfsmount * root)526 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
527 {
528 struct list_head *next = p->mnt_mounts.next;
529 if (next == &p->mnt_mounts) {
530 while (1) {
531 if (p == root)
532 return NULL;
533 next = p->mnt_child.next;
534 if (next != &p->mnt_parent->mnt_mounts)
535 break;
536 p = p->mnt_parent;
537 }
538 }
539 return list_entry(next, struct vfsmount, mnt_child);
540 }
541
skip_mnt_tree(struct vfsmount * p)542 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
543 {
544 struct list_head *prev = p->mnt_mounts.prev;
545 while (prev != &p->mnt_mounts) {
546 p = list_entry(prev, struct vfsmount, mnt_child);
547 prev = p->mnt_mounts.prev;
548 }
549 return p;
550 }
551
clone_mnt(struct vfsmount * old,struct dentry * root,int flag)552 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
553 int flag)
554 {
555 struct super_block *sb = old->mnt_sb;
556 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
557
558 if (mnt) {
559 if (flag & (CL_SLAVE | CL_PRIVATE))
560 mnt->mnt_group_id = 0; /* not a peer of original */
561 else
562 mnt->mnt_group_id = old->mnt_group_id;
563
564 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
565 int err = mnt_alloc_group_id(mnt);
566 if (err)
567 goto out_free;
568 }
569
570 mnt->mnt_flags = old->mnt_flags;
571 atomic_inc(&sb->s_active);
572 mnt->mnt_sb = sb;
573 mnt->mnt_root = dget(root);
574 mnt->mnt_mountpoint = mnt->mnt_root;
575 mnt->mnt_parent = mnt;
576
577 if (flag & CL_SLAVE) {
578 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
579 mnt->mnt_master = old;
580 CLEAR_MNT_SHARED(mnt);
581 } else if (!(flag & CL_PRIVATE)) {
582 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
583 list_add(&mnt->mnt_share, &old->mnt_share);
584 if (IS_MNT_SLAVE(old))
585 list_add(&mnt->mnt_slave, &old->mnt_slave);
586 mnt->mnt_master = old->mnt_master;
587 }
588 if (flag & CL_MAKE_SHARED)
589 set_mnt_shared(mnt);
590
591 /* stick the duplicate mount on the same expiry list
592 * as the original if that was on one */
593 if (flag & CL_EXPIRE) {
594 if (!list_empty(&old->mnt_expire))
595 list_add(&mnt->mnt_expire, &old->mnt_expire);
596 }
597 }
598 return mnt;
599
600 out_free:
601 free_vfsmnt(mnt);
602 return NULL;
603 }
604
__mntput(struct vfsmount * mnt)605 static inline void __mntput(struct vfsmount *mnt)
606 {
607 int cpu;
608 struct super_block *sb = mnt->mnt_sb;
609 /*
610 * We don't have to hold all of the locks at the
611 * same time here because we know that we're the
612 * last reference to mnt and that no new writers
613 * can come in.
614 */
615 for_each_possible_cpu(cpu) {
616 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
617 spin_lock(&cpu_writer->lock);
618 if (cpu_writer->mnt != mnt) {
619 spin_unlock(&cpu_writer->lock);
620 continue;
621 }
622 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
623 cpu_writer->count = 0;
624 /*
625 * Might as well do this so that no one
626 * ever sees the pointer and expects
627 * it to be valid.
628 */
629 cpu_writer->mnt = NULL;
630 spin_unlock(&cpu_writer->lock);
631 }
632 /*
633 * This probably indicates that somebody messed
634 * up a mnt_want/drop_write() pair. If this
635 * happens, the filesystem was probably unable
636 * to make r/w->r/o transitions.
637 */
638 WARN_ON(atomic_read(&mnt->__mnt_writers));
639 dput(mnt->mnt_root);
640 free_vfsmnt(mnt);
641 deactivate_super(sb);
642 }
643
mntput_no_expire(struct vfsmount * mnt)644 void mntput_no_expire(struct vfsmount *mnt)
645 {
646 repeat:
647 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
648 if (likely(!mnt->mnt_pinned)) {
649 spin_unlock(&vfsmount_lock);
650 __mntput(mnt);
651 return;
652 }
653 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
654 mnt->mnt_pinned = 0;
655 spin_unlock(&vfsmount_lock);
656 acct_auto_close_mnt(mnt);
657 security_sb_umount_close(mnt);
658 goto repeat;
659 }
660 }
661
662 EXPORT_SYMBOL(mntput_no_expire);
663
mnt_pin(struct vfsmount * mnt)664 void mnt_pin(struct vfsmount *mnt)
665 {
666 spin_lock(&vfsmount_lock);
667 mnt->mnt_pinned++;
668 spin_unlock(&vfsmount_lock);
669 }
670
671 EXPORT_SYMBOL(mnt_pin);
672
mnt_unpin(struct vfsmount * mnt)673 void mnt_unpin(struct vfsmount *mnt)
674 {
675 spin_lock(&vfsmount_lock);
676 if (mnt->mnt_pinned) {
677 atomic_inc(&mnt->mnt_count);
678 mnt->mnt_pinned--;
679 }
680 spin_unlock(&vfsmount_lock);
681 }
682
683 EXPORT_SYMBOL(mnt_unpin);
684
mangle(struct seq_file * m,const char * s)685 static inline void mangle(struct seq_file *m, const char *s)
686 {
687 seq_escape(m, s, " \t\n\\");
688 }
689
690 /*
691 * Simple .show_options callback for filesystems which don't want to
692 * implement more complex mount option showing.
693 *
694 * See also save_mount_options().
695 */
generic_show_options(struct seq_file * m,struct vfsmount * mnt)696 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
697 {
698 const char *options = mnt->mnt_sb->s_options;
699
700 if (options != NULL && options[0]) {
701 seq_putc(m, ',');
702 mangle(m, options);
703 }
704
705 return 0;
706 }
707 EXPORT_SYMBOL(generic_show_options);
708
709 /*
710 * If filesystem uses generic_show_options(), this function should be
711 * called from the fill_super() callback.
712 *
713 * The .remount_fs callback usually needs to be handled in a special
714 * way, to make sure, that previous options are not overwritten if the
715 * remount fails.
716 *
717 * Also note, that if the filesystem's .remount_fs function doesn't
718 * reset all options to their default value, but changes only newly
719 * given options, then the displayed options will not reflect reality
720 * any more.
