1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
64
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67
68 #include "kmap_skb.h"
69
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
72
sock_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 struct pipe_buffer *buf)
75 {
76 put_page(buf->page);
77 }
78
sock_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)79 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
80 struct pipe_buffer *buf)
81 {
82 get_page(buf->page);
83 }
84
sock_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)85 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
87 {
88 return 1;
89 }
90
91
92 /* Pipe buffer operations for a socket. */
93 static struct pipe_buf_operations sock_pipe_buf_ops = {
94 .can_merge = 0,
95 .map = generic_pipe_buf_map,
96 .unmap = generic_pipe_buf_unmap,
97 .confirm = generic_pipe_buf_confirm,
98 .release = sock_pipe_buf_release,
99 .steal = sock_pipe_buf_steal,
100 .get = sock_pipe_buf_get,
101 };
102
103 /*
104 * Keep out-of-line to prevent kernel bloat.
105 * __builtin_return_address is not used because it is not always
106 * reliable.
107 */
108
109 /**
110 * skb_over_panic - private function
111 * @skb: buffer
112 * @sz: size
113 * @here: address
114 *
115 * Out of line support code for skb_put(). Not user callable.
116 */
skb_over_panic(struct sk_buff * skb,int sz,void * here)117 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
118 {
119 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
120 "data:%p tail:%#lx end:%#lx dev:%s\n",
121 here, skb->len, sz, skb->head, skb->data,
122 (unsigned long)skb->tail, (unsigned long)skb->end,
123 skb->dev ? skb->dev->name : "<NULL>");
124 BUG();
125 }
126
127 /**
128 * skb_under_panic - private function
129 * @skb: buffer
130 * @sz: size
131 * @here: address
132 *
133 * Out of line support code for skb_push(). Not user callable.
134 */
135
skb_under_panic(struct sk_buff * skb,int sz,void * here)136 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
137 {
138 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
139 "data:%p tail:%#lx end:%#lx dev:%s\n",
140 here, skb->len, sz, skb->head, skb->data,
141 (unsigned long)skb->tail, (unsigned long)skb->end,
142 skb->dev ? skb->dev->name : "<NULL>");
143 BUG();
144 }
145
146 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
147 * 'private' fields and also do memory statistics to find all the
148 * [BEEP] leaks.
149 *
150 */
151
152 /**
153 * __alloc_skb - allocate a network buffer
154 * @size: size to allocate
155 * @gfp_mask: allocation mask
156 * @fclone: allocate from fclone cache instead of head cache
157 * and allocate a cloned (child) skb
158 * @node: numa node to allocate memory on
159 *
160 * Allocate a new &sk_buff. The returned buffer has no headroom and a
161 * tail room of size bytes. The object has a reference count of one.
162 * The return is the buffer. On a failure the return is %NULL.
163 *
164 * Buffers may only be allocated from interrupts using a @gfp_mask of
165 * %GFP_ATOMIC.
166 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int fclone,int node)167 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
168 int fclone, int node)
169 {
170 struct kmem_cache *cache;
171 struct skb_shared_info *shinfo;
172 struct sk_buff *skb;
173 u8 *data;
174
175 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
176
177 /* Get the HEAD */
178 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
179 if (!skb)
180 goto out;
181
182 size = SKB_DATA_ALIGN(size);
183 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
184 gfp_mask, node);
185 if (!data)
186 goto nodata;
187
188 /*
189 * Only clear those fields we need to clear, not those that we will
190 * actually initialise below. Hence, don't put any more fields after
191 * the tail pointer in struct sk_buff!
192 */
193 memset(skb, 0, offsetof(struct sk_buff, tail));
194 skb->truesize = size + sizeof(struct sk_buff);
195 atomic_set(&skb->users, 1);
196 skb->head = data;
197 skb->data = data;
198 skb_reset_tail_pointer(skb);
199 skb->end = skb->tail + size;
200 /* make sure we initialize shinfo sequentially */
201 shinfo = skb_shinfo(skb);
202 atomic_set(&shinfo->dataref, 1);
203 shinfo->nr_frags = 0;
204 shinfo->gso_size = 0;
205 shinfo->gso_segs = 0;
206 shinfo->gso_type = 0;
207 shinfo->ip6_frag_id = 0;
208 shinfo->frag_list = NULL;
209
210 if (fclone) {
211 struct sk_buff *child = skb + 1;
212 atomic_t *fclone_ref = (atomic_t *) (child + 1);
213
214 skb->fclone = SKB_FCLONE_ORIG;
215 atomic_set(fclone_ref, 1);
216
217 child->fclone = SKB_FCLONE_UNAVAILABLE;
218 }
219 out:
220 return skb;
221 nodata:
222 kmem_cache_free(cache, skb);
223 skb = NULL;
224 goto out;
225 }
226
227 /**
228 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
229 * @dev: network device to receive on
230 * @length: length to allocate
231 * @gfp_mask: get_free_pages mask, passed to alloc_skb
232 *
233 * Allocate a new &sk_buff and assign it a usage count of one. The
234 * buffer has unspecified headroom built in. Users should allocate
235 * the headroom they think they need without accounting for the
236 * built in space. The built in space is used for optimisations.
237 *
238 * %NULL is returned if there is no free memory.
239 */
__netdev_alloc_skb(struct net_device * dev,unsigned int length,gfp_t gfp_mask)240 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
241 unsigned int length, gfp_t gfp_mask)
242 {
243 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
244 struct sk_buff *skb;
245
246 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
247 if (likely(skb)) {
248 skb_reserve(skb, NET_SKB_PAD);
249 skb->dev = dev;
250 }
251 return skb;
252 }
253
__netdev_alloc_page(struct net_device * dev,gfp_t gfp_mask)254 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
255 {
256 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
257 struct page *page;
258
259 page = alloc_pages_node(node, gfp_mask, 0);
260 return page;
261 }
262 EXPORT_SYMBOL(__netdev_alloc_page);
263
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size)264 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
265 int size)
266 {
267 skb_fill_page_desc(skb, i, page, off, size);
268 skb->len += size;
269 skb->data_len += size;
270 skb->truesize += size;
271 }
272 EXPORT_SYMBOL(skb_add_rx_frag);
273
274 /**
275 * dev_alloc_skb - allocate an skbuff for receiving
276 * @length: length to allocate
277 *
278 * Allocate a new &sk_buff and assign it a usage count of one. The
279 * buffer has unspecified headroom built in. Users should allocate
280 * the headroom they think they need without accounting for the
281 * built in space. The built in space is used for optimisations.
282 *
283 * %NULL is returned if there is no free memory. Although this function
284 * allocates memory it can be called from an interrupt.
285 */
dev_alloc_skb(unsigned int length)286 struct sk_buff *dev_alloc_skb(unsigned int length)
287 {
288 /*
289 * There is more code here than it seems:
290 * __dev_alloc_skb is an inline
291 */
292 return __dev_alloc_skb(length, GFP_ATOMIC);
293 }
294 EXPORT_SYMBOL(dev_alloc_skb);
295
skb_drop_list(struct sk_buff ** listp)296 static void skb_drop_list(struct sk_buff **listp)
297 {
298 struct sk_buff *list = *listp;
299
300 *listp = NULL;
301
302 do {
303 struct sk_buff *this = list;
304 list = list->next;
305 kfree_skb(this);
306 } while (list);
307 }
308
skb_drop_fraglist(struct sk_buff * skb)309 static inline void skb_drop_fraglist(struct sk_buff *skb)
310 {
311 skb_drop_list(&skb_shinfo(skb)->frag_list);
312 }
313
skb_clone_fraglist(struct sk_buff * skb)314 static void skb_clone_fraglist(struct sk_buff *skb)
315 {
316 struct sk_buff *list;
317
318 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
319 skb_get(list);
320 }
321
skb_release_data(struct sk_buff * skb)322 static void skb_release_data(struct sk_buff *skb)
323 {
324 if (!skb->cloned ||
325 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
326 &skb_shinfo(skb)->dataref)) {
327 if (skb_shinfo(skb)->nr_frags) {
328 int i;
329 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
330 put_page(skb_shinfo(skb)->frags[i].page);
331 }
332
333 if (skb_shinfo(skb)->frag_list)
334 skb_drop_fraglist(skb);
335
336 kfree(skb->head);
337 }
338 }
339
340 /*
341 * Free an skbuff by memory without cleaning the state.
342 */
kfree_skbmem(struct sk_buff * skb)343 static void kfree_skbmem(struct sk_buff *skb)
344 {
345 struct sk_buff *other;
346 atomic_t *fclone_ref;
347
348 switch (skb->fclone) {
349 case SKB_FCLONE_UNAVAILABLE:
350 kmem_cache_free(skbuff_head_cache, skb);
351 break;
352
353 case SKB_FCLONE_ORIG:
354 fclone_ref = (atomic_t *) (skb + 2);
355 if (atomic_dec_and_test(fclone_ref))
356 kmem_cache_free(skbuff_fclone_cache, skb);
357 break;
358
359 case SKB_FCLONE_CLONE:
360 fclone_ref = (atomic_t *) (skb + 1);
361 other = skb - 1;
362
363 /* The clone portion is available for
364 * fast-cloning again.
365 */
366 skb->fclone = SKB_FCLONE_UNAVAILABLE;
367
368 if (atomic_dec_and_test(fclone_ref))
369 kmem_cache_free(skbuff_fclone_cache, other);
370 break;
371 }
372 }
373
skb_release_head_state(struct sk_buff * skb)374 static void skb_release_head_state(struct sk_buff *skb)
375 {
376 dst_release(skb->dst);
377 #ifdef CONFIG_XFRM
378 secpath_put(skb->sp);
379 #endif
380 if (skb->destructor) {
381 WARN_ON(in_irq());
382 skb->destructor(skb);
383 }
384 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
385 nf_conntrack_put(skb->nfct);
386 nf_conntrack_put_reasm(skb->nfct_reasm);
387 #endif
388 #ifdef CONFIG_BRIDGE_NETFILTER
389 nf_bridge_put(skb->nf_bridge);
390 #endif
391 /* XXX: IS this still necessary? - JHS */
392 #ifdef CONFIG_NET_SCHED
393 skb->tc_index = 0;
394 #ifdef CONFIG_NET_CLS_ACT
395 skb->tc_verd = 0;
396 #endif
397 #endif
398 }
399
400 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)401 static void skb_release_all(struct sk_buff *skb)
402 {
403 skb_release_head_state(skb);
404 skb_release_data(skb);
405 }
406
407 /**
408 * __kfree_skb - private function
409 * @skb: buffer
410 *
411 * Free an sk_buff. Release anything attached to the buffer.
412 * Clean the state. This is an internal helper function. Users should
413 * always call kfree_skb
414 */
415
__kfree_skb(struct sk_buff * skb)416 void __kfree_skb(struct sk_buff *skb)
417 {
418 skb_release_all(skb);
419 kfree_skbmem(skb);
420 }
421
422 /**
423 * kfree_skb - free an sk_buff
424 * @skb: buffer to free
425 *
426 * Drop a reference to the buffer and free it if the usage count has
427 * hit zero.
