1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14
15 #include <asm/e820.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgalloc.h>
21 #include <asm/proto.h>
22 #include <asm/pat.h>
23
24 /*
25 * The current flushing context - we pass it instead of 5 arguments:
26 */
27 struct cpa_data {
28 unsigned long *vaddr;
29 pgprot_t mask_set;
30 pgprot_t mask_clr;
31 int numpages;
32 int flags;
33 unsigned long pfn;
34 unsigned force_split : 1;
35 int curpage;
36 };
37
38 /*
39 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
40 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
41 * entries change the page attribute in parallel to some other cpu
42 * splitting a large page entry along with changing the attribute.
43 */
44 static DEFINE_SPINLOCK(cpa_lock);
45
46 #define CPA_FLUSHTLB 1
47 #define CPA_ARRAY 2
48
49 #ifdef CONFIG_PROC_FS
50 static unsigned long direct_pages_count[PG_LEVEL_NUM];
51
update_page_count(int level,unsigned long pages)52 void update_page_count(int level, unsigned long pages)
53 {
54 unsigned long flags;
55
56 /* Protect against CPA */
57 spin_lock_irqsave(&pgd_lock, flags);
58 direct_pages_count[level] += pages;
59 spin_unlock_irqrestore(&pgd_lock, flags);
60 }
61
split_page_count(int level)62 static void split_page_count(int level)
63 {
64 direct_pages_count[level]--;
65 direct_pages_count[level - 1] += PTRS_PER_PTE;
66 }
67
arch_report_meminfo(struct seq_file * m)68 void arch_report_meminfo(struct seq_file *m)
69 {
70 seq_printf(m, "DirectMap4k: %8lu kB\n",
71 direct_pages_count[PG_LEVEL_4K] << 2);
72 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
73 seq_printf(m, "DirectMap2M: %8lu kB\n",
74 direct_pages_count[PG_LEVEL_2M] << 11);
75 #else
76 seq_printf(m, "DirectMap4M: %8lu kB\n",
77 direct_pages_count[PG_LEVEL_2M] << 12);
78 #endif
79 #ifdef CONFIG_X86_64
80 if (direct_gbpages)
81 seq_printf(m, "DirectMap1G: %8lu kB\n",
82 direct_pages_count[PG_LEVEL_1G] << 20);
83 #endif
84 }
85 #else
split_page_count(int level)86 static inline void split_page_count(int level) { }
87 #endif
88
89 #ifdef CONFIG_X86_64
90
highmap_start_pfn(void)91 static inline unsigned long highmap_start_pfn(void)
92 {
93 return __pa(_text) >> PAGE_SHIFT;
94 }
95
highmap_end_pfn(void)96 static inline unsigned long highmap_end_pfn(void)
97 {
98 return __pa(roundup((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
99 }
100
101 #endif
102
103 #ifdef CONFIG_DEBUG_PAGEALLOC
104 # define debug_pagealloc 1
105 #else
106 # define debug_pagealloc 0
107 #endif
108
109 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)110 within(unsigned long addr, unsigned long start, unsigned long end)
111 {
112 return addr >= start && addr < end;
113 }
114
115 /*
116 * Flushing functions
117 */
118
119 /**
120 * clflush_cache_range - flush a cache range with clflush
121 * @addr: virtual start address
122 * @size: number of bytes to flush
123 *
124 * clflush is an unordered instruction which needs fencing with mfence
125 * to avoid ordering issues.
126 */
clflush_cache_range(void * vaddr,unsigned int size)127 void clflush_cache_range(void *vaddr, unsigned int size)
128 {
129 void *vend = vaddr + size - 1;
130
131 mb();
132
133 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
134 clflush(vaddr);
135 /*
136 * Flush any possible final partial cacheline:
137 */
138 clflush(vend);
139
140 mb();
141 }
142
__cpa_flush_all(void * arg)143 static void __cpa_flush_all(void *arg)
144 {
145 unsigned long cache = (unsigned long)arg;
146
147 /*
148 * Flush all to work around Errata in early athlons regarding
149 * large page flushing.
150 */
151 __flush_tlb_all();
152
153 if (cache && boot_cpu_data.x86_model >= 4)
154 wbinvd();
155 }
156
cpa_flush_all(unsigned long cache)157 static void cpa_flush_all(unsigned long cache)
158 {
159 BUG_ON(irqs_disabled());
160
161 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
162 }
163
__cpa_flush_range(void * arg)164 static void __cpa_flush_range(void *arg)
165 {
166 /*
167 * We could optimize that further and do individual per page
168 * tlb invalidates for a low number of pages. Caveat: we must
169 * flush the high aliases on 64bit as well.
