1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmdebug.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/prio_tree.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16
17 struct mempolicy;
18 struct anon_vma;
19 struct file_ra_state;
20 struct user_struct;
21 struct writeback_control;
22
23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr;
25 #endif
26
27 extern unsigned long num_physpages;
28 extern void * high_memory;
29 extern int page_cluster;
30
31 #ifdef CONFIG_SYSCTL
32 extern int sysctl_legacy_va_layout;
33 #else
34 #define sysctl_legacy_va_layout 0
35 #endif
36
37 extern unsigned long mmap_min_addr;
38
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
42
43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44
45 /* to align the pointer to the (next) page boundary */
46 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
47
48 /*
49 * Linux kernel virtual memory manager primitives.
50 * The idea being to have a "virtual" mm in the same way
51 * we have a virtual fs - giving a cleaner interface to the
52 * mm details, and allowing different kinds of memory mappings
53 * (from shared memory to executable loading to arbitrary
54 * mmap() functions).
55 */
56
57 extern struct kmem_cache *vm_area_cachep;
58
59 #ifndef CONFIG_MMU
60 extern struct rb_root nommu_region_tree;
61 extern struct rw_semaphore nommu_region_sem;
62
63 extern unsigned int kobjsize(const void *objp);
64 #endif
65
66 /*
67 * vm_flags in vm_area_struct, see mm_types.h.
68 */
69 #define VM_READ 0x00000001 /* currently active flags */
70 #define VM_WRITE 0x00000002
71 #define VM_EXEC 0x00000004
72 #define VM_SHARED 0x00000008
73
74 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
75 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
76 #define VM_MAYWRITE 0x00000020
77 #define VM_MAYEXEC 0x00000040
78 #define VM_MAYSHARE 0x00000080
79
80 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
81 #define VM_GROWSUP 0x00000200
82 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
83 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
84
85 #define VM_EXECUTABLE 0x00001000
86 #define VM_LOCKED 0x00002000
87 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
88
89 /* Used by sys_madvise() */
90 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
91 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
92
93 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
94 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
95 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
96 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
97 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
98 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
99 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
100 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
101 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
102 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
103
104 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
105 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
106 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
107
108 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
109 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
110 #endif
111
112 #ifdef CONFIG_STACK_GROWSUP
113 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
114 #else
115 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
116 #endif
117
118 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
119 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
120 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
121 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
122 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
123
124 /*
125 * special vmas that are non-mergable, non-mlock()able
126 */
127 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
128
129 /*
130 * mapping from the currently active vm_flags protection bits (the
131 * low four bits) to a page protection mask..
132 */
133 extern pgprot_t protection_map[16];
134
135 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
136 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
137
138 /*
139 * This interface is used by x86 PAT code to identify a pfn mapping that is
140 * linear over entire vma. This is to optimize PAT code that deals with
141 * marking the physical region with a particular prot. This is not for generic
142 * mm use. Note also that this check will not work if the pfn mapping is
143 * linear for a vma starting at physical address 0. In which case PAT code
144 * falls back to slow path of reserving physical range page by page.
145 */
is_linear_pfn_mapping(struct vm_area_struct * vma)146 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
147 {
148 return ((vma->vm_flags & VM_PFNMAP) && vma->vm_pgoff);
149 }
150
is_pfn_mapping(struct vm_area_struct * vma)151 static inline int is_pfn_mapping(struct vm_area_struct *vma)
152 {
153 return (vma->vm_flags & VM_PFNMAP);
154 }
155
156 /*
157 * vm_fault is filled by the the pagefault handler and passed to the vma's
158 * ->fault function. The vma's ->fault is responsible for returning a bitmask
159 * of VM_FAULT_xxx flags that give details about how the fault was handled.
160 *
161 * pgoff should be used in favour of virtual_address, if possible. If pgoff
162 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
163 * mapping support.
164 */
165 struct vm_fault {
166 unsigned int flags; /* FAULT_FLAG_xxx flags */
167 pgoff_t pgoff; /* Logical page offset based on vma */
168 void __user *virtual_address; /* Faulting virtual address */
169
170 struct page *page; /* ->fault handlers should return a
171 * page here, unless VM_FAULT_NOPAGE
172 * is set (which is also implied by
173 * VM_FAULT_ERROR).
174 */
175 };
176
177 /*
178 * These are the virtual MM functions - opening of an area, closing and
179 * unmapping it (needed to keep files on disk up-to-date etc), pointer
180 * to the functions called when a no-page or a wp-page exception occurs.
181 */
182 struct vm_operations_struct {
183 void (*open)(struct vm_area_struct * area);
184 void (*close)(struct vm_area_struct * area);
185 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
186
187 /* notification that a previously read-only page is about to become
188 * writable, if an error is returned it will cause a SIGBUS */
189 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
190
191 /* called by access_process_vm when get_user_pages() fails, typically
192 * for use by special VMAs that can switch between memory and hardware
193 */
194 int (*access)(struct vm_area_struct *vma, unsigned long addr,
195 void *buf, int len, int write);
196 #ifdef CONFIG_NUMA
197 /*
198 * set_policy() op must add a reference to any non-NULL @new mempolicy
199 * to hold the policy upon return. Caller should pass NULL @new to
200 * remove a policy and fall back to surrounding context--i.e. do not
201 * install a MPOL_DEFAULT policy, nor the task or system default
202 * mempolicy.