428 */
kfree_skb(struct sk_buff * skb)429 void kfree_skb(struct sk_buff *skb)
430 {
431 if (unlikely(!skb))
432 return;
433 if (likely(atomic_read(&skb->users) == 1))
434 smp_rmb();
435 else if (likely(!atomic_dec_and_test(&skb->users)))
436 return;
437 __kfree_skb(skb);
438 }
439
440 /**
441 * skb_recycle_check - check if skb can be reused for receive
442 * @skb: buffer
443 * @skb_size: minimum receive buffer size
444 *
445 * Checks that the skb passed in is not shared or cloned, and
446 * that it is linear and its head portion at least as large as
447 * skb_size so that it can be recycled as a receive buffer.
448 * If these conditions are met, this function does any necessary
449 * reference count dropping and cleans up the skbuff as if it
450 * just came from __alloc_skb().
451 */
skb_recycle_check(struct sk_buff * skb,int skb_size)452 int skb_recycle_check(struct sk_buff *skb, int skb_size)
453 {
454 struct skb_shared_info *shinfo;
455
456 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
457 return 0;
458
459 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
460 if (skb_end_pointer(skb) - skb->head < skb_size)
461 return 0;
462
463 if (skb_shared(skb) || skb_cloned(skb))
464 return 0;
465
466 skb_release_head_state(skb);
467 shinfo = skb_shinfo(skb);
468 atomic_set(&shinfo->dataref, 1);
469 shinfo->nr_frags = 0;
470 shinfo->gso_size = 0;
471 shinfo->gso_segs = 0;
472 shinfo->gso_type = 0;
473 shinfo->ip6_frag_id = 0;
474 shinfo->frag_list = NULL;
475
476 memset(skb, 0, offsetof(struct sk_buff, tail));
477 skb->data = skb->head + NET_SKB_PAD;
478 skb_reset_tail_pointer(skb);
479
480 return 1;
481 }
482 EXPORT_SYMBOL(skb_recycle_check);
483
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)484 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
485 {
486 new->tstamp = old->tstamp;
487 new->dev = old->dev;
488 new->transport_header = old->transport_header;
489 new->network_header = old->network_header;
490 new->mac_header = old->mac_header;
491 new->dst = dst_clone(old->dst);
492 #ifdef CONFIG_XFRM
493 new->sp = secpath_get(old->sp);
494 #endif
495 memcpy(new->cb, old->cb, sizeof(old->cb));
496 new->csum_start = old->csum_start;
497 new->csum_offset = old->csum_offset;
498 new->local_df = old->local_df;
499 new->pkt_type = old->pkt_type;
500 new->ip_summed = old->ip_summed;
501 skb_copy_queue_mapping(new, old);
502 new->priority = old->priority;
503 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
504 new->ipvs_property = old->ipvs_property;
505 #endif
506 new->protocol = old->protocol;
507 new->mark = old->mark;
508 __nf_copy(new, old);
509 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
510 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
511 new->nf_trace = old->nf_trace;
512 #endif
513 #ifdef CONFIG_NET_SCHED
514 new->tc_index = old->tc_index;
515 #ifdef CONFIG_NET_CLS_ACT
516 new->tc_verd = old->tc_verd;
517 #endif
518 #endif
519 new->vlan_tci = old->vlan_tci;
520
521 skb_copy_secmark(new, old);
522 }
523
__skb_clone(struct sk_buff * n,struct sk_buff * skb)524 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
525 {
526 #define C(x) n->x = skb->x
527
528 n->next = n->prev = NULL;
529 n->sk = NULL;
530 __copy_skb_header(n, skb);
531
532 C(len);
533 C(data_len);
534 C(mac_len);
535 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
536 n->cloned = 1;
537 n->nohdr = 0;
538 n->destructor = NULL;
539 C(iif);
540 C(tail);
541 C(end);
542 C(head);
543 C(data);
544 C(truesize);
545 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
546 C(do_not_encrypt);
547 C(requeue);
548 #endif
549 atomic_set(&n->users, 1);
550
551 atomic_inc(&(skb_shinfo(skb)->dataref));
552 skb->cloned = 1;
553
554 return n;
555 #undef C
556 }
557
558 /**
559 * skb_morph - morph one skb into another
560 * @dst: the skb to receive the contents
561 * @src: the skb to supply the contents
562 *
563 * This is identical to skb_clone except that the target skb is
564 * supplied by the user.
565 *
566 * The target skb is returned upon exit.
567 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)568 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
569 {
570 skb_release_all(dst);
571 return __skb_clone(dst, src);
572 }
573 EXPORT_SYMBOL_GPL(skb_morph);
574
575 /**
576 * skb_clone - duplicate an sk_buff
577 * @skb: buffer to clone
578 * @gfp_mask: allocation priority
579 *
580 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
581 * copies share the same packet data but not structure. The new
582 * buffer has a reference count of 1. If the allocation fails the
583 * function returns %NULL otherwise the new buffer is returned.
584 *
585 * If this function is called from an interrupt gfp_mask() must be
586 * %GFP_ATOMIC.
587 */
588
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)589 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
590 {
591 struct sk_buff *n;
592
593 n = skb + 1;
594 if (skb->fclone == SKB_FCLONE_ORIG &&
595 n->fclone == SKB_FCLONE_UNAVAILABLE) {
596 atomic_t *fclone_ref = (atomic_t *) (n + 1);
597 n->fclone = SKB_FCLONE_CLONE;
598 atomic_inc(fclone_ref);
599 } else {
600 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
601 if (!n)
602 return NULL;
603 n->fclone = SKB_FCLONE_UNAVAILABLE;
604 }
605
606 return __skb_clone(n, skb);
607 }
608
copy_skb_header(struct sk_buff * new,const struct sk_buff * old)609 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
610 {
611 #ifndef NET_SKBUFF_DATA_USES_OFFSET
612 /*
613 * Shift between the two data areas in bytes
614 */
615 unsigned long offset = new->data - old->data;
616 #endif
617
618 __copy_skb_header(new, old);
619
620 #ifndef NET_SKBUFF_DATA_USES_OFFSET
621 /* {transport,network,mac}_header are relative to skb->head */
622 new->transport_header += offset;
623 new->network_header += offset;
624 new->mac_header += offset;
625 #endif
626 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
627 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
628 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
629 }
630
631 /**
632 * skb_copy - create private copy of an sk_buff
633 * @skb: buffer to copy
634 * @gfp_mask: allocation priority
635 *
636 * Make a copy of both an &sk_buff and its data. This is used when the
637 * caller wishes to modify the data and needs a private copy of the
638 * data to alter. Returns %NULL on failure or the pointer to the buffer
639 * on success. The returned buffer has a reference count of 1.
640 *
641 * As by-product this function converts non-linear &sk_buff to linear
642 * one, so that &sk_buff becomes completely private and caller is allowed
643 * to modify all the data of returned buffer. This means that this
644 * function is not recommended for use in circumstances when only
645 * header is going to be modified. Use pskb_copy() instead.
646 */
647
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)648 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
649 {
650 int headerlen = skb->data - skb->head;
651 /*
652 * Allocate the copy buffer
653 */
654 struct sk_buff *n;
655 #ifdef NET_SKBUFF_DATA_USES_OFFSET
656 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
657 #else
658 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
659 #endif
660 if (!n)
661 return NULL;
662
663 /* Set the data pointer */
664 skb_reserve(n, headerlen);
665 /* Set the tail pointer and length */
666 skb_put(n, skb->len);
667
668 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
669 BUG();
670
671 copy_skb_header(n, skb);
672 return n;
673 }
674
675
676 /**
677 * pskb_copy - create copy of an sk_buff with private head.
678 * @skb: buffer to copy
679 * @gfp_mask: allocation priority
680 *
681 * Make a copy of both an &sk_buff and part of its data, located
682 * in header. Fragmented data remain shared. This is used when
683 * the caller wishes to modify only header of &sk_buff and needs
684 * private copy of the header to alter. Returns %NULL on failure
685 * or the pointer to the buffer on success.
686 * The returned buffer has a reference count of 1.
687 */
688
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)689 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
690 {
691 /*
692 * Allocate the copy buffer
693 */
694 struct sk_buff *n;
695 #ifdef NET_SKBUFF_DATA_USES_OFFSET
696 n = alloc_skb(skb->end, gfp_mask);
697 #else
698 n = alloc_skb(skb->end - skb->head, gfp_mask);
699 #endif
700 if (!n)
701 goto out;
702
703 /* Set the data pointer */
704 skb_reserve(n, skb->data - skb->head);
705 /* Set the tail pointer and length */
706 skb_put(n, skb_headlen(skb));
707 /* Copy the bytes */
708 skb_copy_from_linear_data(skb, n->data, n->len);
709
710 n->truesize += skb->data_len;
711 n->data_len = skb->data_len;
712 n->len = skb->len;
713
714 if (skb_shinfo(skb)->nr_frags) {
715 int i;
716
717 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
718 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
719 get_page(skb_shinfo(n)->frags[i].page);
720 }
721 skb_shinfo(n)->nr_frags = i;
722 }
723
724 if (skb_shinfo(skb)->frag_list) {
725 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
726 skb_clone_fraglist(n);
727 }
728
729 copy_skb_header(n, skb);
730 out:
731 return n;
732 }
733
734 /**
735 * pskb_expand_head - reallocate header of &sk_buff
736 * @skb: buffer to reallocate
737 * @nhead: room to add at head
738 * @ntail: room to add at tail
739 * @gfp_mask: allocation priority
740 *
741 * Expands (or creates identical copy, if &nhead and &ntail are zero)
742 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
743 * reference count of 1. Returns zero in the case of success or error,
744 * if expansion failed. In the last case, &sk_buff is not changed.
745 *
746 * All the pointers pointing into skb header may change and must be
747 * reloaded after call to this function.
