• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Platform dependent support for SGI SN
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (c) 2000-2008 Silicon Graphics, Inc.  All Rights Reserved.
9  */
10 
11 #include <linux/irq.h>
12 #include <linux/spinlock.h>
13 #include <linux/init.h>
14 #include <linux/rculist.h>
15 #include <asm/sn/addrs.h>
16 #include <asm/sn/arch.h>
17 #include <asm/sn/intr.h>
18 #include <asm/sn/pcibr_provider.h>
19 #include <asm/sn/pcibus_provider_defs.h>
20 #include <asm/sn/pcidev.h>
21 #include <asm/sn/shub_mmr.h>
22 #include <asm/sn/sn_sal.h>
23 #include <asm/sn/sn_feature_sets.h>
24 
25 static void force_interrupt(int irq);
26 static void register_intr_pda(struct sn_irq_info *sn_irq_info);
27 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
28 
29 int sn_force_interrupt_flag = 1;
30 extern int sn_ioif_inited;
31 struct list_head **sn_irq_lh;
32 static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
33 
sn_intr_alloc(nasid_t local_nasid,int local_widget,struct sn_irq_info * sn_irq_info,int req_irq,nasid_t req_nasid,int req_slice)34 u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
35 				     struct sn_irq_info *sn_irq_info,
36 				     int req_irq, nasid_t req_nasid,
37 				     int req_slice)
38 {
39 	struct ia64_sal_retval ret_stuff;
40 	ret_stuff.status = 0;
41 	ret_stuff.v0 = 0;
42 
43 	SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
44 			(u64) SAL_INTR_ALLOC, (u64) local_nasid,
45 			(u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
46 			(u64) req_nasid, (u64) req_slice);
47 
48 	return ret_stuff.status;
49 }
50 
sn_intr_free(nasid_t local_nasid,int local_widget,struct sn_irq_info * sn_irq_info)51 void sn_intr_free(nasid_t local_nasid, int local_widget,
52 				struct sn_irq_info *sn_irq_info)
53 {
54 	struct ia64_sal_retval ret_stuff;
55 	ret_stuff.status = 0;
56 	ret_stuff.v0 = 0;
57 
58 	SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
59 			(u64) SAL_INTR_FREE, (u64) local_nasid,
60 			(u64) local_widget, (u64) sn_irq_info->irq_irq,
61 			(u64) sn_irq_info->irq_cookie, 0, 0);
62 }
63 
sn_intr_redirect(nasid_t local_nasid,int local_widget,struct sn_irq_info * sn_irq_info,nasid_t req_nasid,int req_slice)64 u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
65 		      struct sn_irq_info *sn_irq_info,
66 		      nasid_t req_nasid, int req_slice)
67 {
68 	struct ia64_sal_retval ret_stuff;
69 	ret_stuff.status = 0;
70 	ret_stuff.v0 = 0;
71 
72 	SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
73 			(u64) SAL_INTR_REDIRECT, (u64) local_nasid,
74 			(u64) local_widget, __pa(sn_irq_info),
75 			(u64) req_nasid, (u64) req_slice, 0);
76 
77 	return ret_stuff.status;
78 }
79 
sn_startup_irq(unsigned int irq)80 static unsigned int sn_startup_irq(unsigned int irq)
81 {
82 	return 0;
83 }
84 
sn_shutdown_irq(unsigned int irq)85 static void sn_shutdown_irq(unsigned int irq)
86 {
87 }
88 
89 extern void ia64_mca_register_cpev(int);
90 
sn_disable_irq(unsigned int irq)91 static void sn_disable_irq(unsigned int irq)
92 {
93 	if (irq == local_vector_to_irq(IA64_CPE_VECTOR))
94 		ia64_mca_register_cpev(0);
95 }
96 
sn_enable_irq(unsigned int irq)97 static void sn_enable_irq(unsigned int irq)
98 {
99 	if (irq == local_vector_to_irq(IA64_CPE_VECTOR))
100 		ia64_mca_register_cpev(irq);
101 }
102 
sn_ack_irq(unsigned int irq)103 static void sn_ack_irq(unsigned int irq)
104 {
105 	u64 event_occurred, mask;
106 
107 	irq = irq & 0xff;
108 	event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
109 	mask = event_occurred & SH_ALL_INT_MASK;
110 	HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
111 	__set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
112 
113 	move_native_irq(irq);
114 }
115 
sn_end_irq(unsigned int irq)116 static void sn_end_irq(unsigned int irq)
117 {
118 	int ivec;
119 	u64 event_occurred;
120 
121 	ivec = irq & 0xff;
122 	if (ivec == SGI_UART_VECTOR) {
123 		event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR (SH_EVENT_OCCURRED));
124 		/* If the UART bit is set here, we may have received an
125 		 * interrupt from the UART that the driver missed.  To
126 		 * make sure, we IPI ourselves to force us to look again.
