• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  *	(C)Copyright 1998,1999 SysKonnect,
4  *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5  *
6  *	See the file "skfddi.c" for further information.
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  *
13  *	The information in this file is provided "AS IS" without warranty.
14  *
15  ******************************************************************************/
16 
17 /*
18 	PCM
19 	Physical Connection Management
20 */
21 
22 /*
23  * Hardware independent state machine implemantation
24  * The following external SMT functions are referenced :
25  *
26  * 		queue_event()
27  * 		smt_timer_start()
28  * 		smt_timer_stop()
29  *
30  * 	The following external HW dependent functions are referenced :
31  * 		sm_pm_control()
32  *		sm_ph_linestate()
33  *		sm_pm_ls_latch()
34  *
35  * 	The following HW dependent events are required :
36  *		PC_QLS
37  *		PC_ILS
38  *		PC_HLS
39  *		PC_MLS
40  *		PC_NSE
41  *		PC_LEM
42  *
43  */
44 
45 
46 #include "h/types.h"
47 #include "h/fddi.h"
48 #include "h/smc.h"
49 #include "h/supern_2.h"
50 #define KERNEL
51 #include "h/smtstate.h"
52 
53 #ifndef	lint
54 static const char ID_sccs[] = "@(#)pcmplc.c	2.55 99/08/05 (C) SK " ;
55 #endif
56 
57 #ifdef	FDDI_MIB
58 extern int snmp_fddi_trap(
59 #ifdef	ANSIC
60 struct s_smc	* smc, int  type, int  index
61 #endif
62 );
63 #endif
64 #ifdef	CONCENTRATOR
65 extern int plc_is_installed(
66 #ifdef	ANSIC
67 struct s_smc *smc ,
68 int p
69 #endif
70 ) ;
71 #endif
72 /*
73  * FSM Macros
74  */
75 #define AFLAG		(0x20)
76 #define GO_STATE(x)	(mib->fddiPORTPCMState = (x)|AFLAG)
77 #define ACTIONS_DONE()	(mib->fddiPORTPCMState &= ~AFLAG)
78 #define ACTIONS(x)	(x|AFLAG)
79 
80 /*
81  * PCM states
82  */
83 #define PC0_OFF			0
84 #define PC1_BREAK		1
85 #define PC2_TRACE		2
86 #define PC3_CONNECT		3
87 #define PC4_NEXT		4
88 #define PC5_SIGNAL		5
89 #define PC6_JOIN		6
90 #define PC7_VERIFY		7
91 #define PC8_ACTIVE		8
92 #define PC9_MAINT		9
93 
94 #ifdef	DEBUG
95 /*
96  * symbolic state names
97  */
98 static const char * const pcm_states[] =  {
99 	"PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
100 	"PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
101 } ;
102 
103 /*
104  * symbolic event names
105  */
106 static const char * const pcm_events[] = {
107 	"NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
108 	"PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
109 	"PC_ENABLE","PC_DISABLE",
110 	"PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
111 	"PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
112 	"PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
113 	"PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
114 	"PC_NSE","PC_LEM"
115 } ;
116 #endif
117 
118 #ifdef	MOT_ELM
119 /*
120  * PCL-S control register
121  * this register in the PLC-S controls the scrambling parameters
122  */
123 #define PLCS_CONTROL_C_U	0
124 #define PLCS_CONTROL_C_S	(PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
125 				 PL_C_CIPHER_ENABLE)
126 #define	PLCS_FASSERT_U		0
127 #define	PLCS_FASSERT_S		0xFd76	/* 52.0 us */
128 #define	PLCS_FDEASSERT_U	0
129 #define	PLCS_FDEASSERT_S	0
130 #else	/* nMOT_ELM */
131 /*
132  * PCL-S control register
133  * this register in the PLC-S controls the scrambling parameters
134  * can be patched for ANSI compliance if standard changes
135  */
136 static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
137 static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
138 
139 #define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
140 #define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
141 #endif	/* nMOT_ELM */
142 
143 /*
144  * external vars
145  */
146 /* struct definition see 'cmtdef.h' (also used by CFM) */
147 
148 #define PS_OFF		0
149 #define PS_BIT3		1
150 #define PS_BIT4		2
151 #define PS_BIT7		3
152 #define PS_LCT		4
153 #define PS_BIT8		5
154 #define PS_JOIN		6
155 #define PS_ACTIVE	7
156 
157 #define LCT_LEM_MAX	255
158 
159 /*
160  * PLC timing parameter
161  */
162 
163 #define PLC_MS(m)	((int)((0x10000L-(m*100000L/2048))))
164 #define SLOW_TL_MIN	PLC_MS(6)
165 #define SLOW_C_MIN	PLC_MS(10)
166 
167 static	const struct plt {
168 	int	timer ;			/* relative plc timer address */
169 	int	para ;			/* default timing parameters */
170 } pltm[] = {
171 	{ PL_C_MIN, SLOW_C_MIN },	/* min t. to remain Connect State */
172 	{ PL_TL_MIN, SLOW_TL_MIN },	/* min t. to transmit a Line State */
173 	{ PL_TB_MIN, TP_TB_MIN },	/* min break time */
174 	{ PL_T_OUT, TP_T_OUT },		/* Signaling timeout */
175 	{ PL_LC_LENGTH, TP_LC_LENGTH },	/* Link Confidence Test Time */
176 	{ PL_T_SCRUB, TP_T_SCRUB },	/* Scrub Time == MAC TVX time ! */
177 	{ PL_NS_MAX, TP_NS_MAX },	/* max t. that noise is tolerated */
178 	{ 0,0 }
179 } ;
180 
181 /*
182  * interrupt mask
183  */
184 #ifdef	SUPERNET_3
185 /*
186  * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
187  * PLL bug?
188  */
189 static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
190 			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
191 #else	/* SUPERNET_3 */
192 /*
193  * We do NOT need the elasticity buffer error during signaling.
194  */
195 static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
196 			PL_PCM_ENABLED | PL_SELF_TEST ;
197 #endif	/* SUPERNET_3 */
198 static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
199 			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
200 
201 /* external functions */
202 void all_selection_criteria(struct s_smc *smc);
203 
204 /* internal functions */
205 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
206 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
207 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
208 static void reset_lem_struct(struct s_phy *phy);
209 static void plc_init(struct s_smc *smc, int p);
210 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
211 static void sm_ph_lem_stop(struct s_smc *smc, int np);
212 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
213 static void real_init_plc(struct s_smc *smc);
214 
215 /*
216  * SMT timer interface
217  *      start PCM timer 0
218  */
start_pcm_timer0(struct s_smc * smc,u_long value,int event,struct s_phy * phy)219 static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
220 			     struct s_phy *phy)
221 {
222 	phy->timer0_exp = FALSE ;       /* clear timer event flag */
223 	smt_timer_start(smc,&phy->pcm_timer0,value,
224 		EV_TOKEN(EVENT_PCM+phy->np,event)) ;
225 }
226 /*
227  * SMT timer interface
228  *      stop PCM timer 0
229  */
stop_pcm_timer0(struct s_smc * smc,struct s_phy * phy)230 static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
231 {
232 	if (phy->pcm_timer0.tm_active)
233 		smt_timer_stop(smc,&phy->pcm_timer0) ;
234 }
235 
236 /*
237 	init PCM state machine (called by driver)
238 	clear all PCM vars and flags
239 */
pcm_init(struct s_smc * smc)240 void pcm_init(struct s_smc *smc)
241 {
242 	int		i ;
243 	int		np ;
244 	struct s_phy	*phy ;
245 	struct fddi_mib_p	*mib ;
246 
247 	for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
248 		/* Indicates the type of PHY being used */
249 		mib = phy->mib ;
250 		mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
251 		phy->np = np ;
252 		switch (smc->s.sas) {
253 #ifdef	CONCENTRATOR
254 		case SMT_SAS :
255 			mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
256 			break ;
257 		case SMT_DAS :
258 			mib->fddiPORTMy_Type = (np == PA) ? TA :
259 					(np == PB) ? TB : TM ;
260 			break ;
261 		case SMT_NAC :
262 			mib->fddiPORTMy_Type = TM ;
263 			break;
264 #else
265 		case SMT_SAS :
266 			mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
267 			mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
268 					FALSE ;
269 #ifndef	SUPERNET_3
270 			smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
271 #else
272 			smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
273 #endif
274 			break ;
275 		case SMT_DAS :
276 			mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
277 			break ;
278 #endif
279 		}
280 		/*
281 		 * set PMD-type
282 		 */
283 		phy->pmd_scramble = 0 ;
284 		switch (phy->pmd_type[PMD_SK_PMD]) {
285 		case 'P' :