748 */
749
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)750 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
751 gfp_t gfp_mask)
752 {
753 int i;
754 u8 *data;
755 #ifdef NET_SKBUFF_DATA_USES_OFFSET
756 int size = nhead + skb->end + ntail;
757 #else
758 int size = nhead + (skb->end - skb->head) + ntail;
759 #endif
760 long off;
761
762 BUG_ON(nhead < 0);
763
764 if (skb_shared(skb))
765 BUG();
766
767 size = SKB_DATA_ALIGN(size);
768
769 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
770 if (!data)
771 goto nodata;
772
773 /* Copy only real data... and, alas, header. This should be
774 * optimized for the cases when header is void. */
775 #ifdef NET_SKBUFF_DATA_USES_OFFSET
776 memcpy(data + nhead, skb->head, skb->tail);
777 #else
778 memcpy(data + nhead, skb->head, skb->tail - skb->head);
779 #endif
780 memcpy(data + size, skb_end_pointer(skb),
781 sizeof(struct skb_shared_info));
782
783 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
784 get_page(skb_shinfo(skb)->frags[i].page);
785
786 if (skb_shinfo(skb)->frag_list)
787 skb_clone_fraglist(skb);
788
789 skb_release_data(skb);
790
791 off = (data + nhead) - skb->head;
792
793 skb->head = data;
794 skb->data += off;
795 #ifdef NET_SKBUFF_DATA_USES_OFFSET
796 skb->end = size;
797 off = nhead;
798 #else
799 skb->end = skb->head + size;
800 #endif
801 /* {transport,network,mac}_header and tail are relative to skb->head */
802 skb->tail += off;
803 skb->transport_header += off;
804 skb->network_header += off;
805 skb->mac_header += off;
806 skb->csum_start += nhead;
807 skb->cloned = 0;
808 skb->hdr_len = 0;
809 skb->nohdr = 0;
810 atomic_set(&skb_shinfo(skb)->dataref, 1);
811 return 0;
812
813 nodata:
814 return -ENOMEM;
815 }
816
817 /* Make private copy of skb with writable head and some headroom */
818
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)819 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
820 {
821 struct sk_buff *skb2;
822 int delta = headroom - skb_headroom(skb);
823
824 if (delta <= 0)
825 skb2 = pskb_copy(skb, GFP_ATOMIC);
826 else {
827 skb2 = skb_clone(skb, GFP_ATOMIC);
828 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
829 GFP_ATOMIC)) {
830 kfree_skb(skb2);
831 skb2 = NULL;
832 }
833 }
834 return skb2;
835 }
836
837
838 /**
839 * skb_copy_expand - copy and expand sk_buff
840 * @skb: buffer to copy
841 * @newheadroom: new free bytes at head
842 * @newtailroom: new free bytes at tail
843 * @gfp_mask: allocation priority
844 *
845 * Make a copy of both an &sk_buff and its data and while doing so
846 * allocate additional space.
847 *
848 * This is used when the caller wishes to modify the data and needs a
849 * private copy of the data to alter as well as more space for new fields.
850 * Returns %NULL on failure or the pointer to the buffer
851 * on success. The returned buffer has a reference count of 1.
852 *
853 * You must pass %GFP_ATOMIC as the allocation priority if this function
854 * is called from an interrupt.
855 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)856 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
857 int newheadroom, int newtailroom,
858 gfp_t gfp_mask)
859 {
860 /*
861 * Allocate the copy buffer
862 */
863 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
864 gfp_mask);
865 int oldheadroom = skb_headroom(skb);
866 int head_copy_len, head_copy_off;
867 int off;
868
869 if (!n)
870 return NULL;
871
872 skb_reserve(n, newheadroom);
873
874 /* Set the tail pointer and length */
875 skb_put(n, skb->len);
876
877 head_copy_len = oldheadroom;
878 head_copy_off = 0;
879 if (newheadroom <= head_copy_len)
880 head_copy_len = newheadroom;
881 else
882 head_copy_off = newheadroom - head_copy_len;
883
884 /* Copy the linear header and data. */
885 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
886 skb->len + head_copy_len))
887 BUG();
888
889 copy_skb_header(n, skb);
890
891 off = newheadroom - oldheadroom;
892 n->csum_start += off;
893 #ifdef NET_SKBUFF_DATA_USES_OFFSET
894 n->transport_header += off;
895 n->network_header += off;
896 n->mac_header += off;
897 #endif
898
899 return n;
900 }
901
902 /**
903 * skb_pad - zero pad the tail of an skb
904 * @skb: buffer to pad
905 * @pad: space to pad
906 *
907 * Ensure that a buffer is followed by a padding area that is zero
908 * filled. Used by network drivers which may DMA or transfer data
909 * beyond the buffer end onto the wire.
910 *
911 * May return error in out of memory cases. The skb is freed on error.
912 */
913
skb_pad(struct sk_buff * skb,int pad)914 int skb_pad(struct sk_buff *skb, int pad)
915 {
916 int err;
917 int ntail;
918
919 /* If the skbuff is non linear tailroom is always zero.. */
920 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
921 memset(skb->data+skb->len, 0, pad);
922 return 0;
923 }
924
925 ntail = skb->data_len + pad - (skb->end - skb->tail);
926 if (likely(skb_cloned(skb) || ntail > 0)) {
927 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
928 if (unlikely(err))
929 goto free_skb;
930 }
931
932 /* FIXME: The use of this function with non-linear skb's really needs
933 * to be audited.
934 */
935 err = skb_linearize(skb);
936 if (unlikely(err))
937 goto free_skb;
938
939 memset(skb->data + skb->len, 0, pad);
940 return 0;
941
942 free_skb:
943 kfree_skb(skb);
944 return err;
945 }
946
947 /**
948 * skb_put - add data to a buffer
949 * @skb: buffer to use
950 * @len: amount of data to add
951 *
952 * This function extends the used data area of the buffer. If this would
953 * exceed the total buffer size the kernel will panic. A pointer to the
954 * first byte of the extra data is returned.
955 */
skb_put(struct sk_buff * skb,unsigned int len)956 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
957 {
958 unsigned char *tmp = skb_tail_pointer(skb);
959 SKB_LINEAR_ASSERT(skb);
960 skb->tail += len;
961 skb->len += len;
962 if (unlikely(skb->tail > skb->end))
963 skb_over_panic(skb, len, __builtin_return_address(0));
964 return tmp;
965 }
966 EXPORT_SYMBOL(skb_put);
967
968 /**
969 * skb_push - add data to the start of a buffer
970 * @skb: buffer to use
971 * @len: amount of data to add
972 *
973 * This function extends the used data area of the buffer at the buffer
974 * start. If this would exceed the total buffer headroom the kernel will
975 * panic. A pointer to the first byte of the extra data is returned.
976 */
skb_push(struct sk_buff * skb,unsigned int len)977 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
978 {
979 skb->data -= len;
980 skb->len += len;
981 if (unlikely(skb->data<skb->head))
982 skb_under_panic(skb, len, __builtin_return_address(0));
983 return skb->data;
984 }
985 EXPORT_SYMBOL(skb_push);
986
987 /**
988 * skb_pull - remove data from the start of a buffer
989 * @skb: buffer to use
990 * @len: amount of data to remove
991 *
992 * This function removes data from the start of a buffer, returning
993 * the memory to the headroom. A pointer to the next data in the buffer
994 * is returned. Once the data has been pulled future pushes will overwrite
995 * the old data.
996 */
skb_pull(struct sk_buff * skb,unsigned int len)997 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
998 {
999 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1000 }
1001 EXPORT_SYMBOL(skb_pull);
1002
1003 /**
1004 * skb_trim - remove end from a buffer
1005 * @skb: buffer to alter
1006 * @len: new length
1007 *
1008 * Cut the length of a buffer down by removing data from the tail. If
1009 * the buffer is already under the length specified it is not modified.
1010 * The skb must be linear.
1011 */
skb_trim(struct sk_buff * skb,unsigned int len)1012 void skb_trim(struct sk_buff *skb, unsigned int len)
1013 {
1014 if (skb->len > len)
1015 __skb_trim(skb, len);
1016 }
1017 EXPORT_SYMBOL(skb_trim);
1018
1019 /* Trims skb to length len. It can change skb pointers.
1020 */
1021
___pskb_trim(struct sk_buff * skb,unsigned int len)1022 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1023 {
1024 struct sk_buff **fragp;
1025 struct sk_buff *frag;
1026 int offset = skb_headlen(skb);
1027 int nfrags = skb_shinfo(skb)->nr_frags;
1028 int i;
1029 int err;
1030
1031 if (skb_cloned(skb) &&
1032 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1033 return err;
1034
1035 i = 0;
1036 if (offset >= len)
1037 goto drop_pages;
1038
1039 for (; i < nfrags; i++) {
1040 int end = offset + skb_shinfo(skb)->frags[i].size;
1041
1042 if (end < len) {
1043 offset = end;
1044 continue;
1045 }
1046
1047 skb_shinfo(skb)->frags[i++].size = len - offset;
1048
1049 drop_pages:
1050 skb_shinfo(skb)->nr_frags = i;
1051
1052 for (; i < nfrags; i++)
1053 put_page(skb_shinfo(skb)->frags[i].page);
1054
1055 if (skb_shinfo(skb)->frag_list)
1056 skb_drop_fraglist(skb);
1057 goto done;
1058 }
1059
1060 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1061 fragp = &frag->next) {
1062 int end = offset + frag->len;
1063
1064 if (skb_shared(frag)) {
1065 struct sk_buff *nfrag;
1066
1067 nfrag = skb_clone(frag, GFP_ATOMIC);
1068 if (unlikely(!nfrag))
1069 return -ENOMEM;
1070
1071 nfrag->next = frag->next;
1072 kfree_skb(frag);
1073 frag = nfrag;
1074 *fragp = frag;
1075 }
1076
1077 if (end < len) {
1078 offset = end;
1079 continue;
1080 }
1081
1082 if (end > len &&
1083 unlikely((err = pskb_trim(frag, len - offset))))
1084 return err;
1085
1086 if (frag->next)
1087 skb_drop_list(&frag->next);
1088 break;
1089 }
1090
1091 done:
1092 if (len > skb_headlen(skb)) {
1093 skb->data_len -= skb->len - len;
1094 skb->len = len;
1095 } else {
1096 skb->len = len;
1097 skb->data_len = 0;
1098 skb_set_tail_pointer(skb, len);
1099 }
1100
1101 return 0;
1102 }
1103
1104 /**
1105 * __pskb_pull_tail - advance tail of skb header
1106 * @skb: buffer to reallocate
1107 * @delta: number of bytes to advance tail
1108 *
1109 * The function makes a sense only on a fragmented &sk_buff,
1110 * it expands header moving its tail forward and copying necessary
1111 * data from fragmented part.
1112 *
1113 * &sk_buff MUST have reference count of 1.
1114 *
1115 * Returns %NULL (and &sk_buff does not change) if pull failed
1116 * or value of new tail of skb in the case of success.
1117 *
1118 * All the pointers pointing into skb header may change and must be
1119 * reloaded after call to this function.
1120 */
1121
1122 /* Moves tail of skb head forward, copying data from fragmented part,
1123 * when it is necessary.
1124 * 1. It may fail due to malloc failure.
1125 * 2. It may change skb pointers.
1126 *
1127 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1128 */
__pskb_pull_tail(struct sk_buff * skb,int delta)1129 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1130 {
1131 /* If skb has not enough free space at tail, get new one
1132 * plus 128 bytes for future expansions. If we have enough
1133 * room at tail, reallocate without expansion only if skb is cloned.
1134 */
1135 int i, k, eat = (skb->tail + delta) - skb->end;
1136
1137 if (eat > 0 || skb_cloned(skb)) {
1138 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1139 GFP_ATOMIC))
1140 return NULL;
1141 }
1142
1143 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1144 BUG();
1145
1146 /* Optimization: no fragments, no reasons to preestimate
1147 * size of pulled pages. Superb.