721 */
save_mount_options(struct super_block * sb,char * options)722 void save_mount_options(struct super_block *sb, char *options)
723 {
724 kfree(sb->s_options);
725 sb->s_options = kstrdup(options, GFP_KERNEL);
726 }
727 EXPORT_SYMBOL(save_mount_options);
728
729 #ifdef CONFIG_PROC_FS
730 /* iterator */
m_start(struct seq_file * m,loff_t * pos)731 static void *m_start(struct seq_file *m, loff_t *pos)
732 {
733 struct proc_mounts *p = m->private;
734
735 down_read(&namespace_sem);
736 return seq_list_start(&p->ns->list, *pos);
737 }
738
m_next(struct seq_file * m,void * v,loff_t * pos)739 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
740 {
741 struct proc_mounts *p = m->private;
742
743 return seq_list_next(v, &p->ns->list, pos);
744 }
745
m_stop(struct seq_file * m,void * v)746 static void m_stop(struct seq_file *m, void *v)
747 {
748 up_read(&namespace_sem);
749 }
750
751 struct proc_fs_info {
752 int flag;
753 const char *str;
754 };
755
show_sb_opts(struct seq_file * m,struct super_block * sb)756 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
757 {
758 static const struct proc_fs_info fs_info[] = {
759 { MS_SYNCHRONOUS, ",sync" },
760 { MS_DIRSYNC, ",dirsync" },
761 { MS_MANDLOCK, ",mand" },
762 { 0, NULL }
763 };
764 const struct proc_fs_info *fs_infop;
765
766 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
767 if (sb->s_flags & fs_infop->flag)
768 seq_puts(m, fs_infop->str);
769 }
770
771 return security_sb_show_options(m, sb);
772 }
773
show_mnt_opts(struct seq_file * m,struct vfsmount * mnt)774 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
775 {
776 static const struct proc_fs_info mnt_info[] = {
777 { MNT_NOSUID, ",nosuid" },
778 { MNT_NODEV, ",nodev" },
779 { MNT_NOEXEC, ",noexec" },
780 { MNT_NOATIME, ",noatime" },
781 { MNT_NODIRATIME, ",nodiratime" },
782 { MNT_RELATIME, ",relatime" },
783 { 0, NULL }
784 };
785 const struct proc_fs_info *fs_infop;
786
787 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
788 if (mnt->mnt_flags & fs_infop->flag)
789 seq_puts(m, fs_infop->str);
790 }
791 }
792
show_type(struct seq_file * m,struct super_block * sb)793 static void show_type(struct seq_file *m, struct super_block *sb)
794 {
795 mangle(m, sb->s_type->name);
796 if (sb->s_subtype && sb->s_subtype[0]) {
797 seq_putc(m, '.');
798 mangle(m, sb->s_subtype);
799 }
800 }
801
show_vfsmnt(struct seq_file * m,void * v)802 static int show_vfsmnt(struct seq_file *m, void *v)
803 {
804 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
805 int err = 0;
806 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
807
808 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
809 seq_putc(m, ' ');
810 seq_path(m, &mnt_path, " \t\n\\");
811 seq_putc(m, ' ');
812 show_type(m, mnt->mnt_sb);
813 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
814 err = show_sb_opts(m, mnt->mnt_sb);
815 if (err)
816 goto out;
817 show_mnt_opts(m, mnt);
818 if (mnt->mnt_sb->s_op->show_options)
819 err = mnt->mnt_sb->s_op->show_options(m, mnt);
820 seq_puts(m, " 0 0\n");
821 out:
822 return err;
823 }
824
825 const struct seq_operations mounts_op = {
826 .start = m_start,
827 .next = m_next,
828 .stop = m_stop,
829 .show = show_vfsmnt
830 };
831
show_mountinfo(struct seq_file * m,void * v)832 static int show_mountinfo(struct seq_file *m, void *v)
833 {
834 struct proc_mounts *p = m->private;
835 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
836 struct super_block *sb = mnt->mnt_sb;
837 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
838 struct path root = p->root;
839 int err = 0;
840
841 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
842 MAJOR(sb->s_dev), MINOR(sb->s_dev));
843 seq_dentry(m, mnt->mnt_root, " \t\n\\");
844 seq_putc(m, ' ');
845 seq_path_root(m, &mnt_path, &root, " \t\n\\");
846 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
847 /*
848 * Mountpoint is outside root, discard that one. Ugly,
849 * but less so than trying to do that in iterator in a
850 * race-free way (due to renames).
851 */
852 return SEQ_SKIP;
853 }
854 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
855 show_mnt_opts(m, mnt);
856
857 /* Tagged fields ("foo:X" or "bar") */
858 if (IS_MNT_SHARED(mnt))
859 seq_printf(m, " shared:%i", mnt->mnt_group_id);
860 if (IS_MNT_SLAVE(mnt)) {
861 int master = mnt->mnt_master->mnt_group_id;
862 int dom = get_dominating_id(mnt, &p->root);
863 seq_printf(m, " master:%i", master);
864 if (dom && dom != master)
865 seq_printf(m, " propagate_from:%i", dom);
866 }
867 if (IS_MNT_UNBINDABLE(mnt))
868 seq_puts(m, " unbindable");
869
870 /* Filesystem specific data */
871 seq_puts(m, " - ");
872 show_type(m, sb);
873 seq_putc(m, ' ');
874 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
875 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
876 err = show_sb_opts(m, sb);
877 if (err)
878 goto out;
879 if (sb->s_op->show_options)
880 err = sb->s_op->show_options(m, mnt);
881 seq_putc(m, '\n');
882 out:
883 return err;
884 }
885
886 const struct seq_operations mountinfo_op = {
887 .start = m_start,
888 .next = m_next,
889 .stop = m_stop,
890 .show = show_mountinfo,
891 };
892
show_vfsstat(struct seq_file * m,void * v)893 static int show_vfsstat(struct seq_file *m, void *v)
894 {
895 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
896 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
897 int err = 0;
898
899 /* device */
900 if (mnt->mnt_devname) {
901 seq_puts(m, "device ");
902 mangle(m, mnt->mnt_devname);
903 } else
904 seq_puts(m, "no device");
905
906 /* mount point */
907 seq_puts(m, " mounted on ");
908 seq_path(m, &mnt_path, " \t\n\\");
909 seq_putc(m, ' ');
910
911 /* file system type */
912 seq_puts(m, "with fstype ");
913 show_type(m, mnt->mnt_sb);
914
915 /* optional statistics */
916 if (mnt->mnt_sb->s_op->show_stats) {
917 seq_putc(m, ' ');
918 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
919 }
920
921 seq_putc(m, '\n');
922 return err;
923 }
924
925 const struct seq_operations mountstats_op = {
926 .start = m_start,
927 .next = m_next,
928 .stop = m_stop,
929 .show = show_vfsstat,
930 };
931 #endif /* CONFIG_PROC_FS */
932
933 /**
934 * may_umount_tree - check if a mount tree is busy
935 * @mnt: root of mount tree
936 *
937 * This is called to check if a tree of mounts has any
938 * open files, pwds, chroots or sub mounts that are
939 * busy.
940 */
may_umount_tree(struct vfsmount * mnt)941 int may_umount_tree(struct vfsmount *mnt)
942 {
943 int actual_refs = 0;
944 int minimum_refs = 0;
945 struct vfsmount *p;
946
947 spin_lock(&vfsmount_lock);
948 for (p = mnt; p; p = next_mnt(p, mnt)) {
949 actual_refs += atomic_read(&p->mnt_count);
950 minimum_refs += 2;
951 }
952 spin_unlock(&vfsmount_lock);
953
954 if (actual_refs > minimum_refs)
955 return 0;
956
957 return 1;
958 }
959
960 EXPORT_SYMBOL(may_umount_tree);
961
962 /**
963 * may_umount - check if a mount point is busy
964 * @mnt: root of mount
965 *
966 * This is called to check if a mount point has any
967 * open files, pwds, chroots or sub mounts. If the
968 * mount has sub mounts this will return busy
969 * regardless of whether the sub mounts are busy.
970 *
971 * Doesn't take quota and stuff into account. IOW, in some cases it will
972 * give false negatives. The main reason why it's here is that we need
973 * a non-destructive way to look for easily umountable filesystems.