286 			mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
287 			break ;
288 		case 'L' :
289 			mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
290 			break ;
291 		case 'D' :
292 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
293 			break ;
294 		case 'S' :
295 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
296 			phy->pmd_scramble = TRUE ;
297 			break ;
298 		case 'U' :
299 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
300 			phy->pmd_scramble = TRUE ;
301 			break ;
302 		case '1' :
303 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
304 			break ;
305 		case '2' :
306 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
307 			break ;
308 		case '3' :
309 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
310 			break ;
311 		case '4' :
312 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
313 			break ;
314 		case 'H' :
315 			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
316 			break ;
317 		case 'I' :
318 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
319 			break ;
320 		case 'G' :
321 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
322 			break ;
323 		default:
324 			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
325 			break ;
326 		}
327 		/*
328 		 * A and B port can be on primary and secondary path
329 		 */
330 		switch (mib->fddiPORTMy_Type) {
331 		case TA :
332 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
333 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
334 			mib->fddiPORTRequestedPaths[2] =
335 				MIB_P_PATH_LOCAL |
336 				MIB_P_PATH_CON_ALTER |
337 				MIB_P_PATH_SEC_PREFER ;
338 			mib->fddiPORTRequestedPaths[3] =
339 				MIB_P_PATH_LOCAL |
340 				MIB_P_PATH_CON_ALTER |
341 				MIB_P_PATH_SEC_PREFER |
342 				MIB_P_PATH_THRU ;
343 			break ;
344 		case TB :
345 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
346 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
347 			mib->fddiPORTRequestedPaths[2] =
348 				MIB_P_PATH_LOCAL |
349 				MIB_P_PATH_PRIM_PREFER ;
350 			mib->fddiPORTRequestedPaths[3] =
351 				MIB_P_PATH_LOCAL |
352 				MIB_P_PATH_PRIM_PREFER |
353 				MIB_P_PATH_CON_PREFER |
354 				MIB_P_PATH_THRU ;
355 			break ;
356 		case TS :
357 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
358 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
359 			mib->fddiPORTRequestedPaths[2] =
360 				MIB_P_PATH_LOCAL |
361 				MIB_P_PATH_CON_ALTER |
362 				MIB_P_PATH_PRIM_PREFER ;
363 			mib->fddiPORTRequestedPaths[3] =
364 				MIB_P_PATH_LOCAL |
365 				MIB_P_PATH_CON_ALTER |
366 				MIB_P_PATH_PRIM_PREFER ;
367 			break ;
368 		case TM :
369 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
370 			mib->fddiPORTRequestedPaths[2] =
371 				MIB_P_PATH_LOCAL |
372 				MIB_P_PATH_SEC_ALTER |
373 				MIB_P_PATH_PRIM_ALTER ;
374 			mib->fddiPORTRequestedPaths[3] = 0 ;
375 			break ;
376 		}
377 
378 		phy->pc_lem_fail = FALSE ;
379 		mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
380 		mib->fddiPORTLCTFail_Ct = 0 ;
381 		mib->fddiPORTBS_Flag = 0 ;
382 		mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
383 		mib->fddiPORTNeighborType = TNONE ;
384 		phy->ls_flag = 0 ;
385 		phy->rc_flag = 0 ;
386 		phy->tc_flag = 0 ;
387 		phy->td_flag = 0 ;
388 		if (np >= PM)
389 			phy->phy_name = '0' + np - PM ;
390 		else
391 			phy->phy_name = 'A' + np ;
392 		phy->wc_flag = FALSE ;		/* set by SMT */
393 		memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
394 		reset_lem_struct(phy) ;
395 		memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
396 		phy->plc.p_state = PS_OFF ;
397 		for (i = 0 ; i < NUMBITS ; i++) {
398 			phy->t_next[i] = 0 ;
399 		}
400 	}
401 	real_init_plc(smc) ;
402 }
403 
init_plc(struct s_smc * smc)404 void init_plc(struct s_smc *smc)
405 {
406 	SK_UNUSED(smc) ;
407 
408 	/*
409 	 * dummy
410 	 * this is an obsolete public entry point that has to remain
411 	 * for compat. It is used by various drivers.
412 	 * the work is now done in real_init_plc()
413 	 * which is called from pcm_init() ;
414 	 */
415 }
416 
real_init_plc(struct s_smc * smc)417 static void real_init_plc(struct s_smc *smc)
418 {
419 	int	p ;
420 
421 	for (p = 0 ; p < NUMPHYS ; p++)
422 		plc_init(smc,p) ;
423 }
424 
plc_init(struct s_smc * smc,int p)425 static void plc_init(struct s_smc *smc, int p)
426 {
427 	int	i ;
428 #ifndef	MOT_ELM
429 	int	rev ;	/* Revision of PLC-x */
430 #endif	/* MOT_ELM */
431 
432 	/* transit PCM state machine to MAINT state */
433 	outpw(PLC(p,PL_CNTRL_B),0) ;
434 	outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
435 	outpw(PLC(p,PL_CNTRL_A),0) ;
436 
437 	/*
438 	 * if PLC-S then set control register C
439 	 */
440 #ifndef	MOT_ELM
441 	rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
442 	if (rev != PLC_REVISION_A)
443 #endif	/* MOT_ELM */
444 	{
445 		if (smc->y[p].pmd_scramble) {
446 			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
447 #ifdef	MOT_ELM
448 			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
449 			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
450 #endif	/* MOT_ELM */
451 		}
452 		else {
453 			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
454 #ifdef	MOT_ELM
455 			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
456 			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
457 #endif	/* MOT_ELM */
458 		}
459 	}
460 
461 	/*
462 	 * set timer register
463 	 */
464 	for ( i = 0 ; pltm[i].timer; i++)	/* set timer parameter reg */
465 		outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
466 
467 	(void)inpw(PLC(p,PL_INTR_EVENT)) ;	/* clear interrupt event reg */
468 	plc_clear_irq(smc,p) ;
469 	outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
470 
471 	/*
472 	 * if PCM is configured for class s, it will NOT go to the
473 	 * REMOVE state if offline (page 3-36;)
474 	 * in the concentrator, all inactive PHYS always must be in
475 	 * the remove state
476 	 * there's no real need to use this feature at all ..
477 	 */
478 #ifndef	CONCENTRATOR
479 	if ((smc->s.sas == SMT_SAS) && (p == PS)) {
480 		outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
481 	}
482 #endif
483 }
484 
485 /*
486  * control PCM state machine
487  */
plc_go_state(struct s_smc * smc,int p,int state)488 static void plc_go_state(struct s_smc *smc, int p, int state)
489 {
490 	HW_PTR port ;
491 	int val ;
492 
493 	SK_UNUSED(smc) ;
494 
495 	port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
496 	val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
497 	outpw(port,val) ;
498 	outpw(port,val | state) ;
499 }
500 
501 /*
502  * read current line state (called by ECM & PCM)
503  */
sm_pm_get_ls(struct s_smc * smc,int phy)504 int sm_pm_get_ls(struct s_smc *smc, int phy)
505 {
506 	int	state ;
507 
508 #ifdef	CONCENTRATOR
509 	if (!plc_is_installed(smc,phy))
510 		return(PC_QLS) ;
511 #endif
512 
513 	state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
514 	switch(state) {
515 	case PL_L_QLS:
516 		state = PC_QLS ;
517 		break ;
518 	case PL_L_MLS:
519 		state = PC_MLS ;
520 		break ;
521 	case PL_L_HLS:
522 		state = PC_HLS ;
523 		break ;
524 	case PL_L_ILS4:
525 	case PL_L_ILS16:
526 		state = PC_ILS ;
527 		break ;
528 	case PL_L_ALS:
529 		state = PC_LS_PDR ;
530 		break ;
531 	default :
532 		state = PC_LS_NONE ;
533 	}
534 	return(state) ;
535 }
536 
plc_send_bits(struct s_smc * smc,struct s_phy * phy,int len)537 static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
538 {
539 	int np = phy->np ;		/* PHY index */
540 	int	n ;
541 	int	i ;
542 
543 	SK_UNUSED(smc) ;
544 
545 	/* create bit vector */
546 	for (i = len-1,n = 0 ; i >= 0 ; i--) {
547 		n = (n<<1) | phy->t_val[phy->bitn+i] ;
548 	}
549 	if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
550 #if	0
551 		printf("PL_PCM_SIGNAL is set\n") ;
552 #endif
553 		return(1) ;
554 	}
555 	/* write bit[n] & length = 1 to regs */
556 	outpw(PLC(np,PL_VECTOR_LEN),len-1) ;	/* len=nr-1 */
557 	outpw(PLC(np,PL_XMIT_VECTOR),n) ;
558 #ifdef	DEBUG
559 #if 1
560 #ifdef	DEBUG_BRD
561 	if (smc->debug.d_plc & 0x80)
562 #else
563 	if (debug.d_plc & 0x80)
564 #endif
565 		printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
566 #endif
567 #endif
568 	return(0) ;
569 }
570 
571 /*
572  * config plc muxes