170 */
171 __flush_tlb_all();
172 }
173
cpa_flush_range(unsigned long start,int numpages,int cache)174 static void cpa_flush_range(unsigned long start, int numpages, int cache)
175 {
176 unsigned int i, level;
177 unsigned long addr;
178
179 BUG_ON(irqs_disabled());
180 WARN_ON(PAGE_ALIGN(start) != start);
181
182 on_each_cpu(__cpa_flush_range, NULL, 1);
183
184 if (!cache)
185 return;
186
187 /*
188 * We only need to flush on one CPU,
189 * clflush is a MESI-coherent instruction that
190 * will cause all other CPUs to flush the same
191 * cachelines:
192 */
193 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
194 pte_t *pte = lookup_address(addr, &level);
195
196 /*
197 * Only flush present addresses:
198 */
199 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
200 clflush_cache_range((void *) addr, PAGE_SIZE);
201 }
202 }
203
cpa_flush_array(unsigned long * start,int numpages,int cache)204 static void cpa_flush_array(unsigned long *start, int numpages, int cache)
205 {
206 unsigned int i, level;
207 unsigned long *addr;
208
209 BUG_ON(irqs_disabled());
210
211 on_each_cpu(__cpa_flush_range, NULL, 1);
212
213 if (!cache)
214 return;
215
216 /* 4M threshold */
217 if (numpages >= 1024) {
218 if (boot_cpu_data.x86_model >= 4)
219 wbinvd();
220 return;
221 }
222 /*
223 * We only need to flush on one CPU,
224 * clflush is a MESI-coherent instruction that
225 * will cause all other CPUs to flush the same
226 * cachelines:
227 */
228 for (i = 0, addr = start; i < numpages; i++, addr++) {
229 pte_t *pte = lookup_address(*addr, &level);
230
231 /*
232 * Only flush present addresses:
233 */
234 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
235 clflush_cache_range((void *) *addr, PAGE_SIZE);
236 }
237 }
238
239 /*
240 * Certain areas of memory on x86 require very specific protection flags,
241 * for example the BIOS area or kernel text. Callers don't always get this
242 * right (again, ioremap() on BIOS memory is not uncommon) so this function
243 * checks and fixes these known static required protection bits.
244 */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)245 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
246 unsigned long pfn)
247 {
248 pgprot_t forbidden = __pgprot(0);
249
250 /*
251 * The BIOS area between 640k and 1Mb needs to be executable for
252 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
253 */
254 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
255 pgprot_val(forbidden) |= _PAGE_NX;
256
257 /*
258 * The kernel text needs to be executable for obvious reasons
259 * Does not cover __inittext since that is gone later on. On
260 * 64bit we do not enforce !NX on the low mapping
261 */
262 if (within(address, (unsigned long)_text, (unsigned long)_etext))
263 pgprot_val(forbidden) |= _PAGE_NX;
264
265 /*
266 * The .rodata section needs to be read-only. Using the pfn
267 * catches all aliases.
268 */
269 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
270 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
271 pgprot_val(forbidden) |= _PAGE_RW;
272
273 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
274
275 return prot;
276 }
277
278 /*
279 * Lookup the page table entry for a virtual address. Return a pointer
280 * to the entry and the level of the mapping.
281 *
282 * Note: We return pud and pmd either when the entry is marked large
283 * or when the present bit is not set. Otherwise we would return a
284 * pointer to a nonexisting mapping.
