1 /*
2 * PMac DBDMA lowlevel functions
3 *
4 * Copyright (c) by Takashi Iwai <tiwai@suse.de>
5 * code based on dmasound.c.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22
23 #include <asm/io.h>
24 #include <asm/irq.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <sound/core.h>
32 #include "pmac.h"
33 #include <sound/pcm_params.h>
34 #include <asm/pmac_feature.h>
35 #include <asm/pci-bridge.h>
36
37
38 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
39 static int awacs_freqs[8] = {
40 44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
41 };
42 /* fixed frequency table for tumbler */
43 static int tumbler_freqs[1] = {
44 44100
45 };
46
47
48 /*
49 * we will allocate a single 'emergency' dbdma cmd block to use if the
50 * tx status comes up "DEAD". This happens on some PowerComputing Pmac
51 * clones, either owing to a bug in dbdma or some interaction between
52 * IDE and sound. However, this measure would deal with DEAD status if
53 * it appeared elsewhere.
54 */
55 static struct pmac_dbdma emergency_dbdma;
56 static int emergency_in_use;
57
58
59 /*
60 * allocate DBDMA command arrays
61 */
snd_pmac_dbdma_alloc(struct snd_pmac * chip,struct pmac_dbdma * rec,int size)62 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
63 {
64 unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
65
66 rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
67 &rec->dma_base, GFP_KERNEL);
68 if (rec->space == NULL)
69 return -ENOMEM;
70 rec->size = size;
71 memset(rec->space, 0, rsize);
72 rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
73 rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
74
75 return 0;
76 }
77
snd_pmac_dbdma_free(struct snd_pmac * chip,struct pmac_dbdma * rec)78 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
79 {
80 if (rec->space) {
81 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
82
83 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
84 }
85 }
86
87
88 /*
89 * pcm stuff
90 */
91
92 /*
93 * look up frequency table
94 */
95
snd_pmac_rate_index(struct snd_pmac * chip,struct pmac_stream * rec,unsigned int rate)96 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
97 {
98 int i, ok, found;
99
100 ok = rec->cur_freqs;
101 if (rate > chip->freq_table[0])
102 return 0;
103 found = 0;
104 for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
105 if (! (ok & 1)) continue;
106 found = i;
107 if (rate >= chip->freq_table[i])
108 break;
109 }
110 return found;
111 }
112
113 /*
114 * check whether another stream is active
115 */
another_stream(int stream)116 static inline int another_stream(int stream)
117 {
118 return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
119 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
120 }
121
122 /*
123 * allocate buffers
124 */
snd_pmac_pcm_hw_params(struct snd_pcm_substream * subs,struct snd_pcm_hw_params * hw_params)125 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
126 struct snd_pcm_hw_params *hw_params)
127 {
128 return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
129 }
130
131 /*
132 * release buffers
133 */
snd_pmac_pcm_hw_free(struct snd_pcm_substream * subs)134 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
135 {
136 snd_pcm_lib_free_pages(subs);
137 return 0;
138 }
139
140 /*
141 * get a stream of the opposite direction
142 */
snd_pmac_get_stream(struct snd_pmac * chip,int stream)143 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
144 {
145 switch (stream) {
146 case SNDRV_PCM_STREAM_PLAYBACK:
147 return &chip->playback;
148 case SNDRV_PCM_STREAM_CAPTURE:
149 return &chip->capture;
150 default:
151 snd_BUG();
152 return NULL;
153 }
154 }
155
156 /*
157 * wait while run status is on
158 */
159 static inline void
snd_pmac_wait_ack(struct pmac_stream * rec)160 snd_pmac_wait_ack(struct pmac_stream *rec)
161 {
162 int timeout = 50000;
163 while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
164 udelay(1);
165 }
166
167 /*
168 * set the format and rate to the chip.
169 * call the lowlevel function if defined (e.g. for AWACS).
170 */
snd_pmac_pcm_set_format(struct snd_pmac * chip)171 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
172 {
173 /* set up frequency and format */
174 out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
175 out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
176 if (chip->set_format)
177 chip->set_format(chip);
178 }
179
180 /*
181 * stop the DMA transfer
182 */
snd_pmac_dma_stop(struct pmac_stream * rec)183 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
184 {
185 out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
186 snd_pmac_wait_ack(rec);
187 }
188
189 /*
190 * set the command pointer address
191 */
snd_pmac_dma_set_command(struct pmac_stream * rec,struct pmac_dbdma * cmd)192 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
193 {
194 out_le32(&rec->dma->cmdptr, cmd->addr);
195 }
196
197 /*
198 * start the DMA
199 */
snd_pmac_dma_run(struct pmac_stream * rec,int status)200 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
201 {
202 out_le32(&rec->dma->control, status | (status << 16));
203 }
204
205
206 /*
207 * prepare playback/capture stream
208 */
snd_pmac_pcm_prepare(struct snd_pmac * chip,struct pmac_stream * rec,struct snd_pcm_substream * subs)209 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
210 {
211 int i;
212 volatile struct dbdma_cmd __iomem *cp;
213 struct snd_pcm_runtime *runtime = subs->runtime;
214 int rate_index;
215 long offset;
216 struct pmac_stream *astr;
217
218 rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
219 rec->period_size = snd_pcm_lib_period_bytes(subs);
220 rec->nperiods = rec->dma_size / rec->period_size;
221 rec->cur_period = 0;
222 rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
223
224 /* set up constraints */
225 astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
226 if (! astr)
227 return -EINVAL;
228 astr->cur_freqs = 1 << rate_index;
229 astr->cur_formats = 1 << runtime->format;
230 chip->rate_index = rate_index;
231 chip->format = runtime->format;
232
233 /* We really want to execute a DMA stop command, after the AWACS
234 * is initialized.