573  */
plc_config_mux(struct s_smc * smc,int mux)574 void plc_config_mux(struct s_smc *smc, int mux)
575 {
576 	if (smc->s.sas != SMT_DAS)
577 		return ;
578 	if (mux == MUX_WRAPB) {
579 		SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
580 		SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
581 	}
582 	else {
583 		CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
584 		CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
585 	}
586 	CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
587 	CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
588 }
589 
590 /*
591 	PCM state machine
592 	called by dispatcher  & fddi_init() (driver)
593 	do
594 		display state change
595 		process event
596 	until SM is stable
597 */
pcm(struct s_smc * smc,const int np,int event)598 void pcm(struct s_smc *smc, const int np, int event)
599 {
600 	int	state ;
601 	int	oldstate ;
602 	struct s_phy	*phy ;
603 	struct fddi_mib_p	*mib ;
604 
605 #ifndef	CONCENTRATOR
606 	/*
607 	 * ignore 2nd PHY if SAS
608 	 */
609 	if ((np != PS) && (smc->s.sas == SMT_SAS))
610 		return ;
611 #endif
612 	phy = &smc->y[np] ;
613 	mib = phy->mib ;
614 	oldstate = mib->fddiPORTPCMState ;
615 	do {
616 		DB_PCM("PCM %c: state %s",
617 			phy->phy_name,
618 			(mib->fddiPORTPCMState & AFLAG) ? "ACTIONS " : "") ;
619 		DB_PCM("%s, event %s\n",
620 			pcm_states[mib->fddiPORTPCMState & ~AFLAG],
621 			pcm_events[event]) ;
622 		state = mib->fddiPORTPCMState ;
623 		pcm_fsm(smc,phy,event) ;
624 		event = 0 ;
625 	} while (state != mib->fddiPORTPCMState) ;
626 	/*
627 	 * because the PLC does the bit signaling for us,
628 	 * we're always in SIGNAL state
629 	 * the MIB want's to see CONNECT
630 	 * we therefore fake an entry in the MIB
631 	 */
632 	if (state == PC5_SIGNAL)
633 		mib->fddiPORTPCMStateX = PC3_CONNECT ;
634 	else
635 		mib->fddiPORTPCMStateX = state ;
636 
637 #ifndef	SLIM_SMT
638 	/*
639 	 * path change
640 	 */
641 	if (	mib->fddiPORTPCMState != oldstate &&
642 		((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
643 		smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
644 			(int) (INDEX_PORT+ phy->np),0) ;
645 	}
646 #endif
647 
648 #ifdef FDDI_MIB
649 	/* check whether a snmp-trap has to be sent */
650 
651 	if ( mib->fddiPORTPCMState != oldstate ) {
652 		/* a real state change took place */
653 		DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
654 		if ( mib->fddiPORTPCMState == PC0_OFF ) {
655 			/* send first trap */
656 			snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
657 		} else if ( oldstate == PC0_OFF ) {
658 			/* send second trap */
659 			snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
660 		} else if ( mib->fddiPORTPCMState != PC2_TRACE &&
661 			oldstate == PC8_ACTIVE ) {
662 			/* send third trap */
663 			snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
664 		} else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
665 			/* send fourth trap */
666 			snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
667 		}
668 	}
669 #endif
670 
671 	pcm_state_change(smc,np,state) ;
672 }
673 
674 /*
675  * PCM state machine
676  */
pcm_fsm(struct s_smc * smc,struct s_phy * phy,int cmd)677 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
678 {
679 	int	i ;
680 	int	np = phy->np ;		/* PHY index */
681 	struct s_plc	*plc ;
682 	struct fddi_mib_p	*mib ;
683 #ifndef	MOT_ELM
684 	u_short	plc_rev ;		/* Revision of the plc */
685 #endif	/* nMOT_ELM */
686 
687 	plc = &phy->plc ;
688 	mib = phy->mib ;
689 
690 	/*
691 	 * general transitions independent of state
692 	 */
693 	switch (cmd) {
694 	case PC_STOP :
695 		/*PC00-PC80*/
696 		if (mib->fddiPORTPCMState != PC9_MAINT) {
697 			GO_STATE(PC0_OFF) ;
698 			AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
699 				FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
700 				smt_get_port_event_word(smc));
701 		}
702 		return ;
703 	case PC_START :
704 		/*PC01-PC81*/
705 		if (mib->fddiPORTPCMState != PC9_MAINT)
706 			GO_STATE(PC1_BREAK) ;
707 		return ;
708 	case PC_DISABLE :
709 		/* PC09-PC99 */
710 		GO_STATE(PC9_MAINT) ;
711 		AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
712 			FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
713 			smt_get_port_event_word(smc));
714 		return ;
715 	case PC_TIMEOUT_LCT :
716 		/* if long or extended LCT */
717 		stop_pcm_timer0(smc,phy) ;
718 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
719 		/* end of LCT is indicate by PCM_CODE (initiate PCM event) */
720 		return ;
721 	}
722 
723 	switch(mib->fddiPORTPCMState) {
724 	case ACTIONS(PC0_OFF) :
725 		stop_pcm_timer0(smc,phy) ;
726 		outpw(PLC(np,PL_CNTRL_A),0) ;
727 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
728 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
729 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
730 		phy->cf_loop = FALSE ;
731 		phy->cf_join = FALSE ;
732 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
733 		plc_go_state(smc,np,PL_PCM_STOP) ;
734 		mib->fddiPORTConnectState = PCM_DISABLED ;
735 		ACTIONS_DONE() ;
736 		break ;
737 	case PC0_OFF:
738 		/*PC09*/
739 		if (cmd == PC_MAINT) {
740 			GO_STATE(PC9_MAINT) ;
741 			break ;
742 		}
743 		break ;
744 	case ACTIONS(PC1_BREAK) :
745 		/* Stop the LCT timer if we came from Signal state */
746 		stop_pcm_timer0(smc,phy) ;
747 		ACTIONS_DONE() ;
748 		plc_go_state(smc,np,0) ;
749 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
750 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
751 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
752 		/*
753 		 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
754 		 */
755 #if	0
756 		if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
757 			plc_go_state(smc,np,PL_PCM_STOP) ;
758 			/* TB_MIN ? */
759 		}
760 #endif
761 		/*
762 		 * Go to OFF state in any case.
763 		 */
764 		plc_go_state(smc,np,PL_PCM_STOP) ;
765 
766 		if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
767 			mib->fddiPORTConnectState = PCM_CONNECTING ;
768 		phy->cf_loop = FALSE ;
769 		phy->cf_join = FALSE ;
770 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
771 		phy->ls_flag = FALSE ;
772 		phy->pc_mode = PM_NONE ;	/* needed by CFM */
773 		phy->bitn = 0 ;			/* bit signaling start bit */
774 		for (i = 0 ; i < 3 ; i++)
775 			pc_tcode_actions(smc,i,phy) ;
776 
777 		/* Set the non-active interrupt mask register */
778 		outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
779 
780 		/*
781 		 * If the LCT was stopped. There might be a
782 		 * PCM_CODE interrupt event present.
783 		 * This must be cleared.
784 		 */
785 		(void)inpw(PLC(np,PL_INTR_EVENT)) ;
786 #ifndef	MOT_ELM
787 		/* Get the plc revision for revision dependent code */
788 		plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
789 
790 		if (plc_rev != PLC_REV_SN3)
791 #endif	/* MOT_ELM */
792 		{
793 			/*
794 			 * No supernet III PLC, so set Xmit verctor and
795 			 * length BEFORE starting the state machine.
796 			 */
797 			if (plc_send_bits(smc,phy,3)) {
798 				return ;
799 			}
800 		}
801 
802 		/*
803 		 * Now give the Start command.
804 		 * - The start command shall be done before setting the bits
805 		 *   to be signaled. (In PLC-S description and PLCS in SN3.
806 		 * - The start command shall be issued AFTER setting the
807 		 *   XMIT vector and the XMIT length register.
808 		 *
809 		 * We do it exactly according this specs for the old PLC and
810 		 * the new PLCS inside the SN3.
811 		 * For the usual PLCS we try it the way it is done for the
812 		 * old PLC and set the XMIT registers again, if the PLC is
813 		 * not in SIGNAL state. This is done according to an PLCS
814 		 * errata workaround.
815 		 */
816 
817 		plc_go_state(smc,np,PL_PCM_START) ;
818 
819 		/*
820 		 * workaround for PLC-S eng. sample errata
821 		 */
822 #ifdef	MOT_ELM
823 		if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
824 #else	/* nMOT_ELM */
825 		if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
826 			PLC_REVISION_A) &&
827 			!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
828 #endif	/* nMOT_ELM */
829 		{
830 			/*
831 			 * Set register again (PLCS errata) or the first time
832 			 * (new SN3 PLCS).