127 		 */
128 		if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) {
129 			platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR,
130 					  IA64_IPI_DM_INT, 0);
131 		}
132 	}
133 	__clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs);
134 	if (sn_force_interrupt_flag)
135 		force_interrupt(irq);
136 }
137 
138 static void sn_irq_info_free(struct rcu_head *head);
139 
sn_retarget_vector(struct sn_irq_info * sn_irq_info,nasid_t nasid,int slice)140 struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
141 				       nasid_t nasid, int slice)
142 {
143 	int vector;
144 	int cpuid;
145 #ifdef CONFIG_SMP
146 	int cpuphys;
147 #endif
148 	int64_t bridge;
149 	int local_widget, status;
150 	nasid_t local_nasid;
151 	struct sn_irq_info *new_irq_info;
152 	struct sn_pcibus_provider *pci_provider;
153 
154 	bridge = (u64) sn_irq_info->irq_bridge;
155 	if (!bridge) {
156 		return NULL; /* irq is not a device interrupt */
157 	}
158 
159 	local_nasid = NASID_GET(bridge);
160 
161 	if (local_nasid & 1)
162 		local_widget = TIO_SWIN_WIDGETNUM(bridge);
163 	else
164 		local_widget = SWIN_WIDGETNUM(bridge);
165 	vector = sn_irq_info->irq_irq;
166 
167 	/* Make use of SAL_INTR_REDIRECT if PROM supports it */
168 	status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
169 	if (!status) {
170 		new_irq_info = sn_irq_info;
171 		goto finish_up;
172 	}
173 
174 	/*
175 	 * PROM does not support SAL_INTR_REDIRECT, or it failed.
176 	 * Revert to old method.
177 	 */
178 	new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
179 	if (new_irq_info == NULL)
180 		return NULL;
181 
182 	memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
183 
184 	/* Free the old PROM new_irq_info structure */
185 	sn_intr_free(local_nasid, local_widget, new_irq_info);
186 	unregister_intr_pda(new_irq_info);
187 
188 	/* allocate a new PROM new_irq_info struct */
189 	status = sn_intr_alloc(local_nasid, local_widget,
190 			       new_irq_info, vector,
191 			       nasid, slice);
192 
193 	/* SAL call failed */
194 	if (status) {
195 		kfree(new_irq_info);
196 		return NULL;
197 	}
198 
199 	register_intr_pda(new_irq_info);
200 	spin_lock(&sn_irq_info_lock);
201 	list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
202 	spin_unlock(&sn_irq_info_lock);
203 	call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
204 
205 
206 finish_up:
207 	/* Update kernels new_irq_info with new target info */
208 	cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
209 				     new_irq_info->irq_slice);
210 	new_irq_info->irq_cpuid = cpuid;
211 
212 	pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
213 
214 	/*
215 	 * If this represents a line interrupt, target it.  If it's
216 	 * an msi (irq_int_bit < 0), it's already targeted.
