1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/mmu_context.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <asm/io.h>
35
36 #include "power.h"
37
38 static int swsusp_page_is_free(struct page *);
39 static void swsusp_set_page_forbidden(struct page *);
40 static void swsusp_unset_page_forbidden(struct page *);
41
42 /* List of PBEs needed for restoring the pages that were allocated before
43 * the suspend and included in the suspend image, but have also been
44 * allocated by the "resume" kernel, so their contents cannot be written
45 * directly to their "original" page frames.
46 */
47 struct pbe *restore_pblist;
48
49 /* Pointer to an auxiliary buffer (1 page) */
50 static void *buffer;
51
52 /**
53 * @safe_needed - on resume, for storing the PBE list and the image,
54 * we can only use memory pages that do not conflict with the pages
55 * used before suspend. The unsafe pages have PageNosaveFree set
56 * and we count them using unsafe_pages.
57 *
58 * Each allocated image page is marked as PageNosave and PageNosaveFree
59 * so that swsusp_free() can release it.
60 */
61
62 #define PG_ANY 0
63 #define PG_SAFE 1
64 #define PG_UNSAFE_CLEAR 1
65 #define PG_UNSAFE_KEEP 0
66
67 static unsigned int allocated_unsafe_pages;
68
get_image_page(gfp_t gfp_mask,int safe_needed)69 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
70 {
71 void *res;
72
73 res = (void *)get_zeroed_page(gfp_mask);
74 if (safe_needed)
75 while (res && swsusp_page_is_free(virt_to_page(res))) {
76 /* The page is unsafe, mark it for swsusp_free() */
77 swsusp_set_page_forbidden(virt_to_page(res));
78 allocated_unsafe_pages++;
79 res = (void *)get_zeroed_page(gfp_mask);
80 }
81 if (res) {
82 swsusp_set_page_forbidden(virt_to_page(res));
83 swsusp_set_page_free(virt_to_page(res));
84 }
85 return res;
86 }
87
get_safe_page(gfp_t gfp_mask)88 unsigned long get_safe_page(gfp_t gfp_mask)
89 {
90 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
91 }
92
alloc_image_page(gfp_t gfp_mask)93 static struct page *alloc_image_page(gfp_t gfp_mask)
94 {
95 struct page *page;
96
97 page = alloc_page(gfp_mask);
98 if (page) {
99 swsusp_set_page_forbidden(page);
100 swsusp_set_page_free(page);
101 }
102 return page;
103 }
104
105 /**
106 * free_image_page - free page represented by @addr, allocated with
107 * get_image_page (page flags set by it must be cleared)
108 */
109
free_image_page(void * addr,int clear_nosave_free)110 static inline void free_image_page(void *addr, int clear_nosave_free)
111 {
112 struct page *page;
113
114 BUG_ON(!virt_addr_valid(addr));
115
116 page = virt_to_page(addr);
117
118 swsusp_unset_page_forbidden(page);
119 if (clear_nosave_free)
120 swsusp_unset_page_free(page);
121
122 __free_page(page);
123 }
124
125 /* struct linked_page is used to build chains of pages */
126
127 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
128
129 struct linked_page {
130 struct linked_page *next;
131 char data[LINKED_PAGE_DATA_SIZE];
132 } __attribute__((packed));
133
134 static inline void
free_list_of_pages(struct linked_page * list,int clear_page_nosave)135 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
136 {
137 while (list) {
138 struct linked_page *lp = list->next;
139
140 free_image_page(list, clear_page_nosave);
141 list = lp;
142 }
143 }
144
145 /**
146 * struct chain_allocator is used for allocating small objects out of
147 * a linked list of pages called 'the chain'.
148 *
149 * The chain grows each time when there is no room for a new object in
150 * the current page. The allocated objects cannot be freed individually.
151 * It is only possible to free them all at once, by freeing the entire
152 * chain.
153 *
154 * NOTE: The chain allocator may be inefficient if the allocated objects
155 * are not much smaller than PAGE_SIZE.
156 */
157
158 struct chain_allocator {
159 struct linked_page *chain; /* the chain */
160 unsigned int used_space; /* total size of objects allocated out
161 * of the current page
162 */
163 gfp_t gfp_mask; /* mask for allocating pages */
164 int safe_needed; /* if set, only "safe" pages are allocated */
165 };
166
167 static void
chain_init(struct chain_allocator * ca,gfp_t gfp_mask,int safe_needed)168 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
169 {
170 ca->chain = NULL;
171 ca->used_space = LINKED_PAGE_DATA_SIZE;
172 ca->gfp_mask = gfp_mask;
173 ca->safe_needed = safe_needed;
174 }
175
chain_alloc(struct chain_allocator * ca,unsigned int size)176 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
177 {
178 void *ret;
179
180 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
181 struct linked_page *lp;
182
183 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
184 if (!lp)
185 return NULL;
186
187 lp->next = ca->chain;
188 ca->chain = lp;
189 ca->used_space = 0;
190 }
191 ret = ca->chain->data + ca->used_space;
192 ca->used_space += size;
193 return ret;
194 }
195
196 /**
197 * Data types related to memory bitmaps.
198 *
199 * Memory bitmap is a structure consiting of many linked lists of
200 * objects. The main list's elements are of type struct zone_bitmap
201 * and each of them corresonds to one zone. For each zone bitmap
202 * object there is a list of objects of type struct bm_block that
203 * represent each blocks of bitmap in which information is stored.
204 *
205 * struct memory_bitmap contains a pointer to the main list of zone
206 * bitmap objects, a struct bm_position used for browsing the bitmap,
207 * and a pointer to the list of pages used for allocating all of the
208 * zone bitmap objects and bitmap block objects.
209 *
210 * NOTE: It has to be possible to lay out the bitmap in memory
211 * using only allocations of order 0. Additionally, the bitmap is
212 * designed to work with arbitrary number of zones (this is over the
213 * top for now, but let's avoid making unnecessary assumptions ;-).
214 *
215 * struct zone_bitmap contains a pointer to a list of bitmap block
216 * objects and a pointer to the bitmap block object that has been
217 * most recently used for setting bits. Additionally, it contains the
218 * pfns that correspond to the start and end of the represented zone.
219 *
220 * struct bm_block contains a pointer to the memory page in which
221 * information is stored (in the form of a block of bitmap)
222 * It also contains the pfns that correspond to the start and end of
223 * the represented memory area.