285 */
lookup_address(unsigned long address,unsigned int * level)286 pte_t *lookup_address(unsigned long address, unsigned int *level)
287 {
288 pgd_t *pgd = pgd_offset_k(address);
289 pud_t *pud;
290 pmd_t *pmd;
291
292 *level = PG_LEVEL_NONE;
293
294 if (pgd_none(*pgd))
295 return NULL;
296
297 pud = pud_offset(pgd, address);
298 if (pud_none(*pud))
299 return NULL;
300
301 *level = PG_LEVEL_1G;
302 if (pud_large(*pud) || !pud_present(*pud))
303 return (pte_t *)pud;
304
305 pmd = pmd_offset(pud, address);
306 if (pmd_none(*pmd))
307 return NULL;
308
309 *level = PG_LEVEL_2M;
310 if (pmd_large(*pmd) || !pmd_present(*pmd))
311 return (pte_t *)pmd;
312
313 *level = PG_LEVEL_4K;
314
315 return pte_offset_kernel(pmd, address);
316 }
317 EXPORT_SYMBOL_GPL(lookup_address);
318
319 /*
320 * Set the new pmd in all the pgds we know about:
321 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)322 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
323 {
324 /* change init_mm */
325 set_pte_atomic(kpte, pte);
326 #ifdef CONFIG_X86_32
327 if (!SHARED_KERNEL_PMD) {
328 struct page *page;
329
330 list_for_each_entry(page, &pgd_list, lru) {
331 pgd_t *pgd;
332 pud_t *pud;
333 pmd_t *pmd;
334
335 pgd = (pgd_t *)page_address(page) + pgd_index(address);
336 pud = pud_offset(pgd, address);
337 pmd = pmd_offset(pud, address);
338 set_pte_atomic((pte_t *)pmd, pte);
339 }
340 }
341 #endif
342 }
343
344 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)345 try_preserve_large_page(pte_t *kpte, unsigned long address,
346 struct cpa_data *cpa)
347 {
348 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
349 pte_t new_pte, old_pte, *tmp;
350 pgprot_t old_prot, new_prot;
351 int i, do_split = 1;
352 unsigned int level;
353
354 if (cpa->force_split)
355 return 1;
356
357 spin_lock_irqsave(&pgd_lock, flags);
358 /*
359 * Check for races, another CPU might have split this page
360 * up already:
361 */
362 tmp = lookup_address(address, &level);
363 if (tmp != kpte)
364 goto out_unlock;
365
366 switch (level) {
367 case PG_LEVEL_2M:
368 psize = PMD_PAGE_SIZE;
369 pmask = PMD_PAGE_MASK;
370 break;
371 #ifdef CONFIG_X86_64
372 case PG_LEVEL_1G:
373 psize = PUD_PAGE_SIZE;
374 pmask = PUD_PAGE_MASK;
375 break;
376 #endif
377 default:
378 do_split = -EINVAL;
379 goto out_unlock;
380 }
381
382 /*
383 * Calculate the number of pages, which fit into this large
384 * page starting at address:
385 */
386 nextpage_addr = (address + psize) & pmask;
387 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
388 if (numpages < cpa->numpages)
389 cpa->numpages = numpages;
390
391 /*
392 * We are safe now. Check whether the new pgprot is the same:
393 */
394 old_pte = *kpte;
395 old_prot = new_prot = pte_pgprot(old_pte);
396
397 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
398 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
399
400 /*
401 * old_pte points to the large page base address. So we need
402 * to add the offset of the virtual address:
403 */
404 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
405 cpa->pfn = pfn;
406
407 new_prot = static_protections(new_prot, address, pfn);
408
409 /*
410 * We need to check the full range, whether
411 * static_protection() requires a different pgprot for one of
412 * the pages in the range we try to preserve:
413 */
414 addr = address + PAGE_SIZE;
415 pfn++;
416 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
417 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
418
419 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
420 goto out_unlock;
421 }
422
423 /*
424 * If there are no changes, return. maxpages has been updated
425 * above:
426 */
427 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
428 do_split = 0;
429 goto out_unlock;
430 }
431
432 /*
433 * We need to change the attributes. Check, whether we can
434 * change the large page in one go. We request a split, when
435 * the address is not aligned and the number of pages is
436 * smaller than the number of pages in the large page. Note
437 * that we limited the number of possible pages already to
438 * the number of pages in the large page.
439 */
440 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
441 /*
442 * The address is aligned and the number of pages
443 * covers the full page.