1148 */
1149 if (!skb_shinfo(skb)->frag_list)
1150 goto pull_pages;
1151
1152 /* Estimate size of pulled pages. */
1153 eat = delta;
1154 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1155 if (skb_shinfo(skb)->frags[i].size >= eat)
1156 goto pull_pages;
1157 eat -= skb_shinfo(skb)->frags[i].size;
1158 }
1159
1160 /* If we need update frag list, we are in troubles.
1161 * Certainly, it possible to add an offset to skb data,
1162 * but taking into account that pulling is expected to
1163 * be very rare operation, it is worth to fight against
1164 * further bloating skb head and crucify ourselves here instead.
1165 * Pure masohism, indeed. 8)8)
1166 */
1167 if (eat) {
1168 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1169 struct sk_buff *clone = NULL;
1170 struct sk_buff *insp = NULL;
1171
1172 do {
1173 BUG_ON(!list);
1174
1175 if (list->len <= eat) {
1176 /* Eaten as whole. */
1177 eat -= list->len;
1178 list = list->next;
1179 insp = list;
1180 } else {
1181 /* Eaten partially. */
1182
1183 if (skb_shared(list)) {
1184 /* Sucks! We need to fork list. :-( */
1185 clone = skb_clone(list, GFP_ATOMIC);
1186 if (!clone)
1187 return NULL;
1188 insp = list->next;
1189 list = clone;
1190 } else {
1191 /* This may be pulled without
1192 * problems. */
1193 insp = list;
1194 }
1195 if (!pskb_pull(list, eat)) {
1196 if (clone)
1197 kfree_skb(clone);
1198 return NULL;
1199 }
1200 break;
1201 }
1202 } while (eat);
1203
1204 /* Free pulled out fragments. */
1205 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1206 skb_shinfo(skb)->frag_list = list->next;
1207 kfree_skb(list);
1208 }
1209 /* And insert new clone at head. */
1210 if (clone) {
1211 clone->next = list;
1212 skb_shinfo(skb)->frag_list = clone;
1213 }
1214 }
1215 /* Success! Now we may commit changes to skb data. */
1216
1217 pull_pages:
1218 eat = delta;
1219 k = 0;
1220 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1221 if (skb_shinfo(skb)->frags[i].size <= eat) {
1222 put_page(skb_shinfo(skb)->frags[i].page);
1223 eat -= skb_shinfo(skb)->frags[i].size;
1224 } else {
1225 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1226 if (eat) {
1227 skb_shinfo(skb)->frags[k].page_offset += eat;
1228 skb_shinfo(skb)->frags[k].size -= eat;
1229 eat = 0;
1230 }
1231 k++;
1232 }
1233 }
1234 skb_shinfo(skb)->nr_frags = k;
1235
1236 skb->tail += delta;
1237 skb->data_len -= delta;
1238
1239 return skb_tail_pointer(skb);
1240 }
1241
1242 /* Copy some data bits from skb to kernel buffer. */
1243
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1244 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1245 {
1246 int i, copy;
1247 int start = skb_headlen(skb);
1248
1249 if (offset > (int)skb->len - len)
1250 goto fault;
1251
1252 /* Copy header. */
1253 if ((copy = start - offset) > 0) {
1254 if (copy > len)
1255 copy = len;
1256 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1257 if ((len -= copy) == 0)
1258 return 0;
1259 offset += copy;
1260 to += copy;
1261 }
1262
1263 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1264 int end;
1265
1266 WARN_ON(start > offset + len);
1267
1268 end = start + skb_shinfo(skb)->frags[i].size;
1269 if ((copy = end - offset) > 0) {
1270 u8 *vaddr;
1271
1272 if (copy > len)
1273 copy = len;
1274
1275 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1276 memcpy(to,
1277 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1278 offset - start, copy);
1279 kunmap_skb_frag(vaddr);
1280
1281 if ((len -= copy) == 0)
1282 return 0;
1283 offset += copy;
1284 to += copy;
1285 }
1286 start = end;
1287 }
1288
1289 if (skb_shinfo(skb)->frag_list) {
1290 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1291
1292 for (; list; list = list->next) {
1293 int end;
1294
1295 WARN_ON(start > offset + len);
1296
1297 end = start + list->len;
1298 if ((copy = end - offset) > 0) {
1299 if (copy > len)
1300 copy = len;
1301 if (skb_copy_bits(list, offset - start,
1302 to, copy))
1303 goto fault;
1304 if ((len -= copy) == 0)
1305 return 0;
1306 offset += copy;
1307 to += copy;
1308 }
1309 start = end;
1310 }
1311 }
1312 if (!len)
1313 return 0;
1314
1315 fault:
1316 return -EFAULT;
1317 }
1318
1319 /*
1320 * Callback from splice_to_pipe(), if we need to release some pages
1321 * at the end of the spd in case we error'ed out in filling the pipe.
1322 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)1323 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1324 {
1325 put_page(spd->pages[i]);
1326 }
1327
linear_to_page(struct page * page,unsigned int len,unsigned int offset)1328 static inline struct page *linear_to_page(struct page *page, unsigned int len,
1329 unsigned int offset)
1330 {
1331 struct page *p = alloc_pages(GFP_KERNEL, 0);
1332
1333 if (!p)
1334 return NULL;
1335 memcpy(page_address(p) + offset, page_address(page) + offset, len);
1336
1337 return p;
1338 }
1339
1340 /*
1341 * Fill page/offset/length into spd, if it can hold more pages.
1342 */
spd_fill_page(struct splice_pipe_desc * spd,struct page * page,unsigned int len,unsigned int offset,struct sk_buff * skb,int linear)1343 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1344 unsigned int len, unsigned int offset,
1345 struct sk_buff *skb, int linear)
1346 {
1347 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1348 return 1;
1349
1350 if (linear) {
1351 page = linear_to_page(page, len, offset);
1352 if (!page)
1353 return 1;
1354 } else
1355 get_page(page);
1356
1357 spd->pages[spd->nr_pages] = page;
1358 spd->partial[spd->nr_pages].len = len;
1359 spd->partial[spd->nr_pages].offset = offset;
1360 spd->nr_pages++;
1361
1362 return 0;
1363 }
1364
__segment_seek(struct page ** page,unsigned int * poff,unsigned int * plen,unsigned int off)1365 static inline void __segment_seek(struct page **page, unsigned int *poff,
1366 unsigned int *plen, unsigned int off)
1367 {
1368 *poff += off;
1369 *page += *poff / PAGE_SIZE;
1370 *poff = *poff % PAGE_SIZE;
1371 *plen -= off;
1372 }
1373
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct sk_buff * skb,struct splice_pipe_desc * spd,int linear)1374 static inline int __splice_segment(struct page *page, unsigned int poff,
1375 unsigned int plen, unsigned int *off,
1376 unsigned int *len, struct sk_buff *skb,
1377 struct splice_pipe_desc *spd, int linear)
1378 {
1379 if (!*len)
1380 return 1;
1381
1382 /* skip this segment if already processed */
1383 if (*off >= plen) {
1384 *off -= plen;
1385 return 0;
1386 }
1387
1388 /* ignore any bits we already processed */
1389 if (*off) {
1390 __segment_seek(&page, &poff, &plen, *off);
1391 *off = 0;
1392 }
1393
1394 do {
1395 unsigned int flen = min(*len, plen);
1396
1397 /* the linear region may spread across several pages */
1398 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1399
1400 if (spd_fill_page(spd, page, flen, poff, skb, linear))
1401 return 1;
1402
1403 __segment_seek(&page, &poff, &plen, flen);
1404 *len -= flen;
1405
1406 } while (*len && plen);
1407
1408 return 0;
1409 }
1410
1411 /*
1412 * Map linear and fragment data from the skb to spd. It reports failure if the
1413 * pipe is full or if we already spliced the requested length.
1414 */
__skb_splice_bits(struct sk_buff * skb,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd)1415 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1416 unsigned int *len,
1417 struct splice_pipe_desc *spd)
1418 {
1419 int seg;
1420
1421 /*
1422 * map the linear part
1423 */
1424 if (__splice_segment(virt_to_page(skb->data),
1425 (unsigned long) skb->data & (PAGE_SIZE - 1),
1426 skb_headlen(skb),
1427 offset, len, skb, spd, 1))
1428 return 1;
1429
1430 /*
1431 * then map the fragments
1432 */
1433 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1434 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1435
1436 if (__splice_segment(f->page, f->page_offset, f->size,
1437 offset, len, skb, spd, 0))
1438 return 1;
1439 }
1440
1441 return 0;
1442 }
1443
1444 /*
1445 * Map data from the skb to a pipe. Should handle both the linear part,
1446 * the fragments, and the frag list. It does NOT handle frag lists within
1447 * the frag list, if such a thing exists. We'd probably need to recurse to
1448 * handle that cleanly.
1449 */
skb_splice_bits(struct sk_buff * skb,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)1450 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1451 struct pipe_inode_info *pipe, unsigned int tlen,
1452 unsigned int flags)
1453 {
1454 struct partial_page partial[PIPE_BUFFERS];
1455 struct page *pages[PIPE_BUFFERS];
1456 struct splice_pipe_desc spd = {
1457 .pages = pages,
1458 .partial = partial,
1459 .flags = flags,
1460 .ops = &sock_pipe_buf_ops,
1461 .spd_release = sock_spd_release,
1462 };
1463
1464 /*
1465 * __skb_splice_bits() only fails if the output has no room left,
1466 * so no point in going over the frag_list for the error case.
1467 */
1468 if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1469 goto done;
1470 else if (!tlen)
1471 goto done;
1472
1473 /*
1474 * now see if we have a frag_list to map
1475 */
1476 if (skb_shinfo(skb)->frag_list) {
1477 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1478
1479 for (; list && tlen; list = list->next) {
1480 if (__skb_splice_bits(list, &offset, &tlen, &spd))
1481 break;
1482 }
1483 }
1484
1485 done:
1486 if (spd.nr_pages) {
1487 struct sock *sk = skb->sk;
1488 int ret;
1489
1490 /*
1491 * Drop the socket lock, otherwise we have reverse
1492 * locking dependencies between sk_lock and i_mutex
1493 * here as compared to sendfile(). We enter here
1494 * with the socket lock held, and splice_to_pipe() will
1495 * grab the pipe inode lock. For sendfile() emulation,
1496 * we call into ->sendpage() with the i_mutex lock held
1497 * and networking will grab the socket lock.
1498 */
1499 release_sock(sk);
1500 ret = splice_to_pipe(pipe, &spd);
1501 lock_sock(sk);
1502 return ret;
1503 }
1504
1505 return 0;
1506 }
1507
1508 /**
1509 * skb_store_bits - store bits from kernel buffer to skb
1510 * @skb: destination buffer
1511 * @offset: offset in destination
1512 * @from: source buffer
1513 * @len: number of bytes to copy
1514 *
1515 * Copy the specified number of bytes from the source buffer to the
1516 * destination skb. This function handles all the messy bits of
1517 * traversing fragment lists and such.