974 */
may_umount(struct vfsmount * mnt)975 int may_umount(struct vfsmount *mnt)
976 {
977 int ret = 1;
978 spin_lock(&vfsmount_lock);
979 if (propagate_mount_busy(mnt, 2))
980 ret = 0;
981 spin_unlock(&vfsmount_lock);
982 return ret;
983 }
984
985 EXPORT_SYMBOL(may_umount);
986
release_mounts(struct list_head * head)987 void release_mounts(struct list_head *head)
988 {
989 struct vfsmount *mnt;
990 while (!list_empty(head)) {
991 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
992 list_del_init(&mnt->mnt_hash);
993 if (mnt->mnt_parent != mnt) {
994 struct dentry *dentry;
995 struct vfsmount *m;
996 spin_lock(&vfsmount_lock);
997 dentry = mnt->mnt_mountpoint;
998 m = mnt->mnt_parent;
999 mnt->mnt_mountpoint = mnt->mnt_root;
1000 mnt->mnt_parent = mnt;
1001 m->mnt_ghosts--;
1002 spin_unlock(&vfsmount_lock);
1003 dput(dentry);
1004 mntput(m);
1005 }
1006 mntput(mnt);
1007 }
1008 }
1009
umount_tree(struct vfsmount * mnt,int propagate,struct list_head * kill)1010 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1011 {
1012 struct vfsmount *p;
1013
1014 for (p = mnt; p; p = next_mnt(p, mnt))
1015 list_move(&p->mnt_hash, kill);
1016
1017 if (propagate)
1018 propagate_umount(kill);
1019
1020 list_for_each_entry(p, kill, mnt_hash) {
1021 list_del_init(&p->mnt_expire);
1022 list_del_init(&p->mnt_list);
1023 __touch_mnt_namespace(p->mnt_ns);
1024 p->mnt_ns = NULL;
1025 list_del_init(&p->mnt_child);
1026 if (p->mnt_parent != p) {
1027 p->mnt_parent->mnt_ghosts++;
1028 p->mnt_mountpoint->d_mounted--;
1029 }
1030 change_mnt_propagation(p, MS_PRIVATE);
1031 }
1032 }
1033
1034 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1035
do_umount(struct vfsmount * mnt,int flags)1036 static int do_umount(struct vfsmount *mnt, int flags)
1037 {
1038 struct super_block *sb = mnt->mnt_sb;
1039 int retval;
1040 LIST_HEAD(umount_list);
1041
1042 retval = security_sb_umount(mnt, flags);
1043 if (retval)
1044 return retval;
1045
1046 /*
1047 * Allow userspace to request a mountpoint be expired rather than
1048 * unmounting unconditionally. Unmount only happens if:
1049 * (1) the mark is already set (the mark is cleared by mntput())
1050 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1051 */
1052 if (flags & MNT_EXPIRE) {
1053 if (mnt == current->fs->root.mnt ||
1054 flags & (MNT_FORCE | MNT_DETACH))
1055 return -EINVAL;
1056
1057 if (atomic_read(&mnt->mnt_count) != 2)
1058 return -EBUSY;
1059
1060 if (!xchg(&mnt->mnt_expiry_mark, 1))
1061 return -EAGAIN;
1062 }
1063
1064 /*
1065 * If we may have to abort operations to get out of this
1066 * mount, and they will themselves hold resources we must
1067 * allow the fs to do things. In the Unix tradition of
1068 * 'Gee thats tricky lets do it in userspace' the umount_begin
1069 * might fail to complete on the first run through as other tasks
1070 * must return, and the like. Thats for the mount program to worry
1071 * about for the moment.
1072 */
1073
1074 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1075 lock_kernel();
1076 sb->s_op->umount_begin(sb);
1077 unlock_kernel();
1078 }
1079
1080 /*
1081 * No sense to grab the lock for this test, but test itself looks
1082 * somewhat bogus. Suggestions for better replacement?
1083 * Ho-hum... In principle, we might treat that as umount + switch
1084 * to rootfs. GC would eventually take care of the old vfsmount.
1085 * Actually it makes sense, especially if rootfs would contain a
1086 * /reboot - static binary that would close all descriptors and
1087 * call reboot(9). Then init(8) could umount root and exec /reboot.
1088 */
1089 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1090 /*
1091 * Special case for "unmounting" root ...
1092 * we just try to remount it readonly.
1093 */
1094 down_write(&sb->s_umount);
1095 if (!(sb->s_flags & MS_RDONLY)) {
1096 lock_kernel();
1097 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1098 unlock_kernel();
1099 }
1100 up_write(&sb->s_umount);
1101 return retval;
1102 }
1103
1104 down_write(&namespace_sem);
1105 spin_lock(&vfsmount_lock);
1106 event++;
1107
1108 if (!(flags & MNT_DETACH))
1109 shrink_submounts(mnt, &umount_list);
1110
1111 retval = -EBUSY;
1112 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1113 if (!list_empty(&mnt->mnt_list))
1114 umount_tree(mnt, 1, &umount_list);
1115 retval = 0;
1116 }
1117 spin_unlock(&vfsmount_lock);
1118 if (retval)
1119 security_sb_umount_busy(mnt);
1120 up_write(&namespace_sem);
1121 release_mounts(&umount_list);
1122 return retval;
1123 }
1124
1125 /*
1126 * Now umount can handle mount points as well as block devices.
1127 * This is important for filesystems which use unnamed block devices.
1128 *
1129 * We now support a flag for forced unmount like the other 'big iron'
1130 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1131 */
1132
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1133 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1134 {
1135 struct path path;
1136 int retval;
1137
1138 retval = user_path(name, &path);
1139 if (retval)
1140 goto out;
1141 retval = -EINVAL;
1142 if (path.dentry != path.mnt->mnt_root)
1143 goto dput_and_out;
1144 if (!check_mnt(path.mnt))
1145 goto dput_and_out;
1146
1147 retval = -EPERM;
1148 if (!capable(CAP_SYS_ADMIN))
1149 goto dput_and_out;
1150
1151 retval = do_umount(path.mnt, flags);
1152 dput_and_out:
1153 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1154 dput(path.dentry);
1155 mntput_no_expire(path.mnt);
1156 out:
1157 return retval;
1158 }
1159
1160 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1161
1162 /*
1163 * The 2.0 compatible umount. No flags.