224 */
225
226 #define BM_END_OF_MAP (~0UL)
227
228 #define BM_BITS_PER_BLOCK (PAGE_SIZE << 3)
229
230 struct bm_block {
231 struct list_head hook; /* hook into a list of bitmap blocks */
232 unsigned long start_pfn; /* pfn represented by the first bit */
233 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
234 unsigned long *data; /* bitmap representing pages */
235 };
236
bm_block_bits(struct bm_block * bb)237 static inline unsigned long bm_block_bits(struct bm_block *bb)
238 {
239 return bb->end_pfn - bb->start_pfn;
240 }
241
242 /* strcut bm_position is used for browsing memory bitmaps */
243
244 struct bm_position {
245 struct bm_block *block;
246 int bit;
247 };
248
249 struct memory_bitmap {
250 struct list_head blocks; /* list of bitmap blocks */
251 struct linked_page *p_list; /* list of pages used to store zone
252 * bitmap objects and bitmap block
253 * objects
254 */
255 struct bm_position cur; /* most recently used bit position */
256 };
257
258 /* Functions that operate on memory bitmaps */
259
memory_bm_position_reset(struct memory_bitmap * bm)260 static void memory_bm_position_reset(struct memory_bitmap *bm)
261 {
262 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
263 bm->cur.bit = 0;
264 }
265
266 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
267
268 /**
269 * create_bm_block_list - create a list of block bitmap objects
270 * @nr_blocks - number of blocks to allocate
271 * @list - list to put the allocated blocks into
272 * @ca - chain allocator to be used for allocating memory
273 */
create_bm_block_list(unsigned long pages,struct list_head * list,struct chain_allocator * ca)274 static int create_bm_block_list(unsigned long pages,
275 struct list_head *list,
276 struct chain_allocator *ca)
277 {
278 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
279
280 while (nr_blocks-- > 0) {
281 struct bm_block *bb;
282
283 bb = chain_alloc(ca, sizeof(struct bm_block));
284 if (!bb)
285 return -ENOMEM;
286 list_add(&bb->hook, list);
287 }
288
289 return 0;
290 }
291
292 struct mem_extent {
293 struct list_head hook;
294 unsigned long start;
295 unsigned long end;
296 };
297
298 /**
299 * free_mem_extents - free a list of memory extents
300 * @list - list of extents to empty
301 */
free_mem_extents(struct list_head * list)302 static void free_mem_extents(struct list_head *list)
303 {
304 struct mem_extent *ext, *aux;
305
306 list_for_each_entry_safe(ext, aux, list, hook) {
307 list_del(&ext->hook);
308 kfree(ext);
309 }
310 }
311
312 /**
313 * create_mem_extents - create a list of memory extents representing
314 * contiguous ranges of PFNs
315 * @list - list to put the extents into
316 * @gfp_mask - mask to use for memory allocations
317 */
create_mem_extents(struct list_head * list,gfp_t gfp_mask)318 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
319 {
320 struct zone *zone;
321
322 INIT_LIST_HEAD(list);
323
324 for_each_zone(zone) {
325 unsigned long zone_start, zone_end;
326 struct mem_extent *ext, *cur, *aux;
327
328 if (!populated_zone(zone))
329 continue;
330
331 zone_start = zone->zone_start_pfn;
332 zone_end = zone->zone_start_pfn + zone->spanned_pages;
333
334 list_for_each_entry(ext, list, hook)
335 if (zone_start <= ext->end)
336 break;
337
338 if (&ext->hook == list || zone_end < ext->start) {
339 /* New extent is necessary */
340 struct mem_extent *new_ext;
341
342 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
343 if (!new_ext) {
344 free_mem_extents(list);
345 return -ENOMEM;
346 }
347 new_ext->start = zone_start;
348 new_ext->end = zone_end;
349 list_add_tail(&new_ext->hook, &ext->hook);
350 continue;
351 }
352
353 /* Merge this zone's range of PFNs with the existing one */
354 if (zone_start < ext->start)
355 ext->start = zone_start;
356 if (zone_end > ext->end)
357 ext->end = zone_end;
358
359 /* More merging may be possible */
360 cur = ext;
361 list_for_each_entry_safe_continue(cur, aux, list, hook) {
362 if (zone_end < cur->start)
363 break;
364 if (zone_end < cur->end)
365 ext->end = cur->end;
366 list_del(&cur->hook);
367 kfree(cur);
368 }
369 }
370
371 return 0;
372 }
373
374 /**
375 * memory_bm_create - allocate memory for a memory bitmap
376 */
377 static int
memory_bm_create(struct memory_bitmap * bm,gfp_t gfp_mask,int safe_needed)378 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
379 {
380 struct chain_allocator ca;
381 struct list_head mem_extents;
382 struct mem_extent *ext;
383 int error;
384
385 chain_init(&ca, gfp_mask, safe_needed);
386 INIT_LIST_HEAD(&bm->blocks);
387
388 error = create_mem_extents(&mem_extents, gfp_mask);
389 if (error)
390 return error;
391
392 list_for_each_entry(ext, &mem_extents, hook) {
393 struct bm_block *bb;
394 unsigned long pfn = ext->start;
395 unsigned long pages = ext->end - ext->start;
396
397 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
398
399 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
400 if (error)
401 goto Error;
402
403 list_for_each_entry_continue(bb, &bm->blocks, hook) {
404 bb->data = get_image_page(gfp_mask, safe_needed);
405 if (!bb->data) {
406 error = -ENOMEM;
407 goto Error;
408 }
409
410 bb->start_pfn = pfn;
411 if (pages >= BM_BITS_PER_BLOCK) {
412 pfn += BM_BITS_PER_BLOCK;
413 pages -= BM_BITS_PER_BLOCK;
414 } else {
415 /* This is executed only once in the loop */
416 pfn += pages;
417 }
418 bb->end_pfn = pfn;
419 }
420 }
421
422 bm->p_list = ca.chain;
423 memory_bm_position_reset(bm);
424 Exit:
425 free_mem_extents(&mem_extents);
426 return error;
427
428 Error:
429 bm->p_list = ca.chain;
430 memory_bm_free(bm, PG_UNSAFE_CLEAR);
431 goto Exit;
432 }
433
434 /**
435 * memory_bm_free - free memory occupied by the memory bitmap @bm
436 */
memory_bm_free(struct memory_bitmap * bm,int clear_nosave_free)437 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
438 {
439 struct bm_block *bb;
440
441 list_for_each_entry(bb, &bm->blocks, hook)
442 if (bb->data)
443 free_image_page(bb->data, clear_nosave_free);
444
445 free_list_of_pages(bm->p_list, clear_nosave_free);
446
447 INIT_LIST_HEAD(&bm->blocks);
448 }
449
450 /**
451 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
452 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
453 * of @bm->cur_zone_bm are updated.
454 */
memory_bm_find_bit(struct memory_bitmap * bm,unsigned long pfn,void ** addr,unsigned int * bit_nr)455 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
456 void **addr, unsigned int *bit_nr)
457 {
458 struct bm_block *bb;
459
460 /*
461 * Check if the pfn corresponds to the current bitmap block and find
462 * the block where it fits if this is not the case.
463 */
464 bb = bm->cur.block;
465 if (pfn < bb->start_pfn)
466 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
467 if (pfn >= bb->start_pfn)
468 break;
469
470 if (pfn >= bb->end_pfn)
471 list_for_each_entry_continue(bb, &bm->blocks, hook)
472 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
473 break;
474
475 if (&bb->hook == &bm->blocks)
476 return -EFAULT;
477
478 /* The block has been found */
479 bm->cur.block = bb;
480 pfn -= bb->start_pfn;
481 bm->cur.bit = pfn + 1;
482 *bit_nr = pfn;
483 *addr = bb->data;
484 return 0;
485 }
486
memory_bm_set_bit(struct memory_bitmap * bm,unsigned long pfn)487 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
488 {
489 void *addr;
490 unsigned int bit;
491 int error;
492
493 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
494 BUG_ON(error);
495 set_bit(bit, addr);
496 }
497
mem_bm_set_bit_check(struct memory_bitmap * bm,unsigned long pfn)498 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
499 {
500 void *addr;
501 unsigned int bit;
502 int error;
503
504 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
505 if (!error)
506 set_bit(bit, addr);
507 return error;
508 }
509
memory_bm_clear_bit(struct memory_bitmap * bm,unsigned long pfn)510 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512 void *addr;
513 unsigned int bit;
514 int error;
515
516 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 BUG_ON(error);
518 clear_bit(bit, addr);
519 }
520
memory_bm_test_bit(struct memory_bitmap * bm,unsigned long pfn)521 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 BUG_ON(error);
529 return test_bit(bit, addr);
530 }
531
memory_bm_pfn_present(struct memory_bitmap * bm,unsigned long pfn)532 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
533 {
534 void *addr;
535 unsigned int bit;
536
537 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
538 }
539
540 /**
541 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
542 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
543 * returned.
544 *
545 * It is required to run memory_bm_position_reset() before the first call to
546 * this function.
