1 /******************************************************************************
2 *
3 * (C)Copyright 1998,1999 SysKonnect,
4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5 *
6 * See the file "skfddi.c" for further information.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 ******************************************************************************/
16
17 /*
18 * FORMAC+ Driver for tag mode
19 */
20
21 #include "h/types.h"
22 #include "h/fddi.h"
23 #include "h/smc.h"
24 #include "h/supern_2.h"
25 #include <linux/bitrev.h>
26
27 #ifndef lint
28 static const char ID_sccs[] = "@(#)fplustm.c 1.32 99/02/23 (C) SK " ;
29 #endif
30
31 #ifndef UNUSED
32 #ifdef lint
33 #define UNUSED(x) (x) = (x)
34 #else
35 #define UNUSED(x)
36 #endif
37 #endif
38
39 #define FM_ADDRX (FM_ADDET|FM_EXGPA0|FM_EXGPA1)
40 #define MS2BCLK(x) ((x)*12500L)
41 #define US2BCLK(x) ((x)*1250L)
42
43 /*
44 * prototypes for static function
45 */
46 static void build_claim_beacon(struct s_smc *smc, u_long t_request);
47 static int init_mac(struct s_smc *smc, int all);
48 static void rtm_init(struct s_smc *smc);
49 static void smt_split_up_fifo(struct s_smc *smc);
50
51 #if (!defined(NO_SMT_PANIC) || defined(DEBUG))
52 static char write_mdr_warning [] = "E350 write_mdr() FM_SNPPND is set\n";
53 static char cam_warning [] = "E_SMT_004: CAM still busy\n";
54 #endif
55
56 #define DUMMY_READ() smc->hw.mc_dummy = (u_short) inp(ADDR(B0_RAP))
57
58 #define CHECK_NPP() { unsigned k = 10000 ;\
59 while ((inpw(FM_A(FM_STMCHN)) & FM_SNPPND) && k) k--;\
60 if (!k) { \
61 SMT_PANIC(smc,SMT_E0130, SMT_E0130_MSG) ; \
62 } \
63 }
64
65 #define CHECK_CAM() { unsigned k = 10 ;\
66 while (!(inpw(FM_A(FM_AFSTAT)) & FM_DONE) && k) k--;\
67 if (!k) { \
68 SMT_PANIC(smc,SMT_E0131, SMT_E0131_MSG) ; \
69 } \
70 }
71
72 const struct fddi_addr fddi_broadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
73 static const struct fddi_addr null_addr = {{0,0,0,0,0,0}};
74 static const struct fddi_addr dbeacon_multi = {{0x01,0x80,0xc2,0x00,0x01,0x00}};
75
76 static const u_short my_said = 0xffff ; /* short address (n.u.) */
77 static const u_short my_sagp = 0xffff ; /* short group address (n.u.) */
78
79 /*
80 * define my address
81 */
82 #ifdef USE_CAN_ADDR
83 #define MA smc->hw.fddi_canon_addr
84 #else
85 #define MA smc->hw.fddi_home_addr
86 #endif
87
88
89 /*
90 * useful interrupt bits
91 */
92 static const int mac_imsk1u = FM_STXABRS | FM_STXABRA0 | FM_SXMTABT ;
93 static const int mac_imsk1l = FM_SQLCKS | FM_SQLCKA0 | FM_SPCEPDS | FM_SPCEPDA0|
94 FM_STBURS | FM_STBURA0 ;
95
96 /* delete FM_SRBFL after tests */
97 static const int mac_imsk2u = FM_SERRSF | FM_SNFSLD | FM_SRCVOVR | FM_SRBFL |
98 FM_SMYCLM ;
99 static const int mac_imsk2l = FM_STRTEXR | FM_SDUPCLM | FM_SFRMCTR |
100 FM_SERRCTR | FM_SLSTCTR |
101 FM_STRTEXP | FM_SMULTDA | FM_SRNGOP ;
102
103 static const int mac_imsk3u = FM_SRCVOVR2 | FM_SRBFL2 ;
104 static const int mac_imsk3l = FM_SRPERRQ2 | FM_SRPERRQ1 ;
105
106 static const int mac_beacon_imsk2u = FM_SOTRBEC | FM_SMYBEC | FM_SBEC |
107 FM_SLOCLM | FM_SHICLM | FM_SMYCLM | FM_SCLM ;
108
109
mac_get_tneg(struct s_smc * smc)110 static u_long mac_get_tneg(struct s_smc *smc)
111 {
112 u_long tneg ;
113
114 tneg = (u_long)((long)inpw(FM_A(FM_TNEG))<<5) ;
115 return((u_long)((tneg + ((inpw(FM_A(FM_TMRS))>>10)&0x1f)) |
116 0xffe00000L)) ;
117 }
118
mac_update_counter(struct s_smc * smc)119 void mac_update_counter(struct s_smc *smc)
120 {
121 smc->mib.m[MAC0].fddiMACFrame_Ct =
122 (smc->mib.m[MAC0].fddiMACFrame_Ct & 0xffff0000L)
123 + (u_short) inpw(FM_A(FM_FCNTR)) ;
124 smc->mib.m[MAC0].fddiMACLost_Ct =
125 (smc->mib.m[MAC0].fddiMACLost_Ct & 0xffff0000L)
126 + (u_short) inpw(FM_A(FM_LCNTR)) ;
127 smc->mib.m[MAC0].fddiMACError_Ct =
128 (smc->mib.m[MAC0].fddiMACError_Ct & 0xffff0000L)
129 + (u_short) inpw(FM_A(FM_ECNTR)) ;
130 smc->mib.m[MAC0].fddiMACT_Neg = mac_get_tneg(smc) ;
131 #ifdef SMT_REAL_TOKEN_CT
132 /*
133 * If the token counter is emulated it is updated in smt_event.