235 * For reasons I don't understand, it stops the hissing noise
236 * common to many PowerBook G3 systems and random noise otherwise
237 * captured on iBook2's about every third time. -ReneR
238 */
239 spin_lock_irq(&chip->reg_lock);
240 snd_pmac_dma_stop(rec);
241 st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
242 snd_pmac_dma_set_command(rec, &chip->extra_dma);
243 snd_pmac_dma_run(rec, RUN);
244 spin_unlock_irq(&chip->reg_lock);
245 mdelay(5);
246 spin_lock_irq(&chip->reg_lock);
247 /* continuous DMA memory type doesn't provide the physical address,
248 * so we need to resolve the address here...
249 */
250 offset = runtime->dma_addr;
251 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
252 st_le32(&cp->phy_addr, offset);
253 st_le16(&cp->req_count, rec->period_size);
254 /*st_le16(&cp->res_count, 0);*/
255 st_le16(&cp->xfer_status, 0);
256 offset += rec->period_size;
257 }
258 /* make loop */
259 st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
260 st_le32(&cp->cmd_dep, rec->cmd.addr);
261
262 snd_pmac_dma_stop(rec);
263 snd_pmac_dma_set_command(rec, &rec->cmd);
264 spin_unlock_irq(&chip->reg_lock);
265
266 return 0;
267 }
268
269
270 /*
271 * PCM trigger/stop
272 */
snd_pmac_pcm_trigger(struct snd_pmac * chip,struct pmac_stream * rec,struct snd_pcm_substream * subs,int cmd)273 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
274 struct snd_pcm_substream *subs, int cmd)
275 {
276 volatile struct dbdma_cmd __iomem *cp;
277 int i, command;
278
279 switch (cmd) {
280 case SNDRV_PCM_TRIGGER_START:
281 case SNDRV_PCM_TRIGGER_RESUME:
282 if (rec->running)
283 return -EBUSY;
284 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
285 OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
286 spin_lock(&chip->reg_lock);
287 snd_pmac_beep_stop(chip);
288 snd_pmac_pcm_set_format(chip);
289 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
290 out_le16(&cp->command, command);
291 snd_pmac_dma_set_command(rec, &rec->cmd);
292 (void)in_le32(&rec->dma->status);
293 snd_pmac_dma_run(rec, RUN|WAKE);
294 rec->running = 1;
295 spin_unlock(&chip->reg_lock);
296 break;
297
298 case SNDRV_PCM_TRIGGER_STOP:
299 case SNDRV_PCM_TRIGGER_SUSPEND:
300 spin_lock(&chip->reg_lock);
301 rec->running = 0;
302 /*printk("stopped!!\n");*/
303 snd_pmac_dma_stop(rec);
304 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
305 out_le16(&cp->command, DBDMA_STOP);
306 spin_unlock(&chip->reg_lock);
307 break;
308
309 default:
310 return -EINVAL;
311 }
312
313 return 0;
314 }
315
316 /*
317 * return the current pointer
318 */
319 inline
snd_pmac_pcm_pointer(struct snd_pmac * chip,struct pmac_stream * rec,struct snd_pcm_substream * subs)320 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
321 struct pmac_stream *rec,
322 struct snd_pcm_substream *subs)
323 {
324 int count = 0;
325
326 #if 1 /* hmm.. how can we get the current dma pointer?? */
327 int stat;
328 volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
329 stat = ld_le16(&cp->xfer_status);
330 if (stat & (ACTIVE|DEAD)) {
331 count = in_le16(&cp->res_count);
332 if (count)
333 count = rec->period_size - count;
334 }
335 #endif
336 count += rec->cur_period * rec->period_size;
337 /*printk("pointer=%d\n", count);*/
338 return bytes_to_frames(subs->runtime, count);
339 }
340
341 /*
342 * playback
343 */
344
snd_pmac_playback_prepare(struct snd_pcm_substream * subs)345 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
346 {
347 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
348 return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
349 }
350
snd_pmac_playback_trigger(struct snd_pcm_substream * subs,int cmd)351 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
352 int cmd)
353 {
354 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
355 return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
356 }
357
snd_pmac_playback_pointer(struct snd_pcm_substream * subs)358 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
359 {
360 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
361 return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
362 }
363
364
365 /*
366 * capture
367 */
368
snd_pmac_capture_prepare(struct snd_pcm_substream * subs)369 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
370 {
371 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
372 return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
373 }
374
snd_pmac_capture_trigger(struct snd_pcm_substream * subs,int cmd)375 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
376 int cmd)
377 {
378 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
379 return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
380 }
381
snd_pmac_capture_pointer(struct snd_pcm_substream * subs)382 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
383 {
384 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
385 return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
386 }
387
388
389 /*
390 * Handle DEAD DMA transfers:
391 * if the TX status comes up "DEAD" - reported on some Power Computing machines
392 * we need to re-start the dbdma - but from a different physical start address
393 * and with a different transfer length. It would get very messy to do this
394 * with the normal dbdma_cmd blocks - we would have to re-write the buffer start
395 * addresses each time. So, we will keep a single dbdma_cmd block which can be
396 * fiddled with.
397 * When DEAD status is first reported the content of the faulted dbdma block is
398 * copied into the emergency buffer and we note that the buffer is in use.
399 * we then bump the start physical address by the amount that was successfully
400 * output before it died.