217 	 */
218 	if (new_irq_info->irq_int_bit >= 0 &&
219 	    pci_provider && pci_provider->target_interrupt)
220 		(pci_provider->target_interrupt)(new_irq_info);
221 
222 #ifdef CONFIG_SMP
223 	cpuphys = cpu_physical_id(cpuid);
224 	set_irq_affinity_info((vector & 0xff), cpuphys, 0);
225 #endif
226 
227 	return new_irq_info;
228 }
229 
sn_set_affinity_irq(unsigned int irq,const struct cpumask * mask)230 static void sn_set_affinity_irq(unsigned int irq, const struct cpumask *mask)
231 {
232 	struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
233 	nasid_t nasid;
234 	int slice;
235 
236 	nasid = cpuid_to_nasid(cpumask_first(mask));
237 	slice = cpuid_to_slice(cpumask_first(mask));
238 
239 	list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
240 				 sn_irq_lh[irq], list)
241 		(void)sn_retarget_vector(sn_irq_info, nasid, slice);
242 }
243 
244 #ifdef CONFIG_SMP
sn_set_err_irq_affinity(unsigned int irq)245 void sn_set_err_irq_affinity(unsigned int irq)
246 {
247         /*
248          * On systems which support CPU disabling (SHub2), all error interrupts
249          * are targetted at the boot CPU.
250          */
251         if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
252                 set_irq_affinity_info(irq, cpu_physical_id(0), 0);
253 }
254 #else
sn_set_err_irq_affinity(unsigned int irq)255 void sn_set_err_irq_affinity(unsigned int irq) { }
256 #endif
257 
258 static void
sn_mask_irq(unsigned int irq)259 sn_mask_irq(unsigned int irq)
260 {
261 }
262 
263 static void
sn_unmask_irq(unsigned int irq)264 sn_unmask_irq(unsigned int irq)
265 {
266 }
267 
268 struct irq_chip irq_type_sn = {
269 	.name		= "SN hub",
270 	.startup	= sn_startup_irq,
271 	.shutdown	= sn_shutdown_irq,
272 	.enable		= sn_enable_irq,
273 	.disable	= sn_disable_irq,
274 	.ack		= sn_ack_irq,
275 	.end		= sn_end_irq,
276 	.mask		= sn_mask_irq,
277 	.unmask		= sn_unmask_irq,
278 	.set_affinity	= sn_set_affinity_irq
279 };
280 
sn_irq_to_vector(int irq)281 ia64_vector sn_irq_to_vector(int irq)
282 {
283 	if (irq >= IA64_NUM_VECTORS)
284 		return 0;
285 	return (ia64_vector)irq;
286 }
287 
sn_local_vector_to_irq(u8 vector)288 unsigned int sn_local_vector_to_irq(u8 vector)
289 {
290 	return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
291 }
292 
sn_irq_init(void)293 void sn_irq_init(void)
294 {
295 	int i;
296 	irq_desc_t *base_desc = irq_desc;
297 
298 	ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
299 	ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
300 
301 	for (i = 0; i < NR_IRQS; i++) {
302 		if (base_desc[i].chip == &no_irq_type) {
303 			base_desc[i].chip = &irq_type_sn;
304 		}
305 	}
306 }
307 
register_intr_pda(struct sn_irq_info * sn_irq_info)308 static void register_intr_pda(struct sn_irq_info *sn_irq_info)