1518 */
1519
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)1520 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1521 {
1522 int i, copy;
1523 int start = skb_headlen(skb);
1524
1525 if (offset > (int)skb->len - len)
1526 goto fault;
1527
1528 if ((copy = start - offset) > 0) {
1529 if (copy > len)
1530 copy = len;
1531 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1532 if ((len -= copy) == 0)
1533 return 0;
1534 offset += copy;
1535 from += copy;
1536 }
1537
1538 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1539 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1540 int end;
1541
1542 WARN_ON(start > offset + len);
1543
1544 end = start + frag->size;
1545 if ((copy = end - offset) > 0) {
1546 u8 *vaddr;
1547
1548 if (copy > len)
1549 copy = len;
1550
1551 vaddr = kmap_skb_frag(frag);
1552 memcpy(vaddr + frag->page_offset + offset - start,
1553 from, copy);
1554 kunmap_skb_frag(vaddr);
1555
1556 if ((len -= copy) == 0)
1557 return 0;
1558 offset += copy;
1559 from += copy;
1560 }
1561 start = end;
1562 }
1563
1564 if (skb_shinfo(skb)->frag_list) {
1565 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1566
1567 for (; list; list = list->next) {
1568 int end;
1569
1570 WARN_ON(start > offset + len);
1571
1572 end = start + list->len;
1573 if ((copy = end - offset) > 0) {
1574 if (copy > len)
1575 copy = len;
1576 if (skb_store_bits(list, offset - start,
1577 from, copy))
1578 goto fault;
1579 if ((len -= copy) == 0)
1580 return 0;
1581 offset += copy;
1582 from += copy;
1583 }
1584 start = end;
1585 }
1586 }
1587 if (!len)
1588 return 0;
1589
1590 fault:
1591 return -EFAULT;
1592 }
1593
1594 EXPORT_SYMBOL(skb_store_bits);
1595
1596 /* Checksum skb data. */
1597
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)1598 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1599 int len, __wsum csum)
1600 {
1601 int start = skb_headlen(skb);
1602 int i, copy = start - offset;
1603 int pos = 0;
1604
1605 /* Checksum header. */
1606 if (copy > 0) {
1607 if (copy > len)
1608 copy = len;
1609 csum = csum_partial(skb->data + offset, copy, csum);
1610 if ((len -= copy) == 0)
1611 return csum;
1612 offset += copy;
1613 pos = copy;
1614 }
1615
1616 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1617 int end;
1618
1619 WARN_ON(start > offset + len);
1620
1621 end = start + skb_shinfo(skb)->frags[i].size;
1622 if ((copy = end - offset) > 0) {
1623 __wsum csum2;
1624 u8 *vaddr;
1625 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1626
1627 if (copy > len)
1628 copy = len;
1629 vaddr = kmap_skb_frag(frag);
1630 csum2 = csum_partial(vaddr + frag->page_offset +
1631 offset - start, copy, 0);
1632 kunmap_skb_frag(vaddr);
1633 csum = csum_block_add(csum, csum2, pos);
1634 if (!(len -= copy))
1635 return csum;
1636 offset += copy;
1637 pos += copy;
1638 }
1639 start = end;
1640 }
1641
1642 if (skb_shinfo(skb)->frag_list) {
1643 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1644
1645 for (; list; list = list->next) {
1646 int end;
1647
1648 WARN_ON(start > offset + len);
1649
1650 end = start + list->len;
1651 if ((copy = end - offset) > 0) {
1652 __wsum csum2;
1653 if (copy > len)
1654 copy = len;
1655 csum2 = skb_checksum(list, offset - start,
1656 copy, 0);
1657 csum = csum_block_add(csum, csum2, pos);
1658 if ((len -= copy) == 0)
1659 return csum;
1660 offset += copy;
1661 pos += copy;
1662 }
1663 start = end;
1664 }
1665 }
1666 BUG_ON(len);
1667
1668 return csum;
1669 }
1670
1671 /* Both of above in one bottle. */
1672
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)1673 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1674 u8 *to, int len, __wsum csum)
1675 {
1676 int start = skb_headlen(skb);
1677 int i, copy = start - offset;
1678 int pos = 0;
1679
1680 /* Copy header. */
1681 if (copy > 0) {
1682 if (copy > len)
1683 copy = len;
1684 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1685 copy, csum);
1686 if ((len -= copy) == 0)
1687 return csum;
1688 offset += copy;
1689 to += copy;
1690 pos = copy;
1691 }
1692
1693 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1694 int end;
1695
1696 WARN_ON(start > offset + len);
1697
1698 end = start + skb_shinfo(skb)->frags[i].size;
1699 if ((copy = end - offset) > 0) {
1700 __wsum csum2;
1701 u8 *vaddr;
1702 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1703
1704 if (copy > len)
1705 copy = len;
1706 vaddr = kmap_skb_frag(frag);
1707 csum2 = csum_partial_copy_nocheck(vaddr +
1708 frag->page_offset +
1709 offset - start, to,
1710 copy, 0);
1711 kunmap_skb_frag(vaddr);
1712 csum = csum_block_add(csum, csum2, pos);
1713 if (!(len -= copy))
1714 return csum;
1715 offset += copy;
1716 to += copy;
1717 pos += copy;
1718 }
1719 start = end;
1720 }
1721
1722 if (skb_shinfo(skb)->frag_list) {
1723 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1724
1725 for (; list; list = list->next) {
1726 __wsum csum2;
1727 int end;
1728
1729 WARN_ON(start > offset + len);
1730
1731 end = start + list->len;
1732 if ((copy = end - offset) > 0) {
1733 if (copy > len)
1734 copy = len;
1735 csum2 = skb_copy_and_csum_bits(list,
1736 offset - start,
1737 to, copy, 0);
1738 csum = csum_block_add(csum, csum2, pos);
1739 if ((len -= copy) == 0)
1740 return csum;
1741 offset += copy;
1742 to += copy;
1743 pos += copy;
1744 }
1745 start = end;
1746 }
1747 }
1748 BUG_ON(len);
1749 return csum;
1750 }
1751
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)1752 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1753 {
1754 __wsum csum;
1755 long csstart;
1756
1757 if (skb->ip_summed == CHECKSUM_PARTIAL)
1758 csstart = skb->csum_start - skb_headroom(skb);
1759 else
1760 csstart = skb_headlen(skb);
1761
1762 BUG_ON(csstart > skb_headlen(skb));
1763
1764 skb_copy_from_linear_data(skb, to, csstart);
1765
1766 csum = 0;
1767 if (csstart != skb->len)
1768 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1769 skb->len - csstart, 0);
1770
1771 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1772 long csstuff = csstart + skb->csum_offset;
1773
1774 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1775 }
1776 }
1777
1778 /**
1779 * skb_dequeue - remove from the head of the queue
1780 * @list: list to dequeue from
1781 *
1782 * Remove the head of the list. The list lock is taken so the function
1783 * may be used safely with other locking list functions. The head item is
1784 * returned or %NULL if the list is empty.
1785 */
1786
skb_dequeue(struct sk_buff_head * list)1787 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1788 {
1789 unsigned long flags;
1790 struct sk_buff *result;
1791
1792 spin_lock_irqsave(&list->lock, flags);
1793 result = __skb_dequeue(list);
1794 spin_unlock_irqrestore(&list->lock, flags);
1795 return result;
1796 }
1797
1798 /**
1799 * skb_dequeue_tail - remove from the tail of the queue
1800 * @list: list to dequeue from
1801 *
1802 * Remove the tail of the list. The list lock is taken so the function
1803 * may be used safely with other locking list functions. The tail item is
1804 * returned or %NULL if the list is empty.
1805 */
skb_dequeue_tail(struct sk_buff_head * list)1806 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1807 {
1808 unsigned long flags;
1809 struct sk_buff *result;
1810
1811 spin_lock_irqsave(&list->lock, flags);
1812 result = __skb_dequeue_tail(list);
1813 spin_unlock_irqrestore(&list->lock, flags);
1814 return result;
1815 }
1816
1817 /**
1818 * skb_queue_purge - empty a list
1819 * @list: list to empty
1820 *
1821 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1822 * the list and one reference dropped. This function takes the list
1823 * lock and is atomic with respect to other list locking functions.
1824 */
skb_queue_purge(struct sk_buff_head * list)1825 void skb_queue_purge(struct sk_buff_head *list)
1826 {
1827 struct sk_buff *skb;
1828 while ((skb = skb_dequeue(list)) != NULL)
1829 kfree_skb(skb);
1830 }
1831
1832 /**
1833 * skb_queue_head - queue a buffer at the list head
1834 * @list: list to use
1835 * @newsk: buffer to queue
1836 *
1837 * Queue a buffer at the start of the list. This function takes the
1838 * list lock and can be used safely with other locking &sk_buff functions
1839 * safely.
1840 *
1841 * A buffer cannot be placed on two lists at the same time.
1842 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)1843 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1844 {
1845 unsigned long flags;
1846
1847 spin_lock_irqsave(&list->lock, flags);
1848 __skb_queue_head(list, newsk);
1849 spin_unlock_irqrestore(&list->lock, flags);
1850 }
1851
1852 /**
1853 * skb_queue_tail - queue a buffer at the list tail
1854 * @list: list to use
1855 * @newsk: buffer to queue
1856 *
1857 * Queue a buffer at the tail of the list. This function takes the
1858 * list lock and can be used safely with other locking &sk_buff functions
1859 * safely.
1860 *
1861 * A buffer cannot be placed on two lists at the same time.
1862 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)1863 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1864 {
1865 unsigned long flags;
1866
1867 spin_lock_irqsave(&list->lock, flags);
1868 __skb_queue_tail(list, newsk);
1869 spin_unlock_irqrestore(&list->lock, flags);
1870 }
1871
1872 /**
1873 * skb_unlink - remove a buffer from a list
1874 * @skb: buffer to remove
1875 * @list: list to use
1876 *
1877 * Remove a packet from a list. The list locks are taken and this
1878 * function is atomic with respect to other list locked calls
1879 *
1880 * You must know what list the SKB is on.
1881 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)1882 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1883 {
1884 unsigned long flags;
1885
1886 spin_lock_irqsave(&list->lock, flags);
1887 __skb_unlink(skb, list);
1888 spin_unlock_irqrestore(&list->lock, flags);
1889 }
1890
1891 /**
1892 * skb_append - append a buffer
1893 * @old: buffer to insert after
1894 * @newsk: buffer to insert
1895 * @list: list to use
1896 *
1897 * Place a packet after a given packet in a list. The list locks are taken
1898 * and this function is atomic with respect to other list locked calls.
1899 * A buffer cannot be placed on two lists at the same time.
1900 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)1901 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1902 {
1903 unsigned long flags;
1904
1905 spin_lock_irqsave(&list->lock, flags);
1906 __skb_queue_after(list, old, newsk);
1907 spin_unlock_irqrestore(&list->lock, flags);
1908 }
1909
1910
1911 /**
1912 * skb_insert - insert a buffer
1913 * @old: buffer to insert before
1914 * @newsk: buffer to insert
1915 * @list: list to use
1916 *
1917 * Place a packet before a given packet in a list. The list locks are
1918 * taken and this function is atomic with respect to other list locked
1919 * calls.