401 * On any subsequent DEAD result we just do the bump-ups (we know that we are
402 * already using the emergency dbdma_cmd).
403 * CHECK: this just tries to "do it". It is possible that we should abandon
404 * xfers when the number of residual bytes gets below a certain value - I can
405 * see that this might cause a loop-forever if a too small transfer causes
406 * DEAD status. However this is a TODO for now - we'll see what gets reported.
407 * When we get a successful transfer result with the emergency buffer we just
408 * pretend that it completed using the original dmdma_cmd and carry on. The
409 * 'next_cmd' field will already point back to the original loop of blocks.
410 */
snd_pmac_pcm_dead_xfer(struct pmac_stream * rec,volatile struct dbdma_cmd __iomem * cp)411 static inline void snd_pmac_pcm_dead_xfer(struct pmac_stream *rec,
412 volatile struct dbdma_cmd __iomem *cp)
413 {
414 unsigned short req, res ;
415 unsigned int phy ;
416
417 /* printk(KERN_WARNING "snd-powermac: DMA died - patching it up!\n"); */
418
419 /* to clear DEAD status we must first clear RUN
420 set it to quiescent to be on the safe side */
421 (void)in_le32(&rec->dma->status);
422 out_le32(&rec->dma->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
423
424 if (!emergency_in_use) { /* new problem */
425 memcpy((void *)emergency_dbdma.cmds, (void *)cp,
426 sizeof(struct dbdma_cmd));
427 emergency_in_use = 1;
428 st_le16(&cp->xfer_status, 0);
429 st_le16(&cp->req_count, rec->period_size);
430 cp = emergency_dbdma.cmds;
431 }
432
433 /* now bump the values to reflect the amount
434 we haven't yet shifted */
435 req = ld_le16(&cp->req_count);
436 res = ld_le16(&cp->res_count);
437 phy = ld_le32(&cp->phy_addr);
438 phy += (req - res);
439 st_le16(&cp->req_count, res);
440 st_le16(&cp->res_count, 0);
441 st_le16(&cp->xfer_status, 0);
442 st_le32(&cp->phy_addr, phy);
443
444 st_le32(&cp->cmd_dep, rec->cmd.addr
445 + sizeof(struct dbdma_cmd)*((rec->cur_period+1)%rec->nperiods));
446
447 st_le16(&cp->command, OUTPUT_MORE | BR_ALWAYS | INTR_ALWAYS);
448
449 /* point at our patched up command block */
450 out_le32(&rec->dma->cmdptr, emergency_dbdma.addr);
451
452 /* we must re-start the controller */
453 (void)in_le32(&rec->dma->status);
454 /* should complete clearing the DEAD status */
455 out_le32(&rec->dma->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
456 }
457
458 /*
459 * update playback/capture pointer from interrupts
460 */
snd_pmac_pcm_update(struct snd_pmac * chip,struct pmac_stream * rec)461 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
462 {
463 volatile struct dbdma_cmd __iomem *cp;
464 int c;
465 int stat;
466
467 spin_lock(&chip->reg_lock);
468 if (rec->running) {
469 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
470
471 if (emergency_in_use) /* already using DEAD xfer? */
472 cp = emergency_dbdma.cmds;
473 else
474 cp = &rec->cmd.cmds[rec->cur_period];
475
476 stat = ld_le16(&cp->xfer_status);
477
478 if (stat & DEAD) {
479 snd_pmac_pcm_dead_xfer(rec, cp);
480 break; /* this block is still going */
481 }
482
483 if (emergency_in_use)
484 emergency_in_use = 0 ; /* done that */
485
486 if (! (stat & ACTIVE))
487 break;
488
489 /*printk("update frag %d\n", rec->cur_period);*/
490 st_le16(&cp->xfer_status, 0);
491 st_le16(&cp->req_count, rec->period_size);
492 /*st_le16(&cp->res_count, 0);*/
493 rec->cur_period++;
494 if (rec->cur_period >= rec->nperiods) {
495 rec->cur_period = 0;
496 }
497
498 spin_unlock(&chip->reg_lock);
499 snd_pcm_period_elapsed(rec->substream);
500 spin_lock(&chip->reg_lock);
501 }
502 }
503 spin_unlock(&chip->reg_lock);
504 }
505
506
507 /*
508 * hw info
509 */
510
511 static struct snd_pcm_hardware snd_pmac_playback =
512 {
513 .info = (SNDRV_PCM_INFO_INTERLEAVED |
514 SNDRV_PCM_INFO_MMAP |
515 SNDRV_PCM_INFO_MMAP_VALID |
516 SNDRV_PCM_INFO_RESUME),
517 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
518 .rates = SNDRV_PCM_RATE_8000_44100,
519 .rate_min = 7350,
520 .rate_max = 44100,
521 .channels_min = 2,
522 .channels_max = 2,
523 .buffer_bytes_max = 131072,
524 .period_bytes_min = 256,
525 .period_bytes_max = 16384,
526 .periods_min = 3,
527 .periods_max = PMAC_MAX_FRAGS,
528 };
529
530 static struct snd_pcm_hardware snd_pmac_capture =
531 {
532 .info = (SNDRV_PCM_INFO_INTERLEAVED |
533 SNDRV_PCM_INFO_MMAP |
534 SNDRV_PCM_INFO_MMAP_VALID |
535 SNDRV_PCM_INFO_RESUME),
536 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
537 .rates = SNDRV_PCM_RATE_8000_44100,
538 .rate_min = 7350,
539 .rate_max = 44100,
540 .channels_min = 2,
541 .channels_max = 2,
542 .buffer_bytes_max = 131072,
543 .period_bytes_min = 256,
544 .period_bytes_max = 16384,
545 .periods_min = 3,
546 .periods_max = PMAC_MAX_FRAGS,
547 };
548
549
550 #if 0 // NYI
551 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
552 struct snd_pcm_hw_rule *rule)
553 {
554 struct snd_pmac *chip = rule->private;
555 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
556 int i, freq_table[8], num_freqs;
557
558 if (! rec)
559 return -EINVAL;
560 num_freqs = 0;
561 for (i = chip->num_freqs - 1; i >= 0; i--) {