134 */
135 TBD
136 #else
137 smt_emulate_token_ct( smc, MAC0 );
138 #endif
139 }
140
141 /*
142 * write long value into buffer memory over memory data register (MDR),
143 */
write_mdr(struct s_smc * smc,u_long val)144 static void write_mdr(struct s_smc *smc, u_long val)
145 {
146 CHECK_NPP() ;
147 MDRW(val) ;
148 }
149
150 #if 0
151 /*
152 * read long value from buffer memory over memory data register (MDR),
153 */
154 static u_long read_mdr(struct s_smc *smc, unsigned int addr)
155 {
156 long p ;
157 CHECK_NPP() ;
158 MARR(addr) ;
159 outpw(FM_A(FM_CMDREG1),FM_IRMEMWO) ;
160 CHECK_NPP() ; /* needed for PCI to prevent from timeing violations */
161 /* p = MDRR() ; */ /* bad read values if the workaround */
162 /* smc->hw.mc_dummy = *((short volatile far *)(addr)))*/
163 /* is used */
164 p = (u_long)inpw(FM_A(FM_MDRU))<<16 ;
165 p += (u_long)inpw(FM_A(FM_MDRL)) ;
166 return(p) ;
167 }
168 #endif
169
170 /*
171 * clear buffer memory
172 */
init_ram(struct s_smc * smc)173 static void init_ram(struct s_smc *smc)
174 {
175 u_short i ;
176
177 smc->hw.fp.fifo.rbc_ram_start = 0 ;
178 smc->hw.fp.fifo.rbc_ram_end =
179 smc->hw.fp.fifo.rbc_ram_start + RBC_MEM_SIZE ;
180 CHECK_NPP() ;
181 MARW(smc->hw.fp.fifo.rbc_ram_start) ;
182 for (i = smc->hw.fp.fifo.rbc_ram_start;
183 i < (u_short) (smc->hw.fp.fifo.rbc_ram_end-1); i++)
184 write_mdr(smc,0L) ;
185 /* Erase the last byte too */
186 write_mdr(smc,0L) ;
187 }
188
189 /*
190 * set receive FIFO pointer
191 */
set_recvptr(struct s_smc * smc)192 static void set_recvptr(struct s_smc *smc)
193 {
194 /*
195 * initialize the pointer for receive queue 1
196 */
197 outpw(FM_A(FM_RPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* RPR1 */
198 outpw(FM_A(FM_SWPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* SWPR1 */
199 outpw(FM_A(FM_WPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* WPR1 */
200 outpw(FM_A(FM_EARV1),smc->hw.fp.fifo.tx_s_start-1) ; /* EARV1 */
201
202 /*
203 * initialize the pointer for receive queue 2
204 */
205 if (smc->hw.fp.fifo.rx2_fifo_size) {
206 outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
207 outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
208 outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
209 outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ;
210 }
211 else {
212 outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
213 outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
214 outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
215 outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ;
216 }
217 }
218
219 /*
220 * set transmit FIFO pointer
221 */
set_txptr(struct s_smc * smc)222 static void set_txptr(struct s_smc *smc)
223 {
224 outpw(FM_A(FM_CMDREG2),FM_IRSTQ) ; /* reset transmit queues */
225
226 /*
227 * initialize the pointer for asynchronous transmit queue
228 */
229 outpw(FM_A(FM_RPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* RPXA0 */
230 outpw(FM_A(FM_SWPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* SWPXA0 */
231 outpw(FM_A(FM_WPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* WPXA0 */
232 outpw(FM_A(FM_EAA0),smc->hw.fp.fifo.rx2_fifo_start-1) ; /* EAA0 */
233
234 /*
235 * initialize the pointer for synchronous transmit queue
236 */
237 if (smc->hw.fp.fifo.tx_s_size) {
238 outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_s_start) ;
239 outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_s_start) ;
240 outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_s_start) ;
241 outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ;
242 }
243 else {
244 outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
245 outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
246 outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
247 outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ;
248 }
249 }
250
251 /*
252 * init memory buffer management registers
253 */
init_rbc(struct s_smc * smc)254 static void init_rbc(struct s_smc *smc)
255 {
256 u_short rbc_ram_addr ;
257
258 /*
259 * set unused pointers or permanent pointers
260 */
261 rbc_ram_addr = smc->hw.fp.fifo.rx2_fifo_start - 1 ;
262
263 outpw(FM_A(FM_RPXA1),rbc_ram_addr) ; /* a1-send pointer */
264 outpw(FM_A(FM_WPXA1),rbc_ram_addr) ;
265 outpw(FM_A(FM_SWPXA1),rbc_ram_addr) ;
266 outpw(FM_A(FM_EAA1),rbc_ram_addr) ;
267
268 set_recvptr(smc) ;
269 set_txptr(smc) ;
270 }
271
272 /*
273 * init rx pointer
274 */
init_rx(struct s_smc * smc)275 static void init_rx(struct s_smc *smc)
276 {
277 struct s_smt_rx_queue *queue ;
278
279 /*
280 * init all tx data structures for receive queue 1
281 */
282 smc->hw.fp.rx[QUEUE_R1] = queue = &smc->hw.fp.rx_q[QUEUE_R1] ;
283 queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R1_CSR) ;
284 queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R1_DA) ;
285
286 /*
287 * init all tx data structures for receive queue 2
288 */
289 smc->hw.fp.rx[QUEUE_R2] = queue = &smc->hw.fp.rx_q[QUEUE_R2] ;
290 queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R2_CSR) ;
291 queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R2_DA) ;
292 }
293
294 /*
295 * set the TSYNC register of the FORMAC to regulate synchronous transmission
296 */
set_formac_tsync(struct s_smc * smc,long sync_bw)297 void set_formac_tsync(struct s_smc *smc, long sync_bw)
298 {
299 outpw(FM_A(FM_TSYNC),(unsigned int) (((-sync_bw) >> 5) & 0xffff) ) ;
300 }
301
302 /*
303 * init all tx data structures
304 */
init_tx(struct s_smc * smc)305 static void init_tx(struct s_smc *smc)
306 {
307 struct s_smt_tx_queue *queue ;
308
309 /*
310 * init all tx data structures for the synchronous queue
311 */
312 smc->hw.fp.tx[QUEUE_S] = queue = &smc->hw.fp.tx_q[QUEUE_S] ;
313 queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XS_CSR) ;
314 queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XS_DA) ;
315
316 #ifdef ESS
317 set_formac_tsync(smc,smc->ess.sync_bw) ;
318 #endif
319
320 /*
321 * init all tx data structures for the asynchronous queue 0
322 */
323 smc->hw.fp.tx[QUEUE_A0] = queue = &smc->hw.fp.tx_q[QUEUE_A0] ;
324 queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XA_CSR) ;
325 queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XA_DA) ;
326
327
328 llc_recover_tx(smc) ;
329 }
330
mac_counter_init(struct s_smc * smc)331 static void mac_counter_init(struct s_smc *smc)
332 {
333 int i ;
334 u_long *ec ;
335
336 /*
337 * clear FORMAC+ frame-, lost- and error counter
338 */
339 outpw(FM_A(FM_FCNTR),0) ;
340 outpw(FM_A(FM_LCNTR),0) ;
341 outpw(FM_A(FM_ECNTR),0) ;
342 /*
343 * clear internal error counter stucture
344 */
345 ec = (u_long *)&smc->hw.fp.err_stats ;
346 for (i = (sizeof(struct err_st)/sizeof(long)) ; i ; i--)
347 *ec++ = 0L ;
348 smc->mib.m[MAC0].fddiMACRingOp_Ct = 0 ;
349 }
350
351 /*
352 * set FORMAC address, and t_request
353 */
set_formac_addr(struct s_smc * smc)354 static void set_formac_addr(struct s_smc *smc)
355 {
356 long t_requ = smc->mib.m[MAC0].fddiMACT_Req ;
357
358 outpw(FM_A(FM_SAID),my_said) ; /* set short address */
359 outpw(FM_A(FM_LAIL),(unsigned)((smc->hw.fddi_home_addr.a[4]<<8) +
360 smc->hw.fddi_home_addr.a[5])) ;
361 outpw(FM_A(FM_LAIC),(unsigned)((smc->hw.fddi_home_addr.a[2]<<8) +
362 smc->hw.fddi_home_addr.a[3])) ;
363 outpw(FM_A(FM_LAIM),(unsigned)((smc->hw.fddi_home_addr.a[0]<<8) +
364 smc->hw.fddi_home_addr.a[1])) ;
365
366 outpw(FM_A(FM_SAGP),my_sagp) ; /* set short group address */
367
368 outpw(FM_A(FM_LAGL),(unsigned)((smc->hw.fp.group_addr.a[4]<<8) +
369 smc->hw.fp.group_addr.a[5])) ;
370 outpw(FM_A(FM_LAGC),(unsigned)((smc->hw.fp.group_addr.a[2]<<8) +
371 smc->hw.fp.group_addr.a[3])) ;
372 outpw(FM_A(FM_LAGM),(unsigned)((smc->hw.fp.group_addr.a[0]<<8) +
373 smc->hw.fp.group_addr.a[1])) ;
374
375 /* set r_request regs. (MSW & LSW of TRT ) */
376 outpw(FM_A(FM_TREQ1),(unsigned)(t_requ>>16)) ;
377 outpw(FM_A(FM_TREQ0),(unsigned)t_requ) ;
378 }
379
set_int(char * p,int l)380 static void set_int(char *p, int l)
381 {
382 p[0] = (char)(l >> 24) ;
383 p[1] = (char)(l >> 16) ;
384 p[2] = (char)(l >> 8) ;
385 p[3] = (char)(l >> 0) ;
386 }
387
388 /*
389 * copy TX descriptor to buffer mem
390 * append FC field and MAC frame
391 * if more bit is set in descr
392 * append pointer to descriptor (endless loop)
393 * else
394 * append 'end of chain' pointer
395 */
copy_tx_mac(struct s_smc * smc,u_long td,struct fddi_mac * mac,unsigned off,int len)396 static void copy_tx_mac(struct s_smc *smc, u_long td, struct fddi_mac *mac,
397 unsigned off, int len)
398 /* u_long td; transmit descriptor */
399 /* struct fddi_mac *mac; mac frame pointer */
400 /* unsigned off; start address within buffer memory */
401 /* int len ; length of the frame including the FC */
402 {
403 int i ;
404 __le32 *p ;
405
406 CHECK_NPP() ;
407 MARW(off) ; /* set memory address reg for writes */
408
409 p = (__le32 *) mac ;
410 for (i = (len + 3)/4 ; i ; i--) {
411 if (i == 1) {
412 /* last word, set the tag bit */
413 outpw(FM_A(FM_CMDREG2),FM_ISTTB) ;
414 }
415 write_mdr(smc,le32_to_cpu(*p)) ;
416 p++ ;
417 }
418
419 outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */
420 write_mdr(smc,td) ; /* write over memory data reg to buffer */
421 }
422
423 /*
424 BEGIN_MANUAL_ENTRY(module;tests;3)
425 How to test directed beacon frames
426 ----------------------------------------------------------------
427
428 o Insert a break point in the function build_claim_beacon()
429 before calling copy_tx_mac() for building the claim frame.