203 */
204 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
205
206 /*
207 * get_policy() op must add reference [mpol_get()] to any policy at
208 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
209 * in mm/mempolicy.c will do this automatically.
210 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
211 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
212 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
213 * must return NULL--i.e., do not "fallback" to task or system default
214 * policy.
215 */
216 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
217 unsigned long addr);
218 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
219 const nodemask_t *to, unsigned long flags);
220 #endif
221 };
222
223 struct mmu_gather;
224 struct inode;
225
226 #define page_private(page) ((page)->private)
227 #define set_page_private(page, v) ((page)->private = (v))
228
229 /*
230 * FIXME: take this include out, include page-flags.h in
231 * files which need it (119 of them)
232 */
233 #include <linux/page-flags.h>
234
235 /*
236 * Methods to modify the page usage count.
237 *
238 * What counts for a page usage:
239 * - cache mapping (page->mapping)
240 * - private data (page->private)
241 * - page mapped in a task's page tables, each mapping
242 * is counted separately
243 *
244 * Also, many kernel routines increase the page count before a critical
245 * routine so they can be sure the page doesn't go away from under them.
246 */
247
248 /*
249 * Drop a ref, return true if the refcount fell to zero (the page has no users)
250 */
put_page_testzero(struct page * page)251 static inline int put_page_testzero(struct page *page)
252 {
253 VM_BUG_ON(atomic_read(&page->_count) == 0);
254 return atomic_dec_and_test(&page->_count);
255 }
256
257 /*
258 * Try to grab a ref unless the page has a refcount of zero, return false if
259 * that is the case.
260 */
get_page_unless_zero(struct page * page)261 static inline int get_page_unless_zero(struct page *page)
262 {
263 return atomic_inc_not_zero(&page->_count);
264 }
265
266 /* Support for virtually mapped pages */
267 struct page *vmalloc_to_page(const void *addr);
268 unsigned long vmalloc_to_pfn(const void *addr);
269
270 /*
271 * Determine if an address is within the vmalloc range
272 *
273 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
274 * is no special casing required.
275 */
is_vmalloc_addr(const void * x)276 static inline int is_vmalloc_addr(const void *x)
277 {
278 #ifdef CONFIG_MMU
279 unsigned long addr = (unsigned long)x;
280
281 return addr >= VMALLOC_START && addr < VMALLOC_END;
282 #else
283 return 0;
284 #endif
285 }
286
compound_head(struct page * page)287 static inline struct page *compound_head(struct page *page)
288 {
289 if (unlikely(PageTail(page)))
290 return page->first_page;
291 return page;
292 }
293
page_count(struct page * page)294 static inline int page_count(struct page *page)
295 {
296 return atomic_read(&compound_head(page)->_count);
297 }
298
get_page(struct page * page)299 static inline void get_page(struct page *page)
300 {
301 page = compound_head(page);
302 VM_BUG_ON(atomic_read(&page->_count) == 0);
303 atomic_inc(&page->_count);
304 }
305
virt_to_head_page(const void * x)306 static inline struct page *virt_to_head_page(const void *x)
307 {
308 struct page *page = virt_to_page(x);
309 return compound_head(page);
310 }
311
312 /*
313 * Setup the page count before being freed into the page allocator for
314 * the first time (boot or memory hotplug)
315 */
init_page_count(struct page * page)316 static inline void init_page_count(struct page *page)
317 {
318 atomic_set(&page->_count, 1);
319 }
320
321 void put_page(struct page *page);
322 void put_pages_list(struct list_head *pages);
323
324 void split_page(struct page *page, unsigned int order);
325
326 /*
327 * Compound pages have a destructor function. Provide a
328 * prototype for that function and accessor functions.
329 * These are _only_ valid on the head of a PG_compound page.
330 */
331 typedef void compound_page_dtor(struct page *);
332
set_compound_page_dtor(struct page * page,compound_page_dtor * dtor)333 static inline void set_compound_page_dtor(struct page *page,
334 compound_page_dtor *dtor)
335 {
336 page[1].lru.next = (void *)dtor;
337 }
338
get_compound_page_dtor(struct page * page)339 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
340 {
341 return (compound_page_dtor *)page[1].lru.next;
342 }
343
compound_order(struct page * page)344 static inline int compound_order(struct page *page)
345 {
346 if (!PageHead(page))
347 return 0;
348 return (unsigned long)page[1].lru.prev;
349 }
350
set_compound_order(struct page * page,unsigned long order)351 static inline void set_compound_order(struct page *page, unsigned long order)
352 {
353 page[1].lru.prev = (void *)order;
354 }
355
356 /*
357 * Multiple processes may "see" the same page. E.g. for untouched
358 * mappings of /dev/null, all processes see the same page full of
359 * zeroes, and text pages of executables and shared libraries have
360 * only one copy in memory, at most, normally.
361 *
362 * For the non-reserved pages, page_count(page) denotes a reference count.