547 */
548
memory_bm_next_pfn(struct memory_bitmap * bm)549 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
550 {
551 struct bm_block *bb;
552 int bit;
553
554 bb = bm->cur.block;
555 do {
556 bit = bm->cur.bit;
557 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
558 if (bit < bm_block_bits(bb))
559 goto Return_pfn;
560
561 bb = list_entry(bb->hook.next, struct bm_block, hook);
562 bm->cur.block = bb;
563 bm->cur.bit = 0;
564 } while (&bb->hook != &bm->blocks);
565
566 memory_bm_position_reset(bm);
567 return BM_END_OF_MAP;
568
569 Return_pfn:
570 bm->cur.bit = bit + 1;
571 return bb->start_pfn + bit;
572 }
573
574 /**
575 * This structure represents a range of page frames the contents of which
576 * should not be saved during the suspend.
577 */
578
579 struct nosave_region {
580 struct list_head list;
581 unsigned long start_pfn;
582 unsigned long end_pfn;
583 };
584
585 static LIST_HEAD(nosave_regions);
586
587 /**
588 * register_nosave_region - register a range of page frames the contents
589 * of which should not be saved during the suspend (to be used in the early
590 * initialization code)
591 */
592
593 void __init
__register_nosave_region(unsigned long start_pfn,unsigned long end_pfn,int use_kmalloc)594 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
595 int use_kmalloc)
596 {
597 struct nosave_region *region;
598
599 if (start_pfn >= end_pfn)
600 return;
601
602 if (!list_empty(&nosave_regions)) {
603 /* Try to extend the previous region (they should be sorted) */
604 region = list_entry(nosave_regions.prev,
605 struct nosave_region, list);
606 if (region->end_pfn == start_pfn) {
607 region->end_pfn = end_pfn;
608 goto Report;
609 }
610 }
611 if (use_kmalloc) {
612 /* during init, this shouldn't fail */
613 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
614 BUG_ON(!region);
615 } else
616 /* This allocation cannot fail */
617 region = alloc_bootmem_low(sizeof(struct nosave_region));
618 region->start_pfn = start_pfn;
619 region->end_pfn = end_pfn;
620 list_add_tail(®ion->list, &nosave_regions);
621 Report:
622 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
623 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
624 }
625
626 /*
627 * Set bits in this map correspond to the page frames the contents of which
628 * should not be saved during the suspend.
629 */
630 static struct memory_bitmap *forbidden_pages_map;
631
632 /* Set bits in this map correspond to free page frames. */
633 static struct memory_bitmap *free_pages_map;
634
635 /*
636 * Each page frame allocated for creating the image is marked by setting the
637 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
638 */
639
swsusp_set_page_free(struct page * page)640 void swsusp_set_page_free(struct page *page)
641 {
642 if (free_pages_map)
643 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
644 }
645
swsusp_page_is_free(struct page * page)646 static int swsusp_page_is_free(struct page *page)
647 {
648 return free_pages_map ?
649 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
650 }
651
swsusp_unset_page_free(struct page * page)652 void swsusp_unset_page_free(struct page *page)
653 {
654 if (free_pages_map)
655 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
656 }
657
swsusp_set_page_forbidden(struct page * page)658 static void swsusp_set_page_forbidden(struct page *page)
659 {
660 if (forbidden_pages_map)
661 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
662 }
663
swsusp_page_is_forbidden(struct page * page)664 int swsusp_page_is_forbidden(struct page *page)
665 {
666 return forbidden_pages_map ?
667 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
668 }
669
swsusp_unset_page_forbidden(struct page * page)670 static void swsusp_unset_page_forbidden(struct page *page)
671 {
672 if (forbidden_pages_map)
673 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
674 }
675
676 /**
677 * mark_nosave_pages - set bits corresponding to the page frames the
678 * contents of which should not be saved in a given bitmap.
679 */
680
mark_nosave_pages(struct memory_bitmap * bm)681 static void mark_nosave_pages(struct memory_bitmap *bm)
682 {
683 struct nosave_region *region;
684
685 if (list_empty(&nosave_regions))
686 return;
687
688 list_for_each_entry(region, &nosave_regions, list) {
689 unsigned long pfn;
690
691 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
692 region->start_pfn << PAGE_SHIFT,
693 region->end_pfn << PAGE_SHIFT);
694
695 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
696 if (pfn_valid(pfn)) {
697 /*
698 * It is safe to ignore the result of
699 * mem_bm_set_bit_check() here, since we won't
700 * touch the PFNs for which the error is
701 * returned anyway.
702 */
703 mem_bm_set_bit_check(bm, pfn);
704 }
705 }
706 }
707
708 /**
709 * create_basic_memory_bitmaps - create bitmaps needed for marking page
710 * frames that should not be saved and free page frames. The pointers
711 * forbidden_pages_map and free_pages_map are only modified if everything
712 * goes well, because we don't want the bits to be used before both bitmaps
713 * are set up.
714 */
715
create_basic_memory_bitmaps(void)716 int create_basic_memory_bitmaps(void)
717 {
718 struct memory_bitmap *bm1, *bm2;
719 int error = 0;
720
721 BUG_ON(forbidden_pages_map || free_pages_map);
722
723 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
724 if (!bm1)
725 return -ENOMEM;
726
727 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
728 if (error)
729 goto Free_first_object;
730
731 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
732 if (!bm2)
733 goto Free_first_bitmap;
734
735 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
736 if (error)
737 goto Free_second_object;
738
739 forbidden_pages_map = bm1;
740 free_pages_map = bm2;
741 mark_nosave_pages(forbidden_pages_map);
742
743 pr_debug("PM: Basic memory bitmaps created\n");
744
745 return 0;
746
747 Free_second_object:
748 kfree(bm2);
749 Free_first_bitmap:
750 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
751 Free_first_object:
752 kfree(bm1);
753 return -ENOMEM;
754 }
755
756 /**
757 * free_basic_memory_bitmaps - free memory bitmaps allocated by
758 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
759 * so that the bitmaps themselves are not referred to while they are being
760 * freed.
761 */
762
free_basic_memory_bitmaps(void)763 void free_basic_memory_bitmaps(void)
764 {
765 struct memory_bitmap *bm1, *bm2;
766
767 BUG_ON(!(forbidden_pages_map && free_pages_map));
768
769 bm1 = forbidden_pages_map;
770 bm2 = free_pages_map;
771 forbidden_pages_map = NULL;
772 free_pages_map = NULL;
773 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774 kfree(bm1);
775 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
776 kfree(bm2);
777
778 pr_debug("PM: Basic memory bitmaps freed\n");
779 }
780
781 /**
782 * snapshot_additional_pages - estimate the number of additional pages
783 * be needed for setting up the suspend image data structures for given
784 * zone (usually the returned value is greater than the exact number)
785 */
786
snapshot_additional_pages(struct zone * zone)787 unsigned int snapshot_additional_pages(struct zone *zone)
788 {
789 unsigned int res;
790
791 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
792 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
793 return 2 * res;
794 }
795
796 #ifdef CONFIG_HIGHMEM
797 /**
798 * count_free_highmem_pages - compute the total number of free highmem
799 * pages, system-wide.
800 */
801
count_free_highmem_pages(void)802 static unsigned int count_free_highmem_pages(void)
803 {
804 struct zone *zone;
805 unsigned int cnt = 0;
806
807 for_each_zone(zone)
808 if (populated_zone(zone) && is_highmem(zone))
809 cnt += zone_page_state(zone, NR_FREE_PAGES);
810
811 return cnt;
812 }
813
814 /**
815 * saveable_highmem_page - Determine whether a highmem page should be
816 * included in the suspend image.
817 *
818 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
819 * and it isn't a part of a free chunk of pages.