430 o Modify the RM3_DETECT case so that the RM6_DETECT state
431 will always entered from the RM3_DETECT state (function rmt_fsm(),
432 rmt.c)
433 o Compile the driver.
434 o Set the parameter TREQ in the protocol.ini or net.cfg to a
435 small value to make sure your station will win the claim
436 process.
437 o Start the driver.
438 o When you reach the break point, modify the SA and DA address
439 of the claim frame (e.g. SA = DA = 10005affffff).
440 o When you see RM3_DETECT and RM6_DETECT, observe the direct
441 beacon frames on the UPPSLANA.
442
443 END_MANUAL_ENTRY
444 */
directed_beacon(struct s_smc * smc)445 static void directed_beacon(struct s_smc *smc)
446 {
447 SK_LOC_DECL(__le32,a[2]) ;
448
449 /*
450 * set UNA in frame
451 * enable FORMAC to send endless queue of directed beacon
452 * important: the UNA starts at byte 1 (not at byte 0)
453 */
454 * (char *) a = (char) ((long)DBEACON_INFO<<24L) ;
455 a[1] = 0 ;
456 memcpy((char *)a+1,(char *) &smc->mib.m[MAC0].fddiMACUpstreamNbr,6) ;
457
458 CHECK_NPP() ;
459 /* set memory address reg for writes */
460 MARW(smc->hw.fp.fifo.rbc_ram_start+DBEACON_FRAME_OFF+4) ;
461 write_mdr(smc,le32_to_cpu(a[0])) ;
462 outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */
463 write_mdr(smc,le32_to_cpu(a[1])) ;
464
465 outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF) ;
466 }
467
468 /*
469 setup claim & beacon pointer
470 NOTE :
471 special frame packets end with a pointer to their own
472 descriptor, and the MORE bit is set in the descriptor
473 */
build_claim_beacon(struct s_smc * smc,u_long t_request)474 static void build_claim_beacon(struct s_smc *smc, u_long t_request)
475 {
476 u_int td ;
477 int len ;
478 struct fddi_mac_sf *mac ;
479
480 /*
481 * build claim packet
482 */
483 len = 17 ;
484 td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
485 mac = &smc->hw.fp.mac_sfb ;
486 mac->mac_fc = FC_CLAIM ;
487 /* DA == SA in claim frame */
488 mac->mac_source = mac->mac_dest = MA ;
489 /* 2's complement */
490 set_int((char *)mac->mac_info,(int)t_request) ;
491
492 copy_tx_mac(smc,td,(struct fddi_mac *)mac,
493 smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF,len) ;
494 /* set CLAIM start pointer */
495 outpw(FM_A(FM_SACL),smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF) ;
496
497 /*
498 * build beacon packet
499 */
500 len = 17 ;
501 td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
502 mac->mac_fc = FC_BEACON ;
503 mac->mac_source = MA ;
504 mac->mac_dest = null_addr ; /* DA == 0 in beacon frame */
505 set_int((char *) mac->mac_info,((int)BEACON_INFO<<24) + 0 ) ;
506
507 copy_tx_mac(smc,td,(struct fddi_mac *)mac,
508 smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF,len) ;
509 /* set beacon start pointer */
510 outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF) ;
511
512 /*
513 * build directed beacon packet
514 * contains optional UNA
515 */
516 len = 23 ;
517 td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
518 mac->mac_fc = FC_BEACON ;
519 mac->mac_source = MA ;
520 mac->mac_dest = dbeacon_multi ; /* multicast */
521 set_int((char *) mac->mac_info,((int)DBEACON_INFO<<24) + 0 ) ;
522 set_int((char *) mac->mac_info+4,0) ;
523 set_int((char *) mac->mac_info+8,0) ;
524
525 copy_tx_mac(smc,td,(struct fddi_mac *)mac,
526 smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF,len) ;
527
528 /* end of claim/beacon queue */
529 outpw(FM_A(FM_EACB),smc->hw.fp.fifo.rx1_fifo_start-1) ;
530
531 outpw(FM_A(FM_WPXSF),0) ;
532 outpw(FM_A(FM_RPXSF),0) ;
533 }
534
formac_rcv_restart(struct s_smc * smc)535 static void formac_rcv_restart(struct s_smc *smc)
536 {
537 /* enable receive function */
538 SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ;
539
540 outpw(FM_A(FM_CMDREG1),FM_ICLLR) ; /* clear receive lock */
541 }
542
formac_tx_restart(struct s_smc * smc)543 void formac_tx_restart(struct s_smc *smc)
544 {
545 outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */
546 outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */
547 }
548
enable_formac(struct s_smc * smc)549 static void enable_formac(struct s_smc *smc)
550 {
551 /* set formac IMSK : 0 enables irq */
552 outpw(FM_A(FM_IMSK1U),(unsigned short)~mac_imsk1u);
553 outpw(FM_A(FM_IMSK1L),(unsigned short)~mac_imsk1l);
554 outpw(FM_A(FM_IMSK2U),(unsigned short)~mac_imsk2u);
555 outpw(FM_A(FM_IMSK2L),(unsigned short)~mac_imsk2l);
556 outpw(FM_A(FM_IMSK3U),(unsigned short)~mac_imsk3u);
557 outpw(FM_A(FM_IMSK3L),(unsigned short)~mac_imsk3l);
558 }
559
560 #if 0 /* Removed because the driver should use the ASICs TX complete IRQ. */
561 /* The FORMACs tx complete IRQ should be used any longer */
562
563 /*
564 BEGIN_MANUAL_ENTRY(if,func;others;4)
565
566 void enable_tx_irq(smc, queue)
567 struct s_smc *smc ;
568 u_short queue ;
569
570 Function DOWNCALL (SMT, fplustm.c)
571 enable_tx_irq() enables the FORMACs transmit complete
572 interrupt of the queue.