363 * page_count() == 0 means the page is free. page->lru is then used for
364 * freelist management in the buddy allocator.
365 * page_count() > 0 means the page has been allocated.
366 *
367 * Pages are allocated by the slab allocator in order to provide memory
368 * to kmalloc and kmem_cache_alloc. In this case, the management of the
369 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
370 * unless a particular usage is carefully commented. (the responsibility of
371 * freeing the kmalloc memory is the caller's, of course).
372 *
373 * A page may be used by anyone else who does a __get_free_page().
374 * In this case, page_count still tracks the references, and should only
375 * be used through the normal accessor functions. The top bits of page->flags
376 * and page->virtual store page management information, but all other fields
377 * are unused and could be used privately, carefully. The management of this
378 * page is the responsibility of the one who allocated it, and those who have
379 * subsequently been given references to it.
380 *
381 * The other pages (we may call them "pagecache pages") are completely
382 * managed by the Linux memory manager: I/O, buffers, swapping etc.
383 * The following discussion applies only to them.
384 *
385 * A pagecache page contains an opaque `private' member, which belongs to the
386 * page's address_space. Usually, this is the address of a circular list of
387 * the page's disk buffers. PG_private must be set to tell the VM to call
388 * into the filesystem to release these pages.
389 *
390 * A page may belong to an inode's memory mapping. In this case, page->mapping
391 * is the pointer to the inode, and page->index is the file offset of the page,
392 * in units of PAGE_CACHE_SIZE.
393 *
394 * If pagecache pages are not associated with an inode, they are said to be
395 * anonymous pages. These may become associated with the swapcache, and in that
396 * case PG_swapcache is set, and page->private is an offset into the swapcache.
397 *
398 * In either case (swapcache or inode backed), the pagecache itself holds one
399 * reference to the page. Setting PG_private should also increment the
400 * refcount. The each user mapping also has a reference to the page.
401 *
402 * The pagecache pages are stored in a per-mapping radix tree, which is
403 * rooted at mapping->page_tree, and indexed by offset.
404 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
405 * lists, we instead now tag pages as dirty/writeback in the radix tree.
406 *
407 * All pagecache pages may be subject to I/O:
408 * - inode pages may need to be read from disk,
409 * - inode pages which have been modified and are MAP_SHARED may need
410 * to be written back to the inode on disk,
411 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
412 * modified may need to be swapped out to swap space and (later) to be read
413 * back into memory.
414 */
415
416 /*
417 * The zone field is never updated after free_area_init_core()
418 * sets it, so none of the operations on it need to be atomic.
419 */
420
421
422 /*
423 * page->flags layout:
424 *
425 * There are three possibilities for how page->flags get
426 * laid out. The first is for the normal case, without
427 * sparsemem. The second is for sparsemem when there is
428 * plenty of space for node and section. The last is when
429 * we have run out of space and have to fall back to an
430 * alternate (slower) way of determining the node.
431 *
432 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
433 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
434 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
435 */
436 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
437 #define SECTIONS_WIDTH SECTIONS_SHIFT
438 #else
439 #define SECTIONS_WIDTH 0
440 #endif
441
442 #define ZONES_WIDTH ZONES_SHIFT
443
444 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
445 #define NODES_WIDTH NODES_SHIFT
446 #else
447 #ifdef CONFIG_SPARSEMEM_VMEMMAP
448 #error "Vmemmap: No space for nodes field in page flags"
449 #endif
450 #define NODES_WIDTH 0
451 #endif
452
453 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
454 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
455 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
456 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
457
458 /*
459 * We are going to use the flags for the page to node mapping if its in
460 * there. This includes the case where there is no node, so it is implicit.
461 */
462 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
463 #define NODE_NOT_IN_PAGE_FLAGS
464 #endif
465
466 #ifndef PFN_SECTION_SHIFT
467 #define PFN_SECTION_SHIFT 0
468 #endif
469
470 /*
471 * Define the bit shifts to access each section. For non-existant
472 * sections we define the shift as 0; that plus a 0 mask ensures
473 * the compiler will optimise away reference to them.
474 */
475 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
476 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
477 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
478
479 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
480 #ifdef NODE_NOT_IN_PAGEFLAGS
481 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
482 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
483 SECTIONS_PGOFF : ZONES_PGOFF)
484 #else
485 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
486 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
487 NODES_PGOFF : ZONES_PGOFF)
488 #endif
489
490 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
491
492 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
493 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
494 #endif
495
496 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
497 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
498 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
499 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
500
page_zonenum(struct page * page)501 static inline enum zone_type page_zonenum(struct page *page)
502 {
503 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
504 }
505
506 /*
507 * The identification function is only used by the buddy allocator for
508 * determining if two pages could be buddies. We are not really
509 * identifying a zone since we could be using a the section number
510 * id if we have not node id available in page flags.
511 * We guarantee only that it will return the same value for two
512 * combinable pages in a zone.