820 */
saveable_highmem_page(struct zone * zone,unsigned long pfn)821 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
822 {
823 struct page *page;
824
825 if (!pfn_valid(pfn))
826 return NULL;
827
828 page = pfn_to_page(pfn);
829 if (page_zone(page) != zone)
830 return NULL;
831
832 BUG_ON(!PageHighMem(page));
833
834 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
835 PageReserved(page))
836 return NULL;
837
838 return page;
839 }
840
841 /**
842 * count_highmem_pages - compute the total number of saveable highmem
843 * pages.
844 */
845
count_highmem_pages(void)846 unsigned int count_highmem_pages(void)
847 {
848 struct zone *zone;
849 unsigned int n = 0;
850
851 for_each_zone(zone) {
852 unsigned long pfn, max_zone_pfn;
853
854 if (!is_highmem(zone))
855 continue;
856
857 mark_free_pages(zone);
858 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
859 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
860 if (saveable_highmem_page(zone, pfn))
861 n++;
862 }
863 return n;
864 }
865 #else
saveable_highmem_page(struct zone * z,unsigned long p)866 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
867 {
868 return NULL;
869 }
870 #endif /* CONFIG_HIGHMEM */
871
872 /**
873 * saveable_page - Determine whether a non-highmem page should be included
874 * in the suspend image.
875 *
876 * We should save the page if it isn't Nosave, and is not in the range
877 * of pages statically defined as 'unsaveable', and it isn't a part of
878 * a free chunk of pages.
879 */
saveable_page(struct zone * zone,unsigned long pfn)880 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
881 {
882 struct page *page;
883
884 if (!pfn_valid(pfn))
885 return NULL;
886
887 page = pfn_to_page(pfn);
888 if (page_zone(page) != zone)
889 return NULL;
890
891 BUG_ON(PageHighMem(page));
892
893 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
894 return NULL;
895
896 if (PageReserved(page)
897 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
898 return NULL;
899
900 return page;
901 }
902
903 /**
904 * count_data_pages - compute the total number of saveable non-highmem
905 * pages.
906 */
907
count_data_pages(void)908 unsigned int count_data_pages(void)
909 {
910 struct zone *zone;
911 unsigned long pfn, max_zone_pfn;
912 unsigned int n = 0;
913
914 for_each_zone(zone) {
915 if (is_highmem(zone))
916 continue;
917
918 mark_free_pages(zone);
919 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
920 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
921 if (saveable_page(zone, pfn))
922 n++;
923 }
924 return n;
925 }
926
927 /* This is needed, because copy_page and memcpy are not usable for copying
928 * task structs.
929 */
do_copy_page(long * dst,long * src)930 static inline void do_copy_page(long *dst, long *src)
931 {
932 int n;
933
934 for (n = PAGE_SIZE / sizeof(long); n; n--)
935 *dst++ = *src++;
936 }
937
938
939 /**
940 * safe_copy_page - check if the page we are going to copy is marked as
941 * present in the kernel page tables (this always is the case if
942 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
943 * kernel_page_present() always returns 'true').
944 */
safe_copy_page(void * dst,struct page * s_page)945 static void safe_copy_page(void *dst, struct page *s_page)
946 {
947 if (kernel_page_present(s_page)) {
948 do_copy_page(dst, page_address(s_page));
949 } else {
950 kernel_map_pages(s_page, 1, 1);
951 do_copy_page(dst, page_address(s_page));
952 kernel_map_pages(s_page, 1, 0);
953 }
954 }
955
956
957 #ifdef CONFIG_HIGHMEM
958 static inline struct page *
page_is_saveable(struct zone * zone,unsigned long pfn)959 page_is_saveable(struct zone *zone, unsigned long pfn)
960 {
961 return is_highmem(zone) ?
962 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
963 }
964
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)965 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
966 {
967 struct page *s_page, *d_page;
968 void *src, *dst;
969
970 s_page = pfn_to_page(src_pfn);
971 d_page = pfn_to_page(dst_pfn);
972 if (PageHighMem(s_page)) {
973 src = kmap_atomic(s_page, KM_USER0);
974 dst = kmap_atomic(d_page, KM_USER1);
975 do_copy_page(dst, src);
976 kunmap_atomic(src, KM_USER0);
977 kunmap_atomic(dst, KM_USER1);
978 } else {
979 if (PageHighMem(d_page)) {
980 /* Page pointed to by src may contain some kernel
981 * data modified by kmap_atomic()
982 */
983 safe_copy_page(buffer, s_page);
984 dst = kmap_atomic(d_page, KM_USER0);
985 memcpy(dst, buffer, PAGE_SIZE);
986 kunmap_atomic(dst, KM_USER0);
987 } else {
988 safe_copy_page(page_address(d_page), s_page);
989 }
990 }
991 }
992 #else
993 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
994
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)995 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
996 {
997 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
998 pfn_to_page(src_pfn));
999 }
1000 #endif /* CONFIG_HIGHMEM */
1001
1002 static void
copy_data_pages(struct memory_bitmap * copy_bm,struct memory_bitmap * orig_bm)1003 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1004 {
1005 struct zone *zone;
1006 unsigned long pfn;
1007
1008 for_each_zone(zone) {
1009 unsigned long max_zone_pfn;
1010
1011 mark_free_pages(zone);
1012 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1013 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1014 if (page_is_saveable(zone, pfn))
1015 memory_bm_set_bit(orig_bm, pfn);
1016 }
1017 memory_bm_position_reset(orig_bm);
1018 memory_bm_position_reset(copy_bm);
1019 for(;;) {
1020 pfn = memory_bm_next_pfn(orig_bm);
1021 if (unlikely(pfn == BM_END_OF_MAP))
1022 break;
1023 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1024 }
1025 }
1026
1027 /* Total number of image pages */
1028 static unsigned int nr_copy_pages;
1029 /* Number of pages needed for saving the original pfns of the image pages */
1030 static unsigned int nr_meta_pages;
1031
1032 /**
1033 * swsusp_free - free pages allocated for the suspend.
1034 *
1035 * Suspend pages are alocated before the atomic copy is made, so we
1036 * need to release them after the resume.
1037 */
1038
swsusp_free(void)1039 void swsusp_free(void)
1040 {
1041 struct zone *zone;
1042 unsigned long pfn, max_zone_pfn;
1043
1044 for_each_zone(zone) {
1045 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1046 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1047 if (pfn_valid(pfn)) {
1048 struct page *page = pfn_to_page(pfn);
1049
1050 if (swsusp_page_is_forbidden(page) &&
1051 swsusp_page_is_free(page)) {
1052 swsusp_unset_page_forbidden(page);
1053 swsusp_unset_page_free(page);
1054 __free_page(page);
1055 }
1056 }
1057 }
1058 nr_copy_pages = 0;
1059 nr_meta_pages = 0;
1060 restore_pblist = NULL;
1061 buffer = NULL;
1062 }
1063
1064 #ifdef CONFIG_HIGHMEM
1065 /**
1066 * count_pages_for_highmem - compute the number of non-highmem pages
1067 * that will be necessary for creating copies of highmem pages.
1068 */
1069
count_pages_for_highmem(unsigned int nr_highmem)1070 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1071 {
1072 unsigned int free_highmem = count_free_highmem_pages();
1073
1074 if (free_highmem >= nr_highmem)
1075 nr_highmem = 0;
1076 else
1077 nr_highmem -= free_highmem;
1078
1079 return nr_highmem;
1080 }
1081 #else
1082 static unsigned int
count_pages_for_highmem(unsigned int nr_highmem)1083 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1084 #endif /* CONFIG_HIGHMEM */
1085
1086 /**
1087 * enough_free_mem - Make sure we have enough free memory for the
1088 * snapshot image.