1920 *
1921 * A buffer cannot be placed on two lists at the same time.
1922 */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)1923 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1924 {
1925 unsigned long flags;
1926
1927 spin_lock_irqsave(&list->lock, flags);
1928 __skb_insert(newsk, old->prev, old, list);
1929 spin_unlock_irqrestore(&list->lock, flags);
1930 }
1931
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)1932 static inline void skb_split_inside_header(struct sk_buff *skb,
1933 struct sk_buff* skb1,
1934 const u32 len, const int pos)
1935 {
1936 int i;
1937
1938 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1939 pos - len);
1940 /* And move data appendix as is. */
1941 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1942 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1943
1944 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1945 skb_shinfo(skb)->nr_frags = 0;
1946 skb1->data_len = skb->data_len;
1947 skb1->len += skb1->data_len;
1948 skb->data_len = 0;
1949 skb->len = len;
1950 skb_set_tail_pointer(skb, len);
1951 }
1952
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)1953 static inline void skb_split_no_header(struct sk_buff *skb,
1954 struct sk_buff* skb1,
1955 const u32 len, int pos)
1956 {
1957 int i, k = 0;
1958 const int nfrags = skb_shinfo(skb)->nr_frags;
1959
1960 skb_shinfo(skb)->nr_frags = 0;
1961 skb1->len = skb1->data_len = skb->len - len;
1962 skb->len = len;
1963 skb->data_len = len - pos;
1964
1965 for (i = 0; i < nfrags; i++) {
1966 int size = skb_shinfo(skb)->frags[i].size;
1967
1968 if (pos + size > len) {
1969 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1970
1971 if (pos < len) {
1972 /* Split frag.
1973 * We have two variants in this case:
1974 * 1. Move all the frag to the second
1975 * part, if it is possible. F.e.
1976 * this approach is mandatory for TUX,
1977 * where splitting is expensive.
1978 * 2. Split is accurately. We make this.
1979 */
1980 get_page(skb_shinfo(skb)->frags[i].page);
1981 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1982 skb_shinfo(skb1)->frags[0].size -= len - pos;
1983 skb_shinfo(skb)->frags[i].size = len - pos;
1984 skb_shinfo(skb)->nr_frags++;
1985 }
1986 k++;
1987 } else
1988 skb_shinfo(skb)->nr_frags++;
1989 pos += size;
1990 }
1991 skb_shinfo(skb1)->nr_frags = k;
1992 }
1993
1994 /**
1995 * skb_split - Split fragmented skb to two parts at length len.
1996 * @skb: the buffer to split
1997 * @skb1: the buffer to receive the second part
1998 * @len: new length for skb
1999 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)2000 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2001 {
2002 int pos = skb_headlen(skb);
2003
2004 if (len < pos) /* Split line is inside header. */
2005 skb_split_inside_header(skb, skb1, len, pos);
2006 else /* Second chunk has no header, nothing to copy. */
2007 skb_split_no_header(skb, skb1, len, pos);
2008 }
2009
2010 /* Shifting from/to a cloned skb is a no-go.
2011 *
2012 * Caller cannot keep skb_shinfo related pointers past calling here!
2013 */
skb_prepare_for_shift(struct sk_buff * skb)2014 static int skb_prepare_for_shift(struct sk_buff *skb)
2015 {
2016 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2017 }
2018
2019 /**
2020 * skb_shift - Shifts paged data partially from skb to another
2021 * @tgt: buffer into which tail data gets added
2022 * @skb: buffer from which the paged data comes from
2023 * @shiftlen: shift up to this many bytes
2024 *
2025 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2026 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2027 * It's up to caller to free skb if everything was shifted.
2028 *
2029 * If @tgt runs out of frags, the whole operation is aborted.
2030 *
2031 * Skb cannot include anything else but paged data while tgt is allowed
2032 * to have non-paged data as well.
2033 *
2034 * TODO: full sized shift could be optimized but that would need
2035 * specialized skb free'er to handle frags without up-to-date nr_frags.
2036 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)2037 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2038 {
2039 int from, to, merge, todo;
2040 struct skb_frag_struct *fragfrom, *fragto;
2041
2042 BUG_ON(shiftlen > skb->len);
2043 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2044
2045 todo = shiftlen;
2046 from = 0;
2047 to = skb_shinfo(tgt)->nr_frags;
2048 fragfrom = &skb_shinfo(skb)->frags[from];
2049
2050 /* Actual merge is delayed until the point when we know we can
2051 * commit all, so that we don't have to undo partial changes
2052 */
2053 if (!to ||
2054 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2055 merge = -1;
2056 } else {
2057 merge = to - 1;
2058
2059 todo -= fragfrom->size;
2060 if (todo < 0) {
2061 if (skb_prepare_for_shift(skb) ||
2062 skb_prepare_for_shift(tgt))
2063 return 0;
2064
2065 /* All previous frag pointers might be stale! */
2066 fragfrom = &skb_shinfo(skb)->frags[from];
2067 fragto = &skb_shinfo(tgt)->frags[merge];
2068
2069 fragto->size += shiftlen;
2070 fragfrom->size -= shiftlen;
2071 fragfrom->page_offset += shiftlen;
2072
2073 goto onlymerged;
2074 }
2075
2076 from++;
2077 }
2078
2079 /* Skip full, not-fitting skb to avoid expensive operations */
2080 if ((shiftlen == skb->len) &&
2081 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2082 return 0;
2083
2084 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2085 return 0;
2086
2087 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2088 if (to == MAX_SKB_FRAGS)
2089 return 0;
2090
2091 fragfrom = &skb_shinfo(skb)->frags[from];
2092 fragto = &skb_shinfo(tgt)->frags[to];
2093
2094 if (todo >= fragfrom->size) {
2095 *fragto = *fragfrom;
2096 todo -= fragfrom->size;
2097 from++;
2098 to++;
2099
2100 } else {
2101 get_page(fragfrom->page);
2102 fragto->page = fragfrom->page;
2103 fragto->page_offset = fragfrom->page_offset;
2104 fragto->size = todo;
2105
2106 fragfrom->page_offset += todo;
2107 fragfrom->size -= todo;
2108 todo = 0;
2109
2110 to++;
2111 break;
2112 }
2113 }
2114
2115 /* Ready to "commit" this state change to tgt */
2116 skb_shinfo(tgt)->nr_frags = to;
2117
2118 if (merge >= 0) {
2119 fragfrom = &skb_shinfo(skb)->frags[0];
2120 fragto = &skb_shinfo(tgt)->frags[merge];
2121
2122 fragto->size += fragfrom->size;
2123 put_page(fragfrom->page);
2124 }
2125
2126 /* Reposition in the original skb */
2127 to = 0;
2128 while (from < skb_shinfo(skb)->nr_frags)
2129 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2130 skb_shinfo(skb)->nr_frags = to;
2131
2132 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2133
2134 onlymerged:
2135 /* Most likely the tgt won't ever need its checksum anymore, skb on
2136 * the other hand might need it if it needs to be resent
2137 */
2138 tgt->ip_summed = CHECKSUM_PARTIAL;
2139 skb->ip_summed = CHECKSUM_PARTIAL;
2140
2141 /* Yak, is it really working this way? Some helper please? */
2142 skb->len -= shiftlen;
2143 skb->data_len -= shiftlen;
2144 skb->truesize -= shiftlen;
2145 tgt->len += shiftlen;
2146 tgt->data_len += shiftlen;
2147 tgt->truesize += shiftlen;
2148
2149 return shiftlen;
2150 }
2151
2152 /**
2153 * skb_prepare_seq_read - Prepare a sequential read of skb data
2154 * @skb: the buffer to read
2155 * @from: lower offset of data to be read
2156 * @to: upper offset of data to be read
2157 * @st: state variable
2158 *
2159 * Initializes the specified state variable. Must be called before
2160 * invoking skb_seq_read() for the first time.
2161 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)2162 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2163 unsigned int to, struct skb_seq_state *st)
2164 {
2165 st->lower_offset = from;
2166 st->upper_offset = to;
2167 st->root_skb = st->cur_skb = skb;
2168 st->frag_idx = st->stepped_offset = 0;
2169 st->frag_data = NULL;
2170 }
2171
2172 /**
2173 * skb_seq_read - Sequentially read skb data
2174 * @consumed: number of bytes consumed by the caller so far
2175 * @data: destination pointer for data to be returned
2176 * @st: state variable
2177 *
2178 * Reads a block of skb data at &consumed relative to the
2179 * lower offset specified to skb_prepare_seq_read(). Assigns
2180 * the head of the data block to &data and returns the length
2181 * of the block or 0 if the end of the skb data or the upper
2182 * offset has been reached.
2183 *
2184 * The caller is not required to consume all of the data
2185 * returned, i.e. &consumed is typically set to the number
2186 * of bytes already consumed and the next call to
2187 * skb_seq_read() will return the remaining part of the block.
2188 *
2189 * Note 1: The size of each block of data returned can be arbitary,
2190 * this limitation is the cost for zerocopy seqeuental
2191 * reads of potentially non linear data.
2192 *
2193 * Note 2: Fragment lists within fragments are not implemented
2194 * at the moment, state->root_skb could be replaced with
2195 * a stack for this purpose.
2196 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)2197 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2198 struct skb_seq_state *st)
2199 {
2200 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2201 skb_frag_t *frag;
2202
2203 if (unlikely(abs_offset >= st->upper_offset))
2204 return 0;
2205
2206 next_skb:
2207 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2208
2209 if (abs_offset < block_limit) {
2210 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2211 return block_limit - abs_offset;
2212 }
2213
2214 if (st->frag_idx == 0 && !st->frag_data)
2215 st->stepped_offset += skb_headlen(st->cur_skb);
2216
2217 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2218 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2219 block_limit = frag->size + st->stepped_offset;
2220
2221 if (abs_offset < block_limit) {
2222 if (!st->frag_data)
2223 st->frag_data = kmap_skb_frag(frag);
2224
2225 *data = (u8 *) st->frag_data + frag->page_offset +
2226 (abs_offset - st->stepped_offset);
2227
2228 return block_limit - abs_offset;
2229 }
2230
2231 if (st->frag_data) {
2232 kunmap_skb_frag(st->frag_data);
2233 st->frag_data = NULL;
2234 }
2235
2236 st->frag_idx++;
2237 st->stepped_offset += frag->size;
2238 }
2239
2240 if (st->frag_data) {
2241 kunmap_skb_frag(st->frag_data);
2242 st->frag_data = NULL;
2243 }
2244
2245 if (st->root_skb == st->cur_skb &&
2246 skb_shinfo(st->root_skb)->frag_list) {
2247 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2248 st->frag_idx = 0;
2249 goto next_skb;
2250 } else if (st->cur_skb->next) {
2251 st->cur_skb = st->cur_skb->next;
2252 st->frag_idx = 0;
2253 goto next_skb;
2254 }
2255
2256 return 0;
2257 }
2258
2259 /**
2260 * skb_abort_seq_read - Abort a sequential read of skb data
2261 * @st: state variable
2262 *
2263 * Must be called if skb_seq_read() was not called until it
2264 * returned 0.