833 			 */
834 			(void) plc_send_bits(smc,phy,3) ;
835 		}
836 		/*
837 		 * end of workaround
838 		 */
839 
840 		GO_STATE(PC5_SIGNAL) ;
841 		plc->p_state = PS_BIT3 ;
842 		plc->p_bits = 3 ;
843 		plc->p_start = 0 ;
844 
845 		break ;
846 	case PC1_BREAK :
847 		break ;
848 	case ACTIONS(PC2_TRACE) :
849 		plc_go_state(smc,np,PL_PCM_TRACE) ;
850 		ACTIONS_DONE() ;
851 		break ;
852 	case PC2_TRACE :
853 		break ;
854 
855 	case PC3_CONNECT :	/* these states are done by hardware */
856 	case PC4_NEXT :
857 		break ;
858 
859 	case ACTIONS(PC5_SIGNAL) :
860 		ACTIONS_DONE() ;
861 	case PC5_SIGNAL :
862 		if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
863 			break ;
864 		switch (plc->p_state) {
865 		case PS_BIT3 :
866 			for (i = 0 ; i <= 2 ; i++)
867 				pc_rcode_actions(smc,i,phy) ;
868 			pc_tcode_actions(smc,3,phy) ;
869 			plc->p_state = PS_BIT4 ;
870 			plc->p_bits = 1 ;
871 			plc->p_start = 3 ;
872 			phy->bitn = 3 ;
873 			if (plc_send_bits(smc,phy,1)) {
874 				return ;
875 			}
876 			break ;
877 		case PS_BIT4 :
878 			pc_rcode_actions(smc,3,phy) ;
879 			for (i = 4 ; i <= 6 ; i++)
880 				pc_tcode_actions(smc,i,phy) ;
881 			plc->p_state = PS_BIT7 ;
882 			plc->p_bits = 3 ;
883 			plc->p_start = 4 ;
884 			phy->bitn = 4 ;
885 			if (plc_send_bits(smc,phy,3)) {
886 				return ;
887 			}
888 			break ;
889 		case PS_BIT7 :
890 			for (i = 3 ; i <= 6 ; i++)
891 				pc_rcode_actions(smc,i,phy) ;
892 			plc->p_state = PS_LCT ;
893 			plc->p_bits = 0 ;
894 			plc->p_start = 7 ;
895 			phy->bitn = 7 ;
896 		sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
897 			/* start LCT */
898 			i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
899 			outpw(PLC(np,PL_CNTRL_B),i) ;	/* must be cleared */
900 			outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
901 			break ;
902 		case PS_LCT :
903 			/* check for local LCT failure */
904 			pc_tcode_actions(smc,7,phy) ;
905 			/*
906 			 * set tval[7]
907 			 */
908 			plc->p_state = PS_BIT8 ;
909 			plc->p_bits = 1 ;
910 			plc->p_start = 7 ;
911 			phy->bitn = 7 ;
912 			if (plc_send_bits(smc,phy,1)) {
913 				return ;
914 			}
915 			break ;
916 		case PS_BIT8 :
917 			/* check for remote LCT failure */
918 			pc_rcode_actions(smc,7,phy) ;
919 			if (phy->t_val[7] || phy->r_val[7]) {
920 				plc_go_state(smc,np,PL_PCM_STOP) ;
921 				GO_STATE(PC1_BREAK) ;
922 				break ;
923 			}
924 			for (i = 8 ; i <= 9 ; i++)
925 				pc_tcode_actions(smc,i,phy) ;
926 			plc->p_state = PS_JOIN ;
927 			plc->p_bits = 2 ;
928 			plc->p_start = 8 ;
929 			phy->bitn = 8 ;
930 			if (plc_send_bits(smc,phy,2)) {
931 				return ;
932 			}
933 			break ;
934 		case PS_JOIN :
935 			for (i = 8 ; i <= 9 ; i++)
936 				pc_rcode_actions(smc,i,phy) ;
937 			plc->p_state = PS_ACTIVE ;
938 			GO_STATE(PC6_JOIN) ;
939 			break ;
940 		}
941 		break ;
942 
943 	case ACTIONS(PC6_JOIN) :
944 		/*
945 		 * prevent mux error when going from WRAP_A to WRAP_B
946 		 */
947 		if (smc->s.sas == SMT_DAS && np == PB &&
948 			(smc->y[PA].pc_mode == PM_TREE ||
949 			 smc->y[PB].pc_mode == PM_TREE)) {
950 			SETMASK(PLC(np,PL_CNTRL_A),
951 				PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
952 			SETMASK(PLC(np,PL_CNTRL_B),
953 				PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
954 		}
955 		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
956 		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
957 		ACTIONS_DONE() ;
958 		cmd = 0 ;
959 		/* fall thru */
960 	case PC6_JOIN :
961 		switch (plc->p_state) {
962 		case PS_ACTIVE:
963 			/*PC88b*/
964 			if (!phy->cf_join) {
965 				phy->cf_join = TRUE ;
966 				queue_event(smc,EVENT_CFM,CF_JOIN+np) ; ;
967 			}
968 			if (cmd == PC_JOIN)
969 				GO_STATE(PC8_ACTIVE) ;
970 			/*PC82*/
971 			if (cmd == PC_TRACE) {
972 				GO_STATE(PC2_TRACE) ;
973 				break ;
974 			}
975 			break ;
976 		}
977 		break ;
978 
979 	case PC7_VERIFY :
980 		break ;
981 
982 	case ACTIONS(PC8_ACTIVE) :
983 		/*
984 		 * start LEM for SMT
985 		 */
986 		sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
987 
988 		phy->tr_flag = FALSE ;
989 		mib->fddiPORTConnectState = PCM_ACTIVE ;
990 
991 		/* Set the active interrupt mask register */
992 		outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
993 
994 		ACTIONS_DONE() ;
995 		break ;
996 	case PC8_ACTIVE :
997 		/*PC81 is done by PL_TNE_EXPIRED irq */
998 		/*PC82*/
999 		if (cmd == PC_TRACE) {
1000 			GO_STATE(PC2_TRACE) ;
1001 			break ;
1002 		}
1003 		/*PC88c: is done by TRACE_PROP irq */
1004 
1005 		break ;
1006 	case ACTIONS(PC9_MAINT) :
1007 		stop_pcm_timer0(smc,phy) ;
1008 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
1009 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
1010 		CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;	/* disable LEM int. */
1011 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
1012 		phy->cf_loop = FALSE ;
1013 		phy->cf_join = FALSE ;
1014 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
1015 		plc_go_state(smc,np,PL_PCM_STOP) ;
1016 		mib->fddiPORTConnectState = PCM_DISABLED ;
1017 		SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
1018 		sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
1019 		outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
1020 		ACTIONS_DONE() ;
1021 		break ;
1022 	case PC9_MAINT :
1023 		DB_PCMN(1,"PCM %c : MAINT\n",phy->phy_name,0) ;
1024 		/*PC90*/
1025 		if (cmd == PC_ENABLE) {
1026 			GO_STATE(PC0_OFF) ;
1027 			break ;
1028 		}
1029 		break ;
1030 
1031 	default:
1032 		SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
1033 		break ;
1034 	}
1035 }
1036 
1037 /*
1038  * force line state on a PHY output	(only in MAINT state)
1039  */
sm_ph_linestate(struct s_smc * smc,int phy,int ls)1040 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
1041 {
1042 	int	cntrl ;
1043 
1044 	SK_UNUSED(smc) ;
1045 
1046 	cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
1047 						PL_PCM_STOP | PL_MAINT ;
1048 	switch(ls) {
1049 	case PC_QLS: 		/* Force Quiet */
1050 		cntrl |= PL_M_QUI0 ;
1051 		break ;
1052 	case PC_MLS: 		/* Force Master */
1053 		cntrl |= PL_M_MASTR ;
1054 		break ;
1055 	case PC_HLS: 		/* Force Halt */
1056 		cntrl |= PL_M_HALT ;
1057 		break ;
1058 	default :
1059 	case PC_ILS: 		/* Force Idle */
1060 		cntrl |= PL_M_IDLE ;
1061 		break ;
1062 	case PC_LS_PDR: 	/* Enable repeat filter */
1063 		cntrl |= PL_M_TPDR ;
1064 		break ;
1065 	}
1066 	outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
1067 }
1068 
reset_lem_struct(struct s_phy * phy)1069 static void reset_lem_struct(struct s_phy *phy)
1070 {
1071 	struct lem_counter *lem = &phy->lem ;
1072 
1073 	phy->mib->fddiPORTLer_Estimate = 15 ;
1074 	lem->lem_float_ber = 15 * 100 ;
1075 }
1076 
1077 /*
1078  * link error monitor
1079  */
lem_evaluate(struct s_smc * smc,struct s_phy * phy)1080 static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
1081 {
1082 	int ber ;
1083 	u_long errors ;
1084 	struct lem_counter *lem = &phy->lem ;
1085 	struct fddi_mib_p	*mib ;
1086 	int			cond ;
1087 
1088 	mib = phy->mib ;
1089 
1090 	if (!lem->lem_on)
1091 		return ;
1092 
1093 	errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
1094 	lem->lem_errors += errors ;
1095 	mib->fddiPORTLem_Ct += errors ;
1096 
1097 	errors = lem->lem_errors ;
1098 	/*
1099 	 * calculation is called on a intervall of 8 seconds
1100 	 *	-> this means, that one error in 8 sec. is one of 8*125*10E6
1101 	 *	the same as BER = 10E-9
1102 	 * Please note:
1103 	 *	-> 9 errors in 8 seconds mean:
1104 	 *	   BER = 9 * 10E-9  and this is
1105 	 *	    < 10E-8, so the limit of 10E-8 is not reached!