513 */
page_zone_id(struct page * page)514 static inline int page_zone_id(struct page *page)
515 {
516 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
517 }
518
zone_to_nid(struct zone * zone)519 static inline int zone_to_nid(struct zone *zone)
520 {
521 #ifdef CONFIG_NUMA
522 return zone->node;
523 #else
524 return 0;
525 #endif
526 }
527
528 #ifdef NODE_NOT_IN_PAGE_FLAGS
529 extern int page_to_nid(struct page *page);
530 #else
page_to_nid(struct page * page)531 static inline int page_to_nid(struct page *page)
532 {
533 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
534 }
535 #endif
536
page_zone(struct page * page)537 static inline struct zone *page_zone(struct page *page)
538 {
539 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
540 }
541
542 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
page_to_section(struct page * page)543 static inline unsigned long page_to_section(struct page *page)
544 {
545 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
546 }
547 #endif
548
set_page_zone(struct page * page,enum zone_type zone)549 static inline void set_page_zone(struct page *page, enum zone_type zone)
550 {
551 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
552 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
553 }
554
set_page_node(struct page * page,unsigned long node)555 static inline void set_page_node(struct page *page, unsigned long node)
556 {
557 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
558 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
559 }
560
set_page_section(struct page * page,unsigned long section)561 static inline void set_page_section(struct page *page, unsigned long section)
562 {
563 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
564 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
565 }
566
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)567 static inline void set_page_links(struct page *page, enum zone_type zone,
568 unsigned long node, unsigned long pfn)
569 {
570 set_page_zone(page, zone);
571 set_page_node(page, node);
572 set_page_section(page, pfn_to_section_nr(pfn));
573 }
574
575 /*
576 * If a hint addr is less than mmap_min_addr change hint to be as
577 * low as possible but still greater than mmap_min_addr
578 */
round_hint_to_min(unsigned long hint)579 static inline unsigned long round_hint_to_min(unsigned long hint)
580 {
581 hint &= PAGE_MASK;
582 if (((void *)hint != NULL) &&
583 (hint < mmap_min_addr))
584 return PAGE_ALIGN(mmap_min_addr);
585 return hint;
586 }
587
588 /*
589 * Some inline functions in vmstat.h depend on page_zone()
590 */
591 #include <linux/vmstat.h>
592
lowmem_page_address(struct page * page)593 static __always_inline void *lowmem_page_address(struct page *page)
594 {
595 return __va(page_to_pfn(page) << PAGE_SHIFT);
596 }
597
598 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
599 #define HASHED_PAGE_VIRTUAL
600 #endif
601
602 #if defined(WANT_PAGE_VIRTUAL)
603 #define page_address(page) ((page)->virtual)
604 #define set_page_address(page, address) \
605 do { \
606 (page)->virtual = (address); \
607 } while(0)
608 #define page_address_init() do { } while(0)
609 #endif
610
611 #if defined(HASHED_PAGE_VIRTUAL)
612 void *page_address(struct page *page);
613 void set_page_address(struct page *page, void *virtual);
614 void page_address_init(void);
615 #endif
616
617 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
618 #define page_address(page) lowmem_page_address(page)
619 #define set_page_address(page, address) do { } while(0)
620 #define page_address_init() do { } while(0)
621 #endif
622
623 /*
624 * On an anonymous page mapped into a user virtual memory area,
625 * page->mapping points to its anon_vma, not to a struct address_space;
626 * with the PAGE_MAPPING_ANON bit set to distinguish it.
627 *
628 * Please note that, confusingly, "page_mapping" refers to the inode
629 * address_space which maps the page from disk; whereas "page_mapped"
630 * refers to user virtual address space into which the page is mapped.
631 */
632 #define PAGE_MAPPING_ANON 1
633
634 extern struct address_space swapper_space;
page_mapping(struct page * page)635 static inline struct address_space *page_mapping(struct page *page)
636 {
637 struct address_space *mapping = page->mapping;
638
639 VM_BUG_ON(PageSlab(page));
640 #ifdef CONFIG_SWAP
641 if (unlikely(PageSwapCache(page)))
642 mapping = &swapper_space;
643 else
644 #endif
645 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
646 mapping = NULL;
647 return mapping;
648 }
649
PageAnon(struct page * page)650 static inline int PageAnon(struct page *page)
651 {
652 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
653 }
654
655 /*
656 * Return the pagecache index of the passed page. Regular pagecache pages
657 * use ->index whereas swapcache pages use ->private
658 */
page_index(struct page * page)659 static inline pgoff_t page_index(struct page *page)
660 {
661 if (unlikely(PageSwapCache(page)))
662 return page_private(page);
663 return page->index;
664 }
665
666 /*
667 * The atomic page->_mapcount, like _count, starts from -1:
668 * so that transitions both from it and to it can be tracked,
669 * using atomic_inc_and_test and atomic_add_negative(-1).
670 */
reset_page_mapcount(struct page * page)671 static inline void reset_page_mapcount(struct page *page)
672 {
673 atomic_set(&(page)->_mapcount, -1);
674 }
675
page_mapcount(struct page * page)676 static inline int page_mapcount(struct page *page)
677 {
678 return atomic_read(&(page)->_mapcount) + 1;
679 }
680
681 /*
682 * Return true if this page is mapped into pagetables.