1164 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1165 SYSCALL_DEFINE1(oldumount, char __user *, name)
1166 {
1167 return sys_umount(name, 0);
1168 }
1169
1170 #endif
1171
mount_is_safe(struct path * path)1172 static int mount_is_safe(struct path *path)
1173 {
1174 if (capable(CAP_SYS_ADMIN))
1175 return 0;
1176 return -EPERM;
1177 #ifdef notyet
1178 if (S_ISLNK(path->dentry->d_inode->i_mode))
1179 return -EPERM;
1180 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1181 if (current_uid() != path->dentry->d_inode->i_uid)
1182 return -EPERM;
1183 }
1184 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1185 return -EPERM;
1186 return 0;
1187 #endif
1188 }
1189
copy_tree(struct vfsmount * mnt,struct dentry * dentry,int flag)1190 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1191 int flag)
1192 {
1193 struct vfsmount *res, *p, *q, *r, *s;
1194 struct path path;
1195
1196 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1197 return NULL;
1198
1199 res = q = clone_mnt(mnt, dentry, flag);
1200 if (!q)
1201 goto Enomem;
1202 q->mnt_mountpoint = mnt->mnt_mountpoint;
1203
1204 p = mnt;
1205 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1206 if (!is_subdir(r->mnt_mountpoint, dentry))
1207 continue;
1208
1209 for (s = r; s; s = next_mnt(s, r)) {
1210 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1211 s = skip_mnt_tree(s);
1212 continue;
1213 }
1214 while (p != s->mnt_parent) {
1215 p = p->mnt_parent;
1216 q = q->mnt_parent;
1217 }
1218 p = s;
1219 path.mnt = q;
1220 path.dentry = p->mnt_mountpoint;
1221 q = clone_mnt(p, p->mnt_root, flag);
1222 if (!q)
1223 goto Enomem;
1224 spin_lock(&vfsmount_lock);
1225 list_add_tail(&q->mnt_list, &res->mnt_list);
1226 attach_mnt(q, &path);
1227 spin_unlock(&vfsmount_lock);
1228 }
1229 }
1230 return res;
1231 Enomem:
1232 if (res) {
1233 LIST_HEAD(umount_list);
1234 spin_lock(&vfsmount_lock);
1235 umount_tree(res, 0, &umount_list);
1236 spin_unlock(&vfsmount_lock);
1237 release_mounts(&umount_list);
1238 }
1239 return NULL;
1240 }
1241
collect_mounts(struct vfsmount * mnt,struct dentry * dentry)1242 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1243 {
1244 struct vfsmount *tree;
1245 down_write(&namespace_sem);
1246 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1247 up_write(&namespace_sem);
1248 return tree;
1249 }
1250
drop_collected_mounts(struct vfsmount * mnt)1251 void drop_collected_mounts(struct vfsmount *mnt)
1252 {
1253 LIST_HEAD(umount_list);
1254 down_write(&namespace_sem);
1255 spin_lock(&vfsmount_lock);
1256 umount_tree(mnt, 0, &umount_list);
1257 spin_unlock(&vfsmount_lock);
1258 up_write(&namespace_sem);
1259 release_mounts(&umount_list);
1260 }
1261
cleanup_group_ids(struct vfsmount * mnt,struct vfsmount * end)1262 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1263 {
1264 struct vfsmount *p;
1265
1266 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1267 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1268 mnt_release_group_id(p);
1269 }
1270 }
1271
invent_group_ids(struct vfsmount * mnt,bool recurse)1272 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1273 {
1274 struct vfsmount *p;
1275
1276 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1277 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1278 int err = mnt_alloc_group_id(p);
1279 if (err) {
1280 cleanup_group_ids(mnt, p);
1281 return err;
1282 }
1283 }
1284 }
1285
1286 return 0;
1287 }
1288
1289 /*
1290 * @source_mnt : mount tree to be attached
1291 * @nd : place the mount tree @source_mnt is attached
1292 * @parent_nd : if non-null, detach the source_mnt from its parent and
1293 * store the parent mount and mountpoint dentry.
1294 * (done when source_mnt is moved)
1295 *
1296 * NOTE: in the table below explains the semantics when a source mount
1297 * of a given type is attached to a destination mount of a given type.
1298 * ---------------------------------------------------------------------------
1299 * | BIND MOUNT OPERATION |
1300 * |**************************************************************************
1301 * | source-->| shared | private | slave | unbindable |
1302 * | dest | | | | |
1303 * | | | | | | |
1304 * | v | | | | |
1305 * |**************************************************************************
1306 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1307 * | | | | | |
1308 * |non-shared| shared (+) | private | slave (*) | invalid |
1309 * ***************************************************************************
1310 * A bind operation clones the source mount and mounts the clone on the
1311 * destination mount.
1312 *
1313 * (++) the cloned mount is propagated to all the mounts in the propagation
1314 * tree of the destination mount and the cloned mount is added to
1315 * the peer group of the source mount.
1316 * (+) the cloned mount is created under the destination mount and is marked
1317 * as shared. The cloned mount is added to the peer group of the source
1318 * mount.
1319 * (+++) the mount is propagated to all the mounts in the propagation tree
1320 * of the destination mount and the cloned mount is made slave
1321 * of the same master as that of the source mount. The cloned mount
1322 * is marked as 'shared and slave'.
1323 * (*) the cloned mount is made a slave of the same master as that of the
1324 * source mount.
1325 *
1326 * ---------------------------------------------------------------------------
1327 * | MOVE MOUNT OPERATION |
1328 * |**************************************************************************
1329 * | source-->| shared | private | slave | unbindable |
1330 * | dest | | | | |
1331 * | | | | | | |
1332 * | v | | | | |
1333 * |**************************************************************************
1334 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1335 * | | | | | |
1336 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1337 * ***************************************************************************
1338 *
1339 * (+) the mount is moved to the destination. And is then propagated to
1340 * all the mounts in the propagation tree of the destination mount.
1341 * (+*) the mount is moved to the destination.
1342 * (+++) the mount is moved to the destination and is then propagated to
1343 * all the mounts belonging to the destination mount's propagation tree.
1344 * the mount is marked as 'shared and slave'.
1345 * (*) the mount continues to be a slave at the new location.
1346 *
1347 * if the source mount is a tree, the operations explained above is
1348 * applied to each mount in the tree.
1349 * Must be called without spinlocks held, since this function can sleep
1350 * in allocations.
1351 */
attach_recursive_mnt(struct vfsmount * source_mnt,struct path * path,struct path * parent_path)1352 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1353 struct path *path, struct path *parent_path)
1354 {
1355 LIST_HEAD(tree_list);
1356 struct vfsmount *dest_mnt = path->mnt;
1357 struct dentry *dest_dentry = path->dentry;
1358 struct vfsmount *child, *p;
1359 int err;
1360
1361 if (IS_MNT_SHARED(dest_mnt)) {
1362 err = invent_group_ids(source_mnt, true);
1363 if (err)
1364 goto out;
1365 }
1366 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1367 if (err)
1368 goto out_cleanup_ids;
1369
1370 if (IS_MNT_SHARED(dest_mnt)) {
1371 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1372 set_mnt_shared(p);
1373 }
1374
1375 spin_lock(&vfsmount_lock);
1376 if (parent_path) {
1377 detach_mnt(source_mnt, parent_path);
1378 attach_mnt(source_mnt, path);
1379 touch_mnt_namespace(current->nsproxy->mnt_ns);
1380 } else {
1381 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1382 commit_tree(source_mnt);
1383 }
1384
1385 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1386 list_del_init(&child->mnt_hash);
1387 commit_tree(child);
1388 }
1389 spin_unlock(&vfsmount_lock);
1390 return 0;
1391
1392 out_cleanup_ids:
1393 if (IS_MNT_SHARED(dest_mnt))
1394 cleanup_group_ids(source_mnt, NULL);
1395 out:
1396 return err;
1397 }
1398
graft_tree(struct vfsmount * mnt,struct path * path)1399 static int graft_tree(struct vfsmount *mnt, struct path *path)
1400 {
1401 int err;
1402 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1403 return -EINVAL;
1404
1405 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1406 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1407 return -ENOTDIR;
1408
1409 err = -ENOENT;
1410 mutex_lock(&path->dentry->d_inode->i_mutex);
1411 if (IS_DEADDIR(path->dentry->d_inode))
1412 goto out_unlock;
1413
1414 err = security_sb_check_sb(mnt, path);
1415 if (err)
1416 goto out_unlock;
1417
1418 err = -ENOENT;
1419 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1420 err = attach_recursive_mnt(mnt, path, NULL);
1421 out_unlock:
1422 mutex_unlock(&path->dentry->d_inode->i_mutex);
1423 if (!err)
1424 security_sb_post_addmount(mnt, path);
1425 return err;
1426 }
1427
1428 /*
1429 * recursively change the type of the mountpoint.