1106 	 */
1107 
1108 		if (!errors)		ber = 15 ;
1109 	else	if (errors <= 9)	ber = 9 ;
1110 	else	if (errors <= 99)	ber = 8 ;
1111 	else	if (errors <= 999)	ber = 7 ;
1112 	else	if (errors <= 9999)	ber = 6 ;
1113 	else	if (errors <= 99999)	ber = 5 ;
1114 	else	if (errors <= 999999)	ber = 4 ;
1115 	else	if (errors <= 9999999)	ber = 3 ;
1116 	else	if (errors <= 99999999)	ber = 2 ;
1117 	else	if (errors <= 999999999) ber = 1 ;
1118 	else				ber = 0 ;
1119 
1120 	/*
1121 	 * weighted average
1122 	 */
1123 	ber *= 100 ;
1124 	lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
1125 	lem->lem_float_ber /= 10 ;
1126 	mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
1127 	if (mib->fddiPORTLer_Estimate < 4) {
1128 		mib->fddiPORTLer_Estimate = 4 ;
1129 	}
1130 
1131 	if (lem->lem_errors) {
1132 		DB_PCMN(1,"LEM %c :\n",phy->np == PB? 'B' : 'A',0) ;
1133 		DB_PCMN(1,"errors      : %ld\n",lem->lem_errors,0) ;
1134 		DB_PCMN(1,"sum_errors  : %ld\n",mib->fddiPORTLem_Ct,0) ;
1135 		DB_PCMN(1,"current BER : 10E-%d\n",ber/100,0) ;
1136 		DB_PCMN(1,"float BER   : 10E-(%d/100)\n",lem->lem_float_ber,0) ;
1137 		DB_PCMN(1,"avg. BER    : 10E-%d\n",
1138 			mib->fddiPORTLer_Estimate,0) ;
1139 	}
1140 
1141 	lem->lem_errors = 0L ;
1142 
1143 #ifndef	SLIM_SMT
1144 	cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
1145 		TRUE : FALSE ;
1146 #ifdef	SMT_EXT_CUTOFF
1147 	smt_ler_alarm_check(smc,phy,cond) ;
1148 #endif	/* nSMT_EXT_CUTOFF */
1149 	if (cond != mib->fddiPORTLerFlag) {
1150 		smt_srf_event(smc,SMT_COND_PORT_LER,
1151 			(int) (INDEX_PORT+ phy->np) ,cond) ;
1152 	}
1153 #endif
1154 
1155 	if (	mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
1156 		phy->pc_lem_fail = TRUE ;		/* flag */
1157 		mib->fddiPORTLem_Reject_Ct++ ;
1158 		/*
1159 		 * "forgive 10e-2" if we cutoff so we can come
1160 		 * up again ..
1161 		 */
1162 		lem->lem_float_ber += 2*100 ;
1163 
1164 		/*PC81b*/
1165 #ifdef	CONCENTRATOR
1166 		DB_PCMN(1,"PCM: LER cutoff on port %d cutoff %d\n",
1167 			phy->np, mib->fddiPORTLer_Cutoff) ;
1168 #endif
1169 #ifdef	SMT_EXT_CUTOFF
1170 		smt_port_off_event(smc,phy->np);
1171 #else	/* nSMT_EXT_CUTOFF */
1172 		queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1173 #endif	/* nSMT_EXT_CUTOFF */
1174 	}
1175 }
1176 
1177 /*
1178  * called by SMT to calculate LEM bit error rate
1179  */
sm_lem_evaluate(struct s_smc * smc)1180 void sm_lem_evaluate(struct s_smc *smc)
1181 {
1182 	int np ;
1183 
1184 	for (np = 0 ; np < NUMPHYS ; np++)
1185 		lem_evaluate(smc,&smc->y[np]) ;
1186 }
1187 
lem_check_lct(struct s_smc * smc,struct s_phy * phy)1188 static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
1189 {
1190 	struct lem_counter	*lem = &phy->lem ;
1191 	struct fddi_mib_p	*mib ;
1192 	int errors ;
1193 
1194 	mib = phy->mib ;
1195 
1196 	phy->pc_lem_fail = FALSE ;		/* flag */
1197 	errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
1198 	lem->lem_errors += errors ;
1199 	mib->fddiPORTLem_Ct += errors ;
1200 	if (lem->lem_errors) {
1201 		switch(phy->lc_test) {
1202 		case LC_SHORT:
1203 			if (lem->lem_errors >= smc->s.lct_short)
1204 				phy->pc_lem_fail = TRUE ;
1205 			break ;
1206 		case LC_MEDIUM:
1207 			if (lem->lem_errors >= smc->s.lct_medium)
1208 				phy->pc_lem_fail = TRUE ;
1209 			break ;
1210 		case LC_LONG:
1211 			if (lem->lem_errors >= smc->s.lct_long)
1212 				phy->pc_lem_fail = TRUE ;
1213 			break ;
1214 		case LC_EXTENDED:
1215 			if (lem->lem_errors >= smc->s.lct_extended)
1216 				phy->pc_lem_fail = TRUE ;
1217 			break ;
1218 		}
1219 		DB_PCMN(1," >>errors : %d\n",lem->lem_errors,0) ;
1220 	}
1221 	if (phy->pc_lem_fail) {
1222 		mib->fddiPORTLCTFail_Ct++ ;
1223 		mib->fddiPORTLem_Reject_Ct++ ;
1224 	}
1225 	else
1226 		mib->fddiPORTLCTFail_Ct = 0 ;
1227 }
1228 
1229 /*
1230  * LEM functions
1231  */
sm_ph_lem_start(struct s_smc * smc,int np,int threshold)1232 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
1233 {
1234 	struct lem_counter *lem = &smc->y[np].lem ;
1235 
1236 	lem->lem_on = 1 ;
1237 	lem->lem_errors = 0L ;
1238 
1239 	/* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1240 	 * often.
1241 	 */
1242 
1243 	outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
1244 	(void)inpw(PLC(np,PL_LINK_ERR_CTR)) ;	/* clear error counter */
1245 
1246 	/* enable LE INT */
1247 	SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
1248 }
1249 
sm_ph_lem_stop(struct s_smc * smc,int np)1250 static void sm_ph_lem_stop(struct s_smc *smc, int np)
1251 {
1252 	struct lem_counter *lem = &smc->y[np].lem ;
1253 
1254 	lem->lem_on = 0 ;
1255 	CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
1256 }
1257 
1258 /* ARGSUSED */
sm_pm_ls_latch(struct s_smc * smc,int phy,int on_off)1259 void sm_pm_ls_latch(struct s_smc *smc, int phy, int on_off)
1260 /* int on_off;	en- or disable ident. ls */
1261 {
1262 	SK_UNUSED(smc) ;
1263 
1264 	phy = phy ; on_off = on_off ;
1265 }
1266 
1267 
1268 /*
1269  * PCM pseudo code
1270  * receive actions are called AFTER the bit n is received,
1271  * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1272  */
1273 
1274 /*
1275  * PCM pseudo code 5.1 .. 6.1
1276  */
pc_rcode_actions(struct s_smc * smc,int bit,struct s_phy * phy)1277 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
1278 {
1279 	struct fddi_mib_p	*mib ;
1280 
1281 	mib = phy->mib ;
1282 
1283 	DB_PCMN(1,"SIG rec %x %x: \n", bit,phy->r_val[bit] ) ;
1284 	bit++ ;
1285 
1286 	switch(bit) {
1287 	case 0:
1288 	case 1:
1289 	case 2:
1290 		break ;
1291 	case 3 :
1292 		if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
1293 			mib->fddiPORTNeighborType = TA ;
1294 		else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
1295 			mib->fddiPORTNeighborType = TB ;
1296 		else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
1297 			mib->fddiPORTNeighborType = TS ;
1298 		else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
1299 			mib->fddiPORTNeighborType = TM ;
1300 		break ;
1301 	case 4:
1302 		if (mib->fddiPORTMy_Type == TM &&
1303 			mib->fddiPORTNeighborType == TM) {
1304 			DB_PCMN(1,"PCM %c : E100 withhold M-M\n",
1305 				phy->phy_name,0) ;
1306 			mib->fddiPORTPC_Withhold = PC_WH_M_M ;
1307 			RS_SET(smc,RS_EVENT) ;
1308 		}
1309 		else if (phy->t_val[3] || phy->r_val[3]) {