573
574 Para queue = QUEUE_S: synchronous queue
575 = QUEUE_A0: asynchronous queue
576
577 Note After any ring operational change the transmit complete
578 interrupts are disabled.
579 The operating system dependent module must enable
580 the transmit complete interrupt of a queue,
581 - when it queues the first frame,
582 because of no transmit resources are beeing
583 available and
584 - when it escapes from the function llc_restart_tx
585 while some frames are still queued.
586
587 END_MANUAL_ENTRY
588 */
589 void enable_tx_irq(struct s_smc *smc, u_short queue)
590 /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */
591 {
592 u_short imask ;
593
594 imask = ~(inpw(FM_A(FM_IMSK1U))) ;
595
596 if (queue == 0) {
597 outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMS)) ;
598 }
599 if (queue == 1) {
600 outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMA0)) ;
601 }
602 }
603
604 /*
605 BEGIN_MANUAL_ENTRY(if,func;others;4)
606
607 void disable_tx_irq(smc, queue)
608 struct s_smc *smc ;
609 u_short queue ;
610
611 Function DOWNCALL (SMT, fplustm.c)
612 disable_tx_irq disables the FORMACs transmit complete
613 interrupt of the queue
614
615 Para queue = QUEUE_S: synchronous queue
616 = QUEUE_A0: asynchronous queue
617
618 Note The operating system dependent module should disable
619 the transmit complete interrupts if it escapes from the
620 function llc_restart_tx and no frames are queued.
621
622 END_MANUAL_ENTRY
623 */
624 void disable_tx_irq(struct s_smc *smc, u_short queue)
625 /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */
626 {
627 u_short imask ;
628
629 imask = ~(inpw(FM_A(FM_IMSK1U))) ;
630
631 if (queue == 0) {
632 outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMS)) ;
633 }
634 if (queue == 1) {
635 outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMA0)) ;
636 }
637 }
638 #endif
639
disable_formac(struct s_smc * smc)640 static void disable_formac(struct s_smc *smc)
641 {
642 /* clear formac IMSK : 1 disables irq */
643 outpw(FM_A(FM_IMSK1U),MW) ;
644 outpw(FM_A(FM_IMSK1L),MW) ;
645 outpw(FM_A(FM_IMSK2U),MW) ;
646 outpw(FM_A(FM_IMSK2L),MW) ;
647 outpw(FM_A(FM_IMSK3U),MW) ;
648 outpw(FM_A(FM_IMSK3L),MW) ;
649 }
650
651
mac_ring_up(struct s_smc * smc,int up)652 static void mac_ring_up(struct s_smc *smc, int up)
653 {
654 if (up) {
655 formac_rcv_restart(smc) ; /* enable receive function */
656 smc->hw.mac_ring_is_up = TRUE ;
657 llc_restart_tx(smc) ; /* TX queue */
658 }
659 else {
660 /* disable receive function */
661 SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ;
662
663 /* abort current transmit activity */
664 outpw(FM_A(FM_CMDREG2),FM_IACTR) ;
665
666 smc->hw.mac_ring_is_up = FALSE ;
667 }
668 }
669
670 /*--------------------------- ISR handling ----------------------------------*/
671 /*
672 * mac1_irq is in drvfbi.c
673 */
674
675 /*
676 * mac2_irq: status bits for the receive queue 1, and ring status
677 * ring status indication bits
678 */
mac2_irq(struct s_smc * smc,u_short code_s2u,u_short code_s2l)679 void mac2_irq(struct s_smc *smc, u_short code_s2u, u_short code_s2l)
680 {
681 u_short change_s2l ;
682 u_short change_s2u ;
683
684 /* (jd) 22-Feb-1999
685 * Restart 2_DMax Timer after end of claiming or beaconing
686 */
687 if (code_s2u & (FM_SCLM|FM_SHICLM|FM_SBEC|FM_SOTRBEC)) {
688 queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ;
689 }
690 else if (code_s2l & (FM_STKISS)) {
691 queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ;
692 }
693
694 /*
695 * XOR current st bits with the last to avoid useless RMT event queuing
696 */
697 change_s2l = smc->hw.fp.s2l ^ code_s2l ;
698 change_s2u = smc->hw.fp.s2u ^ code_s2u ;
699
700 if ((change_s2l & FM_SRNGOP) ||
701 (!smc->hw.mac_ring_is_up && ((code_s2l & FM_SRNGOP)))) {
702 if (code_s2l & FM_SRNGOP) {
703 mac_ring_up(smc,1) ;
704 queue_event(smc,EVENT_RMT,RM_RING_OP) ;
705 smc->mib.m[MAC0].fddiMACRingOp_Ct++ ;
706 }
707 else {
708 mac_ring_up(smc,0) ;
709 queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ;
710 }
711 goto mac2_end ;
712 }
713 if (code_s2l & FM_SMISFRM) { /* missed frame */
714 smc->mib.m[MAC0].fddiMACNotCopied_Ct++ ;
715 }
716 if (code_s2u & (FM_SRCVOVR | /* recv. FIFO overflow */
717 FM_SRBFL)) { /* recv. buffer full */
718 smc->hw.mac_ct.mac_r_restart_counter++ ;
719 /* formac_rcv_restart(smc) ; */
720 smt_stat_counter(smc,1) ;
721 /* goto mac2_end ; */
722 }
723 if (code_s2u & FM_SOTRBEC)
724 queue_event(smc,EVENT_RMT,RM_OTHER_BEACON) ;
725 if (code_s2u & FM_SMYBEC)
726 queue_event(smc,EVENT_RMT,RM_MY_BEACON) ;
727 if (change_s2u & code_s2u & FM_SLOCLM) {
728 DB_RMTN(2,"RMT : lower claim received\n",0,0) ;
729 }
730 if ((code_s2u & FM_SMYCLM) && !(code_s2l & FM_SDUPCLM)) {
731 /*
732 * This is my claim and that claim is not detected as a
733 * duplicate one.
734 */
735 queue_event(smc,EVENT_RMT,RM_MY_CLAIM) ;
736 }
737 if (code_s2l & FM_SDUPCLM) {
738 /*
739 * If a duplicate claim frame (same SA but T_Bid != T_Req)
740 * this flag will be set.
741 * In the RMT state machine we need a RM_VALID_CLAIM event
742 * to do the appropriate state change.
743 * RM(34c)
744 */
745 queue_event(smc,EVENT_RMT,RM_VALID_CLAIM) ;
746 }
747 if (change_s2u & code_s2u & FM_SHICLM) {
748 DB_RMTN(2,"RMT : higher claim received\n",0,0) ;
749 }
750 if ( (code_s2l & FM_STRTEXP) ||
751 (code_s2l & FM_STRTEXR) )
752 queue_event(smc,EVENT_RMT,RM_TRT_EXP) ;
753 if (code_s2l & FM_SMULTDA) {
754 /*
755 * The MAC has found a 2. MAC with the same address.
756 * Signal dup_addr_test = failed to RMT state machine.