1430 */
do_change_type(struct path * path,int flag)1431 static int do_change_type(struct path *path, int flag)
1432 {
1433 struct vfsmount *m, *mnt = path->mnt;
1434 int recurse = flag & MS_REC;
1435 int type = flag & ~MS_REC;
1436 int err = 0;
1437
1438 if (!capable(CAP_SYS_ADMIN))
1439 return -EPERM;
1440
1441 if (path->dentry != path->mnt->mnt_root)
1442 return -EINVAL;
1443
1444 down_write(&namespace_sem);
1445 if (type == MS_SHARED) {
1446 err = invent_group_ids(mnt, recurse);
1447 if (err)
1448 goto out_unlock;
1449 }
1450
1451 spin_lock(&vfsmount_lock);
1452 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1453 change_mnt_propagation(m, type);
1454 spin_unlock(&vfsmount_lock);
1455
1456 out_unlock:
1457 up_write(&namespace_sem);
1458 return err;
1459 }
1460
1461 /*
1462 * do loopback mount.
1463 */
do_loopback(struct path * path,char * old_name,int recurse)1464 static int do_loopback(struct path *path, char *old_name,
1465 int recurse)
1466 {
1467 struct path old_path;
1468 struct vfsmount *mnt = NULL;
1469 int err = mount_is_safe(path);
1470 if (err)
1471 return err;
1472 if (!old_name || !*old_name)
1473 return -EINVAL;
1474 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1475 if (err)
1476 return err;
1477
1478 down_write(&namespace_sem);
1479 err = -EINVAL;
1480 if (IS_MNT_UNBINDABLE(old_path.mnt))
1481 goto out;
1482
1483 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1484 goto out;
1485
1486 err = -ENOMEM;
1487 if (recurse)
1488 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1489 else
1490 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1491
1492 if (!mnt)
1493 goto out;
1494
1495 err = graft_tree(mnt, path);
1496 if (err) {
1497 LIST_HEAD(umount_list);
1498 spin_lock(&vfsmount_lock);
1499 umount_tree(mnt, 0, &umount_list);
1500 spin_unlock(&vfsmount_lock);
1501 release_mounts(&umount_list);
1502 }
1503
1504 out:
1505 up_write(&namespace_sem);
1506 path_put(&old_path);
1507 return err;
1508 }
1509
change_mount_flags(struct vfsmount * mnt,int ms_flags)1510 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1511 {
1512 int error = 0;
1513 int readonly_request = 0;
1514
1515 if (ms_flags & MS_RDONLY)
1516 readonly_request = 1;
1517 if (readonly_request == __mnt_is_readonly(mnt))
1518 return 0;
1519
1520 if (readonly_request)
1521 error = mnt_make_readonly(mnt);
1522 else
1523 __mnt_unmake_readonly(mnt);
1524 return error;
1525 }
1526
1527 /*
1528 * change filesystem flags. dir should be a physical root of filesystem.
1529 * If you've mounted a non-root directory somewhere and want to do remount
1530 * on it - tough luck.
1531 */
do_remount(struct path * path,int flags,int mnt_flags,void * data)1532 static int do_remount(struct path *path, int flags, int mnt_flags,
1533 void *data)
1534 {
1535 int err;
1536 struct super_block *sb = path->mnt->mnt_sb;
1537
1538 if (!capable(CAP_SYS_ADMIN))
1539 return -EPERM;
1540
1541 if (!check_mnt(path->mnt))
1542 return -EINVAL;
1543
1544 if (path->dentry != path->mnt->mnt_root)
1545 return -EINVAL;
1546
1547 down_write(&sb->s_umount);
1548 if (flags & MS_BIND)
1549 err = change_mount_flags(path->mnt, flags);
1550 else
1551 err = do_remount_sb(sb, flags, data, 0);
1552 if (!err)
1553 path->mnt->mnt_flags = mnt_flags;
1554 up_write(&sb->s_umount);
1555 if (!err) {
1556 security_sb_post_remount(path->mnt, flags, data);
1557
1558 spin_lock(&vfsmount_lock);
1559 touch_mnt_namespace(path->mnt->mnt_ns);
1560 spin_unlock(&vfsmount_lock);
1561 }
1562 return err;
1563 }
1564
tree_contains_unbindable(struct vfsmount * mnt)1565 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1566 {
1567 struct vfsmount *p;
1568 for (p = mnt; p; p = next_mnt(p, mnt)) {
1569 if (IS_MNT_UNBINDABLE(p))
1570 return 1;
1571 }
1572 return 0;
1573 }
1574
do_move_mount(struct path * path,char * old_name)1575 static int do_move_mount(struct path *path, char *old_name)
1576 {
1577 struct path old_path, parent_path;
1578 struct vfsmount *p;
1579 int err = 0;
1580 if (!capable(CAP_SYS_ADMIN))
1581 return -EPERM;
1582 if (!old_name || !*old_name)
1583 return -EINVAL;
1584 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1585 if (err)
1586 return err;
1587
1588 down_write(&namespace_sem);
1589 while (d_mountpoint(path->dentry) &&
1590 follow_down(&path->mnt, &path->dentry))
1591 ;
1592 err = -EINVAL;
1593 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1594 goto out;
1595
1596 err = -ENOENT;
1597 mutex_lock(&path->dentry->d_inode->i_mutex);
1598 if (IS_DEADDIR(path->dentry->d_inode))
1599 goto out1;
1600
1601 if (!IS_ROOT(path->dentry) && d_unhashed(path->dentry))
1602 goto out1;
1603
1604 err = -EINVAL;
1605 if (old_path.dentry != old_path.mnt->mnt_root)
1606 goto out1;
1607
1608 if (old_path.mnt == old_path.mnt->mnt_parent)
1609 goto out1;
1610
1611 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1612 S_ISDIR(old_path.dentry->d_inode->i_mode))
1613 goto out1;
1614 /*
1615 * Don't move a mount residing in a shared parent.
1616 */
1617 if (old_path.mnt->mnt_parent &&
1618 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1619 goto out1;
1620 /*
1621 * Don't move a mount tree containing unbindable mounts to a destination
1622 * mount which is shared.