444 */
445 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
446 __set_pmd_pte(kpte, address, new_pte);
447 cpa->flags |= CPA_FLUSHTLB;
448 do_split = 0;
449 }
450
451 out_unlock:
452 spin_unlock_irqrestore(&pgd_lock, flags);
453
454 return do_split;
455 }
456
split_large_page(pte_t * kpte,unsigned long address)457 static int split_large_page(pte_t *kpte, unsigned long address)
458 {
459 unsigned long flags, pfn, pfninc = 1;
460 unsigned int i, level;
461 pte_t *pbase, *tmp;
462 pgprot_t ref_prot;
463 struct page *base;
464
465 if (!debug_pagealloc)
466 spin_unlock(&cpa_lock);
467 base = alloc_pages(GFP_KERNEL, 0);
468 if (!debug_pagealloc)
469 spin_lock(&cpa_lock);
470 if (!base)
471 return -ENOMEM;
472
473 spin_lock_irqsave(&pgd_lock, flags);
474 /*
475 * Check for races, another CPU might have split this page
476 * up for us already:
477 */
478 tmp = lookup_address(address, &level);
479 if (tmp != kpte)
480 goto out_unlock;
481
482 pbase = (pte_t *)page_address(base);
483 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
484 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
485
486 #ifdef CONFIG_X86_64
487 if (level == PG_LEVEL_1G) {
488 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
489 pgprot_val(ref_prot) |= _PAGE_PSE;
490 }
491 #endif
492
493 /*
494 * Get the target pfn from the original entry:
495 */
496 pfn = pte_pfn(*kpte);
497 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
498 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
499
500 if (address >= (unsigned long)__va(0) &&
501 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
502 split_page_count(level);
503
504 #ifdef CONFIG_X86_64
505 if (address >= (unsigned long)__va(1UL<<32) &&
506 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
507 split_page_count(level);
508 #endif
509
510 /*
511 * Install the new, split up pagetable.
512 *
513 * We use the standard kernel pagetable protections for the new
514 * pagetable protections, the actual ptes set above control the
515 * primary protection behavior:
516 */
517 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
518
519 /*
520 * Intel Atom errata AAH41 workaround.
521 *
522 * The real fix should be in hw or in a microcode update, but
523 * we also probabilistically try to reduce the window of having
524 * a large TLB mixed with 4K TLBs while instruction fetches are
525 * going on.
526 */
527 __flush_tlb_all();
528
529 base = NULL;
530
531 out_unlock:
532 /*
533 * If we dropped out via the lookup_address check under
534 * pgd_lock then stick the page back into the pool:
535 */
536 if (base)
537 __free_page(base);
538 spin_unlock_irqrestore(&pgd_lock, flags);
539
540 return 0;
541 }
542
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)543 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
544 int primary)
545 {
546 /*
547 * Ignore all non primary paths.
548 */
549 if (!primary)
550 return 0;
551
552 /*
553 * Ignore the NULL PTE for kernel identity mapping, as it is expected
554 * to have holes.
555 * Also set numpages to '1' indicating that we processed cpa req for
556 * one virtual address page and its pfn. TBD: numpages can be set based
557 * on the initial value and the level returned by lookup_address().
558 */
559 if (within(vaddr, PAGE_OFFSET,
560 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
561 cpa->numpages = 1;
562 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
563 return 0;
564 } else {
565 WARN(1, KERN_WARNING "CPA: called for zero pte. "
566 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
567 *cpa->vaddr);
568
569 return -EFAULT;
570 }
571 }
572
__change_page_attr(struct cpa_data * cpa,int primary)573 static int __change_page_attr(struct cpa_data *cpa, int primary)
574 {
575 unsigned long address;
576 int do_split, err;
577 unsigned int level;
578 pte_t *kpte, old_pte;
579
580 if (cpa->flags & CPA_ARRAY)
581 address = cpa->vaddr[cpa->curpage];
582 else
583 address = *cpa->vaddr;
584 repeat:
585 kpte = lookup_address(address, &level);
586 if (!kpte)
587 return __cpa_process_fault(cpa, address, primary);
588
589 old_pte = *kpte;
590 if (!pte_val(old_pte))
591 return __cpa_process_fault(cpa, address, primary);
592
593 if (level == PG_LEVEL_4K) {
594 pte_t new_pte;
595 pgprot_t new_prot = pte_pgprot(old_pte);
596 unsigned long pfn = pte_pfn(old_pte);
597
598 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
599 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
600
601 new_prot = static_protections(new_prot, address, pfn);
602
603 /*
604 * We need to keep the pfn from the existing PTE,
605 * after all we're only going to change it's attributes
606 * not the memory it points to
607 */
608 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
609 cpa->pfn = pfn;
610 /*
611 * Do we really change anything ?
612 */
613 if (pte_val(old_pte) != pte_val(new_pte)) {
614 set_pte_atomic(kpte, new_pte);
615 cpa->flags |= CPA_FLUSHTLB;
616 }
617 cpa->numpages = 1;
618 return 0;
619 }
620
621 /*
622 * Check, whether we can keep the large page intact
623 * and just change the pte:
624 */
625 do_split = try_preserve_large_page(kpte, address, cpa);
626 /*
627 * When the range fits into the existing large page,
628 * return. cp->numpages and cpa->tlbflush have been updated in
629 * try_large_page:
630 */
631 if (do_split <= 0)
632 return do_split;
633
634 /*
635 * We have to split the large page:
636 */
637 err = split_large_page(kpte, address);
638 if (!err) {
639 /*
640 * Do a global flush tlb after splitting the large page
641 * and before we do the actual change page attribute in the PTE.