757 * RM(25)
758 */
759 smc->r.dup_addr_test = DA_FAILED ;
760 queue_event(smc,EVENT_RMT,RM_DUP_ADDR) ;
761 }
762 if (code_s2u & FM_SBEC)
763 smc->hw.fp.err_stats.err_bec_stat++ ;
764 if (code_s2u & FM_SCLM)
765 smc->hw.fp.err_stats.err_clm_stat++ ;
766 if (code_s2l & FM_STVXEXP)
767 smc->mib.m[MAC0].fddiMACTvxExpired_Ct++ ;
768 if ((code_s2u & (FM_SBEC|FM_SCLM))) {
769 if (!(change_s2l & FM_SRNGOP) && (smc->hw.fp.s2l & FM_SRNGOP)) {
770 mac_ring_up(smc,0) ;
771 queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ;
772
773 mac_ring_up(smc,1) ;
774 queue_event(smc,EVENT_RMT,RM_RING_OP) ;
775 smc->mib.m[MAC0].fddiMACRingOp_Ct++ ;
776 }
777 }
778 if (code_s2l & FM_SPHINV)
779 smc->hw.fp.err_stats.err_phinv++ ;
780 if (code_s2l & FM_SSIFG)
781 smc->hw.fp.err_stats.err_sifg_det++ ;
782 if (code_s2l & FM_STKISS)
783 smc->hw.fp.err_stats.err_tkiss++ ;
784 if (code_s2l & FM_STKERR)
785 smc->hw.fp.err_stats.err_tkerr++ ;
786 if (code_s2l & FM_SFRMCTR)
787 smc->mib.m[MAC0].fddiMACFrame_Ct += 0x10000L ;
788 if (code_s2l & FM_SERRCTR)
789 smc->mib.m[MAC0].fddiMACError_Ct += 0x10000L ;
790 if (code_s2l & FM_SLSTCTR)
791 smc->mib.m[MAC0].fddiMACLost_Ct += 0x10000L ;
792 if (code_s2u & FM_SERRSF) {
793 SMT_PANIC(smc,SMT_E0114, SMT_E0114_MSG) ;
794 }
795 mac2_end:
796 /* notice old status */
797 smc->hw.fp.s2l = code_s2l ;
798 smc->hw.fp.s2u = code_s2u ;
799 outpw(FM_A(FM_IMSK2U),~mac_imsk2u) ;
800 }
801
802 /*
803 * mac3_irq: receive queue 2 bits and address detection bits
804 */
mac3_irq(struct s_smc * smc,u_short code_s3u,u_short code_s3l)805 void mac3_irq(struct s_smc *smc, u_short code_s3u, u_short code_s3l)
806 {
807 UNUSED(code_s3l) ;
808
809 if (code_s3u & (FM_SRCVOVR2 | /* recv. FIFO overflow */
810 FM_SRBFL2)) { /* recv. buffer full */
811 smc->hw.mac_ct.mac_r_restart_counter++ ;
812 smt_stat_counter(smc,1);
813 }
814
815
816 if (code_s3u & FM_SRPERRQ2) { /* parity error receive queue 2 */
817 SMT_PANIC(smc,SMT_E0115, SMT_E0115_MSG) ;
818 }
819 if (code_s3u & FM_SRPERRQ1) { /* parity error receive queue 2 */
820 SMT_PANIC(smc,SMT_E0116, SMT_E0116_MSG) ;
821 }
822 }
823
824
825 /*
826 * take formac offline
827 */
formac_offline(struct s_smc * smc)828 static void formac_offline(struct s_smc *smc)
829 {
830 outpw(FM_A(FM_CMDREG2),FM_IACTR) ;/* abort current transmit activity */
831
832 /* disable receive function */
833 SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ;
834
835 /* FORMAC+ 'Initialize Mode' */
836 SETMASK(FM_A(FM_MDREG1),FM_MINIT,FM_MMODE) ;
837
838 disable_formac(smc) ;
839 smc->hw.mac_ring_is_up = FALSE ;
840 smc->hw.hw_state = STOPPED ;
841 }
842
843 /*
844 * bring formac online
845 */
formac_online(struct s_smc * smc)846 static void formac_online(struct s_smc *smc)
847 {
848 enable_formac(smc) ;
849 SETMASK(FM_A(FM_MDREG1),FM_MONLINE | FM_SELRA | MDR1INIT |
850 smc->hw.fp.rx_mode, FM_MMODE | FM_SELRA | FM_ADDRX) ;
851 }
852
853 /*
854 * FORMAC+ full init. (tx, rx, timer, counter, claim & beacon)
855 */
init_fplus(struct s_smc * smc)856 int init_fplus(struct s_smc *smc)
857 {
858 smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ;
859 smc->hw.fp.rx_mode = FM_MDAMA ;
860 smc->hw.fp.group_addr = fddi_broadcast ;
861 smc->hw.fp.func_addr = 0 ;
862 smc->hw.fp.frselreg_init = 0 ;
863
864 init_driver_fplus(smc) ;
865 if (smc->s.sas == SMT_DAS)
866 smc->hw.fp.mdr3init |= FM_MENDAS ;
867
868 smc->hw.mac_ct.mac_nobuf_counter = 0 ;
869 smc->hw.mac_ct.mac_r_restart_counter = 0 ;
870
871 smc->hw.fp.fm_st1u = (HW_PTR) ADDR(B0_ST1U) ;
872 smc->hw.fp.fm_st1l = (HW_PTR) ADDR(B0_ST1L) ;
873 smc->hw.fp.fm_st2u = (HW_PTR) ADDR(B0_ST2U) ;
874 smc->hw.fp.fm_st2l = (HW_PTR) ADDR(B0_ST2L) ;
875 smc->hw.fp.fm_st3u = (HW_PTR) ADDR(B0_ST3U) ;
876 smc->hw.fp.fm_st3l = (HW_PTR) ADDR(B0_ST3L) ;
877
878 smc->hw.fp.s2l = smc->hw.fp.s2u = 0 ;
879 smc->hw.mac_ring_is_up = 0 ;
880
881 mac_counter_init(smc) ;
882
883 /* convert BCKL units to symbol time */
884 smc->hw.mac_pa.t_neg = (u_long)0 ;
885 smc->hw.mac_pa.t_pri = (u_long)0 ;
886
887 /* make sure all PCI settings are correct */
888 mac_do_pci_fix(smc) ;
889
890 return(init_mac(smc,1)) ;
891 /* enable_formac(smc) ; */
892 }
893
init_mac(struct s_smc * smc,int all)894 static int init_mac(struct s_smc *smc, int all)
895 {
896 u_short t_max,x ;
897 u_long time=0 ;
898
899 /*
900 * clear memory
901 */
902 outpw(FM_A(FM_MDREG1),FM_MINIT) ; /* FORMAC+ init mode */
903 set_formac_addr(smc) ;
904 outpw(FM_A(FM_MDREG1),FM_MMEMACT) ; /* FORMAC+ memory activ mode */
905 /* Note: Mode register 2 is set here, incase parity is enabled. */
906 outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ;
907
908 if (all) {
909 init_ram(smc) ;
910 }
911 else {
912 /*
913 * reset the HPI, the Master and the BMUs
914 */
915 outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
916 time = hwt_quick_read(smc) ;
917 }
918
919 /*
920 * set all pointers, frames etc
921 */
922 smt_split_up_fifo(smc) ;
923
924 init_tx(smc) ;
925 init_rx(smc) ;
926 init_rbc(smc) ;
927
928 build_claim_beacon(smc,smc->mib.m[MAC0].fddiMACT_Req) ;
929
930 /* set RX threshold */
931 /* see Errata #SN2 Phantom receive overflow */
932 outpw(FM_A(FM_FRMTHR),14<<12) ; /* switch on */
933
934 /* set formac work mode */
935 outpw(FM_A(FM_MDREG1),MDR1INIT | FM_SELRA | smc->hw.fp.rx_mode) ;
936 outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ;
937 outpw(FM_A(FM_MDREG3),smc->hw.fp.mdr3init) ;
938 outpw(FM_A(FM_FRSELREG),smc->hw.fp.frselreg_init) ;
939
940 /* set timer */
941 /*
942 * errata #22 fplus:
943 * T_MAX must not be FFFE
944 * or one of FFDF, FFB8, FF91 (-0x27 etc..)