1089 */
1090
enough_free_mem(unsigned int nr_pages,unsigned int nr_highmem)1091 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1092 {
1093 struct zone *zone;
1094 unsigned int free = 0, meta = 0;
1095
1096 for_each_zone(zone) {
1097 meta += snapshot_additional_pages(zone);
1098 if (!is_highmem(zone))
1099 free += zone_page_state(zone, NR_FREE_PAGES);
1100 }
1101
1102 nr_pages += count_pages_for_highmem(nr_highmem);
1103 pr_debug("PM: Normal pages needed: %u + %u + %u, available pages: %u\n",
1104 nr_pages, PAGES_FOR_IO, meta, free);
1105
1106 return free > nr_pages + PAGES_FOR_IO + meta;
1107 }
1108
1109 #ifdef CONFIG_HIGHMEM
1110 /**
1111 * get_highmem_buffer - if there are some highmem pages in the suspend
1112 * image, we may need the buffer to copy them and/or load their data.
1113 */
1114
get_highmem_buffer(int safe_needed)1115 static inline int get_highmem_buffer(int safe_needed)
1116 {
1117 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1118 return buffer ? 0 : -ENOMEM;
1119 }
1120
1121 /**
1122 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1123 * Try to allocate as many pages as needed, but if the number of free
1124 * highmem pages is lesser than that, allocate them all.
1125 */
1126
1127 static inline unsigned int
alloc_highmem_image_pages(struct memory_bitmap * bm,unsigned int nr_highmem)1128 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1129 {
1130 unsigned int to_alloc = count_free_highmem_pages();
1131
1132 if (to_alloc > nr_highmem)
1133 to_alloc = nr_highmem;
1134
1135 nr_highmem -= to_alloc;
1136 while (to_alloc-- > 0) {
1137 struct page *page;
1138
1139 page = alloc_image_page(__GFP_HIGHMEM);
1140 memory_bm_set_bit(bm, page_to_pfn(page));
1141 }
1142 return nr_highmem;
1143 }
1144 #else
get_highmem_buffer(int safe_needed)1145 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1146
1147 static inline unsigned int
alloc_highmem_image_pages(struct memory_bitmap * bm,unsigned int n)1148 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1149 #endif /* CONFIG_HIGHMEM */
1150
1151 /**
1152 * swsusp_alloc - allocate memory for the suspend image
1153 *
1154 * We first try to allocate as many highmem pages as there are
1155 * saveable highmem pages in the system. If that fails, we allocate
1156 * non-highmem pages for the copies of the remaining highmem ones.
1157 *
1158 * In this approach it is likely that the copies of highmem pages will
1159 * also be located in the high memory, because of the way in which
1160 * copy_data_pages() works.
1161 */
1162
1163 static int
swsusp_alloc(struct memory_bitmap * orig_bm,struct memory_bitmap * copy_bm,unsigned int nr_pages,unsigned int nr_highmem)1164 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1165 unsigned int nr_pages, unsigned int nr_highmem)
1166 {
1167 int error;
1168
1169 error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1170 if (error)
1171 goto Free;
1172
1173 error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1174 if (error)
1175 goto Free;
1176
1177 if (nr_highmem > 0) {
1178 error = get_highmem_buffer(PG_ANY);
1179 if (error)
1180 goto Free;
1181
1182 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1183 }
1184 while (nr_pages-- > 0) {
1185 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1186
1187 if (!page)
1188 goto Free;
1189
1190 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1191 }
1192 return 0;
1193
1194 Free:
1195 swsusp_free();
1196 return -ENOMEM;
1197 }
1198
1199 /* Memory bitmap used for marking saveable pages (during suspend) or the
1200 * suspend image pages (during resume)
1201 */
1202 static struct memory_bitmap orig_bm;
1203 /* Memory bitmap used on suspend for marking allocated pages that will contain
1204 * the copies of saveable pages. During resume it is initially used for
1205 * marking the suspend image pages, but then its set bits are duplicated in
1206 * @orig_bm and it is released. Next, on systems with high memory, it may be
1207 * used for marking "safe" highmem pages, but it has to be reinitialized for
1208 * this purpose.
1209 */
1210 static struct memory_bitmap copy_bm;
1211
swsusp_save(void)1212 asmlinkage int swsusp_save(void)
1213 {
1214 unsigned int nr_pages, nr_highmem;
1215
1216 printk(KERN_INFO "PM: Creating hibernation image: \n");
1217
1218 drain_local_pages(NULL);
1219 nr_pages = count_data_pages();
1220 nr_highmem = count_highmem_pages();
1221 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1222
1223 if (!enough_free_mem(nr_pages, nr_highmem)) {
1224 printk(KERN_ERR "PM: Not enough free memory\n");
1225 return -ENOMEM;
1226 }
1227
1228 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) {
1229 printk(KERN_ERR "PM: Memory allocation failed\n");
1230 return -ENOMEM;
1231 }
1232
1233 /* During allocating of suspend pagedir, new cold pages may appear.
1234 * Kill them.
1235 */
1236 drain_local_pages(NULL);
1237 copy_data_pages(©_bm, &orig_bm);
1238
1239 /*
1240 * End of critical section. From now on, we can write to memory,
1241 * but we should not touch disk. This specially means we must _not_
1242 * touch swap space! Except we must write out our image of course.
1243 */
1244
1245 nr_pages += nr_highmem;
1246 nr_copy_pages = nr_pages;
1247 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1248
1249 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1250 nr_pages);
1251
1252 return 0;
1253 }
1254
1255 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
init_header_complete(struct swsusp_info * info)1256 static int init_header_complete(struct swsusp_info *info)
1257 {
1258 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1259 info->version_code = LINUX_VERSION_CODE;
1260 return 0;
1261 }
1262
check_image_kernel(struct swsusp_info * info)1263 static char *check_image_kernel(struct swsusp_info *info)
1264 {
1265 if (info->version_code != LINUX_VERSION_CODE)
1266 return "kernel version";
1267 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1268 return "system type";
1269 if (strcmp(info->uts.release,init_utsname()->release))
1270 return "kernel release";
1271 if (strcmp(info->uts.version,init_utsname()->version))
1272 return "version";
1273 if (strcmp(info->uts.machine,init_utsname()->machine))
1274 return "machine";
1275 return NULL;
1276 }
1277 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1278
snapshot_get_image_size(void)1279 unsigned long snapshot_get_image_size(void)
1280 {
1281 return nr_copy_pages + nr_meta_pages + 1;
1282 }
1283
init_header(struct swsusp_info * info)1284 static int init_header(struct swsusp_info *info)
1285 {
1286 memset(info, 0, sizeof(struct swsusp_info));
1287 info->num_physpages = num_physpages;
1288 info->image_pages = nr_copy_pages;
1289 info->pages = snapshot_get_image_size();
1290 info->size = info->pages;
1291 info->size <<= PAGE_SHIFT;
1292 return init_header_complete(info);
1293 }
1294
1295 /**
1296 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1297 * are stored in the array @buf[] (1 page at a time)
1298 */
1299
1300 static inline void
pack_pfns(unsigned long * buf,struct memory_bitmap * bm)1301 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1302 {
1303 int j;
1304
1305 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1306 buf[j] = memory_bm_next_pfn(bm);
1307 if (unlikely(buf[j] == BM_END_OF_MAP))
1308 break;
1309 }
1310 }
1311
1312 /**
1313 * snapshot_read_next - used for reading the system memory snapshot.
1314 *
1315 * On the first call to it @handle should point to a zeroed
1316 * snapshot_handle structure. The structure gets updated and a pointer
1317 * to it should be passed to this function every next time.