642 *
643 * With out this, we violate the TLB application note, that says
644 * "The TLBs may contain both ordinary and large-page
645 * translations for a 4-KByte range of linear addresses. This
646 * may occur if software modifies the paging structures so that
647 * the page size used for the address range changes. If the two
648 * translations differ with respect to page frame or attributes
649 * (e.g., permissions), processor behavior is undefined and may
650 * be implementation-specific."
651 *
652 * We do this global tlb flush inside the cpa_lock, so that we
653 * don't allow any other cpu, with stale tlb entries change the
654 * page attribute in parallel, that also falls into the
655 * just split large page entry.
656 */
657 flush_tlb_all();
658 goto repeat;
659 }
660
661 return err;
662 }
663
664 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
665
cpa_process_alias(struct cpa_data * cpa)666 static int cpa_process_alias(struct cpa_data *cpa)
667 {
668 struct cpa_data alias_cpa;
669 int ret = 0;
670 unsigned long temp_cpa_vaddr, vaddr;
671
672 if (cpa->pfn >= max_pfn_mapped)
673 return 0;
674
675 #ifdef CONFIG_X86_64
676 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
677 return 0;
678 #endif
679 /*
680 * No need to redo, when the primary call touched the direct
681 * mapping already:
682 */
683 if (cpa->flags & CPA_ARRAY)
684 vaddr = cpa->vaddr[cpa->curpage];
685 else
686 vaddr = *cpa->vaddr;
687
688 if (!(within(vaddr, PAGE_OFFSET,
689 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
690
691 alias_cpa = *cpa;
692 temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
693 alias_cpa.vaddr = &temp_cpa_vaddr;
694 alias_cpa.flags &= ~CPA_ARRAY;
695
696
697 ret = __change_page_attr_set_clr(&alias_cpa, 0);
698 }
699
700 #ifdef CONFIG_X86_64
701 if (ret)
702 return ret;
703 /*
704 * No need to redo, when the primary call touched the high
705 * mapping already:
706 */
707 if (within(vaddr, (unsigned long) _text, (unsigned long) _end))
708 return 0;
709
710 /*
711 * If the physical address is inside the kernel map, we need
712 * to touch the high mapped kernel as well:
713 */
714 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
715 return 0;
716
717 alias_cpa = *cpa;
718 temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
719 alias_cpa.vaddr = &temp_cpa_vaddr;
720 alias_cpa.flags &= ~CPA_ARRAY;
721
722 /*
723 * The high mapping range is imprecise, so ignore the return value.
724 */
725 __change_page_attr_set_clr(&alias_cpa, 0);
726 #endif
727 return ret;
728 }
729
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)730 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
731 {
732 int ret, numpages = cpa->numpages;
733
734 while (numpages) {
735 /*
736 * Store the remaining nr of pages for the large page
737 * preservation check.
738 */
739 cpa->numpages = numpages;
740 /* for array changes, we can't use large page */
741 if (cpa->flags & CPA_ARRAY)
742 cpa->numpages = 1;
743
744 if (!debug_pagealloc)
745 spin_lock(&cpa_lock);
746 ret = __change_page_attr(cpa, checkalias);
747 if (!debug_pagealloc)
748 spin_unlock(&cpa_lock);
749 if (ret)
750 return ret;
751
752 if (checkalias) {
753 ret = cpa_process_alias(cpa);
754 if (ret)
755 return ret;
756 }
757
758 /*
759 * Adjust the number of pages with the result of the
760 * CPA operation. Either a large page has been
761 * preserved or a single page update happened.