945 */
946 t_max = (u_short)(smc->mib.m[MAC0].fddiMACT_Max/32) ;
947 x = t_max/0x27 ;
948 x *= 0x27 ;
949 if ((t_max == 0xfffe) || (t_max - x == 0x16))
950 t_max-- ;
951 outpw(FM_A(FM_TMAX),(u_short)t_max) ;
952
953 /* BugFix for report #10204 */
954 if (smc->mib.m[MAC0].fddiMACTvxValue < (u_long) (- US2BCLK(52))) {
955 outpw(FM_A(FM_TVX), (u_short) (- US2BCLK(52))/255 & MB) ;
956 } else {
957 outpw(FM_A(FM_TVX),
958 (u_short)((smc->mib.m[MAC0].fddiMACTvxValue/255) & MB)) ;
959 }
960
961 outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */
962 outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */
963 outpw(FM_A(FM_CMDREG1),FM_ICLLR); /* clear receive lock */
964
965 /* Auto unlock receice threshold for receive queue 1 and 2 */
966 outpw(FM_A(FM_UNLCKDLY),(0xff|(0xff<<8))) ;
967
968 rtm_init(smc) ; /* RT-Monitor */
969
970 if (!all) {
971 /*
972 * after 10ms, reset the BMUs and repair the rings
973 */
974 hwt_wait_time(smc,time,MS2BCLK(10)) ;
975 outpd(ADDR(B0_R1_CSR),CSR_SET_RESET) ;
976 outpd(ADDR(B0_XA_CSR),CSR_SET_RESET) ;
977 outpd(ADDR(B0_XS_CSR),CSR_SET_RESET) ;
978 outp(ADDR(B0_CTRL), CTRL_HPI_CLR) ;
979 outpd(ADDR(B0_R1_CSR),CSR_CLR_RESET) ;
980 outpd(ADDR(B0_XA_CSR),CSR_CLR_RESET) ;
981 outpd(ADDR(B0_XS_CSR),CSR_CLR_RESET) ;
982 if (!smc->hw.hw_is_64bit) {
983 outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
984 outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
985 outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
986 }
987 smc->hw.hw_state = STOPPED ;
988 mac_drv_repair_descr(smc) ;
989 }
990 smc->hw.hw_state = STARTED ;
991
992 return(0) ;
993 }
994
995
996 /*
997 * called by CFM
998 */
config_mux(struct s_smc * smc,int mux)999 void config_mux(struct s_smc *smc, int mux)
1000 {
1001 plc_config_mux(smc,mux) ;
1002
1003 SETMASK(FM_A(FM_MDREG1),FM_SELRA,FM_SELRA) ;
1004 }
1005
1006 /*
1007 * called by RMT
1008 * enable CLAIM/BEACON interrupts
1009 * (only called if these events are of interest, e.g. in DETECT state
1010 * the interrupt must not be permanently enabled
1011 * RMT calls this function periodically (timer driven polling)
1012 */
sm_mac_check_beacon_claim(struct s_smc * smc)1013 void sm_mac_check_beacon_claim(struct s_smc *smc)
1014 {
1015 /* set formac IMSK : 0 enables irq */
1016 outpw(FM_A(FM_IMSK2U),~(mac_imsk2u | mac_beacon_imsk2u)) ;
1017 /* the driver must receive the directed beacons */
1018 formac_rcv_restart(smc) ;
1019 process_receive(smc) ;
1020 }
1021
1022 /*-------------------------- interface functions ----------------------------*/
1023 /*
1024 * control MAC layer (called by RMT)
1025 */
sm_ma_control(struct s_smc * smc,int mode)1026 void sm_ma_control(struct s_smc *smc, int mode)
1027 {
1028 switch(mode) {
1029 case MA_OFFLINE :
1030 /* Add to make the MAC offline in RM0_ISOLATED state */
1031 formac_offline(smc) ;
1032 break ;
1033 case MA_RESET :
1034 (void)init_mac(smc,0) ;
1035 break ;
1036 case MA_BEACON :
1037 formac_online(smc) ;
1038 break ;
1039 case MA_DIRECTED :
1040 directed_beacon(smc) ;
1041 break ;
1042 case MA_TREQ :
1043 /*
1044 * no actions necessary, TREQ is already set
1045 */
1046 break ;
1047 }
1048 }
1049
sm_mac_get_tx_state(struct s_smc * smc)1050 int sm_mac_get_tx_state(struct s_smc *smc)
1051 {
1052 return((inpw(FM_A(FM_STMCHN))>>4)&7) ;
1053 }
1054
1055 /*
1056 * multicast functions
1057 */
1058
mac_get_mc_table(struct s_smc * smc,struct fddi_addr * user,struct fddi_addr * own,int del,int can)1059 static struct s_fpmc* mac_get_mc_table(struct s_smc *smc,
1060 struct fddi_addr *user,
1061 struct fddi_addr *own,
1062 int del, int can)
1063 {
1064 struct s_fpmc *tb ;
1065 struct s_fpmc *slot ;
1066 u_char *p ;
1067 int i ;
1068
1069 /*
1070 * set own = can(user)
1071 */
1072 *own = *user ;
1073 if (can) {
1074 p = own->a ;
1075 for (i = 0 ; i < 6 ; i++, p++)
1076 *p = bitrev8(*p);
1077 }
1078 slot = NULL;
1079 for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){
1080 if (!tb->n) { /* not used */
1081 if (!del && !slot) /* if !del save first free */
1082 slot = tb ;
1083 continue ;
1084 }
1085 if (memcmp((char *)&tb->a,(char *)own,6))
1086 continue ;
1087 return(tb) ;
1088 }
1089 return(slot) ; /* return first free or NULL */
1090 }
1091
1092 /*
1093 BEGIN_MANUAL_ENTRY(if,func;others;2)
1094
1095 void mac_clear_multicast(smc)
1096 struct s_smc *smc ;
1097
1098 Function DOWNCALL (SMT, fplustm.c)
1099 Clear all multicast entries
1100
1101 END_MANUAL_ENTRY()
1102 */
mac_clear_multicast(struct s_smc * smc)1103 void mac_clear_multicast(struct s_smc *smc)
1104 {
1105 struct s_fpmc *tb ;
1106 int i ;
1107
1108 smc->hw.fp.os_slots_used = 0 ; /* note the SMT addresses */
1109 /* will not be deleted */
1110 for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){
1111 if (!tb->perm) {
1112 tb->n = 0 ;
1113 }
1114 }
1115 }
1116
1117 /*
1118 BEGIN_MANUAL_ENTRY(if,func;others;2)
1119
1120 int mac_add_multicast(smc,addr,can)
1121 struct s_smc *smc ;
1122 struct fddi_addr *addr ;
1123 int can ;
1124
1125 Function DOWNCALL (SMC, fplustm.c)
1126 Add an entry to the multicast table
1127
1128 Para addr pointer to a multicast address
1129 can = 0: the multicast address has the physical format
1130 = 1: the multicast address has the canonical format
1131 | 0x80 permanent
1132
1133 Returns 0: success
1134 1: address table full
1135
1136 Note After a 'driver reset' or a 'station set address' all
1137 entries of the multicast table are cleared.
1138 In this case the driver has to fill the multicast table again.
1139 After the operating system dependent module filled
1140 the multicast table it must call mac_update_multicast
1141 to activate the new multicast addresses!