1318 *
1319 * The @count parameter should contain the number of bytes the caller
1320 * wants to read from the snapshot. It must not be zero.
1321 *
1322 * On success the function returns a positive number. Then, the caller
1323 * is allowed to read up to the returned number of bytes from the memory
1324 * location computed by the data_of() macro. The number returned
1325 * may be smaller than @count, but this only happens if the read would
1326 * cross a page boundary otherwise.
1327 *
1328 * The function returns 0 to indicate the end of data stream condition,
1329 * and a negative number is returned on error. In such cases the
1330 * structure pointed to by @handle is not updated and should not be used
1331 * any more.
1332 */
1333
snapshot_read_next(struct snapshot_handle * handle,size_t count)1334 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1335 {
1336 if (handle->cur > nr_meta_pages + nr_copy_pages)
1337 return 0;
1338
1339 if (!buffer) {
1340 /* This makes the buffer be freed by swsusp_free() */
1341 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1342 if (!buffer)
1343 return -ENOMEM;
1344 }
1345 if (!handle->offset) {
1346 int error;
1347
1348 error = init_header((struct swsusp_info *)buffer);
1349 if (error)
1350 return error;
1351 handle->buffer = buffer;
1352 memory_bm_position_reset(&orig_bm);
1353 memory_bm_position_reset(©_bm);
1354 }
1355 if (handle->prev < handle->cur) {
1356 if (handle->cur <= nr_meta_pages) {
1357 memset(buffer, 0, PAGE_SIZE);
1358 pack_pfns(buffer, &orig_bm);
1359 } else {
1360 struct page *page;
1361
1362 page = pfn_to_page(memory_bm_next_pfn(©_bm));
1363 if (PageHighMem(page)) {
1364 /* Highmem pages are copied to the buffer,
1365 * because we can't return with a kmapped
1366 * highmem page (we may not be called again).
1367 */
1368 void *kaddr;
1369
1370 kaddr = kmap_atomic(page, KM_USER0);
1371 memcpy(buffer, kaddr, PAGE_SIZE);
1372 kunmap_atomic(kaddr, KM_USER0);
1373 handle->buffer = buffer;
1374 } else {
1375 handle->buffer = page_address(page);
1376 }
1377 }
1378 handle->prev = handle->cur;
1379 }
1380 handle->buf_offset = handle->cur_offset;
1381 if (handle->cur_offset + count >= PAGE_SIZE) {
1382 count = PAGE_SIZE - handle->cur_offset;
1383 handle->cur_offset = 0;
1384 handle->cur++;
1385 } else {
1386 handle->cur_offset += count;
1387 }
1388 handle->offset += count;
1389 return count;
1390 }
1391
1392 /**
1393 * mark_unsafe_pages - mark the pages that cannot be used for storing
1394 * the image during resume, because they conflict with the pages that
1395 * had been used before suspend
1396 */
1397
mark_unsafe_pages(struct memory_bitmap * bm)1398 static int mark_unsafe_pages(struct memory_bitmap *bm)
1399 {
1400 struct zone *zone;
1401 unsigned long pfn, max_zone_pfn;
1402
1403 /* Clear page flags */
1404 for_each_zone(zone) {
1405 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1406 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1407 if (pfn_valid(pfn))
1408 swsusp_unset_page_free(pfn_to_page(pfn));
1409 }
1410
1411 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1412 memory_bm_position_reset(bm);
1413 do {
1414 pfn = memory_bm_next_pfn(bm);
1415 if (likely(pfn != BM_END_OF_MAP)) {
1416 if (likely(pfn_valid(pfn)))
1417 swsusp_set_page_free(pfn_to_page(pfn));
1418 else
1419 return -EFAULT;
1420 }
1421 } while (pfn != BM_END_OF_MAP);
1422
1423 allocated_unsafe_pages = 0;
1424
1425 return 0;
1426 }
1427
1428 static void
duplicate_memory_bitmap(struct memory_bitmap * dst,struct memory_bitmap * src)1429 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1430 {
1431 unsigned long pfn;
1432
1433 memory_bm_position_reset(src);
1434 pfn = memory_bm_next_pfn(src);
1435 while (pfn != BM_END_OF_MAP) {
1436 memory_bm_set_bit(dst, pfn);
1437 pfn = memory_bm_next_pfn(src);
1438 }
1439 }
1440
check_header(struct swsusp_info * info)1441 static int check_header(struct swsusp_info *info)
1442 {
1443 char *reason;
1444
1445 reason = check_image_kernel(info);
1446 if (!reason && info->num_physpages != num_physpages)
1447 reason = "memory size";
1448 if (reason) {
1449 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1450 return -EPERM;
1451 }
1452 return 0;
1453 }
1454
1455 /**
1456 * load header - check the image header and copy data from it
1457 */
1458
1459 static int
load_header(struct swsusp_info * info)1460 load_header(struct swsusp_info *info)
1461 {
1462 int error;
1463
1464 restore_pblist = NULL;
1465 error = check_header(info);
1466 if (!error) {
1467 nr_copy_pages = info->image_pages;
1468 nr_meta_pages = info->pages - info->image_pages - 1;
1469 }
1470 return error;
1471 }
1472
1473 /**
1474 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1475 * the corresponding bit in the memory bitmap @bm
1476 */
unpack_orig_pfns(unsigned long * buf,struct memory_bitmap * bm)1477 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1478 {
1479 int j;
1480
1481 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1482 if (unlikely(buf[j] == BM_END_OF_MAP))
1483 break;
1484
1485 if (memory_bm_pfn_present(bm, buf[j]))
1486 memory_bm_set_bit(bm, buf[j]);
1487 else
1488 return -EFAULT;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* List of "safe" pages that may be used to store data loaded from the suspend
1495 * image
1496 */
1497 static struct linked_page *safe_pages_list;
1498
1499 #ifdef CONFIG_HIGHMEM
1500 /* struct highmem_pbe is used for creating the list of highmem pages that
1501 * should be restored atomically during the resume from disk, because the page
1502 * frames they have occupied before the suspend are in use.
1503 */
1504 struct highmem_pbe {
1505 struct page *copy_page; /* data is here now */
1506 struct page *orig_page; /* data was here before the suspend */
1507 struct highmem_pbe *next;
1508 };
1509
1510 /* List of highmem PBEs needed for restoring the highmem pages that were
1511 * allocated before the suspend and included in the suspend image, but have
1512 * also been allocated by the "resume" kernel, so their contents cannot be
1513 * written directly to their "original" page frames.
1514 */
1515 static struct highmem_pbe *highmem_pblist;
1516
1517 /**
1518 * count_highmem_image_pages - compute the number of highmem pages in the
1519 * suspend image. The bits in the memory bitmap @bm that correspond to the
1520 * image pages are assumed to be set.
1521 */
1522
count_highmem_image_pages(struct memory_bitmap * bm)1523 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1524 {
1525 unsigned long pfn;
1526 unsigned int cnt = 0;
1527
1528 memory_bm_position_reset(bm);
1529 pfn = memory_bm_next_pfn(bm);
1530 while (pfn != BM_END_OF_MAP) {
1531 if (PageHighMem(pfn_to_page(pfn)))
1532 cnt++;
1533
1534 pfn = memory_bm_next_pfn(bm);
1535 }
1536 return cnt;
1537 }
1538
1539 /**
1540 * prepare_highmem_image - try to allocate as many highmem pages as
1541 * there are highmem image pages (@nr_highmem_p points to the variable
1542 * containing the number of highmem image pages). The pages that are
1543 * "safe" (ie. will not be overwritten when the suspend image is
1544 * restored) have the corresponding bits set in @bm (it must be
1545 * unitialized).
1546 *
1547 * NOTE: This function should not be called if there are no highmem
1548 * image pages.