309 {
310 	int irq = sn_irq_info->irq_irq;
311 	int cpu = sn_irq_info->irq_cpuid;
312 
313 	if (pdacpu(cpu)->sn_last_irq < irq) {
314 		pdacpu(cpu)->sn_last_irq = irq;
315 	}
316 
317 	if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
318 		pdacpu(cpu)->sn_first_irq = irq;
319 }
320 
unregister_intr_pda(struct sn_irq_info * sn_irq_info)321 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
322 {
323 	int irq = sn_irq_info->irq_irq;
324 	int cpu = sn_irq_info->irq_cpuid;
325 	struct sn_irq_info *tmp_irq_info;
326 	int i, foundmatch;
327 
328 	rcu_read_lock();
329 	if (pdacpu(cpu)->sn_last_irq == irq) {
330 		foundmatch = 0;
331 		for (i = pdacpu(cpu)->sn_last_irq - 1;
332 		     i && !foundmatch; i--) {
333 			list_for_each_entry_rcu(tmp_irq_info,
334 						sn_irq_lh[i],
335 						list) {
336 				if (tmp_irq_info->irq_cpuid == cpu) {
337 					foundmatch = 1;
338 					break;
339 				}
340 			}
341 		}
342 		pdacpu(cpu)->sn_last_irq = i;
343 	}
344 
345 	if (pdacpu(cpu)->sn_first_irq == irq) {
346 		foundmatch = 0;
347 		for (i = pdacpu(cpu)->sn_first_irq + 1;
348 		     i < NR_IRQS && !foundmatch; i++) {
349 			list_for_each_entry_rcu(tmp_irq_info,
350 						sn_irq_lh[i],
351 						list) {
352 				if (tmp_irq_info->irq_cpuid == cpu) {
353 					foundmatch = 1;
354 					break;
355 				}
356 			}
357 		}
358 		pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
359 	}
360 	rcu_read_unlock();
361 }
362 
sn_irq_info_free(struct rcu_head * head)363 static void sn_irq_info_free(struct rcu_head *head)
364 {
365 	struct sn_irq_info *sn_irq_info;
366 
367 	sn_irq_info = container_of(head, struct sn_irq_info, rcu);
368 	kfree(sn_irq_info);
369 }
370 
sn_irq_fixup(struct pci_dev * pci_dev,struct sn_irq_info * sn_irq_info)371 void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
372 {
373 	nasid_t nasid = sn_irq_info->irq_nasid;
374 	int slice = sn_irq_info->irq_slice;
375 	int cpu = nasid_slice_to_cpuid(nasid, slice);
376 #ifdef CONFIG_SMP
377 	int cpuphys;
378 	irq_desc_t *desc;
379 #endif
380 
381 	pci_dev_get(pci_dev);
382 	sn_irq_info->irq_cpuid = cpu;
383 	sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
384 
385 	/* link it into the sn_irq[irq] list */
386 	spin_lock(&sn_irq_info_lock);
387 	list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
388 	reserve_irq_vector(sn_irq_info->irq_irq);
389 	spin_unlock(&sn_irq_info_lock);
390 
391 	register_intr_pda(sn_irq_info);
392 #ifdef CONFIG_SMP
393 	cpuphys = cpu_physical_id(cpu);
394 	set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
395 	desc = irq_to_desc(sn_irq_info->irq_irq);
396 	/*
397 	 * Affinity was set by the PROM, prevent it from
398 	 * being reset by the request_irq() path.