683 */
page_mapped(struct page * page)684 static inline int page_mapped(struct page *page)
685 {
686 return atomic_read(&(page)->_mapcount) >= 0;
687 }
688
689 /*
690 * Different kinds of faults, as returned by handle_mm_fault().
691 * Used to decide whether a process gets delivered SIGBUS or
692 * just gets major/minor fault counters bumped up.
693 */
694
695 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
696
697 #define VM_FAULT_OOM 0x0001
698 #define VM_FAULT_SIGBUS 0x0002
699 #define VM_FAULT_MAJOR 0x0004
700 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
701
702 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
703 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
704
705 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
706
707 /*
708 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
709 */
710 extern void pagefault_out_of_memory(void);
711
712 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
713
714 extern void show_free_areas(void);
715
716 #ifdef CONFIG_SHMEM
717 extern int shmem_lock(struct file *file, int lock, struct user_struct *user);
718 #else
shmem_lock(struct file * file,int lock,struct user_struct * user)719 static inline int shmem_lock(struct file *file, int lock,
720 struct user_struct *user)
721 {
722 return 0;
723 }
724 #endif
725
726 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
727 void shmem_set_file(struct vm_area_struct *vma, struct file *file);
728 int shmem_zero_setup(struct vm_area_struct *);
729
730 #ifndef CONFIG_MMU
731 extern unsigned long shmem_get_unmapped_area(struct file *file,
732 unsigned long addr,
733 unsigned long len,
734 unsigned long pgoff,
735 unsigned long flags);
736 #endif
737
738 extern int can_do_mlock(void);
739 extern int user_shm_lock(size_t, struct user_struct *);
740 extern void user_shm_unlock(size_t, struct user_struct *);
741
742 /*
743 * Parameter block passed down to zap_pte_range in exceptional cases.
744 */
745 struct zap_details {
746 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
747 struct address_space *check_mapping; /* Check page->mapping if set */
748 pgoff_t first_index; /* Lowest page->index to unmap */
749 pgoff_t last_index; /* Highest page->index to unmap */
750 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
751 unsigned long truncate_count; /* Compare vm_truncate_count */
752 };
753
754 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
755 pte_t pte);
756
757 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
758 unsigned long size);
759 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
760 unsigned long size, struct zap_details *);
761 unsigned long unmap_vmas(struct mmu_gather **tlb,
762 struct vm_area_struct *start_vma, unsigned long start_addr,
763 unsigned long end_addr, unsigned long *nr_accounted,
764 struct zap_details *);
765
766 /**
767 * mm_walk - callbacks for walk_page_range
768 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
769 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
770 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
771 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
772 * @pte_hole: if set, called for each hole at all levels
773 *
774 * (see walk_page_range for more details)
775 */
776 struct mm_walk {
777 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
778 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
779 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
780 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
781 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
782 struct mm_struct *mm;
783 void *private;
784 };
785
786 int walk_page_range(unsigned long addr, unsigned long end,
787 struct mm_walk *walk);
788 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
789 unsigned long end, unsigned long floor, unsigned long ceiling);
790 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
791 struct vm_area_struct *vma);
792 void unmap_mapping_range(struct address_space *mapping,
793 loff_t const holebegin, loff_t const holelen, int even_cows);
794 int follow_phys(struct vm_area_struct *vma, unsigned long address,
795 unsigned int flags, unsigned long *prot, resource_size_t *phys);
796 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
797 void *buf, int len, int write);
798
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)799 static inline void unmap_shared_mapping_range(struct address_space *mapping,
800 loff_t const holebegin, loff_t const holelen)
801 {
802 unmap_mapping_range(mapping, holebegin, holelen, 0);
803 }
804
805 extern int vmtruncate(struct inode * inode, loff_t offset);
806 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
807
808 #ifdef CONFIG_MMU
809 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
810 unsigned long address, int write_access);
811 #else
handle_mm_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,int write_access)812 static inline int handle_mm_fault(struct mm_struct *mm,
813 struct vm_area_struct *vma, unsigned long address,
814 int write_access)
815 {
816 /* should never happen if there's no MMU */
817 BUG();
818 return VM_FAULT_SIGBUS;
819 }
820 #endif
821
822 extern int make_pages_present(unsigned long addr, unsigned long end);
823 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
824
825 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
826 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
827
828 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
829 extern void do_invalidatepage(struct page *page, unsigned long offset);
830
831 int __set_page_dirty_nobuffers(struct page *page);
832 int __set_page_dirty_no_writeback(struct page *page);
833 int redirty_page_for_writepage(struct writeback_control *wbc,
834 struct page *page);
835 int set_page_dirty(struct page *page);
836 int set_page_dirty_lock(struct page *page);
837 int clear_page_dirty_for_io(struct page *page);
838
839 extern unsigned long move_page_tables(struct vm_area_struct *vma,
840 unsigned long old_addr, struct vm_area_struct *new_vma,
841 unsigned long new_addr, unsigned long len);
842 extern unsigned long do_mremap(unsigned long addr,
843 unsigned long old_len, unsigned long new_len,
844 unsigned long flags, unsigned long new_addr);
845 extern int mprotect_fixup(struct vm_area_struct *vma,
846 struct vm_area_struct **pprev, unsigned long start,
847 unsigned long end, unsigned long newflags);
848
849 /*
850 * get_user_pages_fast provides equivalent functionality to get_user_pages,
851 * operating on current and current->mm (force=0 and doesn't return any vmas).