762 */
763 BUG_ON(cpa->numpages > numpages);
764 numpages -= cpa->numpages;
765 if (cpa->flags & CPA_ARRAY)
766 cpa->curpage++;
767 else
768 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
769
770 }
771 return 0;
772 }
773
cache_attr(pgprot_t attr)774 static inline int cache_attr(pgprot_t attr)
775 {
776 return pgprot_val(attr) &
777 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
778 }
779
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int array)780 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
781 pgprot_t mask_set, pgprot_t mask_clr,
782 int force_split, int array)
783 {
784 struct cpa_data cpa;
785 int ret, cache, checkalias;
786
787 /*
788 * Check, if we are requested to change a not supported
789 * feature:
790 */
791 mask_set = canon_pgprot(mask_set);
792 mask_clr = canon_pgprot(mask_clr);
793 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
794 return 0;
795
796 /* Ensure we are PAGE_SIZE aligned */
797 if (!array) {
798 if (*addr & ~PAGE_MASK) {
799 *addr &= PAGE_MASK;
800 /*
801 * People should not be passing in unaligned addresses:
802 */
803 WARN_ON_ONCE(1);
804 }
805 } else {
806 int i;
807 for (i = 0; i < numpages; i++) {
808 if (addr[i] & ~PAGE_MASK) {
809 addr[i] &= PAGE_MASK;
810 WARN_ON_ONCE(1);
811 }
812 }
813 }
814
815 /* Must avoid aliasing mappings in the highmem code */
816 kmap_flush_unused();
817
818 vm_unmap_aliases();
819
820 /*
821 * If we're called with lazy mmu updates enabled, the
822 * in-memory pte state may be stale. Flush pending updates to
823 * bring them up to date.
824 */
825 arch_flush_lazy_mmu_mode();
826
827 cpa.vaddr = addr;
828 cpa.numpages = numpages;
829 cpa.mask_set = mask_set;
830 cpa.mask_clr = mask_clr;
831 cpa.flags = 0;
832 cpa.curpage = 0;
833 cpa.force_split = force_split;
834
835 if (array)
836 cpa.flags |= CPA_ARRAY;
837
838 /* No alias checking for _NX bit modifications */
839 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
840
841 ret = __change_page_attr_set_clr(&cpa, checkalias);
842
843 /*
844 * Check whether we really changed something:
845 */
846 if (!(cpa.flags & CPA_FLUSHTLB))
847 goto out;
848
849 /*
850 * No need to flush, when we did not set any of the caching
851 * attributes:
852 */
853 cache = cache_attr(mask_set);
854
855 /*
856 * On success we use clflush, when the CPU supports it to
857 * avoid the wbindv. If the CPU does not support it and in the
858 * error case we fall back to cpa_flush_all (which uses
859 * wbindv):
860 */
861 if (!ret && cpu_has_clflush) {
862 if (cpa.flags & CPA_ARRAY)
863 cpa_flush_array(addr, numpages, cache);
864 else
865 cpa_flush_range(*addr, numpages, cache);
866 } else
867 cpa_flush_all(cache);
868
869 /*
870 * If we've been called with lazy mmu updates enabled, then
871 * make sure that everything gets flushed out before we
872 * return.
873 */
874 arch_flush_lazy_mmu_mode();
875
876 out:
877 return ret;
878 }
879
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)880 static inline int change_page_attr_set(unsigned long *addr, int numpages,
881 pgprot_t mask, int array)
882 {
883 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
884 array);
885 }
886
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)887 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
888 pgprot_t mask, int array)
889 {
890 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
891 array);
892 }
893
_set_memory_uc(unsigned long addr,int numpages)894 int _set_memory_uc(unsigned long addr, int numpages)
895 {
896 /*
897 * for now UC MINUS. see comments in ioremap_nocache()
898 */
899 return change_page_attr_set(&addr, numpages,
900 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
901 }
902
set_memory_uc(unsigned long addr,int numpages)903 int set_memory_uc(unsigned long addr, int numpages)
904 {
905 /*
906 * for now UC MINUS. see comments in ioremap_nocache()
907 */
908 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
909 _PAGE_CACHE_UC_MINUS, NULL))
910 return -EINVAL;
911
912 return _set_memory_uc(addr, numpages);
913 }
914 EXPORT_SYMBOL(set_memory_uc);
915
set_memory_array_uc(unsigned long * addr,int addrinarray)916 int set_memory_array_uc(unsigned long *addr, int addrinarray)