1549 */
1550
1551 static unsigned int safe_highmem_pages;
1552
1553 static struct memory_bitmap *safe_highmem_bm;
1554
1555 static int
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)1556 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1557 {
1558 unsigned int to_alloc;
1559
1560 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1561 return -ENOMEM;
1562
1563 if (get_highmem_buffer(PG_SAFE))
1564 return -ENOMEM;
1565
1566 to_alloc = count_free_highmem_pages();
1567 if (to_alloc > *nr_highmem_p)
1568 to_alloc = *nr_highmem_p;
1569 else
1570 *nr_highmem_p = to_alloc;
1571
1572 safe_highmem_pages = 0;
1573 while (to_alloc-- > 0) {
1574 struct page *page;
1575
1576 page = alloc_page(__GFP_HIGHMEM);
1577 if (!swsusp_page_is_free(page)) {
1578 /* The page is "safe", set its bit the bitmap */
1579 memory_bm_set_bit(bm, page_to_pfn(page));
1580 safe_highmem_pages++;
1581 }
1582 /* Mark the page as allocated */
1583 swsusp_set_page_forbidden(page);
1584 swsusp_set_page_free(page);
1585 }
1586 memory_bm_position_reset(bm);
1587 safe_highmem_bm = bm;
1588 return 0;
1589 }
1590
1591 /**
1592 * get_highmem_page_buffer - for given highmem image page find the buffer
1593 * that suspend_write_next() should set for its caller to write to.
1594 *
1595 * If the page is to be saved to its "original" page frame or a copy of
1596 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1597 * the copy of the page is to be made in normal memory, so the address of
1598 * the copy is returned.
1599 *
1600 * If @buffer is returned, the caller of suspend_write_next() will write
1601 * the page's contents to @buffer, so they will have to be copied to the
1602 * right location on the next call to suspend_write_next() and it is done
1603 * with the help of copy_last_highmem_page(). For this purpose, if
1604 * @buffer is returned, @last_highmem page is set to the page to which
1605 * the data will have to be copied from @buffer.
1606 */
1607
1608 static struct page *last_highmem_page;
1609
1610 static void *
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)1611 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1612 {
1613 struct highmem_pbe *pbe;
1614 void *kaddr;
1615
1616 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1617 /* We have allocated the "original" page frame and we can
1618 * use it directly to store the loaded page.
1619 */
1620 last_highmem_page = page;
1621 return buffer;
1622 }
1623 /* The "original" page frame has not been allocated and we have to
1624 * use a "safe" page frame to store the loaded page.
1625 */
1626 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1627 if (!pbe) {
1628 swsusp_free();
1629 return ERR_PTR(-ENOMEM);
1630 }
1631 pbe->orig_page = page;
1632 if (safe_highmem_pages > 0) {
1633 struct page *tmp;
1634
1635 /* Copy of the page will be stored in high memory */
1636 kaddr = buffer;
1637 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1638 safe_highmem_pages--;
1639 last_highmem_page = tmp;
1640 pbe->copy_page = tmp;
1641 } else {
1642 /* Copy of the page will be stored in normal memory */
1643 kaddr = safe_pages_list;
1644 safe_pages_list = safe_pages_list->next;
1645 pbe->copy_page = virt_to_page(kaddr);
1646 }
1647 pbe->next = highmem_pblist;
1648 highmem_pblist = pbe;
1649 return kaddr;
1650 }
1651
1652 /**
1653 * copy_last_highmem_page - copy the contents of a highmem image from
1654 * @buffer, where the caller of snapshot_write_next() has place them,
1655 * to the right location represented by @last_highmem_page .
1656 */
1657
copy_last_highmem_page(void)1658 static void copy_last_highmem_page(void)
1659 {
1660 if (last_highmem_page) {
1661 void *dst;
1662
1663 dst = kmap_atomic(last_highmem_page, KM_USER0);
1664 memcpy(dst, buffer, PAGE_SIZE);
1665 kunmap_atomic(dst, KM_USER0);
1666 last_highmem_page = NULL;
1667 }
1668 }
1669
last_highmem_page_copied(void)1670 static inline int last_highmem_page_copied(void)
1671 {
1672 return !last_highmem_page;
1673 }
1674
free_highmem_data(void)1675 static inline void free_highmem_data(void)
1676 {
1677 if (safe_highmem_bm)
1678 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1679
1680 if (buffer)
1681 free_image_page(buffer, PG_UNSAFE_CLEAR);
1682 }
1683 #else
get_safe_write_buffer(void)1684 static inline int get_safe_write_buffer(void) { return 0; }
1685
1686 static unsigned int
count_highmem_image_pages(struct memory_bitmap * bm)1687 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1688
1689 static inline int
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)1690 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1691 {
1692 return 0;
1693 }
1694
1695 static inline void *
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)1696 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1697 {
1698 return ERR_PTR(-EINVAL);
1699 }
1700
copy_last_highmem_page(void)1701 static inline void copy_last_highmem_page(void) {}
last_highmem_page_copied(void)1702 static inline int last_highmem_page_copied(void) { return 1; }
free_highmem_data(void)1703 static inline void free_highmem_data(void) {}
1704 #endif /* CONFIG_HIGHMEM */
1705
1706 /**
1707 * prepare_image - use the memory bitmap @bm to mark the pages that will
1708 * be overwritten in the process of restoring the system memory state
1709 * from the suspend image ("unsafe" pages) and allocate memory for the
1710 * image.
1711 *
1712 * The idea is to allocate a new memory bitmap first and then allocate
1713 * as many pages as needed for the image data, but not to assign these
1714 * pages to specific tasks initially. Instead, we just mark them as
1715 * allocated and create a lists of "safe" pages that will be used
1716 * later. On systems with high memory a list of "safe" highmem pages is
1717 * also created.
1718 */
1719
1720 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1721
1722 static int
prepare_image(struct memory_bitmap * new_bm,struct memory_bitmap * bm)1723 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1724 {
1725 unsigned int nr_pages, nr_highmem;
1726 struct linked_page *sp_list, *lp;
1727 int error;
1728
1729 /* If there is no highmem, the buffer will not be necessary */
1730 free_image_page(buffer, PG_UNSAFE_CLEAR);
1731 buffer = NULL;
1732
1733 nr_highmem = count_highmem_image_pages(bm);
1734 error = mark_unsafe_pages(bm);
1735 if (error)
1736 goto Free;
1737
1738 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1739 if (error)
1740 goto Free;
1741
1742 duplicate_memory_bitmap(new_bm, bm);
1743 memory_bm_free(bm, PG_UNSAFE_KEEP);
1744 if (nr_highmem > 0) {
1745 error = prepare_highmem_image(bm, &nr_highmem);
1746 if (error)
1747 goto Free;
1748 }
1749 /* Reserve some safe pages for potential later use.
1750 *
1751 * NOTE: This way we make sure there will be enough safe pages for the
1752 * chain_alloc() in get_buffer(). It is a bit wasteful, but
1753 * nr_copy_pages cannot be greater than 50% of the memory anyway.