852 *
853 * get_user_pages_fast may take mmap_sem and page tables, so no assumptions
854 * can be made about locking. get_user_pages_fast is to be implemented in a
855 * way that is advantageous (vs get_user_pages()) when the user memory area is
856 * already faulted in and present in ptes. However if the pages have to be
857 * faulted in, it may turn out to be slightly slower).
858 */
859 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
860 struct page **pages);
861
862 /*
863 * A callback you can register to apply pressure to ageable caches.
864 *
865 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
866 * look through the least-recently-used 'nr_to_scan' entries and
867 * attempt to free them up. It should return the number of objects
868 * which remain in the cache. If it returns -1, it means it cannot do
869 * any scanning at this time (eg. there is a risk of deadlock).
870 *
871 * The 'gfpmask' refers to the allocation we are currently trying to
872 * fulfil.
873 *
874 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
875 * querying the cache size, so a fastpath for that case is appropriate.
876 */
877 struct shrinker {
878 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
879 int seeks; /* seeks to recreate an obj */
880
881 /* These are for internal use */
882 struct list_head list;
883 long nr; /* objs pending delete */
884 };
885 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
886 extern void register_shrinker(struct shrinker *);
887 extern void unregister_shrinker(struct shrinker *);
888
889 int vma_wants_writenotify(struct vm_area_struct *vma);
890
891 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
892
893 #ifdef __PAGETABLE_PUD_FOLDED
__pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)894 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
895 unsigned long address)
896 {
897 return 0;
898 }
899 #else
900 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
901 #endif
902
903 #ifdef __PAGETABLE_PMD_FOLDED
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)904 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
905 unsigned long address)
906 {
907 return 0;
908 }
909 #else
910 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
911 #endif
912
913 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
914 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
915
916 /*
917 * The following ifdef needed to get the 4level-fixup.h header to work.
918 * Remove it when 4level-fixup.h has been removed.
919 */
920 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
pud_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)921 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
922 {
923 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
924 NULL: pud_offset(pgd, address);
925 }
926
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)927 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
928 {
929 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
930 NULL: pmd_offset(pud, address);
931 }
932 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
933
934 #if USE_SPLIT_PTLOCKS
935 /*
936 * We tuck a spinlock to guard each pagetable page into its struct page,
937 * at page->private, with BUILD_BUG_ON to make sure that this will not
938 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
939 * When freeing, reset page->mapping so free_pages_check won't complain.
940 */
941 #define __pte_lockptr(page) &((page)->ptl)
942 #define pte_lock_init(_page) do { \
943 spin_lock_init(__pte_lockptr(_page)); \
944 } while (0)
945 #define pte_lock_deinit(page) ((page)->mapping = NULL)
946 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
947 #else /* !USE_SPLIT_PTLOCKS */
948 /*
949 * We use mm->page_table_lock to guard all pagetable pages of the mm.
950 */
951 #define pte_lock_init(page) do {} while (0)
952 #define pte_lock_deinit(page) do {} while (0)
953 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
954 #endif /* USE_SPLIT_PTLOCKS */
955
pgtable_page_ctor(struct page * page)956 static inline void pgtable_page_ctor(struct page *page)
957 {
958 pte_lock_init(page);
959 inc_zone_page_state(page, NR_PAGETABLE);
960 }
961
pgtable_page_dtor(struct page * page)962 static inline void pgtable_page_dtor(struct page *page)
963 {
964 pte_lock_deinit(page);
965 dec_zone_page_state(page, NR_PAGETABLE);
966 }
967
968 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
969 ({ \
970 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
971 pte_t *__pte = pte_offset_map(pmd, address); \
972 *(ptlp) = __ptl; \
973 spin_lock(__ptl); \
974 __pte; \
975 })
976
977 #define pte_unmap_unlock(pte, ptl) do { \
978 spin_unlock(ptl); \
979 pte_unmap(pte); \
980 } while (0)
981
982 #define pte_alloc_map(mm, pmd, address) \
983 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
984 NULL: pte_offset_map(pmd, address))
985
986 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
987 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
988 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
989
990 #define pte_alloc_kernel(pmd, address) \
991 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
992 NULL: pte_offset_kernel(pmd, address))
993
994 extern void free_area_init(unsigned long * zones_size);
995 extern void free_area_init_node(int nid, unsigned long * zones_size,
996 unsigned long zone_start_pfn, unsigned long *zholes_size);
997 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
998 /*
999 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1000 * zones, allocate the backing mem_map and account for memory holes in a more
1001 * architecture independent manner. This is a substitute for creating the
1002 * zone_sizes[] and zholes_size[] arrays and passing them to
1003 * free_area_init_node()
1004 *
1005 * An architecture is expected to register range of page frames backed by
1006 * physical memory with add_active_range() before calling
1007 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1008 * usage, an architecture is expected to do something like
1009 *
1010 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1011 * max_highmem_pfn};
1012 * for_each_valid_physical_page_range()
1013 * add_active_range(node_id, start_pfn, end_pfn)
1014 * free_area_init_nodes(max_zone_pfns);
1015 *
1016 * If the architecture guarantees that there are no holes in the ranges
1017 * registered with add_active_range(), free_bootmem_active_regions()
1018 * will call free_bootmem_node() for each registered physical page range.