1142
1143 END_MANUAL_ENTRY()
1144 */
mac_add_multicast(struct s_smc * smc,struct fddi_addr * addr,int can)1145 int mac_add_multicast(struct s_smc *smc, struct fddi_addr *addr, int can)
1146 {
1147 SK_LOC_DECL(struct fddi_addr,own) ;
1148 struct s_fpmc *tb ;
1149
1150 /*
1151 * check if there are free table entries
1152 */
1153 if (can & 0x80) {
1154 if (smc->hw.fp.smt_slots_used >= SMT_MAX_MULTI) {
1155 return(1) ;
1156 }
1157 }
1158 else {
1159 if (smc->hw.fp.os_slots_used >= FPMAX_MULTICAST-SMT_MAX_MULTI) {
1160 return(1) ;
1161 }
1162 }
1163
1164 /*
1165 * find empty slot
1166 */
1167 if (!(tb = mac_get_mc_table(smc,addr,&own,0,can & ~0x80)))
1168 return(1) ;
1169 tb->n++ ;
1170 tb->a = own ;
1171 tb->perm = (can & 0x80) ? 1 : 0 ;
1172
1173 if (can & 0x80)
1174 smc->hw.fp.smt_slots_used++ ;
1175 else
1176 smc->hw.fp.os_slots_used++ ;
1177
1178 return(0) ;
1179 }
1180
1181 /*
1182 * mode
1183 */
1184
1185 #define RX_MODE_PROM 0x1
1186 #define RX_MODE_ALL_MULTI 0x2
1187
1188 /*
1189 BEGIN_MANUAL_ENTRY(if,func;others;2)
1190
1191 void mac_update_multicast(smc)
1192 struct s_smc *smc ;
1193
1194 Function DOWNCALL (SMT, fplustm.c)
1195 Update FORMAC multicast registers
1196
1197 END_MANUAL_ENTRY()
1198 */
mac_update_multicast(struct s_smc * smc)1199 void mac_update_multicast(struct s_smc *smc)
1200 {
1201 struct s_fpmc *tb ;
1202 u_char *fu ;
1203 int i ;
1204
1205 /*
1206 * invalidate the CAM
1207 */
1208 outpw(FM_A(FM_AFCMD),FM_IINV_CAM) ;
1209
1210 /*
1211 * set the functional address
1212 */
1213 if (smc->hw.fp.func_addr) {
1214 fu = (u_char *) &smc->hw.fp.func_addr ;
1215 outpw(FM_A(FM_AFMASK2),0xffff) ;
1216 outpw(FM_A(FM_AFMASK1),(u_short) ~((fu[0] << 8) + fu[1])) ;
1217 outpw(FM_A(FM_AFMASK0),(u_short) ~((fu[2] << 8) + fu[3])) ;
1218 outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ;
1219 outpw(FM_A(FM_AFCOMP2), 0xc000) ;
1220 outpw(FM_A(FM_AFCOMP1), 0x0000) ;
1221 outpw(FM_A(FM_AFCOMP0), 0x0000) ;
1222 outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ;
1223 }
1224
1225 /*
1226 * set the mask and the personality register(s)
1227 */
1228 outpw(FM_A(FM_AFMASK0),0xffff) ;
1229 outpw(FM_A(FM_AFMASK1),0xffff) ;
1230 outpw(FM_A(FM_AFMASK2),0xffff) ;
1231 outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ;
1232
1233 for (i = 0, tb = smc->hw.fp.mc.table; i < FPMAX_MULTICAST; i++, tb++) {
1234 if (tb->n) {
1235 CHECK_CAM() ;
1236
1237 /*
1238 * write the multicast address into the CAM
1239 */
1240 outpw(FM_A(FM_AFCOMP2),
1241 (u_short)((tb->a.a[0]<<8)+tb->a.a[1])) ;
1242 outpw(FM_A(FM_AFCOMP1),
1243 (u_short)((tb->a.a[2]<<8)+tb->a.a[3])) ;
1244 outpw(FM_A(FM_AFCOMP0),
1245 (u_short)((tb->a.a[4]<<8)+tb->a.a[5])) ;
1246 outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ;
1247 }
1248 }
1249 }
1250
1251 /*
1252 BEGIN_MANUAL_ENTRY(if,func;others;3)
1253
1254 void mac_set_rx_mode(smc,mode)
1255 struct s_smc *smc ;
1256 int mode ;
1257
1258 Function DOWNCALL/INTERN (SMT, fplustm.c)
1259 This function enables / disables the selected receive.
1260 Don't call this function if the hardware module is
1261 used -- use mac_drv_rx_mode() instead of.
1262
1263 Para mode = 1 RX_ENABLE_ALLMULTI enable all multicasts
1264 2 RX_DISABLE_ALLMULTI disable "enable all multicasts"
1265 3 RX_ENABLE_PROMISC enable promiscous
1266 4 RX_DISABLE_PROMISC disable promiscous
1267 5 RX_ENABLE_NSA enable reception of NSA frames
1268 6 RX_DISABLE_NSA disable reception of NSA frames
1269
1270 Note The selected receive modes will be lost after 'driver reset'
1271 or 'set station address'
1272
1273 END_MANUAL_ENTRY
1274 */
mac_set_rx_mode(struct s_smc * smc,int mode)1275 void mac_set_rx_mode(struct s_smc *smc, int mode)
1276 {
1277 switch (mode) {
1278 case RX_ENABLE_ALLMULTI :
1279 smc->hw.fp.rx_prom |= RX_MODE_ALL_MULTI ;
1280 break ;
1281 case RX_DISABLE_ALLMULTI :
1282 smc->hw.fp.rx_prom &= ~RX_MODE_ALL_MULTI ;
1283 break ;
1284 case RX_ENABLE_PROMISC :
1285 smc->hw.fp.rx_prom |= RX_MODE_PROM ;
1286 break ;
1287 case RX_DISABLE_PROMISC :
1288 smc->hw.fp.rx_prom &= ~RX_MODE_PROM ;
1289 break ;
1290 case RX_ENABLE_NSA :
1291 smc->hw.fp.nsa_mode = FM_MDAMA ;
1292 smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) |
1293 smc->hw.fp.nsa_mode ;
1294 break ;
1295 case RX_DISABLE_NSA :
1296 smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ;
1297 smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) |
1298 smc->hw.fp.nsa_mode ;
1299 break ;
1300 }
1301 if (smc->hw.fp.rx_prom & RX_MODE_PROM) {
1302 smc->hw.fp.rx_mode = FM_MLIMPROM ;
1303 }
1304 else if (smc->hw.fp.rx_prom & RX_MODE_ALL_MULTI) {
1305 smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode | FM_EXGPA0 ;
1306 }
1307 else
1308 smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode ;
1309 SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ;
1310 mac_update_multicast(smc) ;
1311 }
1312
1313 /*
1314 BEGIN_MANUAL_ENTRY(module;tests;3)
1315 How to test the Restricted Token Monitor
1316 ----------------------------------------------------------------
1317
1318 o Insert a break point in the function rtm_irq()
1319 o Remove all stations with a restricted token monitor from the
1320 network.
1321 o Connect a UPPS ISA or EISA station to the network.
1322 o Give the FORMAC of UPPS station the command to send
1323 restricted tokens until the ring becomes instable.
1324 o Now connect your test test client.
1325 o The restricted token monitor should detect the restricted token,
1326 and your break point will be reached.
1327 o You can ovserve how the station will clean the ring.