917 {
918 unsigned long start;
919 unsigned long end;
920 int i;
921 /*
922 * for now UC MINUS. see comments in ioremap_nocache()
923 */
924 for (i = 0; i < addrinarray; i++) {
925 start = __pa(addr[i]);
926 for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
927 if (end != __pa(addr[i + 1]))
928 break;
929 i++;
930 }
931 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
932 goto out;
933 }
934
935 return change_page_attr_set(addr, addrinarray,
936 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
937 out:
938 for (i = 0; i < addrinarray; i++) {
939 unsigned long tmp = __pa(addr[i]);
940
941 if (tmp == start)
942 break;
943 for (end = tmp + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
944 if (end != __pa(addr[i + 1]))
945 break;
946 i++;
947 }
948 free_memtype(tmp, end);
949 }
950 return -EINVAL;
951 }
952 EXPORT_SYMBOL(set_memory_array_uc);
953
_set_memory_wc(unsigned long addr,int numpages)954 int _set_memory_wc(unsigned long addr, int numpages)
955 {
956 return change_page_attr_set(&addr, numpages,
957 __pgprot(_PAGE_CACHE_WC), 0);
958 }
959
set_memory_wc(unsigned long addr,int numpages)960 int set_memory_wc(unsigned long addr, int numpages)
961 {
962 if (!pat_enabled)
963 return set_memory_uc(addr, numpages);
964
965 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
966 _PAGE_CACHE_WC, NULL))
967 return -EINVAL;
968
969 return _set_memory_wc(addr, numpages);
970 }
971 EXPORT_SYMBOL(set_memory_wc);
972
_set_memory_wb(unsigned long addr,int numpages)973 int _set_memory_wb(unsigned long addr, int numpages)
974 {
975 return change_page_attr_clear(&addr, numpages,
976 __pgprot(_PAGE_CACHE_MASK), 0);
977 }
978
set_memory_wb(unsigned long addr,int numpages)979 int set_memory_wb(unsigned long addr, int numpages)
980 {
981 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
982
983 return _set_memory_wb(addr, numpages);
984 }
985 EXPORT_SYMBOL(set_memory_wb);
986
set_memory_array_wb(unsigned long * addr,int addrinarray)987 int set_memory_array_wb(unsigned long *addr, int addrinarray)
988 {
989 int i;
990
991 for (i = 0; i < addrinarray; i++) {
992 unsigned long start = __pa(addr[i]);
993 unsigned long end;
994
995 for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
996 if (end != __pa(addr[i + 1]))
997 break;
998 i++;
999 }
1000 free_memtype(start, end);
1001 }
1002 return change_page_attr_clear(addr, addrinarray,
1003 __pgprot(_PAGE_CACHE_MASK), 1);
1004 }
1005 EXPORT_SYMBOL(set_memory_array_wb);
1006
set_memory_x(unsigned long addr,int numpages)1007 int set_memory_x(unsigned long addr, int numpages)
1008 {
1009 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1010 }
1011 EXPORT_SYMBOL(set_memory_x);
1012
set_memory_nx(unsigned long addr,int numpages)1013 int set_memory_nx(unsigned long addr, int numpages)
1014 {
1015 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1016 }
1017 EXPORT_SYMBOL(set_memory_nx);
1018
set_memory_ro(unsigned long addr,int numpages)1019 int set_memory_ro(unsigned long addr, int numpages)
1020 {
1021 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1022 }
1023 EXPORT_SYMBOL_GPL(set_memory_ro);
1024
set_memory_rw(unsigned long addr,int numpages)1025 int set_memory_rw(unsigned long addr, int numpages)
1026 {
1027 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1028 }
1029 EXPORT_SYMBOL_GPL(set_memory_rw);
1030
set_memory_np(unsigned long addr,int numpages)1031 int set_memory_np(unsigned long addr, int numpages)
1032 {
1033 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1034 }
1035
set_memory_4k(unsigned long addr,int numpages)1036 int set_memory_4k(unsigned long addr, int numpages)
1037 {
1038 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1039 __pgprot(0), 1, 0);
1040 }
1041
set_pages_uc(struct page * page,int numpages)1042 int set_pages_uc(struct page *page, int numpages)
1043 {
1044 unsigned long addr = (unsigned long)page_address(page);
1045
1046 return set_memory_uc(addr, numpages);
1047 }
1048 EXPORT_SYMBOL(set_pages_uc);
1049
set_pages_wb(struct page * page,int numpages)1050 int set_pages_wb(struct page *page, int numpages)
1051 {