1310 			mib->fddiPORTPC_Withhold = PC_WH_NONE ;
1311 			if (mib->fddiPORTMy_Type == TM ||
1312 			    mib->fddiPORTNeighborType == TM)
1313 				phy->pc_mode = PM_TREE ;
1314 			else
1315 				phy->pc_mode = PM_PEER ;
1316 
1317 			/* reevaluate the selection criteria (wc_flag) */
1318 			all_selection_criteria (smc);
1319 
1320 			if (phy->wc_flag) {
1321 				mib->fddiPORTPC_Withhold = PC_WH_PATH ;
1322 			}
1323 		}
1324 		else {
1325 			mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
1326 			RS_SET(smc,RS_EVENT) ;
1327 			DB_PCMN(1,"PCM %c : E101 withhold other\n",
1328 				phy->phy_name,0) ;
1329 		}
1330 		phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
1331 				(mib->fddiPORTMy_Type != TM) &&
1332 				(mib->fddiPORTNeighborType ==
1333 				mib->fddiPORTMy_Type)) ;
1334 		if (phy->twisted) {
1335 			DB_PCMN(1,"PCM %c : E102 !!! TWISTED !!!\n",
1336 				phy->phy_name,0) ;
1337 		}
1338 		break ;
1339 	case 5 :
1340 		break ;
1341 	case 6:
1342 		if (phy->t_val[4] || phy->r_val[4]) {
1343 			if ((phy->t_val[4] && phy->t_val[5]) ||
1344 			    (phy->r_val[4] && phy->r_val[5]) )
1345 				phy->lc_test = LC_EXTENDED ;
1346 			else
1347 				phy->lc_test = LC_LONG ;
1348 		}
1349 		else if (phy->t_val[5] || phy->r_val[5])
1350 			phy->lc_test = LC_MEDIUM ;
1351 		else
1352 			phy->lc_test = LC_SHORT ;
1353 		switch (phy->lc_test) {
1354 		case LC_SHORT :				/* 50ms */
1355 			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
1356 			phy->t_next[7] = smc->s.pcm_lc_short ;
1357 			break ;
1358 		case LC_MEDIUM :			/* 500ms */
1359 			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
1360 			phy->t_next[7] = smc->s.pcm_lc_medium ;
1361 			break ;
1362 		case LC_LONG :
1363 			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1364 			phy->t_next[7] = smc->s.pcm_lc_long ;
1365 			break ;
1366 		case LC_EXTENDED :
1367 			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1368 			phy->t_next[7] = smc->s.pcm_lc_extended ;
1369 			break ;
1370 		}
1371 		if (phy->t_next[7] > smc->s.pcm_lc_medium) {
1372 			start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
1373 		}
1374 		DB_PCMN(1,"LCT timer = %ld us\n", phy->t_next[7], 0) ;
1375 		phy->t_next[9] = smc->s.pcm_t_next_9 ;
1376 		break ;
1377 	case 7:
1378 		if (phy->t_val[6]) {
1379 			phy->cf_loop = TRUE ;
1380 		}
1381 		phy->td_flag = TRUE ;
1382 		break ;
1383 	case 8:
1384 		if (phy->t_val[7] || phy->r_val[7]) {
1385 			DB_PCMN(1,"PCM %c : E103 LCT fail %s\n",
1386 				phy->phy_name,phy->t_val[7]? "local":"remote") ;
1387 			queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1388 		}
1389 		break ;
1390 	case 9:
1391 		if (phy->t_val[8] || phy->r_val[8]) {
1392 			if (phy->t_val[8])
1393 				phy->cf_loop = TRUE ;
1394 			phy->td_flag = TRUE ;
1395 		}
1396 		break ;
1397 	case 10:
1398 		if (phy->r_val[9]) {
1399 			/* neighbor intends to have MAC on output */ ;
1400 			mib->fddiPORTMacIndicated.R_val = TRUE ;
1401 		}
1402 		else {
1403 			/* neighbor does not intend to have MAC on output */ ;
1404 			mib->fddiPORTMacIndicated.R_val = FALSE ;
1405 		}
1406 		break ;
1407 	}
1408 }
1409 
1410 /*
1411  * PCM pseudo code 5.1 .. 6.1
1412  */
pc_tcode_actions(struct s_smc * smc,const int bit,struct s_phy * phy)1413 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
1414 {
1415 	int	np = phy->np ;
1416 	struct fddi_mib_p	*mib ;
1417 
1418 	mib = phy->mib ;
1419 
1420 	switch(bit) {
1421 	case 0:
1422 		phy->t_val[0] = 0 ;		/* no escape used */
1423 		break ;
1424 	case 1:
1425 		if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
1426 			phy->t_val[1] = 1 ;
1427 		else
1428 			phy->t_val[1] = 0 ;
1429 		break ;
1430 	case 2 :
1431 		if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
1432 			phy->t_val[2] = 1 ;
1433 		else
1434 			phy->t_val[2] = 0 ;
1435 		break ;
1436 	case 3:
1437 		{
1438 		int	type,ne ;
1439 		int	policy ;
1440 
1441 		type = mib->fddiPORTMy_Type ;
1442 		ne = mib->fddiPORTNeighborType ;
1443 		policy = smc->mib.fddiSMTConnectionPolicy ;
1444 
1445 		phy->t_val[3] = 1 ;	/* Accept connection */
1446 		switch (type) {
1447 		case TA :
1448 			if (
1449 				((policy & POLICY_AA) && ne == TA) ||
1450 				((policy & POLICY_AB) && ne == TB) ||
1451 				((policy & POLICY_AS) && ne == TS) ||
1452 				((policy & POLICY_AM) && ne == TM) )
1453 				phy->t_val[3] = 0 ;	/* Reject */
1454 			break ;
1455 		case TB :
1456 			if (
1457 				((policy & POLICY_BA) && ne == TA) ||
1458 				((policy & POLICY_BB) && ne == TB) ||
1459 				((policy & POLICY_BS) && ne == TS) ||
1460 				((policy & POLICY_BM) && ne == TM) )
1461 				phy->t_val[3] = 0 ;	/* Reject */
1462 			break ;
1463 		case TS :
1464 			if (
1465 				((policy & POLICY_SA) && ne == TA) ||
1466 				((policy & POLICY_SB) && ne == TB) ||
1467 				((policy & POLICY_SS) && ne == TS) ||
1468 				((policy & POLICY_SM) && ne == TM) )
1469 				phy->t_val[3] = 0 ;	/* Reject */
1470 			break ;
1471 		case TM :
1472 			if (	ne == TM ||
1473 				((policy & POLICY_MA) && ne == TA) ||
1474 				((policy & POLICY_MB) && ne == TB) ||
1475 				((policy & POLICY_MS) && ne == TS) ||
1476 				((policy & POLICY_MM) && ne == TM) )
1477 				phy->t_val[3] = 0 ;	/* Reject */
1478 			break ;
1479 		}
1480 #ifndef	SLIM_SMT
1481 		/*
1482 		 * detect undesirable connection attempt event
1483 		 */
1484 		if (	(type == TA && ne == TA ) ||
1485 			(type == TA && ne == TS ) ||
1486 			(type == TB && ne == TB ) ||
1487 			(type == TB && ne == TS ) ||
1488 			(type == TS && ne == TA ) ||
1489 			(type == TS && ne == TB ) ) {
1490 			smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
1491 				(int) (INDEX_PORT+ phy->np) ,0) ;
1492 		}
1493 #endif
1494 		}
1495 		break ;
1496 	case 4:
1497 		if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
1498 			if (phy->pc_lem_fail) {
1499 				phy->t_val[4] = 1 ;	/* long */
1500 				phy->t_val[5] = 0 ;
1501 			}
1502 			else {
1503 				phy->t_val[4] = 0 ;
1504 				if (mib->fddiPORTLCTFail_Ct > 0)
1505 					phy->t_val[5] = 1 ;	/* medium */
1506 				else
1507 					phy->t_val[5] = 0 ;	/* short */
1508 
1509 				/*
1510 				 * Implementers choice: use medium
1511 				 * instead of short when undesired
1512 				 * connection attempt is made.