1623 */
1624 if (IS_MNT_SHARED(path->mnt) &&
1625 tree_contains_unbindable(old_path.mnt))
1626 goto out1;
1627 err = -ELOOP;
1628 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1629 if (p == old_path.mnt)
1630 goto out1;
1631
1632 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1633 if (err)
1634 goto out1;
1635
1636 /* if the mount is moved, it should no longer be expire
1637 * automatically */
1638 list_del_init(&old_path.mnt->mnt_expire);
1639 out1:
1640 mutex_unlock(&path->dentry->d_inode->i_mutex);
1641 out:
1642 up_write(&namespace_sem);
1643 if (!err)
1644 path_put(&parent_path);
1645 path_put(&old_path);
1646 return err;
1647 }
1648
1649 /*
1650 * create a new mount for userspace and request it to be added into the
1651 * namespace's tree
1652 */
do_new_mount(struct path * path,char * type,int flags,int mnt_flags,char * name,void * data)1653 static int do_new_mount(struct path *path, char *type, int flags,
1654 int mnt_flags, char *name, void *data)
1655 {
1656 struct vfsmount *mnt;
1657
1658 if (!type || !memchr(type, 0, PAGE_SIZE))
1659 return -EINVAL;
1660
1661 /* we need capabilities... */
1662 if (!capable(CAP_SYS_ADMIN))
1663 return -EPERM;
1664
1665 mnt = do_kern_mount(type, flags, name, data);
1666 if (IS_ERR(mnt))
1667 return PTR_ERR(mnt);
1668
1669 return do_add_mount(mnt, path, mnt_flags, NULL);
1670 }
1671
1672 /*
1673 * add a mount into a namespace's mount tree
1674 * - provide the option of adding the new mount to an expiration list
1675 */
do_add_mount(struct vfsmount * newmnt,struct path * path,int mnt_flags,struct list_head * fslist)1676 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1677 int mnt_flags, struct list_head *fslist)
1678 {
1679 int err;
1680
1681 down_write(&namespace_sem);
1682 /* Something was mounted here while we slept */
1683 while (d_mountpoint(path->dentry) &&
1684 follow_down(&path->mnt, &path->dentry))
1685 ;
1686 err = -EINVAL;
1687 if (!check_mnt(path->mnt))
1688 goto unlock;
1689
1690 /* Refuse the same filesystem on the same mount point */
1691 err = -EBUSY;
1692 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1693 path->mnt->mnt_root == path->dentry)
1694 goto unlock;
1695
1696 err = -EINVAL;
1697 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1698 goto unlock;
1699
1700 newmnt->mnt_flags = mnt_flags;
1701 if ((err = graft_tree(newmnt, path)))
1702 goto unlock;
1703
1704 if (fslist) /* add to the specified expiration list */
1705 list_add_tail(&newmnt->mnt_expire, fslist);
1706
1707 up_write(&namespace_sem);
1708 return 0;
1709
1710 unlock:
1711 up_write(&namespace_sem);
1712 mntput(newmnt);
1713 return err;
1714 }
1715
1716 EXPORT_SYMBOL_GPL(do_add_mount);
1717
1718 /*
1719 * process a list of expirable mountpoints with the intent of discarding any
1720 * mountpoints that aren't in use and haven't been touched since last we came
1721 * here
1722 */
mark_mounts_for_expiry(struct list_head * mounts)1723 void mark_mounts_for_expiry(struct list_head *mounts)
1724 {
1725 struct vfsmount *mnt, *next;
1726 LIST_HEAD(graveyard);
1727 LIST_HEAD(umounts);
1728
1729 if (list_empty(mounts))
1730 return;
1731
1732 down_write(&namespace_sem);
1733 spin_lock(&vfsmount_lock);
1734
1735 /* extract from the expiration list every vfsmount that matches the
1736 * following criteria:
1737 * - only referenced by its parent vfsmount
1738 * - still marked for expiry (marked on the last call here; marks are
1739 * cleared by mntput())
1740 */
1741 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1742 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1743 propagate_mount_busy(mnt, 1))
1744 continue;
1745 list_move(&mnt->mnt_expire, &graveyard);
1746 }
1747 while (!list_empty(&graveyard)) {
1748 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1749 touch_mnt_namespace(mnt->mnt_ns);
1750 umount_tree(mnt, 1, &umounts);
1751 }
1752 spin_unlock(&vfsmount_lock);
1753 up_write(&namespace_sem);
1754
1755 release_mounts(&umounts);
1756 }
1757
1758 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1759
1760 /*
1761 * Ripoff of 'select_parent()'
1762 *
1763 * search the list of submounts for a given mountpoint, and move any
1764 * shrinkable submounts to the 'graveyard' list.
1765 */
select_submounts(struct vfsmount * parent,struct list_head * graveyard)1766 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1767 {
1768 struct vfsmount *this_parent = parent;
1769 struct list_head *next;
1770 int found = 0;
1771
1772 repeat:
1773 next = this_parent->mnt_mounts.next;
1774 resume:
1775 while (next != &this_parent->mnt_mounts) {
1776 struct list_head *tmp = next;
1777 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1778
1779 next = tmp->next;
1780 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1781 continue;
1782 /*
1783 * Descend a level if the d_mounts list is non-empty.
1784 */
1785 if (!list_empty(&mnt->mnt_mounts)) {
1786 this_parent = mnt;
1787 goto repeat;
1788 }
1789
1790 if (!propagate_mount_busy(mnt, 1)) {
1791 list_move_tail(&mnt->mnt_expire, graveyard);
1792 found++;
1793 }
1794 }
1795 /*
1796 * All done at this level ... ascend and resume the search
1797 */
1798 if (this_parent != parent) {
1799 next = this_parent->mnt_child.next;
1800 this_parent = this_parent->mnt_parent;
1801 goto resume;
1802 }
1803 return found;
1804 }
1805
1806 /*
1807 * process a list of expirable mountpoints with the intent of discarding any
1808 * submounts of a specific parent mountpoint
1809 */
shrink_submounts(struct vfsmount * mnt,struct list_head * umounts)1810 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1811 {
1812 LIST_HEAD(graveyard);
1813 struct vfsmount *m;
1814
1815 /* extract submounts of 'mountpoint' from the expiration list */
1816 while (select_submounts(mnt, &graveyard)) {
1817 while (!list_empty(&graveyard)) {
1818 m = list_first_entry(&graveyard, struct vfsmount,
1819 mnt_expire);
1820 touch_mnt_namespace(m->mnt_ns);
1821 umount_tree(m, 1, umounts);
1822 }
1823 }
1824 }
1825
1826 /*
1827 * Some copy_from_user() implementations do not return the exact number of
1828 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1829 * Note that this function differs from copy_from_user() in that it will oops
1830 * on bad values of `to', rather than returning a short copy.
1831 */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)1832 static long exact_copy_from_user(void *to, const void __user * from,
1833 unsigned long n)
1834 {
1835 char *t = to;
1836 const char __user *f = from;
1837 char c;
1838
1839 if (!access_ok(VERIFY_READ, from, n))
1840 return n;
1841
1842 while (n) {
1843 if (__get_user(c, f)) {
1844 memset(t, 0, n);
1845 break;
1846 }
1847 *t++ = c;
1848 f++;
1849 n--;
1850 }
1851 return n;
1852 }
1853
copy_mount_options(const void __user * data,unsigned long * where)1854 int copy_mount_options(const void __user * data, unsigned long *where)
1855 {
1856 int i;
1857 unsigned long page;
1858 unsigned long size;
1859
1860 *where = 0;
1861 if (!data)
1862 return 0;
1863
1864 if (!(page = __get_free_page(GFP_KERNEL)))
1865 return -ENOMEM;
1866
1867 /* We only care that *some* data at the address the user
1868 * gave us is valid. Just in case, we'll zero
1869 * the remainder of the page.
1870 */
1871 /* copy_from_user cannot cross TASK_SIZE ! */
1872 size = TASK_SIZE - (unsigned long)data;
1873 if (size > PAGE_SIZE)
1874 size = PAGE_SIZE;
1875
1876 i = size - exact_copy_from_user((void *)page, data, size);
1877 if (!i) {
1878 free_page(page);
1879 return -EFAULT;
1880 }
1881 if (i != PAGE_SIZE)
1882 memset((char *)page + i, 0, PAGE_SIZE - i);
1883 *where = page;
1884 return 0;
1885 }
1886
1887 /*
1888 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1889 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1890 *
1891 * data is a (void *) that can point to any structure up to
1892 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1893 * information (or be NULL).
1894 *
1895 * Pre-0.97 versions of mount() didn't have a flags word.
1896 * When the flags word was introduced its top half was required
1897 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1898 * Therefore, if this magic number is present, it carries no information
1899 * and must be discarded.