2265 */
skb_abort_seq_read(struct skb_seq_state * st)2266 void skb_abort_seq_read(struct skb_seq_state *st)
2267 {
2268 if (st->frag_data)
2269 kunmap_skb_frag(st->frag_data);
2270 }
2271
2272 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2273
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)2274 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2275 struct ts_config *conf,
2276 struct ts_state *state)
2277 {
2278 return skb_seq_read(offset, text, TS_SKB_CB(state));
2279 }
2280
skb_ts_finish(struct ts_config * conf,struct ts_state * state)2281 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2282 {
2283 skb_abort_seq_read(TS_SKB_CB(state));
2284 }
2285
2286 /**
2287 * skb_find_text - Find a text pattern in skb data
2288 * @skb: the buffer to look in
2289 * @from: search offset
2290 * @to: search limit
2291 * @config: textsearch configuration
2292 * @state: uninitialized textsearch state variable
2293 *
2294 * Finds a pattern in the skb data according to the specified
2295 * textsearch configuration. Use textsearch_next() to retrieve
2296 * subsequent occurrences of the pattern. Returns the offset
2297 * to the first occurrence or UINT_MAX if no match was found.
2298 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config,struct ts_state * state)2299 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2300 unsigned int to, struct ts_config *config,
2301 struct ts_state *state)
2302 {
2303 unsigned int ret;
2304
2305 config->get_next_block = skb_ts_get_next_block;
2306 config->finish = skb_ts_finish;
2307
2308 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2309
2310 ret = textsearch_find(config, state);
2311 return (ret <= to - from ? ret : UINT_MAX);
2312 }
2313
2314 /**
2315 * skb_append_datato_frags: - append the user data to a skb
2316 * @sk: sock structure
2317 * @skb: skb structure to be appened with user data.
2318 * @getfrag: call back function to be used for getting the user data
2319 * @from: pointer to user message iov
2320 * @length: length of the iov message
2321 *
2322 * Description: This procedure append the user data in the fragment part
2323 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2324 */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)2325 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2326 int (*getfrag)(void *from, char *to, int offset,
2327 int len, int odd, struct sk_buff *skb),
2328 void *from, int length)
2329 {
2330 int frg_cnt = 0;
2331 skb_frag_t *frag = NULL;
2332 struct page *page = NULL;
2333 int copy, left;
2334 int offset = 0;
2335 int ret;
2336
2337 do {
2338 /* Return error if we don't have space for new frag */
2339 frg_cnt = skb_shinfo(skb)->nr_frags;
2340 if (frg_cnt >= MAX_SKB_FRAGS)
2341 return -EFAULT;
2342
2343 /* allocate a new page for next frag */
2344 page = alloc_pages(sk->sk_allocation, 0);
2345
2346 /* If alloc_page fails just return failure and caller will
2347 * free previous allocated pages by doing kfree_skb()
2348 */
2349 if (page == NULL)
2350 return -ENOMEM;
2351
2352 /* initialize the next frag */
2353 sk->sk_sndmsg_page = page;
2354 sk->sk_sndmsg_off = 0;
2355 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2356 skb->truesize += PAGE_SIZE;
2357 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2358
2359 /* get the new initialized frag */
2360 frg_cnt = skb_shinfo(skb)->nr_frags;
2361 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2362
2363 /* copy the user data to page */
2364 left = PAGE_SIZE - frag->page_offset;
2365 copy = (length > left)? left : length;
2366
2367 ret = getfrag(from, (page_address(frag->page) +
2368 frag->page_offset + frag->size),
2369 offset, copy, 0, skb);
2370 if (ret < 0)
2371 return -EFAULT;
2372
2373 /* copy was successful so update the size parameters */
2374 sk->sk_sndmsg_off += copy;
2375 frag->size += copy;
2376 skb->len += copy;
2377 skb->data_len += copy;
2378 offset += copy;
2379 length -= copy;
2380
2381 } while (length > 0);
2382
2383 return 0;
2384 }
2385
2386 /**
2387 * skb_pull_rcsum - pull skb and update receive checksum
2388 * @skb: buffer to update
2389 * @len: length of data pulled
2390 *
2391 * This function performs an skb_pull on the packet and updates
2392 * the CHECKSUM_COMPLETE checksum. It should be used on
2393 * receive path processing instead of skb_pull unless you know
2394 * that the checksum difference is zero (e.g., a valid IP header)
2395 * or you are setting ip_summed to CHECKSUM_NONE.
2396 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)2397 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2398 {
2399 BUG_ON(len > skb->len);
2400 skb->len -= len;
2401 BUG_ON(skb->len < skb->data_len);
2402 skb_postpull_rcsum(skb, skb->data, len);
2403 return skb->data += len;
2404 }
2405
2406 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2407
2408 /**
2409 * skb_segment - Perform protocol segmentation on skb.
2410 * @skb: buffer to segment
2411 * @features: features for the output path (see dev->features)
2412 *
2413 * This function performs segmentation on the given skb. It returns
2414 * a pointer to the first in a list of new skbs for the segments.
2415 * In case of error it returns ERR_PTR(err).
2416 */
skb_segment(struct sk_buff * skb,int features)2417 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2418 {
2419 struct sk_buff *segs = NULL;
2420 struct sk_buff *tail = NULL;
2421 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2422 unsigned int mss = skb_shinfo(skb)->gso_size;
2423 unsigned int doffset = skb->data - skb_mac_header(skb);
2424 unsigned int offset = doffset;
2425 unsigned int headroom;
2426 unsigned int len;
2427 int sg = features & NETIF_F_SG;
2428 int nfrags = skb_shinfo(skb)->nr_frags;
2429 int err = -ENOMEM;
2430 int i = 0;
2431 int pos;
2432
2433 __skb_push(skb, doffset);
2434 headroom = skb_headroom(skb);
2435 pos = skb_headlen(skb);
2436
2437 do {
2438 struct sk_buff *nskb;
2439 skb_frag_t *frag;
2440 int hsize;
2441 int size;
2442
2443 len = skb->len - offset;
2444 if (len > mss)
2445 len = mss;
2446
2447 hsize = skb_headlen(skb) - offset;
2448 if (hsize < 0)
2449 hsize = 0;
2450 if (hsize > len || !sg)
2451 hsize = len;
2452
2453 if (!hsize && i >= nfrags) {
2454 BUG_ON(fskb->len != len);
2455
2456 pos += len;
2457 nskb = skb_clone(fskb, GFP_ATOMIC);
2458 fskb = fskb->next;
2459
2460 if (unlikely(!nskb))
2461 goto err;
2462
2463 hsize = skb_end_pointer(nskb) - nskb->head;
2464 if (skb_cow_head(nskb, doffset + headroom)) {
2465 kfree_skb(nskb);
2466 goto err;
2467 }
2468
2469 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2470 hsize;
2471 skb_release_head_state(nskb);
2472 __skb_push(nskb, doffset);
2473 } else {
2474 nskb = alloc_skb(hsize + doffset + headroom,
2475 GFP_ATOMIC);
2476
2477 if (unlikely(!nskb))
2478 goto err;
2479
2480 skb_reserve(nskb, headroom);
2481 __skb_put(nskb, doffset);
2482 }
2483
2484 if (segs)
2485 tail->next = nskb;
2486 else
2487 segs = nskb;
2488 tail = nskb;
2489
2490 __copy_skb_header(nskb, skb);
2491 nskb->mac_len = skb->mac_len;
2492
2493 skb_reset_mac_header(nskb);
2494 skb_set_network_header(nskb, skb->mac_len);
2495 nskb->transport_header = (nskb->network_header +
2496 skb_network_header_len(skb));
2497 skb_copy_from_linear_data(skb, nskb->data, doffset);
2498
2499 if (pos >= offset + len)
2500 continue;
2501
2502 if (!sg) {
2503 nskb->ip_summed = CHECKSUM_NONE;
2504 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2505 skb_put(nskb, len),
2506 len, 0);
2507 continue;
2508 }
2509
2510 frag = skb_shinfo(nskb)->frags;
2511
2512 skb_copy_from_linear_data_offset(skb, offset,
2513 skb_put(nskb, hsize), hsize);
2514
2515 while (pos < offset + len && i < nfrags) {
2516 *frag = skb_shinfo(skb)->frags[i];
2517 get_page(frag->page);
2518 size = frag->size;
2519
2520 if (pos < offset) {
2521 frag->page_offset += offset - pos;
2522 frag->size -= offset - pos;
2523 }
2524
2525 skb_shinfo(nskb)->nr_frags++;
2526
2527 if (pos + size <= offset + len) {
2528 i++;
2529 pos += size;
2530 } else {
2531 frag->size -= pos + size - (offset + len);
2532 goto skip_fraglist;
2533 }
2534
2535 frag++;
2536 }
2537
2538 if (pos < offset + len) {
2539 struct sk_buff *fskb2 = fskb;
2540
2541 BUG_ON(pos + fskb->len != offset + len);
2542
2543 pos += fskb->len;
2544 fskb = fskb->next;
2545
2546 if (fskb2->next) {
2547 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2548 if (!fskb2)
2549 goto err;
2550 } else
2551 skb_get(fskb2);
2552
2553 BUG_ON(skb_shinfo(nskb)->frag_list);
2554 skb_shinfo(nskb)->frag_list = fskb2;
2555 }
2556
2557 skip_fraglist:
2558 nskb->data_len = len - hsize;
2559 nskb->len += nskb->data_len;
2560 nskb->truesize += nskb->data_len;
2561 } while ((offset += len) < skb->len);
2562
2563 return segs;
2564
2565 err:
2566 while ((skb = segs)) {
2567 segs = skb->next;
2568 kfree_skb(skb);
2569 }
2570 return ERR_PTR(err);
2571 }
2572
2573 EXPORT_SYMBOL_GPL(skb_segment);
2574
skb_gro_receive(struct sk_buff ** head,struct sk_buff * skb)2575 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2576 {
2577 struct sk_buff *p = *head;
2578 struct sk_buff *nskb;
2579 unsigned int headroom;
2580 unsigned int hlen = p->data - skb_mac_header(p);
2581 unsigned int len = skb->len;
2582
2583 if (hlen + p->len + len >= 65536)
2584 return -E2BIG;
2585
2586 if (skb_shinfo(p)->frag_list)
2587 goto merge;
2588 else if (!skb_headlen(p) && !skb_headlen(skb) &&
2589 skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags <
2590 MAX_SKB_FRAGS) {
2591 memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
2592 skb_shinfo(skb)->frags,
2593 skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
2594
2595 skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
2596 skb_shinfo(skb)->nr_frags = 0;
2597
2598 skb->truesize -= skb->data_len;
2599 skb->len -= skb->data_len;
2600 skb->data_len = 0;
2601
2602 NAPI_GRO_CB(skb)->free = 1;
2603 goto done;
2604 }
2605
2606 headroom = skb_headroom(p);
2607 nskb = netdev_alloc_skb(p->dev, headroom);
2608 if (unlikely(!nskb))
2609 return -ENOMEM;
2610
2611 __copy_skb_header(nskb, p);
2612 nskb->mac_len = p->mac_len;
2613
2614 skb_reserve(nskb, headroom);
2615
2616 skb_set_mac_header(nskb, -hlen);
2617 skb_set_network_header(nskb, skb_network_offset(p));
2618 skb_set_transport_header(nskb, skb_transport_offset(p));
2619
2620 memcpy(skb_mac_header(nskb), skb_mac_header(p), hlen);
2621
2622 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2623 skb_shinfo(nskb)->frag_list = p;
2624 skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
2625 skb_header_release(p);
2626 nskb->prev = p;
2627
2628 nskb->data_len += p->len;
2629 nskb->truesize += p->len;
2630 nskb->len += p->len;
2631
2632 *head = nskb;
2633 nskb->next = p->next;
2634 p->next = NULL;
2635
2636 p = nskb;
2637
2638 merge:
2639 p->prev->next = skb;
2640 p->prev = skb;
2641 skb_header_release(skb);
2642
2643 done:
2644 NAPI_GRO_CB(p)->count++;
2645 p->data_len += len;
2646 p->truesize += len;
2647 p->len += len;
2648
2649 NAPI_GRO_CB(skb)->same_flow = 1;
2650 return 0;
2651 }
2652 EXPORT_SYMBOL_GPL(skb_gro_receive);
2653
skb_init(void)2654 void __init skb_init(void)
2655 {
2656 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2657 sizeof(struct sk_buff),
2658 0,
2659 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2660 NULL);
2661 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2662 (2*sizeof(struct sk_buff)) +
2663 sizeof(atomic_t),
2664 0,
2665 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2666 NULL);
2667 }
2668
2669 /**
2670 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2671 * @skb: Socket buffer containing the buffers to be mapped
2672 * @sg: The scatter-gather list to map into
2673 * @offset: The offset into the buffer's contents to start mapping
2674 * @len: Length of buffer space to be mapped
2675 *
2676 * Fill the specified scatter-gather list with mappings/pointers into a
2677 * region of the buffer space attached to a socket buffer.