562 if (rec->cur_freqs & (1 << i))
563 freq_table[num_freqs++] = chip->freq_table[i];
564 }
565
566 return snd_interval_list(hw_param_interval(params, rule->var),
567 num_freqs, freq_table, 0);
568 }
569
570 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
571 struct snd_pcm_hw_rule *rule)
572 {
573 struct snd_pmac *chip = rule->private;
574 struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
575
576 if (! rec)
577 return -EINVAL;
578 return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
579 rec->cur_formats);
580 }
581 #endif // NYI
582
snd_pmac_pcm_open(struct snd_pmac * chip,struct pmac_stream * rec,struct snd_pcm_substream * subs)583 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
584 struct snd_pcm_substream *subs)
585 {
586 struct snd_pcm_runtime *runtime = subs->runtime;
587 int i;
588
589 /* look up frequency table and fill bit mask */
590 runtime->hw.rates = 0;
591 for (i = 0; i < chip->num_freqs; i++)
592 if (chip->freqs_ok & (1 << i))
593 runtime->hw.rates |=
594 snd_pcm_rate_to_rate_bit(chip->freq_table[i]);
595
596 /* check for minimum and maximum rates */
597 for (i = 0; i < chip->num_freqs; i++) {
598 if (chip->freqs_ok & (1 << i)) {
599 runtime->hw.rate_max = chip->freq_table[i];
600 break;
601 }
602 }
603 for (i = chip->num_freqs - 1; i >= 0; i--) {
604 if (chip->freqs_ok & (1 << i)) {
605 runtime->hw.rate_min = chip->freq_table[i];
606 break;
607 }
608 }
609 runtime->hw.formats = chip->formats_ok;
610 if (chip->can_capture) {
611 if (! chip->can_duplex)
612 runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
613 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
614 }
615 runtime->private_data = rec;
616 rec->substream = subs;
617
618 #if 0 /* FIXME: still under development.. */
619 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
620 snd_pmac_hw_rule_rate, chip, rec->stream, -1);
621 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
622 snd_pmac_hw_rule_format, chip, rec->stream, -1);
623 #endif
624
625 runtime->hw.periods_max = rec->cmd.size - 1;
626
627 /* constraints to fix choppy sound */
628 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
629 return 0;
630 }
631
snd_pmac_pcm_close(struct snd_pmac * chip,struct pmac_stream * rec,struct snd_pcm_substream * subs)632 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
633 struct snd_pcm_substream *subs)
634 {
635 struct pmac_stream *astr;
636
637 snd_pmac_dma_stop(rec);
638
639 astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
640 if (! astr)
641 return -EINVAL;
642
643 /* reset constraints */
644 astr->cur_freqs = chip->freqs_ok;
645 astr->cur_formats = chip->formats_ok;
646
647 return 0;
648 }
649
snd_pmac_playback_open(struct snd_pcm_substream * subs)650 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
651 {
652 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
653
654 subs->runtime->hw = snd_pmac_playback;
655 return snd_pmac_pcm_open(chip, &chip->playback, subs);
656 }
657
snd_pmac_capture_open(struct snd_pcm_substream * subs)658 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
659 {
660 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
661
662 subs->runtime->hw = snd_pmac_capture;
663 return snd_pmac_pcm_open(chip, &chip->capture, subs);
664 }
665
snd_pmac_playback_close(struct snd_pcm_substream * subs)666 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
667 {
668 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
669
670 return snd_pmac_pcm_close(chip, &chip->playback, subs);
671 }
672
snd_pmac_capture_close(struct snd_pcm_substream * subs)673 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
674 {
675 struct snd_pmac *chip = snd_pcm_substream_chip(subs);
676
677 return snd_pmac_pcm_close(chip, &chip->capture, subs);
678 }
679
680 /*
681 */
682
683 static struct snd_pcm_ops snd_pmac_playback_ops = {
684 .open = snd_pmac_playback_open,
685 .close = snd_pmac_playback_close,
686 .ioctl = snd_pcm_lib_ioctl,
687 .hw_params = snd_pmac_pcm_hw_params,
688 .hw_free = snd_pmac_pcm_hw_free,
689 .prepare = snd_pmac_playback_prepare,
690 .trigger = snd_pmac_playback_trigger,
691 .pointer = snd_pmac_playback_pointer,
692 };
693
694 static struct snd_pcm_ops snd_pmac_capture_ops = {
695 .open = snd_pmac_capture_open,
696 .close = snd_pmac_capture_close,
697 .ioctl = snd_pcm_lib_ioctl,
698 .hw_params = snd_pmac_pcm_hw_params,
699 .hw_free = snd_pmac_pcm_hw_free,
700 .prepare = snd_pmac_capture_prepare,
701 .trigger = snd_pmac_capture_trigger,
702 .pointer = snd_pmac_capture_pointer,
703 };
704
snd_pmac_pcm_new(struct snd_pmac * chip)705 int __init snd_pmac_pcm_new(struct snd_pmac *chip)
706 {
707 struct snd_pcm *pcm;
708 int err;
709 int num_captures = 1;
710
711 if (! chip->can_capture)
712 num_captures = 0;
713 err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
714 if (err < 0)
715 return err;
716
717 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
718 if (chip->can_capture)
719 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
720
721 pcm->private_data = chip;
722 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
723 strcpy(pcm->name, chip->card->shortname);