1019 * Similarly sparse_memory_present_with_active_regions() calls
1020 * memory_present() for each range when SPARSEMEM is enabled.
1021 *
1022 * See mm/page_alloc.c for more information on each function exposed by
1023 * CONFIG_ARCH_POPULATES_NODE_MAP
1024 */
1025 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1026 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1027 unsigned long end_pfn);
1028 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1029 unsigned long end_pfn);
1030 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1031 unsigned long end_pfn);
1032 extern void remove_all_active_ranges(void);
1033 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1034 unsigned long end_pfn);
1035 extern void get_pfn_range_for_nid(unsigned int nid,
1036 unsigned long *start_pfn, unsigned long *end_pfn);
1037 extern unsigned long find_min_pfn_with_active_regions(void);
1038 extern void free_bootmem_with_active_regions(int nid,
1039 unsigned long max_low_pfn);
1040 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1041 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1042 extern void sparse_memory_present_with_active_regions(int nid);
1043 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1044
1045 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1046 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn)1047 static inline int __early_pfn_to_nid(unsigned long pfn)
1048 {
1049 return 0;
1050 }
1051 #else
1052 /* please see mm/page_alloc.c */
1053 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1054 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1055 /* there is a per-arch backend function. */
1056 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1057 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1058 #endif
1059
1060 extern void set_dma_reserve(unsigned long new_dma_reserve);
1061 extern void memmap_init_zone(unsigned long, int, unsigned long,
1062 unsigned long, enum memmap_context);
1063 extern void setup_per_zone_pages_min(void);
1064 extern void mem_init(void);
1065 extern void __init mmap_init(void);
1066 extern void show_mem(void);
1067 extern void si_meminfo(struct sysinfo * val);
1068 extern void si_meminfo_node(struct sysinfo *val, int nid);
1069 extern int after_bootmem;
1070
1071 #ifdef CONFIG_NUMA
1072 extern void setup_per_cpu_pageset(void);
1073 #else
setup_per_cpu_pageset(void)1074 static inline void setup_per_cpu_pageset(void) {}
1075 #endif
1076
1077 /* nommu.c */
1078 extern atomic_t mmap_pages_allocated;
1079
1080 /* prio_tree.c */
1081 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1082 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1083 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1084 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1085 struct prio_tree_iter *iter);
1086
1087 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1088 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1089 (vma = vma_prio_tree_next(vma, iter)); )
1090
vma_nonlinear_insert(struct vm_area_struct * vma,struct list_head * list)1091 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1092 struct list_head *list)
1093 {
1094 vma->shared.vm_set.parent = NULL;
1095 list_add_tail(&vma->shared.vm_set.list, list);
1096 }
1097
1098 /* mmap.c */
1099 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1100 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1101 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1102 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1103 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1104 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1105 struct mempolicy *);
1106 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1107 extern int split_vma(struct mm_struct *,
1108 struct vm_area_struct *, unsigned long addr, int new_below);
1109 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1110 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1111 struct rb_node **, struct rb_node *);
1112 extern void unlink_file_vma(struct vm_area_struct *);
1113 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1114 unsigned long addr, unsigned long len, pgoff_t pgoff);
1115 extern void exit_mmap(struct mm_struct *);
1116
1117 extern int mm_take_all_locks(struct mm_struct *mm);
1118 extern void mm_drop_all_locks(struct mm_struct *mm);
1119
1120 #ifdef CONFIG_PROC_FS
1121 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1122 extern void added_exe_file_vma(struct mm_struct *mm);
1123 extern void removed_exe_file_vma(struct mm_struct *mm);
1124 #else
added_exe_file_vma(struct mm_struct * mm)1125 static inline void added_exe_file_vma(struct mm_struct *mm)
1126 {}
1127
removed_exe_file_vma(struct mm_struct * mm)1128 static inline void removed_exe_file_vma(struct mm_struct *mm)
1129 {}
1130 #endif /* CONFIG_PROC_FS */
1131
1132 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1133 extern int install_special_mapping(struct mm_struct *mm,
1134 unsigned long addr, unsigned long len,
1135 unsigned long flags, struct page **pages);
1136
1137 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1138
1139 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1140 unsigned long len, unsigned long prot,
1141 unsigned long flag, unsigned long pgoff);
1142 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1143 unsigned long len, unsigned long flags,
1144 unsigned int vm_flags, unsigned long pgoff);
1145
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)1146 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1147 unsigned long len, unsigned long prot,
1148 unsigned long flag, unsigned long offset)
1149 {
1150 unsigned long ret = -EINVAL;
1151 if ((offset + PAGE_ALIGN(len)) < offset)
1152 goto out;
1153 if (!(offset & ~PAGE_MASK))
1154 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1155 out:
1156 return ret;
1157 }
1158
1159 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1160
1161 extern unsigned long do_brk(unsigned long, unsigned long);
1162
1163 /* filemap.c */
1164 extern unsigned long page_unuse(struct page *);