399 	 */
400 	desc->status |= IRQ_AFFINITY_SET;
401 #endif
402 }
403 
sn_irq_unfixup(struct pci_dev * pci_dev)404 void sn_irq_unfixup(struct pci_dev *pci_dev)
405 {
406 	struct sn_irq_info *sn_irq_info;
407 
408 	/* Only cleanup IRQ stuff if this device has a host bus context */
409 	if (!SN_PCIDEV_BUSSOFT(pci_dev))
410 		return;
411 
412 	sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
413 	if (!sn_irq_info)
414 		return;
415 	if (!sn_irq_info->irq_irq) {
416 		kfree(sn_irq_info);
417 		return;
418 	}
419 
420 	unregister_intr_pda(sn_irq_info);
421 	spin_lock(&sn_irq_info_lock);
422 	list_del_rcu(&sn_irq_info->list);
423 	spin_unlock(&sn_irq_info_lock);
424 	if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
425 		free_irq_vector(sn_irq_info->irq_irq);
426 	call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
427 	pci_dev_put(pci_dev);
428 
429 }
430 
431 static inline void
sn_call_force_intr_provider(struct sn_irq_info * sn_irq_info)432 sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
433 {
434 	struct sn_pcibus_provider *pci_provider;
435 
436 	pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
437 
438 	/* Don't force an interrupt if the irq has been disabled */
439 	if (!(irq_desc[sn_irq_info->irq_irq].status & IRQ_DISABLED) &&
440 	    pci_provider && pci_provider->force_interrupt)
441 		(*pci_provider->force_interrupt)(sn_irq_info);
442 }
443 
force_interrupt(int irq)444 static void force_interrupt(int irq)
445 {
446 	struct sn_irq_info *sn_irq_info;
447 
448 	if (!sn_ioif_inited)
449 		return;
450 
451 	rcu_read_lock();
452 	list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list)
453 		sn_call_force_intr_provider(sn_irq_info);
454 
455 	rcu_read_unlock();
456 }
457 
458 /*
459  * Check for lost interrupts.  If the PIC int_status reg. says that
460  * an interrupt has been sent, but not handled, and the interrupt
461  * is not pending in either the cpu irr regs or in the soft irr regs,
462  * and the interrupt is not in service, then the interrupt may have
463  * been lost.  Force an interrupt on that pin.  It is possible that
464  * the interrupt is in flight, so we may generate a spurious interrupt,
465  * but we should never miss a real lost interrupt.
466  */
sn_check_intr(int irq,struct sn_irq_info * sn_irq_info)467 static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
468 {
469 	u64 regval;
470 	struct pcidev_info *pcidev_info;
471 	struct pcibus_info *pcibus_info;
472 
473 	/*
474 	 * Bridge types attached to TIO (anything but PIC) do not need this WAR
475 	 * since they do not target Shub II interrupt registers.  If that
476 	 * ever changes, this check needs to accomodate.
477 	 */
478 	if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
479 		return;
480 
481 	pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
482 	if (!pcidev_info)
483 		return;
484 
485 	pcibus_info =
486 	    (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
487 	    pdi_pcibus_info;
488 	regval = pcireg_intr_status_get(pcibus_info);
489 
490 	if (!ia64_get_irr(irq_to_vector(irq))) {
491 		if (!test_bit(irq, pda->sn_in_service_ivecs)) {
492 			regval &= 0xff;
493 			if (sn_irq_info->irq_int_bit & regval &
494 			    sn_irq_info->irq_last_intr) {
495 				regval &= ~(sn_irq_info->irq_int_bit & regval);
496 				sn_call_force_intr_provider(sn_irq_info);
497 			}
498 		}
499 	}
500 	sn_irq_info->irq_last_intr = regval;
501 }
502 
sn_lb_int_war_check(void)503 void sn_lb_int_war_check(void)
504 {
505 	struct sn_irq_info *sn_irq_info;
506 	int i;
507 
508 	if (!sn_ioif_inited || pda->sn_first_irq == 0)
509 		return;
510 
511 	rcu_read_lock();
512 	for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
513 		list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
514 			sn_check_intr(i, sn_irq_info);
515 		}
516 	}
517 	rcu_read_unlock();
518 }
519 
sn_irq_lh_init(void)520 void __init sn_irq_lh_init(void)
521 {
522 	int i;
523 
524 	sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
525 	if (!sn_irq_lh)
526 		panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
527 
528 	for (i = 0; i < NR_IRQS; i++) {
529 		sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
530 		if (!sn_irq_lh[i])
531 			panic("SN PCI INIT: Failed IRQ memory allocation\n");
532 
533 		INIT_LIST_HEAD(sn_irq_lh[i]);
534 	}
535 }
536