1328
1329 END_MANUAL_ENTRY
1330 */
rtm_irq(struct s_smc * smc)1331 void rtm_irq(struct s_smc *smc)
1332 {
1333 outpw(ADDR(B2_RTM_CRTL),TIM_CL_IRQ) ; /* clear IRQ */
1334 if (inpw(ADDR(B2_RTM_CRTL)) & TIM_RES_TOK) {
1335 outpw(FM_A(FM_CMDREG1),FM_ICL) ; /* force claim */
1336 DB_RMT("RMT: fddiPATHT_Rmode expired\n",0,0) ;
1337 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS,
1338 (u_long) FDDI_SMT_EVENT,
1339 (u_long) FDDI_RTT, smt_get_event_word(smc));
1340 }
1341 outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable RTM monitoring */
1342 }
1343
rtm_init(struct s_smc * smc)1344 static void rtm_init(struct s_smc *smc)
1345 {
1346 outpd(ADDR(B2_RTM_INI),0) ; /* timer = 0 */
1347 outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable IRQ */
1348 }
1349
rtm_set_timer(struct s_smc * smc)1350 void rtm_set_timer(struct s_smc *smc)
1351 {
1352 /*
1353 * MIB timer and hardware timer have the same resolution of 80nS
1354 */
1355 DB_RMT("RMT: setting new fddiPATHT_Rmode, t = %d ns \n",
1356 (int) smc->mib.a[PATH0].fddiPATHT_Rmode,0) ;
1357 outpd(ADDR(B2_RTM_INI),smc->mib.a[PATH0].fddiPATHT_Rmode) ;
1358 }
1359
smt_split_up_fifo(struct s_smc * smc)1360 static void smt_split_up_fifo(struct s_smc *smc)
1361 {
1362
1363 /*
1364 BEGIN_MANUAL_ENTRY(module;mem;1)
1365 -------------------------------------------------------------
1366 RECEIVE BUFFER MEMORY DIVERSION
1367 -------------------------------------------------------------
1368
1369 R1_RxD == SMT_R1_RXD_COUNT
1370 R2_RxD == SMT_R2_RXD_COUNT
1371
1372 SMT_R1_RXD_COUNT must be unequal zero
1373
1374 | R1_RxD R2_RxD |R1_RxD R2_RxD | R1_RxD R2_RxD
1375 | x 0 | x 1-3 | x < 3
1376 ----------------------------------------------------------------------
1377 | 63,75 kB | 54,75 | R1_RxD
1378 rx queue 1 | RX_FIFO_SPACE | RX_LARGE_FIFO| ------------- * 63,75 kB
1379 | | | R1_RxD+R2_RxD
1380 ----------------------------------------------------------------------
1381 | | 9 kB | R2_RxD
1382 rx queue 2 | 0 kB | RX_SMALL_FIFO| ------------- * 63,75 kB
1383 | (not used) | | R1_RxD+R2_RxD
1384
1385 END_MANUAL_ENTRY
1386 */
1387
1388 if (SMT_R1_RXD_COUNT == 0) {
1389 SMT_PANIC(smc,SMT_E0117, SMT_E0117_MSG) ;
1390 }
1391
1392 switch(SMT_R2_RXD_COUNT) {
1393 case 0:
1394 smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE ;
1395 smc->hw.fp.fifo.rx2_fifo_size = 0 ;
1396 break ;
1397 case 1:
1398 case 2:
1399 case 3:
1400 smc->hw.fp.fifo.rx1_fifo_size = RX_LARGE_FIFO ;
1401 smc->hw.fp.fifo.rx2_fifo_size = RX_SMALL_FIFO ;
1402 break ;
1403 default: /* this is not the real defaule */
1404 smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE *
1405 SMT_R1_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ;
1406 smc->hw.fp.fifo.rx2_fifo_size = RX_FIFO_SPACE *
1407 SMT_R2_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ;
1408 break ;
1409 }
1410
1411 /*
1412 BEGIN_MANUAL_ENTRY(module;mem;1)
1413 -------------------------------------------------------------
1414 TRANSMIT BUFFER MEMORY DIVERSION
1415 -------------------------------------------------------------
1416
1417
1418 | no sync bw | sync bw available and | sync bw available and
1419 | available | SynchTxMode = SPLIT | SynchTxMode = ALL
1420 -----------------------------------------------------------------------
1421 sync tx | 0 kB | 32 kB | 55 kB
1422 queue | | TX_MEDIUM_FIFO | TX_LARGE_FIFO
1423 -----------------------------------------------------------------------
1424 async tx | 64 kB | 32 kB | 9 k
1425 queue | TX_FIFO_SPACE| TX_MEDIUM_FIFO | TX_SMALL_FIFO
1426
1427 END_MANUAL_ENTRY
1428 */
1429
1430 /*
1431 * set the tx mode bits
1432 */
1433 if (smc->mib.a[PATH0].fddiPATHSbaPayload) {
1434 #ifdef ESS
1435 smc->hw.fp.fifo.fifo_config_mode |=
1436 smc->mib.fddiESSSynchTxMode | SYNC_TRAFFIC_ON ;
1437 #endif
1438 }
1439 else {
1440 smc->hw.fp.fifo.fifo_config_mode &=
1441 ~(SEND_ASYNC_AS_SYNC|SYNC_TRAFFIC_ON) ;
1442 }
1443
1444 /*
1445 * split up the FIFO
1446 */
1447 if (smc->hw.fp.fifo.fifo_config_mode & SYNC_TRAFFIC_ON) {
1448 if (smc->hw.fp.fifo.fifo_config_mode & SEND_ASYNC_AS_SYNC) {
1449 smc->hw.fp.fifo.tx_s_size = TX_LARGE_FIFO ;
1450 smc->hw.fp.fifo.tx_a0_size = TX_SMALL_FIFO ;
1451 }
1452 else {
1453 smc->hw.fp.fifo.tx_s_size = TX_MEDIUM_FIFO ;
1454 smc->hw.fp.fifo.tx_a0_size = TX_MEDIUM_FIFO ;
1455 }
1456 }
1457 else {
1458 smc->hw.fp.fifo.tx_s_size = 0 ;
1459 smc->hw.fp.fifo.tx_a0_size = TX_FIFO_SPACE ;
1460 }
1461
1462 smc->hw.fp.fifo.rx1_fifo_start = smc->hw.fp.fifo.rbc_ram_start +
1463 RX_FIFO_OFF ;
1464 smc->hw.fp.fifo.tx_s_start = smc->hw.fp.fifo.rx1_fifo_start +
1465 smc->hw.fp.fifo.rx1_fifo_size ;
1466 smc->hw.fp.fifo.tx_a0_start = smc->hw.fp.fifo.tx_s_start +
1467 smc->hw.fp.fifo.tx_s_size ;
1468 smc->hw.fp.fifo.rx2_fifo_start = smc->hw.fp.fifo.tx_a0_start +
1469 smc->hw.fp.fifo.tx_a0_size ;
1470
1471 DB_SMT("FIFO split: mode = %x\n",smc->hw.fp.fifo.fifo_config_mode,0) ;
1472 DB_SMT("rbc_ram_start = %x rbc_ram_end = %x\n",
1473 smc->hw.fp.fifo.rbc_ram_start, smc->hw.fp.fifo.rbc_ram_end) ;
1474 DB_SMT("rx1_fifo_start = %x tx_s_start = %x\n",
1475 smc->hw.fp.fifo.rx1_fifo_start, smc->hw.fp.fifo.tx_s_start) ;
1476 DB_SMT("tx_a0_start = %x rx2_fifo_start = %x\n",
1477 smc->hw.fp.fifo.tx_a0_start, smc->hw.fp.fifo.rx2_fifo_start) ;
1478 }
1479
formac_reinit_tx(struct s_smc * smc)1480 void formac_reinit_tx(struct s_smc *smc)
1481 {
1482 /*
1483 * Split up the FIFO and reinitialize the MAC if synchronous
1484 * bandwidth becomes available but no synchronous queue is
1485 * configured.
1486 */
1487 if (!smc->hw.fp.fifo.tx_s_size && smc->mib.a[PATH0].fddiPATHSbaPayload){
1488 (void)init_mac(smc,0) ;
1489 }
1490 }
1491
1492