724 chip->pcm = pcm;
725
726 chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
727 if (chip->can_byte_swap)
728 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
729
730 chip->playback.cur_formats = chip->formats_ok;
731 chip->capture.cur_formats = chip->formats_ok;
732 chip->playback.cur_freqs = chip->freqs_ok;
733 chip->capture.cur_freqs = chip->freqs_ok;
734
735 /* preallocate 64k buffer */
736 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
737 &chip->pdev->dev,
738 64 * 1024, 64 * 1024);
739
740 return 0;
741 }
742
743
snd_pmac_dbdma_reset(struct snd_pmac * chip)744 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
745 {
746 out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
747 snd_pmac_wait_ack(&chip->playback);
748 out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
749 snd_pmac_wait_ack(&chip->capture);
750 }
751
752
753 /*
754 * handling beep
755 */
snd_pmac_beep_dma_start(struct snd_pmac * chip,int bytes,unsigned long addr,int speed)756 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
757 {
758 struct pmac_stream *rec = &chip->playback;
759
760 snd_pmac_dma_stop(rec);
761 st_le16(&chip->extra_dma.cmds->req_count, bytes);
762 st_le16(&chip->extra_dma.cmds->xfer_status, 0);
763 st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
764 st_le32(&chip->extra_dma.cmds->phy_addr, addr);
765 st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
766 out_le32(&chip->awacs->control,
767 (in_le32(&chip->awacs->control) & ~0x1f00)
768 | (speed << 8));
769 out_le32(&chip->awacs->byteswap, 0);
770 snd_pmac_dma_set_command(rec, &chip->extra_dma);
771 snd_pmac_dma_run(rec, RUN);
772 }
773
snd_pmac_beep_dma_stop(struct snd_pmac * chip)774 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
775 {
776 snd_pmac_dma_stop(&chip->playback);
777 st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
778 snd_pmac_pcm_set_format(chip); /* reset format */
779 }
780
781
782 /*
783 * interrupt handlers
784 */
785 static irqreturn_t
snd_pmac_tx_intr(int irq,void * devid)786 snd_pmac_tx_intr(int irq, void *devid)
787 {
788 struct snd_pmac *chip = devid;
789 snd_pmac_pcm_update(chip, &chip->playback);
790 return IRQ_HANDLED;
791 }
792
793
794 static irqreturn_t
snd_pmac_rx_intr(int irq,void * devid)795 snd_pmac_rx_intr(int irq, void *devid)
796 {
797 struct snd_pmac *chip = devid;
798 snd_pmac_pcm_update(chip, &chip->capture);
799 return IRQ_HANDLED;
800 }
801
802
803 static irqreturn_t
snd_pmac_ctrl_intr(int irq,void * devid)804 snd_pmac_ctrl_intr(int irq, void *devid)
805 {
806 struct snd_pmac *chip = devid;
807 int ctrl = in_le32(&chip->awacs->control);
808
809 /*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/
810 if (ctrl & MASK_PORTCHG) {
811 /* do something when headphone is plugged/unplugged? */
812 if (chip->update_automute)
813 chip->update_automute(chip, 1);
814 }
815 if (ctrl & MASK_CNTLERR) {
816 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
817 if (err && chip->model <= PMAC_SCREAMER)
818 snd_printk(KERN_DEBUG "error %x\n", err);
819 }
820 /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
821 out_le32(&chip->awacs->control, ctrl);
822 return IRQ_HANDLED;
823 }
824
825
826 /*
827 * a wrapper to feature call for compatibility
828 */
snd_pmac_sound_feature(struct snd_pmac * chip,int enable)829 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
830 {
831 if (ppc_md.feature_call)
832 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
833 }
834
835 /*
836 * release resources
837 */
838
snd_pmac_free(struct snd_pmac * chip)839 static int snd_pmac_free(struct snd_pmac *chip)
840 {
841 /* stop sounds */
842 if (chip->initialized) {
843 snd_pmac_dbdma_reset(chip);
844 /* disable interrupts from awacs interface */
845 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
846 }
847
848 if (chip->node)
849 snd_pmac_sound_feature(chip, 0);
850
851 /* clean up mixer if any */
852 if (chip->mixer_free)
853 chip->mixer_free(chip);
854
855 snd_pmac_detach_beep(chip);
856
857 /* release resources */
858 if (chip->irq >= 0)
859 free_irq(chip->irq, (void*)chip);
860 if (chip->tx_irq >= 0)
861 free_irq(chip->tx_irq, (void*)chip);
862 if (chip->rx_irq >= 0)
863 free_irq(chip->rx_irq, (void*)chip);
864 snd_pmac_dbdma_free(chip, &chip->playback.cmd);
865 snd_pmac_dbdma_free(chip, &chip->capture.cmd);
866 snd_pmac_dbdma_free(chip, &chip->extra_dma);
867 snd_pmac_dbdma_free(chip, &emergency_dbdma);
868 if (chip->macio_base)
869 iounmap(chip->macio_base);
870 if (chip->latch_base)
871 iounmap(chip->latch_base);
872 if (chip->awacs)
873 iounmap(chip->awacs);
874 if (chip->playback.dma)
875 iounmap(chip->playback.dma);
876 if (chip->capture.dma)
877 iounmap(chip->capture.dma);
878
879 if (chip->node) {
880 int i;
881 for (i = 0; i < 3; i++) {
882 if (chip->requested & (1 << i))
883 release_mem_region(chip->rsrc[i].start,
884 chip->rsrc[i].end -
885 chip->rsrc[i].start + 1);
886 }
887 }
888
889 if (chip->pdev)
890 pci_dev_put(chip->pdev);
891 of_node_put(chip->node);
892 kfree(chip);
893 return 0;
894 }
895
896
897 /*
898 * free the device
899 */