2678 */
2679 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)2680 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2681 {
2682 int start = skb_headlen(skb);
2683 int i, copy = start - offset;
2684 int elt = 0;
2685
2686 if (copy > 0) {
2687 if (copy > len)
2688 copy = len;
2689 sg_set_buf(sg, skb->data + offset, copy);
2690 elt++;
2691 if ((len -= copy) == 0)
2692 return elt;
2693 offset += copy;
2694 }
2695
2696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2697 int end;
2698
2699 WARN_ON(start > offset + len);
2700
2701 end = start + skb_shinfo(skb)->frags[i].size;
2702 if ((copy = end - offset) > 0) {
2703 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2704
2705 if (copy > len)
2706 copy = len;
2707 sg_set_page(&sg[elt], frag->page, copy,
2708 frag->page_offset+offset-start);
2709 elt++;
2710 if (!(len -= copy))
2711 return elt;
2712 offset += copy;
2713 }
2714 start = end;
2715 }
2716
2717 if (skb_shinfo(skb)->frag_list) {
2718 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2719
2720 for (; list; list = list->next) {
2721 int end;
2722
2723 WARN_ON(start > offset + len);
2724
2725 end = start + list->len;
2726 if ((copy = end - offset) > 0) {
2727 if (copy > len)
2728 copy = len;
2729 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2730 copy);
2731 if ((len -= copy) == 0)
2732 return elt;
2733 offset += copy;
2734 }
2735 start = end;
2736 }
2737 }
2738 BUG_ON(len);
2739 return elt;
2740 }
2741
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)2742 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2743 {
2744 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2745
2746 sg_mark_end(&sg[nsg - 1]);
2747
2748 return nsg;
2749 }
2750
2751 /**
2752 * skb_cow_data - Check that a socket buffer's data buffers are writable
2753 * @skb: The socket buffer to check.
2754 * @tailbits: Amount of trailing space to be added
2755 * @trailer: Returned pointer to the skb where the @tailbits space begins
2756 *
2757 * Make sure that the data buffers attached to a socket buffer are
2758 * writable. If they are not, private copies are made of the data buffers
2759 * and the socket buffer is set to use these instead.
2760 *
2761 * If @tailbits is given, make sure that there is space to write @tailbits
2762 * bytes of data beyond current end of socket buffer. @trailer will be
2763 * set to point to the skb in which this space begins.
2764 *
2765 * The number of scatterlist elements required to completely map the
2766 * COW'd and extended socket buffer will be returned.
2767 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)2768 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2769 {
2770 int copyflag;
2771 int elt;
2772 struct sk_buff *skb1, **skb_p;
2773
2774 /* If skb is cloned or its head is paged, reallocate
2775 * head pulling out all the pages (pages are considered not writable
2776 * at the moment even if they are anonymous).
2777 */
2778 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2779 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2780 return -ENOMEM;
2781
2782 /* Easy case. Most of packets will go this way. */
2783 if (!skb_shinfo(skb)->frag_list) {
2784 /* A little of trouble, not enough of space for trailer.
2785 * This should not happen, when stack is tuned to generate
2786 * good frames. OK, on miss we reallocate and reserve even more
2787 * space, 128 bytes is fair. */
2788
2789 if (skb_tailroom(skb) < tailbits &&
2790 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2791 return -ENOMEM;
2792
2793 /* Voila! */
2794 *trailer = skb;
2795 return 1;
2796 }
2797
2798 /* Misery. We are in troubles, going to mincer fragments... */
2799
2800 elt = 1;
2801 skb_p = &skb_shinfo(skb)->frag_list;
2802 copyflag = 0;
2803
2804 while ((skb1 = *skb_p) != NULL) {
2805 int ntail = 0;
2806
2807 /* The fragment is partially pulled by someone,
2808 * this can happen on input. Copy it and everything
2809 * after it. */
2810
2811 if (skb_shared(skb1))
2812 copyflag = 1;
2813
2814 /* If the skb is the last, worry about trailer. */
2815
2816 if (skb1->next == NULL && tailbits) {
2817 if (skb_shinfo(skb1)->nr_frags ||
2818 skb_shinfo(skb1)->frag_list ||
2819 skb_tailroom(skb1) < tailbits)
2820 ntail = tailbits + 128;
2821 }
2822
2823 if (copyflag ||
2824 skb_cloned(skb1) ||
2825 ntail ||
2826 skb_shinfo(skb1)->nr_frags ||
2827 skb_shinfo(skb1)->frag_list) {
2828 struct sk_buff *skb2;
2829
2830 /* Fuck, we are miserable poor guys... */
2831 if (ntail == 0)
2832 skb2 = skb_copy(skb1, GFP_ATOMIC);
2833 else
2834 skb2 = skb_copy_expand(skb1,
2835 skb_headroom(skb1),
2836 ntail,
2837 GFP_ATOMIC);
2838 if (unlikely(skb2 == NULL))
2839 return -ENOMEM;
2840
2841 if (skb1->sk)
2842 skb_set_owner_w(skb2, skb1->sk);
2843
2844 /* Looking around. Are we still alive?
2845 * OK, link new skb, drop old one */
2846
2847 skb2->next = skb1->next;
2848 *skb_p = skb2;
2849 kfree_skb(skb1);
2850 skb1 = skb2;
2851 }
2852 elt++;
2853 *trailer = skb1;
2854 skb_p = &skb1->next;
2855 }
2856
2857 return elt;
2858 }
2859
2860 /**
2861 * skb_partial_csum_set - set up and verify partial csum values for packet
2862 * @skb: the skb to set
2863 * @start: the number of bytes after skb->data to start checksumming.
2864 * @off: the offset from start to place the checksum.
2865 *
2866 * For untrusted partially-checksummed packets, we need to make sure the values
2867 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2868 *
2869 * This function checks and sets those values and skb->ip_summed: if this
2870 * returns false you should drop the packet.
2871 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)2872 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2873 {
2874 if (unlikely(start > skb->len - 2) ||
2875 unlikely((int)start + off > skb->len - 2)) {
2876 if (net_ratelimit())
2877 printk(KERN_WARNING
2878 "bad partial csum: csum=%u/%u len=%u\n",
2879 start, off, skb->len);
2880 return false;
2881 }
2882 skb->ip_summed = CHECKSUM_PARTIAL;
2883 skb->csum_start = skb_headroom(skb) + start;
2884 skb->csum_offset = off;
2885 return true;
2886 }
2887
__skb_warn_lro_forwarding(const struct sk_buff * skb)2888 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2889 {
2890 if (net_ratelimit())
2891 pr_warning("%s: received packets cannot be forwarded"
2892 " while LRO is enabled\n", skb->dev->name);
2893 }
2894
2895 EXPORT_SYMBOL(___pskb_trim);
2896 EXPORT_SYMBOL(__kfree_skb);
2897 EXPORT_SYMBOL(kfree_skb);
2898 EXPORT_SYMBOL(__pskb_pull_tail);
2899 EXPORT_SYMBOL(__alloc_skb);
2900 EXPORT_SYMBOL(__netdev_alloc_skb);
2901 EXPORT_SYMBOL(pskb_copy);
2902 EXPORT_SYMBOL(pskb_expand_head);
2903 EXPORT_SYMBOL(skb_checksum);
2904 EXPORT_SYMBOL(skb_clone);
2905 EXPORT_SYMBOL(skb_copy);
2906 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2907 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2908 EXPORT_SYMBOL(skb_copy_bits);
2909 EXPORT_SYMBOL(skb_copy_expand);
2910 EXPORT_SYMBOL(skb_over_panic);
2911 EXPORT_SYMBOL(skb_pad);
2912 EXPORT_SYMBOL(skb_realloc_headroom);
2913 EXPORT_SYMBOL(skb_under_panic);
2914 EXPORT_SYMBOL(skb_dequeue);
2915 EXPORT_SYMBOL(skb_dequeue_tail);
2916 EXPORT_SYMBOL(skb_insert);
2917 EXPORT_SYMBOL(skb_queue_purge);
2918 EXPORT_SYMBOL(skb_queue_head);
2919 EXPORT_SYMBOL(skb_queue_tail);
2920 EXPORT_SYMBOL(skb_unlink);
2921 EXPORT_SYMBOL(skb_append);
2922 EXPORT_SYMBOL(skb_split);
2923 EXPORT_SYMBOL(skb_prepare_seq_read);
2924 EXPORT_SYMBOL(skb_seq_read);
2925 EXPORT_SYMBOL(skb_abort_seq_read);
2926 EXPORT_SYMBOL(skb_find_text);
2927 EXPORT_SYMBOL(skb_append_datato_frags);
2928 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2929
2930 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2931 EXPORT_SYMBOL_GPL(skb_cow_data);
2932 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
2933