1513 				 */
1514 				if (phy->wc_flag)
1515 					phy->t_val[5] = 1 ;	/* medium */
1516 			}
1517 			mib->fddiPORTConnectState = PCM_CONNECTING ;
1518 		}
1519 		else {
1520 			mib->fddiPORTConnectState = PCM_STANDBY ;
1521 			phy->t_val[4] = 1 ;	/* extended */
1522 			phy->t_val[5] = 1 ;
1523 		}
1524 		break ;
1525 	case 5:
1526 		break ;
1527 	case 6:
1528 		/* we do NOT have a MAC for LCT */
1529 		phy->t_val[6] = 0 ;
1530 		break ;
1531 	case 7:
1532 		phy->cf_loop = FALSE ;
1533 		lem_check_lct(smc,phy) ;
1534 		if (phy->pc_lem_fail) {
1535 			DB_PCMN(1,"PCM %c : E104 LCT failed\n",
1536 				phy->phy_name,0) ;
1537 			phy->t_val[7] = 1 ;
1538 		}
1539 		else
1540 			phy->t_val[7] = 0 ;
1541 		break ;
1542 	case 8:
1543 		phy->t_val[8] = 0 ;	/* Don't request MAC loopback */
1544 		break ;
1545 	case 9:
1546 		phy->cf_loop = 0 ;
1547 		if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
1548 		     ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
1549 			queue_event(smc,EVENT_PCM+np,PC_START) ;
1550 			break ;
1551 		}
1552 		phy->t_val[9] = FALSE ;
1553 		switch (smc->s.sas) {
1554 		case SMT_DAS :
1555 			/*
1556 			 * MAC intended on output
1557 			 */
1558 			if (phy->pc_mode == PM_TREE) {
1559 				if ((np == PB) || ((np == PA) &&
1560 				(smc->y[PB].mib->fddiPORTConnectState !=
1561 					PCM_ACTIVE)))
1562 					phy->t_val[9] = TRUE ;
1563 			}
1564 			else {
1565 				if (np == PB)
1566 					phy->t_val[9] = TRUE ;
1567 			}
1568 			break ;
1569 		case SMT_SAS :
1570 			if (np == PS)
1571 				phy->t_val[9] = TRUE ;
1572 			break ;
1573 #ifdef	CONCENTRATOR
1574 		case SMT_NAC :
1575 			/*
1576 			 * MAC intended on output
1577 			 */
1578 			if (np == PB)
1579 				phy->t_val[9] = TRUE ;
1580 			break ;
1581 #endif
1582 		}
1583 		mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
1584 		break ;
1585 	}
1586 	DB_PCMN(1,"SIG snd %x %x: \n", bit,phy->t_val[bit] ) ;
1587 }
1588 
1589 /*
1590  * return status twisted (called by SMT)
1591  */
pcm_status_twisted(struct s_smc * smc)1592 int pcm_status_twisted(struct s_smc *smc)
1593 {
1594 	int	twist = 0 ;
1595 	if (smc->s.sas != SMT_DAS)
1596 		return(0) ;
1597 	if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
1598 		twist |= 1 ;
1599 	if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
1600 		twist |= 2 ;
1601 	return(twist) ;
1602 }
1603 
1604 /*
1605  * return status	(called by SMT)
1606  *	type
1607  *	state
1608  *	remote phy type
1609  *	remote mac yes/no
1610  */
pcm_status_state(struct s_smc * smc,int np,int * type,int * state,int * remote,int * mac)1611 void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
1612 		      int *remote, int *mac)
1613 {
1614 	struct s_phy	*phy = &smc->y[np] ;
1615 	struct fddi_mib_p	*mib ;
1616 
1617 	mib = phy->mib ;
1618 
1619 	/* remote PHY type and MAC - set only if active */
1620 	*mac = 0 ;
1621 	*type = mib->fddiPORTMy_Type ;		/* our PHY type */
1622 	*state = mib->fddiPORTConnectState ;
1623 	*remote = mib->fddiPORTNeighborType ;
1624 
1625 	switch(mib->fddiPORTPCMState) {
1626 	case PC8_ACTIVE :
1627 		*mac = mib->fddiPORTMacIndicated.R_val ;
1628 		break ;
1629 	}
1630 }
1631 
1632 /*
1633  * return rooted station status (called by SMT)
1634  */
pcm_rooted_station(struct s_smc * smc)1635 int pcm_rooted_station(struct s_smc *smc)
1636 {
1637 	int	n ;
1638 
1639 	for (n = 0 ; n < NUMPHYS ; n++) {
1640 		if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
1641 		    smc->y[n].mib->fddiPORTNeighborType == TM)
1642 			return(0) ;
1643 	}
1644 	return(1) ;
1645 }
1646 
1647 /*
1648  * Interrupt actions for PLC & PCM events
1649  */
plc_irq(struct s_smc * smc,int np,unsigned int cmd)1650 void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
1651 /* int np;	PHY index */
1652 {
1653 	struct s_phy *phy = &smc->y[np] ;
1654 	struct s_plc *plc = &phy->plc ;
1655 	int		n ;
1656 #ifdef	SUPERNET_3
1657 	int		corr_mask ;
1658 #endif	/* SUPERNET_3 */
1659 	int		i ;
1660 
1661 	if (np >= smc->s.numphys) {
1662 		plc->soft_err++ ;
1663 		return ;
1664 	}
1665 	if (cmd & PL_EBUF_ERR) {	/* elastic buff. det. over-|underflow*/
1666 		/*
1667 		 * Check whether the SRF Condition occurred.
1668 		 */
1669 		if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
1670 			/*
1671 			 * This is the real Elasticity Error.
1672 			 * More than one in a row are treated as a
1673 			 * single one.
1674 			 * Only count this in the active state.
1675 			 */
1676 			phy->mib->fddiPORTEBError_Ct ++ ;
1677 
1678 		}
1679 
1680 		plc->ebuf_err++ ;
1681 		if (plc->ebuf_cont <= 1000) {
1682 			/*
1683 			 * Prevent counter from being wrapped after
1684 			 * hanging years in that interrupt.
1685 			 */
1686 			plc->ebuf_cont++ ;	/* Ebuf continous error */
1687 		}
1688 
1689 #ifdef	SUPERNET_3
1690 		if (plc->ebuf_cont == 1000 &&
1691 			((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
1692 			PLC_REV_SN3)) {
1693 			/*
1694 			 * This interrupt remeained high for at least
1695 			 * 1000 consecutive interrupt calls.
1696 			 *
1697 			 * This is caused by a hardware error of the
1698 			 * ORION part of the Supernet III chipset.
1699 			 *
1700 			 * Disable this bit from the mask.
1701 			 */
1702 			corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
1703 			outpw(PLC(np,PL_INTR_MASK),corr_mask);
1704 
1705 			/*
1706 			 * Disconnect from the ring.
1707 			 * Call the driver with the reset indication.
1708 			 */
1709 			queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
1710 
1711 			/*
1712 			 * Make an error log entry.
1713 			 */
1714 			SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
1715 
1716 			/*
1717 			 * Indicate the Reset.
1718 			 */
1719 			drv_reset_indication(smc) ;
1720 		}
1721 #endif	/* SUPERNET_3 */
1722 	} else {
1723 		/* Reset the continous error variable */
1724 		plc->ebuf_cont = 0 ;	/* reset Ebuf continous error */
1725 	}
1726 	if (cmd & PL_PHYINV) {		/* physical layer invalid signal */
1727 		plc->phyinv++ ;
1728 	}
1729 	if (cmd & PL_VSYM_CTR) {	/* violation symbol counter has incr.*/
1730 		plc->vsym_ctr++ ;
1731 	}
1732 	if (cmd & PL_MINI_CTR) {	/* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1733 		plc->mini_ctr++ ;
1734 	}
1735 	if (cmd & PL_LE_CTR) {		/* link error event counter */
1736 		int	j ;
1737 
1738 		/*
1739 		 * note: PL_LINK_ERR_CTR MUST be read to clear it
1740 		 */
1741 		j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
1742 		i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
1743 
1744 		if (i < j) {
1745 			/* wrapped around */
1746 			i += 256 ;
1747 		}
1748 
1749 		if (phy->lem.lem_on) {
1750 			/* Note: Lem errors shall only be counted when
1751 			 * link is ACTIVE or LCT is active.
1752 			 */
1753 			phy->lem.lem_errors += i ;
1754 			phy->mib->fddiPORTLem_Ct += i ;
1755 		}
1756 	}
1757 	if (cmd & PL_TPC_EXPIRED) {	/* TPC timer reached zero */
1758 		if (plc->p_state == PS_LCT) {
1759 			/*
1760 			 * end of LCT
1761 			 */
1762 			;
1763 		}
1764 		plc->tpc_exp++ ;
1765 	}
1766 	if (cmd & PL_LS_MATCH) {	/* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1767 		switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
1768 		case PL_I_IDLE :	phy->curr_ls = PC_ILS ;		break ;
1769 		case PL_I_HALT :	phy->curr_ls = PC_HLS ;		break ;
1770 		case PL_I_MASTR :	phy->curr_ls = PC_MLS ;		break ;
1771 		case PL_I_QUIET :	phy->curr_ls = PC_QLS ;		break ;
1772 		}
1773 	}
1774 	if (cmd & PL_PCM_BREAK) {	/* PCM has entered the BREAK state */
1775 		int	reason;
1776 
1777 		reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
1778 
1779 		switch (reason) {
1780 		case PL_B_PCS :		plc->b_pcs++ ;	break ;
1781 		case PL_B_TPC :		plc->b_tpc++ ;	break ;
1782 		case PL_B_TNE :		plc->b_tne++ ;	break ;
1783 		case PL_B_QLS :		plc->b_qls++ ;	break ;
1784 		case PL_B_ILS :		plc->b_ils++ ;	break ;
1785 		case PL_B_HLS :		plc->b_hls++ ;	break ;
1786 		}
1787 
1788 		/*jd 05-Aug-1999 changed: Bug #10419 */
1789 		DB_PCMN(1,"PLC %d: MDcF = %x\n", np, smc->e.DisconnectFlag);
1790 		if (smc->e.DisconnectFlag == FALSE) {
1791 			DB_PCMN(1,"PLC %d: restart (reason %x)\n", np, reason);
1792 			queue_event(smc,EVENT_PCM+np,PC_START) ;
1793 		}
1794 		else {
1795 			DB_PCMN(1,"PLC %d: NO!! restart (reason %x)\n", np, reason);
1796 		}
1797 		return ;
1798 	}
1799 	/*
1800 	 * If both CODE & ENABLE are set ignore enable
1801 	 */
1802 	if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
1803 		queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
1804 		n = inpw(PLC(np,PL_RCV_VECTOR)) ;
1805 		for (i = 0 ; i < plc->p_bits ; i++) {
1806 			phy->r_val[plc->p_start+i] = n & 1 ;
1807 			n >>= 1 ;
1808 		}
1809 	}
1810 	else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
1811 		queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
1812 	}
1813 	if (cmd & PL_TRACE_PROP) {	/* MLS while PC8_ACTIV || PC2_TRACE */
1814 		/*PC22b*/
1815 		if (!phy->tr_flag) {
1816 			DB_PCMN(1,"PCM : irq TRACE_PROP %d %d\n",
1817 				np,smc->mib.fddiSMTECMState) ;
1818 			phy->tr_flag = TRUE ;
1819 			smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
1820 			queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
1821 		}
1822 	}
1823 	/*
1824 	 * filter PLC glitch ???