snd_pmac_dev_free(struct snd_device * device)900 static int snd_pmac_dev_free(struct snd_device *device)
901 {
902 struct snd_pmac *chip = device->device_data;
903 return snd_pmac_free(chip);
904 }
905
906
907 /*
908 * check the machine support byteswap (little-endian)
909 */
910
detect_byte_swap(struct snd_pmac * chip)911 static void __init detect_byte_swap(struct snd_pmac *chip)
912 {
913 struct device_node *mio;
914
915 /* if seems that Keylargo can't byte-swap */
916 for (mio = chip->node->parent; mio; mio = mio->parent) {
917 if (strcmp(mio->name, "mac-io") == 0) {
918 if (of_device_is_compatible(mio, "Keylargo"))
919 chip->can_byte_swap = 0;
920 break;
921 }
922 }
923
924 /* it seems the Pismo & iBook can't byte-swap in hardware. */
925 if (machine_is_compatible("PowerBook3,1") ||
926 machine_is_compatible("PowerBook2,1"))
927 chip->can_byte_swap = 0 ;
928
929 if (machine_is_compatible("PowerBook2,1"))
930 chip->can_duplex = 0;
931 }
932
933
934 /*
935 * detect a sound chip
936 */
snd_pmac_detect(struct snd_pmac * chip)937 static int __init snd_pmac_detect(struct snd_pmac *chip)
938 {
939 struct device_node *sound;
940 struct device_node *dn;
941 const unsigned int *prop;
942 unsigned int l;
943 struct macio_chip* macio;
944
945 if (!machine_is(powermac))
946 return -ENODEV;
947
948 chip->subframe = 0;
949 chip->revision = 0;
950 chip->freqs_ok = 0xff; /* all ok */
951 chip->model = PMAC_AWACS;
952 chip->can_byte_swap = 1;
953 chip->can_duplex = 1;
954 chip->can_capture = 1;
955 chip->num_freqs = ARRAY_SIZE(awacs_freqs);
956 chip->freq_table = awacs_freqs;
957 chip->pdev = NULL;
958
959 chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
960
961 /* check machine type */
962 if (machine_is_compatible("AAPL,3400/2400")
963 || machine_is_compatible("AAPL,3500"))
964 chip->is_pbook_3400 = 1;
965 else if (machine_is_compatible("PowerBook1,1")
966 || machine_is_compatible("AAPL,PowerBook1998"))
967 chip->is_pbook_G3 = 1;
968 chip->node = of_find_node_by_name(NULL, "awacs");
969 sound = of_node_get(chip->node);
970
971 /*
972 * powermac G3 models have a node called "davbus"
973 * with a child called "sound".
974 */
975 if (!chip->node)
976 chip->node = of_find_node_by_name(NULL, "davbus");
977 /*
978 * if we didn't find a davbus device, try 'i2s-a' since
979 * this seems to be what iBooks have
980 */
981 if (! chip->node) {
982 chip->node = of_find_node_by_name(NULL, "i2s-a");
983 if (chip->node && chip->node->parent &&
984 chip->node->parent->parent) {
985 if (of_device_is_compatible(chip->node->parent->parent,
986 "K2-Keylargo"))
987 chip->is_k2 = 1;
988 }
989 }
990 if (! chip->node)
991 return -ENODEV;
992
993 if (!sound) {
994 sound = of_find_node_by_name(NULL, "sound");
995 while (sound && sound->parent != chip->node)
996 sound = of_find_node_by_name(sound, "sound");
997 }
998 if (! sound) {
999 of_node_put(chip->node);
1000 chip->node = NULL;
1001 return -ENODEV;
1002 }
1003 prop = of_get_property(sound, "sub-frame", NULL);
1004 if (prop && *prop < 16)
1005 chip->subframe = *prop;
1006 prop = of_get_property(sound, "layout-id", NULL);
1007 if (prop) {
1008 /* partly deprecate snd-powermac, for those machines
1009 * that have a layout-id property for now */
1010 printk(KERN_INFO "snd-powermac no longer handles any "
1011 "machines with a layout-id property "
1012 "in the device-tree, use snd-aoa.\n");
1013 of_node_put(sound);
1014 of_node_put(chip->node);
1015 chip->node = NULL;
1016 return -ENODEV;
1017 }
1018 /* This should be verified on older screamers */
1019 if (of_device_is_compatible(sound, "screamer")) {
1020 chip->model = PMAC_SCREAMER;
1021 // chip->can_byte_swap = 0; /* FIXME: check this */
1022 }
1023 if (of_device_is_compatible(sound, "burgundy")) {
1024 chip->model = PMAC_BURGUNDY;
1025 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1026 }
1027 if (of_device_is_compatible(sound, "daca")) {
1028 chip->model = PMAC_DACA;
1029 chip->can_capture = 0; /* no capture */
1030 chip->can_duplex = 0;
1031 // chip->can_byte_swap = 0; /* FIXME: check this */
1032 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1033 }
1034 if (of_device_is_compatible(sound, "tumbler")) {
1035 chip->model = PMAC_TUMBLER;
1036 chip->can_capture = machine_is_compatible("PowerMac4,2");
1037 chip->can_duplex = 0;
1038 // chip->can_byte_swap = 0; /* FIXME: check this */
1039 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1040 chip->freq_table = tumbler_freqs;
1041 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1042 }
1043 if (of_device_is_compatible(sound, "snapper")) {
1044 chip->model = PMAC_SNAPPER;
1045 // chip->can_byte_swap = 0; /* FIXME: check this */
1046 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
1047 chip->freq_table = tumbler_freqs;
1048 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
1049 }
1050 prop = of_get_property(sound, "device-id", NULL);
1051 if (prop)
1052 chip->device_id = *prop;
1053 dn = of_find_node_by_name(NULL, "perch");
1054 chip->has_iic = (dn != NULL);
1055 of_node_put(dn);
1056
1057 /* We need the PCI device for DMA allocations, let's use a crude method
1058 * for now ...