1900 */
do_mount(char * dev_name,char * dir_name,char * type_page,unsigned long flags,void * data_page)1901 long do_mount(char *dev_name, char *dir_name, char *type_page,
1902 unsigned long flags, void *data_page)
1903 {
1904 struct path path;
1905 int retval = 0;
1906 int mnt_flags = 0;
1907
1908 /* Discard magic */
1909 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1910 flags &= ~MS_MGC_MSK;
1911
1912 /* Basic sanity checks */
1913
1914 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1915 return -EINVAL;
1916 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1917 return -EINVAL;
1918
1919 if (data_page)
1920 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1921
1922 /* Separate the per-mountpoint flags */
1923 if (flags & MS_NOSUID)
1924 mnt_flags |= MNT_NOSUID;
1925 if (flags & MS_NODEV)
1926 mnt_flags |= MNT_NODEV;
1927 if (flags & MS_NOEXEC)
1928 mnt_flags |= MNT_NOEXEC;
1929 if (flags & MS_NOATIME)
1930 mnt_flags |= MNT_NOATIME;
1931 if (flags & MS_NODIRATIME)
1932 mnt_flags |= MNT_NODIRATIME;
1933 if (flags & MS_RELATIME)
1934 mnt_flags |= MNT_RELATIME;
1935 if (flags & MS_RDONLY)
1936 mnt_flags |= MNT_READONLY;
1937
1938 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1939 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1940
1941 /* ... and get the mountpoint */
1942 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1943 if (retval)
1944 return retval;
1945
1946 retval = security_sb_mount(dev_name, &path,
1947 type_page, flags, data_page);
1948 if (retval)
1949 goto dput_out;
1950
1951 if (flags & MS_REMOUNT)
1952 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1953 data_page);
1954 else if (flags & MS_BIND)
1955 retval = do_loopback(&path, dev_name, flags & MS_REC);
1956 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1957 retval = do_change_type(&path, flags);
1958 else if (flags & MS_MOVE)
1959 retval = do_move_mount(&path, dev_name);
1960 else
1961 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1962 dev_name, data_page);
1963 dput_out:
1964 path_put(&path);
1965 return retval;
1966 }
1967
1968 /*
1969 * Allocate a new namespace structure and populate it with contents
1970 * copied from the namespace of the passed in task structure.
1971 */
dup_mnt_ns(struct mnt_namespace * mnt_ns,struct fs_struct * fs)1972 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1973 struct fs_struct *fs)
1974 {
1975 struct mnt_namespace *new_ns;
1976 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1977 struct vfsmount *p, *q;
1978
1979 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1980 if (!new_ns)
1981 return ERR_PTR(-ENOMEM);
1982
1983 atomic_set(&new_ns->count, 1);
1984 INIT_LIST_HEAD(&new_ns->list);
1985 init_waitqueue_head(&new_ns->poll);
1986 new_ns->event = 0;
1987
1988 down_write(&namespace_sem);
1989 /* First pass: copy the tree topology */
1990 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1991 CL_COPY_ALL | CL_EXPIRE);
1992 if (!new_ns->root) {
1993 up_write(&namespace_sem);
1994 kfree(new_ns);
1995 return ERR_PTR(-ENOMEM);
1996 }
1997 spin_lock(&vfsmount_lock);
1998 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1999 spin_unlock(&vfsmount_lock);
2000
2001 /*
2002 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2003 * as belonging to new namespace. We have already acquired a private
2004 * fs_struct, so tsk->fs->lock is not needed.
2005 */
2006 p = mnt_ns->root;
2007 q = new_ns->root;
2008 while (p) {
2009 q->mnt_ns = new_ns;
2010 if (fs) {
2011 if (p == fs->root.mnt) {
2012 rootmnt = p;
2013 fs->root.mnt = mntget(q);
2014 }
2015 if (p == fs->pwd.mnt) {
2016 pwdmnt = p;
2017 fs->pwd.mnt = mntget(q);
2018 }
2019 }
2020 p = next_mnt(p, mnt_ns->root);
2021 q = next_mnt(q, new_ns->root);
2022 }
2023 up_write(&namespace_sem);
2024
2025 if (rootmnt)
2026 mntput(rootmnt);
2027 if (pwdmnt)
2028 mntput(pwdmnt);
2029
2030 return new_ns;
2031 }
2032
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct fs_struct * new_fs)2033 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2034 struct fs_struct *new_fs)
2035 {
2036 struct mnt_namespace *new_ns;
2037
2038 BUG_ON(!ns);
2039 get_mnt_ns(ns);
2040
2041 if (!(flags & CLONE_NEWNS))
2042 return ns;
2043
2044 new_ns = dup_mnt_ns(ns, new_fs);
2045
2046 put_mnt_ns(ns);
2047 return new_ns;
2048 }
2049
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)2050 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2051 char __user *, type, unsigned long, flags, void __user *, data)
2052 {
2053 int retval;
2054 unsigned long data_page;
2055 unsigned long type_page;
2056 unsigned long dev_page;
2057 char *dir_page;
2058
2059 retval = copy_mount_options(type, &type_page);
2060 if (retval < 0)
2061 return retval;
2062
2063 dir_page = getname(dir_name);
2064 retval = PTR_ERR(dir_page);
2065 if (IS_ERR(dir_page))
2066 goto out1;
2067
2068 retval = copy_mount_options(dev_name, &dev_page);
2069 if (retval < 0)
2070 goto out2;
2071
2072 retval = copy_mount_options(data, &data_page);
2073 if (retval < 0)
2074 goto out3;
2075
2076 lock_kernel();
2077 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2078 flags, (void *)data_page);
2079 unlock_kernel();
2080 free_page(data_page);
2081
2082 out3:
2083 free_page(dev_page);
2084 out2:
2085 putname(dir_page);
2086 out1:
2087 free_page(type_page);
2088 return retval;
2089 }
2090
2091 /*
2092 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2093 * It can block. Requires the big lock held.
2094 */
set_fs_root(struct fs_struct * fs,struct path * path)2095 void set_fs_root(struct fs_struct *fs, struct path *path)
2096 {
2097 struct path old_root;
2098
2099 write_lock(&fs->lock);
2100 old_root = fs->root;
2101 fs->root = *path;
2102 path_get(path);
2103 write_unlock(&fs->lock);
2104 if (old_root.dentry)
2105 path_put(&old_root);
2106 }
2107
2108 /*
2109 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2110 * It can block. Requires the big lock held.
2111 */
set_fs_pwd(struct fs_struct * fs,struct path * path)2112 void set_fs_pwd(struct fs_struct *fs, struct path *path)
2113 {
2114 struct path old_pwd;
2115
2116 write_lock(&fs->lock);
2117 old_pwd = fs->pwd;
2118 fs->pwd = *path;
2119 path_get(path);
2120 write_unlock(&fs->lock);
2121
2122 if (old_pwd.dentry)
2123 path_put(&old_pwd);
2124 }
2125
chroot_fs_refs(struct path * old_root,struct path * new_root)2126 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
2127 {
2128 struct task_struct *g, *p;
2129 struct fs_struct *fs;
2130
2131 read_lock(&tasklist_lock);
2132 do_each_thread(g, p) {
2133 task_lock(p);
2134 fs = p->fs;
2135 if (fs) {
2136 atomic_inc(&fs->count);
2137 task_unlock(p);
2138 if (fs->root.dentry == old_root->dentry
2139 && fs->root.mnt == old_root->mnt)
2140 set_fs_root(fs, new_root);
2141 if (fs->pwd.dentry == old_root->dentry
2142 && fs->pwd.mnt == old_root->mnt)
2143 set_fs_pwd(fs, new_root);
2144 put_fs_struct(fs);
2145 } else
2146 task_unlock(p);
2147 } while_each_thread(g, p);
2148 read_unlock(&tasklist_lock);
2149 }
2150
2151 /*
2152 * pivot_root Semantics:
2153 * Moves the root file system of the current process to the directory put_old,
2154 * makes new_root as the new root file system of the current process, and sets
2155 * root/cwd of all processes which had them on the current root to new_root.