1754 */
1755 sp_list = NULL;
1756 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1757 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1758 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1759 while (nr_pages > 0) {
1760 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1761 if (!lp) {
1762 error = -ENOMEM;
1763 goto Free;
1764 }
1765 lp->next = sp_list;
1766 sp_list = lp;
1767 nr_pages--;
1768 }
1769 /* Preallocate memory for the image */
1770 safe_pages_list = NULL;
1771 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1772 while (nr_pages > 0) {
1773 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1774 if (!lp) {
1775 error = -ENOMEM;
1776 goto Free;
1777 }
1778 if (!swsusp_page_is_free(virt_to_page(lp))) {
1779 /* The page is "safe", add it to the list */
1780 lp->next = safe_pages_list;
1781 safe_pages_list = lp;
1782 }
1783 /* Mark the page as allocated */
1784 swsusp_set_page_forbidden(virt_to_page(lp));
1785 swsusp_set_page_free(virt_to_page(lp));
1786 nr_pages--;
1787 }
1788 /* Free the reserved safe pages so that chain_alloc() can use them */
1789 while (sp_list) {
1790 lp = sp_list->next;
1791 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1792 sp_list = lp;
1793 }
1794 return 0;
1795
1796 Free:
1797 swsusp_free();
1798 return error;
1799 }
1800
1801 /**
1802 * get_buffer - compute the address that snapshot_write_next() should
1803 * set for its caller to write to.
1804 */
1805
get_buffer(struct memory_bitmap * bm,struct chain_allocator * ca)1806 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1807 {
1808 struct pbe *pbe;
1809 struct page *page;
1810 unsigned long pfn = memory_bm_next_pfn(bm);
1811
1812 if (pfn == BM_END_OF_MAP)
1813 return ERR_PTR(-EFAULT);
1814
1815 page = pfn_to_page(pfn);
1816 if (PageHighMem(page))
1817 return get_highmem_page_buffer(page, ca);
1818
1819 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1820 /* We have allocated the "original" page frame and we can
1821 * use it directly to store the loaded page.
1822 */
1823 return page_address(page);
1824
1825 /* The "original" page frame has not been allocated and we have to
1826 * use a "safe" page frame to store the loaded page.
1827 */
1828 pbe = chain_alloc(ca, sizeof(struct pbe));
1829 if (!pbe) {
1830 swsusp_free();
1831 return ERR_PTR(-ENOMEM);
1832 }
1833 pbe->orig_address = page_address(page);
1834 pbe->address = safe_pages_list;
1835 safe_pages_list = safe_pages_list->next;
1836 pbe->next = restore_pblist;
1837 restore_pblist = pbe;
1838 return pbe->address;
1839 }
1840
1841 /**
1842 * snapshot_write_next - used for writing the system memory snapshot.
1843 *
1844 * On the first call to it @handle should point to a zeroed
1845 * snapshot_handle structure. The structure gets updated and a pointer
1846 * to it should be passed to this function every next time.
1847 *
1848 * The @count parameter should contain the number of bytes the caller
1849 * wants to write to the image. It must not be zero.
1850 *
1851 * On success the function returns a positive number. Then, the caller
1852 * is allowed to write up to the returned number of bytes to the memory
1853 * location computed by the data_of() macro. The number returned
1854 * may be smaller than @count, but this only happens if the write would
1855 * cross a page boundary otherwise.
1856 *
1857 * The function returns 0 to indicate the "end of file" condition,
1858 * and a negative number is returned on error. In such cases the
1859 * structure pointed to by @handle is not updated and should not be used
1860 * any more.
1861 */
1862
snapshot_write_next(struct snapshot_handle * handle,size_t count)1863 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1864 {
1865 static struct chain_allocator ca;
1866 int error = 0;
1867
1868 /* Check if we have already loaded the entire image */
1869 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1870 return 0;
1871
1872 if (handle->offset == 0) {
1873 if (!buffer)
1874 /* This makes the buffer be freed by swsusp_free() */
1875 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1876
1877 if (!buffer)
1878 return -ENOMEM;
1879
1880 handle->buffer = buffer;
1881 }
1882 handle->sync_read = 1;
1883 if (handle->prev < handle->cur) {
1884 if (handle->prev == 0) {
1885 error = load_header(buffer);
1886 if (error)
1887 return error;
1888
1889 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY);
1890 if (error)
1891 return error;
1892
1893 } else if (handle->prev <= nr_meta_pages) {
1894 error = unpack_orig_pfns(buffer, ©_bm);
1895 if (error)
1896 return error;
1897
1898 if (handle->prev == nr_meta_pages) {
1899 error = prepare_image(&orig_bm, ©_bm);
1900 if (error)
1901 return error;
1902
1903 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1904 memory_bm_position_reset(&orig_bm);
1905 restore_pblist = NULL;
1906 handle->buffer = get_buffer(&orig_bm, &ca);
1907 handle->sync_read = 0;
1908 if (IS_ERR(handle->buffer))
1909 return PTR_ERR(handle->buffer);
1910 }
1911 } else {
1912 copy_last_highmem_page();
1913 handle->buffer = get_buffer(&orig_bm, &ca);
1914 if (IS_ERR(handle->buffer))
1915 return PTR_ERR(handle->buffer);
1916 if (handle->buffer != buffer)
1917 handle->sync_read = 0;
1918 }
1919 handle->prev = handle->cur;
1920 }
1921 handle->buf_offset = handle->cur_offset;
1922 if (handle->cur_offset + count >= PAGE_SIZE) {
1923 count = PAGE_SIZE - handle->cur_offset;
1924 handle->cur_offset = 0;
1925 handle->cur++;
1926 } else {
1927 handle->cur_offset += count;
1928 }
1929 handle->offset += count;
1930 return count;
1931 }
1932
1933 /**
1934 * snapshot_write_finalize - must be called after the last call to
1935 * snapshot_write_next() in case the last page in the image happens
1936 * to be a highmem page and its contents should be stored in the
1937 * highmem. Additionally, it releases the memory that will not be
1938 * used any more.
1939 */
1940
snapshot_write_finalize(struct snapshot_handle * handle)1941 void snapshot_write_finalize(struct snapshot_handle *handle)
1942 {
1943 copy_last_highmem_page();
1944 /* Free only if we have loaded the image entirely */
1945 if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1946 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1947 free_highmem_data();
1948 }
1949 }
1950
snapshot_image_loaded(struct snapshot_handle * handle)1951 int snapshot_image_loaded(struct snapshot_handle *handle)
1952 {
1953 return !(!nr_copy_pages || !last_highmem_page_copied() ||
1954 handle->cur <= nr_meta_pages + nr_copy_pages);
1955 }
1956
1957 #ifdef CONFIG_HIGHMEM
1958 /* Assumes that @buf is ready and points to a "safe" page */
1959 static inline void
swap_two_pages_data(struct page * p1,struct page * p2,void * buf)1960 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1961 {
1962 void *kaddr1, *kaddr2;
1963
1964 kaddr1 = kmap_atomic(p1, KM_USER0);
1965 kaddr2 = kmap_atomic(p2, KM_USER1);
1966 memcpy(buf, kaddr1, PAGE_SIZE);
1967 memcpy(kaddr1, kaddr2, PAGE_SIZE);
1968 memcpy(kaddr2, buf, PAGE_SIZE);
1969 kunmap_atomic(kaddr1, KM_USER0);
1970 kunmap_atomic(kaddr2, KM_USER1);
1971 }
1972
1973 /**
1974 * restore_highmem - for each highmem page that was allocated before
1975 * the suspend and included in the suspend image, and also has been
1976 * allocated by the "resume" kernel swap its current (ie. "before
1977 * resume") contents with the previous (ie. "before suspend") one.
1978 *
1979 * If the resume eventually fails, we can call this function once
1980 * again and restore the "before resume" highmem state.
1981 */
1982
restore_highmem(void)1983 int restore_highmem(void)
1984 {
1985 struct highmem_pbe *pbe = highmem_pblist;
1986 void *buf;
1987
1988 if (!pbe)
1989 return 0;
1990
1991 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1992 if (!buf)
1993 return -ENOMEM;
1994
1995 while (pbe) {
1996 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1997 pbe = pbe->next;
1998 }
1999 free_image_page(buf, PG_UNSAFE_CLEAR);
2000 return 0;
2001 }
2002 #endif /* CONFIG_HIGHMEM */
2003