1059 */
1060 macio = macio_find(chip->node, macio_unknown);
1061 if (macio == NULL)
1062 printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1063 else {
1064 struct pci_dev *pdev = NULL;
1065
1066 for_each_pci_dev(pdev) {
1067 struct device_node *np = pci_device_to_OF_node(pdev);
1068 if (np && np == macio->of_node) {
1069 chip->pdev = pdev;
1070 break;
1071 }
1072 }
1073 }
1074 if (chip->pdev == NULL)
1075 printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1076 " device !\n");
1077
1078 detect_byte_swap(chip);
1079
1080 /* look for a property saying what sample rates
1081 are available */
1082 prop = of_get_property(sound, "sample-rates", &l);
1083 if (! prop)
1084 prop = of_get_property(sound, "output-frame-rates", &l);
1085 if (prop) {
1086 int i;
1087 chip->freqs_ok = 0;
1088 for (l /= sizeof(int); l > 0; --l) {
1089 unsigned int r = *prop++;
1090 /* Apple 'Fixed' format */
1091 if (r >= 0x10000)
1092 r >>= 16;
1093 for (i = 0; i < chip->num_freqs; ++i) {
1094 if (r == chip->freq_table[i]) {
1095 chip->freqs_ok |= (1 << i);
1096 break;
1097 }
1098 }
1099 }
1100 } else {
1101 /* assume only 44.1khz */
1102 chip->freqs_ok = 1;
1103 }
1104
1105 of_node_put(sound);
1106 return 0;
1107 }
1108
1109 #ifdef PMAC_SUPPORT_AUTOMUTE
1110 /*
1111 * auto-mute
1112 */
pmac_auto_mute_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1113 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1114 struct snd_ctl_elem_value *ucontrol)
1115 {
1116 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1117 ucontrol->value.integer.value[0] = chip->auto_mute;
1118 return 0;
1119 }
1120
pmac_auto_mute_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1121 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1122 struct snd_ctl_elem_value *ucontrol)
1123 {
1124 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1125 if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1126 chip->auto_mute = !!ucontrol->value.integer.value[0];
1127 if (chip->update_automute)
1128 chip->update_automute(chip, 1);
1129 return 1;
1130 }
1131 return 0;
1132 }
1133
pmac_hp_detect_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1134 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1135 struct snd_ctl_elem_value *ucontrol)
1136 {
1137 struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1138 if (chip->detect_headphone)
1139 ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1140 else
1141 ucontrol->value.integer.value[0] = 0;
1142 return 0;
1143 }
1144
1145 static struct snd_kcontrol_new auto_mute_controls[] __initdata = {
1146 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1147 .name = "Auto Mute Switch",
1148 .info = snd_pmac_boolean_mono_info,
1149 .get = pmac_auto_mute_get,
1150 .put = pmac_auto_mute_put,
1151 },
1152 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1153 .name = "Headphone Detection",
1154 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1155 .info = snd_pmac_boolean_mono_info,
1156 .get = pmac_hp_detect_get,
1157 },
1158 };
1159
snd_pmac_add_automute(struct snd_pmac * chip)1160 int __init snd_pmac_add_automute(struct snd_pmac *chip)
1161 {
1162 int err;
1163 chip->auto_mute = 1;
1164 err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1165 if (err < 0) {
1166 printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1167 return err;
1168 }
1169 chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1170 return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1171 }
1172 #endif /* PMAC_SUPPORT_AUTOMUTE */
1173
1174 /*
1175 * create and detect a pmac chip record
1176 */
snd_pmac_new(struct snd_card * card,struct snd_pmac ** chip_return)1177 int __init snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1178 {
1179 struct snd_pmac *chip;
1180 struct device_node *np;
1181 int i, err;
1182 unsigned int irq;
1183 unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1184 static struct snd_device_ops ops = {
1185 .dev_free = snd_pmac_dev_free,
1186 };
1187
1188 *chip_return = NULL;
1189
1190 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1191 if (chip == NULL)
1192 return -ENOMEM;
1193 chip->card = card;
1194
1195 spin_lock_init(&chip->reg_lock);
1196 chip->irq = chip->tx_irq = chip->rx_irq = -1;
1197
1198 chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1199 chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1200
1201 if ((err = snd_pmac_detect(chip)) < 0)
1202 goto __error;
1203