2156 *
2157 * Restrictions:
2158 * The new_root and put_old must be directories, and must not be on the
2159 * same file system as the current process root. The put_old must be
2160 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2161 * pointed to by put_old must yield the same directory as new_root. No other
2162 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2163 *
2164 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2165 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2166 * in this situation.
2167 *
2168 * Notes:
2169 * - we don't move root/cwd if they are not at the root (reason: if something
2170 * cared enough to change them, it's probably wrong to force them elsewhere)
2171 * - it's okay to pick a root that isn't the root of a file system, e.g.
2172 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2173 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2174 * first.
2175 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)2176 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2177 const char __user *, put_old)
2178 {
2179 struct vfsmount *tmp;
2180 struct path new, old, parent_path, root_parent, root;
2181 int error;
2182
2183 if (!capable(CAP_SYS_ADMIN))
2184 return -EPERM;
2185
2186 error = user_path_dir(new_root, &new);
2187 if (error)
2188 goto out0;
2189 error = -EINVAL;
2190 if (!check_mnt(new.mnt))
2191 goto out1;
2192
2193 error = user_path_dir(put_old, &old);
2194 if (error)
2195 goto out1;
2196
2197 error = security_sb_pivotroot(&old, &new);
2198 if (error) {
2199 path_put(&old);
2200 goto out1;
2201 }
2202
2203 read_lock(¤t->fs->lock);
2204 root = current->fs->root;
2205 path_get(¤t->fs->root);
2206 read_unlock(¤t->fs->lock);
2207 down_write(&namespace_sem);
2208 mutex_lock(&old.dentry->d_inode->i_mutex);
2209 error = -EINVAL;
2210 if (IS_MNT_SHARED(old.mnt) ||
2211 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2212 IS_MNT_SHARED(root.mnt->mnt_parent))
2213 goto out2;
2214 if (!check_mnt(root.mnt))
2215 goto out2;
2216 error = -ENOENT;
2217 if (IS_DEADDIR(new.dentry->d_inode))
2218 goto out2;
2219 if (d_unhashed(new.dentry) && !IS_ROOT(new.dentry))
2220 goto out2;
2221 if (d_unhashed(old.dentry) && !IS_ROOT(old.dentry))
2222 goto out2;
2223 error = -EBUSY;
2224 if (new.mnt == root.mnt ||
2225 old.mnt == root.mnt)
2226 goto out2; /* loop, on the same file system */
2227 error = -EINVAL;
2228 if (root.mnt->mnt_root != root.dentry)
2229 goto out2; /* not a mountpoint */
2230 if (root.mnt->mnt_parent == root.mnt)
2231 goto out2; /* not attached */
2232 if (new.mnt->mnt_root != new.dentry)
2233 goto out2; /* not a mountpoint */
2234 if (new.mnt->mnt_parent == new.mnt)
2235 goto out2; /* not attached */
2236 /* make sure we can reach put_old from new_root */
2237 tmp = old.mnt;
2238 spin_lock(&vfsmount_lock);
2239 if (tmp != new.mnt) {
2240 for (;;) {
2241 if (tmp->mnt_parent == tmp)
2242 goto out3; /* already mounted on put_old */
2243 if (tmp->mnt_parent == new.mnt)
2244 break;
2245 tmp = tmp->mnt_parent;
2246 }
2247 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2248 goto out3;
2249 } else if (!is_subdir(old.dentry, new.dentry))
2250 goto out3;
2251 detach_mnt(new.mnt, &parent_path);
2252 detach_mnt(root.mnt, &root_parent);
2253 /* mount old root on put_old */
2254 attach_mnt(root.mnt, &old);
2255 /* mount new_root on / */
2256 attach_mnt(new.mnt, &root_parent);
2257 touch_mnt_namespace(current->nsproxy->mnt_ns);
2258 spin_unlock(&vfsmount_lock);
2259 chroot_fs_refs(&root, &new);
2260 security_sb_post_pivotroot(&root, &new);
2261 error = 0;
2262 path_put(&root_parent);
2263 path_put(&parent_path);
2264 out2:
2265 mutex_unlock(&old.dentry->d_inode->i_mutex);
2266 up_write(&namespace_sem);
2267 path_put(&root);
2268 path_put(&old);
2269 out1:
2270 path_put(&new);
2271 out0:
2272 return error;
2273 out3:
2274 spin_unlock(&vfsmount_lock);
2275 goto out2;
2276 }
2277
init_mount_tree(void)2278 static void __init init_mount_tree(void)
2279 {
2280 struct vfsmount *mnt;
2281 struct mnt_namespace *ns;
2282 struct path root;
2283
2284 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2285 if (IS_ERR(mnt))
2286 panic("Can't create rootfs");
2287 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2288 if (!ns)
2289 panic("Can't allocate initial namespace");
2290 atomic_set(&ns->count, 1);
2291 INIT_LIST_HEAD(&ns->list);
2292 init_waitqueue_head(&ns->poll);
2293 ns->event = 0;
2294 list_add(&mnt->mnt_list, &ns->list);
2295 ns->root = mnt;
2296 mnt->mnt_ns = ns;
2297
2298 init_task.nsproxy->mnt_ns = ns;
2299 get_mnt_ns(ns);
2300
2301 root.mnt = ns->root;
2302 root.dentry = ns->root->mnt_root;
2303
2304 set_fs_pwd(current->fs, &root);
2305 set_fs_root(current->fs, &root);
2306 }
2307
mnt_init(void)2308 void __init mnt_init(void)
2309 {
2310 unsigned u;
2311 int err;
2312
2313 init_rwsem(&namespace_sem);
2314
2315 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2316 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2317
2318 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2319
2320 if (!mount_hashtable)
2321 panic("Failed to allocate mount hash table\n");
2322
2323 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2324
2325 for (u = 0; u < HASH_SIZE; u++)
2326 INIT_LIST_HEAD(&mount_hashtable[u]);
2327
2328 err = sysfs_init();
2329 if (err)
2330 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2331 __func__, err);
2332 fs_kobj = kobject_create_and_add("fs", NULL);
2333 if (!fs_kobj)
2334 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2335 init_rootfs();
2336 init_mount_tree();
2337 }
2338
__put_mnt_ns(struct mnt_namespace * ns)2339 void __put_mnt_ns(struct mnt_namespace *ns)
2340 {
2341 struct vfsmount *root = ns->root;
2342 LIST_HEAD(umount_list);
2343 ns->root = NULL;
2344 spin_unlock(&vfsmount_lock);
2345 down_write(&namespace_sem);
2346 spin_lock(&vfsmount_lock);
2347 umount_tree(root, 0, &umount_list);
2348 spin_unlock(&vfsmount_lock);
2349 up_write(&namespace_sem);
2350 release_mounts(&umount_list);
2351 kfree(ns);
2352 }
2353