1825 	 * QLS || HLS only while in PC2_TRACE state
1826 	 */
1827 	if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
1828 		/*PC22a*/
1829 		if (smc->e.path_test == PT_PASSED) {
1830 			DB_PCMN(1,"PCM : state = %s %d\n", get_pcmstate(smc,np),
1831 				phy->mib->fddiPORTPCMState) ;
1832 
1833 			smc->e.path_test = PT_PENDING ;
1834 			queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
1835 		}
1836 	}
1837 	if (cmd & PL_TNE_EXPIRED) {	/* TNE: length of noise events */
1838 		/* break_required (TNE > NS_Max) */
1839 		if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
1840 			if (!phy->tr_flag) {
1841 			   DB_PCMN(1,"PCM %c : PC81 %s\n",phy->phy_name,"NSE");
1842 			   queue_event(smc,EVENT_PCM+np,PC_START) ;
1843 			   return ;
1844 			}
1845 		}
1846 	}
1847 #if	0
1848 	if (cmd & PL_NP_ERR) {		/* NP has requested to r/w an inv reg*/
1849 		/*
1850 		 * It's a bug by AMD
1851 		 */
1852 		plc->np_err++ ;
1853 	}
1854 	/* pin inactiv (GND) */
1855 	if (cmd & PL_PARITY_ERR) {	/* p. error dedected on TX9-0 inp */
1856 		plc->parity_err++ ;
1857 	}
1858 	if (cmd & PL_LSDO) {		/* carrier detected */
1859 		;
1860 	}
1861 #endif
1862 }
1863 
1864 #ifdef	DEBUG
1865 /*
1866  * fill state struct
1867  */
pcm_get_state(struct s_smc * smc,struct smt_state * state)1868 void pcm_get_state(struct s_smc *smc, struct smt_state *state)
1869 {
1870 	struct s_phy	*phy ;
1871 	struct pcm_state *pcs ;
1872 	int	i ;
1873 	int	ii ;
1874 	short	rbits ;
1875 	short	tbits ;
1876 	struct fddi_mib_p	*mib ;
1877 
1878 	for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
1879 		i++ , phy++, pcs++ ) {
1880 		mib = phy->mib ;
1881 		pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
1882 		pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
1883 		pcs->pcm_mode = phy->pc_mode ;
1884 		pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
1885 		pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
1886 		pcs->pcm_lsf = phy->ls_flag ;
1887 		pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
1888 		pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
1889 		for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
1890 			rbits <<= 1 ;
1891 			tbits <<= 1 ;
1892 			if (phy->r_val[NUMBITS-1-ii])
1893 				rbits |= 1 ;
1894 			if (phy->t_val[NUMBITS-1-ii])
1895 				tbits |= 1 ;
1896 		}
1897 		pcs->pcm_r_val = rbits ;
1898 		pcs->pcm_t_val = tbits ;
1899 	}
1900 }
1901 
get_pcm_state(struct s_smc * smc,int np)1902 int get_pcm_state(struct s_smc *smc, int np)
1903 {
1904 	int pcs ;
1905 
1906 	SK_UNUSED(smc) ;
1907 
1908 	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1909 		case PL_PC0 :	pcs = PC_STOP ;		break ;
1910 		case PL_PC1 :	pcs = PC_START ;	break ;
1911 		case PL_PC2 :	pcs = PC_TRACE ;	break ;
1912 		case PL_PC3 :	pcs = PC_SIGNAL ;	break ;
1913 		case PL_PC4 :	pcs = PC_SIGNAL ;	break ;
1914 		case PL_PC5 :	pcs = PC_SIGNAL ;	break ;
1915 		case PL_PC6 :	pcs = PC_JOIN ;		break ;
1916 		case PL_PC7 :	pcs = PC_JOIN ;		break ;
1917 		case PL_PC8 :	pcs = PC_ENABLE ;	break ;
1918 		case PL_PC9 :	pcs = PC_MAINT ;	break ;
1919 		default :	pcs = PC_DISABLE ; 	break ;
1920 	}
1921 	return(pcs) ;
1922 }
1923 
get_linestate(struct s_smc * smc,int np)1924 char *get_linestate(struct s_smc *smc, int np)
1925 {
1926 	char *ls = "" ;
1927 
1928 	SK_UNUSED(smc) ;
1929 
1930 	switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
1931 		case PL_L_NLS :	ls = "NOISE" ;	break ;
1932 		case PL_L_ALS :	ls = "ACTIV" ;	break ;
1933 		case PL_L_UND :	ls = "UNDEF" ;	break ;
1934 		case PL_L_ILS4:	ls = "ILS 4" ;	break ;
1935 		case PL_L_QLS :	ls = "QLS" ;	break ;
1936 		case PL_L_MLS :	ls = "MLS" ;	break ;
1937 		case PL_L_HLS :	ls = "HLS" ;	break ;
1938 		case PL_L_ILS16:ls = "ILS16" ;	break ;
1939 #ifdef	lint
1940 		default:	ls = "unknown" ; break ;
1941 #endif
1942 	}
1943 	return(ls) ;
1944 }
1945 
get_pcmstate(struct s_smc * smc,int np)1946 char *get_pcmstate(struct s_smc *smc, int np)
1947 {
1948 	char *pcs ;
1949 
1950 	SK_UNUSED(smc) ;
1951 
1952 	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1953 		case PL_PC0 :	pcs = "OFF" ;		break ;
1954 		case PL_PC1 :	pcs = "BREAK" ;		break ;
1955 		case PL_PC2 :	pcs = "TRACE" ;		break ;
1956 		case PL_PC3 :	pcs = "CONNECT";	break ;
1957 		case PL_PC4 :	pcs = "NEXT" ;		break ;
1958 		case PL_PC5 :	pcs = "SIGNAL" ;	break ;
1959 		case PL_PC6 :	pcs = "JOIN" ;		break ;
1960 		case PL_PC7 :	pcs = "VERIFY" ;	break ;
1961 		case PL_PC8 :	pcs = "ACTIV" ;		break ;
1962 		case PL_PC9 :	pcs = "MAINT" ;		break ;
1963 		default :	pcs = "UNKNOWN" ; 	break ;
1964 	}
1965 	return(pcs) ;
1966 }
1967 
list_phy(struct s_smc * smc)1968 void list_phy(struct s_smc *smc)
1969 {
1970 	struct s_plc *plc ;
1971 	int np ;
1972 
1973 	for (np = 0 ; np < NUMPHYS ; np++) {
1974 		plc  = &smc->y[np].plc ;
1975 		printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
1976 		printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1977 						plc->soft_err,plc->b_pcs);
1978 		printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1979 			plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
1980 		printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1981 						plc->ebuf_err,plc->b_tne) ;
1982 		printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1983 			plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
1984 		printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1985 						plc->vsym_ctr,plc->b_ils)  ;
1986 		printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1987 						plc->mini_ctr,plc->b_hls) ;
1988 		printf("\tnodepr_err: %ld\n",plc->np_err) ;
1989 		printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
1990 		printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
1991 	}
1992 }
1993 
1994 
1995 #ifdef	CONCENTRATOR
pcm_lem_dump(struct s_smc * smc)1996 void pcm_lem_dump(struct s_smc *smc)
1997 {
1998 	int		i ;
1999 	struct s_phy	*phy ;
2000 	struct fddi_mib_p	*mib ;
2001 
2002 	char		*entostring() ;
2003 
2004 	printf("PHY	errors	BER\n") ;
2005 	printf("----------------------\n") ;
2006 	for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
2007 		if (!plc_is_installed(smc,i))
2008 			continue ;
2009 		mib = phy->mib ;
2010 		printf("%s\t%ld\t10E-%d\n",
2011 			entostring(smc,ENTITY_PHY(i)),
2012 			mib->fddiPORTLem_Ct,
2013 			mib->fddiPORTLer_Estimate) ;
2014 	}
2015 }
2016 #endif
2017 #endif
2018