1052 unsigned long addr = (unsigned long)page_address(page);
1053
1054 return set_memory_wb(addr, numpages);
1055 }
1056 EXPORT_SYMBOL(set_pages_wb);
1057
set_pages_x(struct page * page,int numpages)1058 int set_pages_x(struct page *page, int numpages)
1059 {
1060 unsigned long addr = (unsigned long)page_address(page);
1061
1062 return set_memory_x(addr, numpages);
1063 }
1064 EXPORT_SYMBOL(set_pages_x);
1065
set_pages_nx(struct page * page,int numpages)1066 int set_pages_nx(struct page *page, int numpages)
1067 {
1068 unsigned long addr = (unsigned long)page_address(page);
1069
1070 return set_memory_nx(addr, numpages);
1071 }
1072 EXPORT_SYMBOL(set_pages_nx);
1073
set_pages_ro(struct page * page,int numpages)1074 int set_pages_ro(struct page *page, int numpages)
1075 {
1076 unsigned long addr = (unsigned long)page_address(page);
1077
1078 return set_memory_ro(addr, numpages);
1079 }
1080
set_pages_rw(struct page * page,int numpages)1081 int set_pages_rw(struct page *page, int numpages)
1082 {
1083 unsigned long addr = (unsigned long)page_address(page);
1084
1085 return set_memory_rw(addr, numpages);
1086 }
1087
1088 #ifdef CONFIG_DEBUG_PAGEALLOC
1089
__set_pages_p(struct page * page,int numpages)1090 static int __set_pages_p(struct page *page, int numpages)
1091 {
1092 unsigned long tempaddr = (unsigned long) page_address(page);
1093 struct cpa_data cpa = { .vaddr = &tempaddr,
1094 .numpages = numpages,
1095 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1096 .mask_clr = __pgprot(0),
1097 .flags = 0};
1098
1099 /*
1100 * No alias checking needed for setting present flag. otherwise,
1101 * we may need to break large pages for 64-bit kernel text
1102 * mappings (this adds to complexity if we want to do this from
1103 * atomic context especially). Let's keep it simple!
1104 */
1105 return __change_page_attr_set_clr(&cpa, 0);
1106 }
1107
__set_pages_np(struct page * page,int numpages)1108 static int __set_pages_np(struct page *page, int numpages)
1109 {
1110 unsigned long tempaddr = (unsigned long) page_address(page);
1111 struct cpa_data cpa = { .vaddr = &tempaddr,
1112 .numpages = numpages,
1113 .mask_set = __pgprot(0),
1114 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1115 .flags = 0};
1116
1117 /*
1118 * No alias checking needed for setting not present flag. otherwise,
1119 * we may need to break large pages for 64-bit kernel text
1120 * mappings (this adds to complexity if we want to do this from
1121 * atomic context especially). Let's keep it simple!
1122 */
1123 return __change_page_attr_set_clr(&cpa, 0);
1124 }
1125
kernel_map_pages(struct page * page,int numpages,int enable)1126 void kernel_map_pages(struct page *page, int numpages, int enable)
1127 {
1128 if (PageHighMem(page))
1129 return;
1130 if (!enable) {
1131 debug_check_no_locks_freed(page_address(page),
1132 numpages * PAGE_SIZE);
1133 }
1134
1135 /*
1136 * If page allocator is not up yet then do not call c_p_a():
1137 */
1138 if (!debug_pagealloc_enabled)
1139 return;
1140
1141 /*
1142 * The return value is ignored as the calls cannot fail.
1143 * Large pages for identity mappings are not used at boot time
1144 * and hence no memory allocations during large page split.
1145 */
1146 if (enable)
1147 __set_pages_p(page, numpages);
1148 else
1149 __set_pages_np(page, numpages);
1150
1151 /*
1152 * We should perform an IPI and flush all tlbs,
1153 * but that can deadlock->flush only current cpu:
1154 */
1155 __flush_tlb_all();
1156 }
1157
1158 #ifdef CONFIG_HIBERNATION
1159
kernel_page_present(struct page * page)1160 bool kernel_page_present(struct page *page)
1161 {
1162 unsigned int level;
1163 pte_t *pte;
1164
1165 if (PageHighMem(page))
1166 return false;
1167
1168 pte = lookup_address((unsigned long)page_address(page), &level);
1169 return (pte_val(*pte) & _PAGE_PRESENT);
1170 }
1171
1172 #endif /* CONFIG_HIBERNATION */
1173
1174 #endif /* CONFIG_DEBUG_PAGEALLOC */
1175
1176 /*
1177 * The testcases use internal knowledge of the implementation that shouldn't
1178 * be exposed to the rest of the kernel. Include these directly here.
1179 */
1180 #ifdef CONFIG_CPA_DEBUG
1181 #include "pageattr-test.c"
1182 #endif
1183