1165 extern void truncate_inode_pages(struct address_space *, loff_t);
1166 extern void truncate_inode_pages_range(struct address_space *,
1167 loff_t lstart, loff_t lend);
1168
1169 /* generic vm_area_ops exported for stackable file systems */
1170 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1171
1172 /* mm/page-writeback.c */
1173 int write_one_page(struct page *page, int wait);
1174 void task_dirty_inc(struct task_struct *tsk);
1175
1176 /* readahead.c */
1177 #define VM_MAX_READAHEAD 128 /* kbytes */
1178 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1179
1180 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1181 pgoff_t offset, unsigned long nr_to_read);
1182 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1183 pgoff_t offset, unsigned long nr_to_read);
1184
1185 void page_cache_sync_readahead(struct address_space *mapping,
1186 struct file_ra_state *ra,
1187 struct file *filp,
1188 pgoff_t offset,
1189 unsigned long size);
1190
1191 void page_cache_async_readahead(struct address_space *mapping,
1192 struct file_ra_state *ra,
1193 struct file *filp,
1194 struct page *pg,
1195 pgoff_t offset,
1196 unsigned long size);
1197
1198 unsigned long max_sane_readahead(unsigned long nr);
1199
1200 /* Do stack extension */
1201 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1202 #ifdef CONFIG_IA64
1203 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1204 #endif
1205 extern int expand_stack_downwards(struct vm_area_struct *vma,
1206 unsigned long address);
1207
1208 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1209 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1210 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1211 struct vm_area_struct **pprev);
1212
1213 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1214 NULL if none. Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1215 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1216 {
1217 struct vm_area_struct * vma = find_vma(mm,start_addr);
1218
1219 if (vma && end_addr <= vma->vm_start)
1220 vma = NULL;
1221 return vma;
1222 }
1223
vma_pages(struct vm_area_struct * vma)1224 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1225 {
1226 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1227 }
1228
1229 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1230 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1231 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1232 unsigned long pfn, unsigned long size, pgprot_t);
1233 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1234 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1235 unsigned long pfn);
1236 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1237 unsigned long pfn);
1238
1239 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1240 unsigned int foll_flags);
1241 #define FOLL_WRITE 0x01 /* check pte is writable */
1242 #define FOLL_TOUCH 0x02 /* mark page accessed */
1243 #define FOLL_GET 0x04 /* do get_page on page */
1244 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1245
1246 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1247 void *data);
1248 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1249 unsigned long size, pte_fn_t fn, void *data);
1250
1251 #ifdef CONFIG_PROC_FS
1252 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1253 #else
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)1254 static inline void vm_stat_account(struct mm_struct *mm,
1255 unsigned long flags, struct file *file, long pages)
1256 {
1257 }
1258 #endif /* CONFIG_PROC_FS */
1259
1260 #ifdef CONFIG_DEBUG_PAGEALLOC
1261 extern int debug_pagealloc_enabled;
1262
1263 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1264
enable_debug_pagealloc(void)1265 static inline void enable_debug_pagealloc(void)
1266 {
1267 debug_pagealloc_enabled = 1;
1268 }
1269 #ifdef CONFIG_HIBERNATION
1270 extern bool kernel_page_present(struct page *page);
1271 #endif /* CONFIG_HIBERNATION */
1272 #else
1273 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)1274 kernel_map_pages(struct page *page, int numpages, int enable) {}
enable_debug_pagealloc(void)1275 static inline void enable_debug_pagealloc(void)
1276 {
1277 }
1278 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)1279 static inline bool kernel_page_present(struct page *page) { return true; }
1280 #endif /* CONFIG_HIBERNATION */
1281 #endif
1282
1283 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1284 #ifdef __HAVE_ARCH_GATE_AREA
1285 int in_gate_area_no_task(unsigned long addr);
1286 int in_gate_area(struct task_struct *task, unsigned long addr);
1287 #else
1288 int in_gate_area_no_task(unsigned long addr);
1289 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1290 #endif /* __HAVE_ARCH_GATE_AREA */
1291
1292 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1293 void __user *, size_t *, loff_t *);
1294 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1295 unsigned long lru_pages);
1296
1297 #ifndef CONFIG_MMU
1298 #define randomize_va_space 0
1299 #else
1300 extern int randomize_va_space;
1301 #endif
1302
1303 const char * arch_vma_name(struct vm_area_struct *vma);
1304 void print_vma_addr(char *prefix, unsigned long rip);
1305
1306 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1307 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1308 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1309 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1310 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1311 void *vmemmap_alloc_block(unsigned long size, int node);
1312 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1313 int vmemmap_populate_basepages(struct page *start_page,
1314 unsigned long pages, int node);
1315 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1316 void vmemmap_populate_print_last(void);
1317
1318 extern void *alloc_locked_buffer(size_t size);
1319 extern void free_locked_buffer(void *buffer, size_t size);
1320 extern void release_locked_buffer(void *buffer, size_t size);
1321 #endif /* __KERNEL__ */
1322 #endif /* _LINUX_MM_H */
1323