1204 if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1205 snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1206 snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0 ||
1207 snd_pmac_dbdma_alloc(chip, &emergency_dbdma, 2) < 0) {
1208 err = -ENOMEM;
1209 goto __error;
1210 }
1211
1212 np = chip->node;
1213 chip->requested = 0;
1214 if (chip->is_k2) {
1215 static char *rnames[] = {
1216 "Sound Control", "Sound DMA" };
1217 for (i = 0; i < 2; i ++) {
1218 if (of_address_to_resource(np->parent, i,
1219 &chip->rsrc[i])) {
1220 printk(KERN_ERR "snd: can't translate rsrc "
1221 " %d (%s)\n", i, rnames[i]);
1222 err = -ENODEV;
1223 goto __error;
1224 }
1225 if (request_mem_region(chip->rsrc[i].start,
1226 chip->rsrc[i].end -
1227 chip->rsrc[i].start + 1,
1228 rnames[i]) == NULL) {
1229 printk(KERN_ERR "snd: can't request rsrc "
1230 " %d (%s: 0x%016llx:%016llx)\n",
1231 i, rnames[i],
1232 (unsigned long long)chip->rsrc[i].start,
1233 (unsigned long long)chip->rsrc[i].end);
1234 err = -ENODEV;
1235 goto __error;
1236 }
1237 chip->requested |= (1 << i);
1238 }
1239 ctrl_addr = chip->rsrc[0].start;
1240 txdma_addr = chip->rsrc[1].start;
1241 rxdma_addr = txdma_addr + 0x100;
1242 } else {
1243 static char *rnames[] = {
1244 "Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1245 for (i = 0; i < 3; i ++) {
1246 if (of_address_to_resource(np, i,
1247 &chip->rsrc[i])) {
1248 printk(KERN_ERR "snd: can't translate rsrc "
1249 " %d (%s)\n", i, rnames[i]);
1250 err = -ENODEV;
1251 goto __error;
1252 }
1253 if (request_mem_region(chip->rsrc[i].start,
1254 chip->rsrc[i].end -
1255 chip->rsrc[i].start + 1,
1256 rnames[i]) == NULL) {
1257 printk(KERN_ERR "snd: can't request rsrc "
1258 " %d (%s: 0x%016llx:%016llx)\n",
1259 i, rnames[i],
1260 (unsigned long long)chip->rsrc[i].start,
1261 (unsigned long long)chip->rsrc[i].end);
1262 err = -ENODEV;
1263 goto __error;
1264 }
1265 chip->requested |= (1 << i);
1266 }
1267 ctrl_addr = chip->rsrc[0].start;
1268 txdma_addr = chip->rsrc[1].start;
1269 rxdma_addr = chip->rsrc[2].start;
1270 }
1271
1272 chip->awacs = ioremap(ctrl_addr, 0x1000);
1273 chip->playback.dma = ioremap(txdma_addr, 0x100);
1274 chip->capture.dma = ioremap(rxdma_addr, 0x100);
1275 if (chip->model <= PMAC_BURGUNDY) {
1276 irq = irq_of_parse_and_map(np, 0);
1277 if (request_irq(irq, snd_pmac_ctrl_intr, 0,
1278 "PMac", (void*)chip)) {
1279 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n",
1280 irq);
1281 err = -EBUSY;
1282 goto __error;
1283 }
1284 chip->irq = irq;
1285 }
1286 irq = irq_of_parse_and_map(np, 1);
1287 if (request_irq(irq, snd_pmac_tx_intr, 0, "PMac Output", (void*)chip)){
1288 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1289 err = -EBUSY;
1290 goto __error;
1291 }
1292 chip->tx_irq = irq;
1293 irq = irq_of_parse_and_map(np, 2);
1294 if (request_irq(irq, snd_pmac_rx_intr, 0, "PMac Input", (void*)chip)) {
1295 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", irq);
1296 err = -EBUSY;
1297 goto __error;
1298 }
1299 chip->rx_irq = irq;
1300
1301 snd_pmac_sound_feature(chip, 1);
1302
1303 /* reset & enable interrupts */
1304 if (chip->model <= PMAC_BURGUNDY)
1305 out_le32(&chip->awacs->control, chip->control_mask);
1306
1307 /* Powerbooks have odd ways of enabling inputs such as
1308 an expansion-bay CD or sound from an internal modem
1309 or a PC-card modem. */
1310 if (chip->is_pbook_3400) {
1311 /* Enable CD and PC-card sound inputs. */
1312 /* This is done by reading from address
1313 * f301a000, + 0x10 to enable the expansion-bay
1314 * CD sound input, + 0x80 to enable the PC-card
1315 * sound input. The 0x100 enables the SCSI bus
1316 * terminator power.
1317 */
1318 chip->latch_base = ioremap (0xf301a000, 0x1000);
1319 in_8(chip->latch_base + 0x190);
1320 } else if (chip->is_pbook_G3) {
1321 struct device_node* mio;
1322 for (mio = chip->node->parent; mio; mio = mio->parent) {
1323 if (strcmp(mio->name, "mac-io") == 0) {
1324 struct resource r;
1325 if (of_address_to_resource(mio, 0, &r) == 0)
1326 chip->macio_base =
1327 ioremap(r.start, 0x40);
1328 break;
1329 }
1330 }
1331 /* Enable CD sound input. */
1332 /* The relevant bits for writing to this byte are 0x8f.
1333 * I haven't found out what the 0x80 bit does.
1334 * For the 0xf bits, writing 3 or 7 enables the CD
1335 * input, any other value disables it. Values
1336 * 1, 3, 5, 7 enable the microphone. Values 0, 2,
1337 * 4, 6, 8 - f enable the input from the modem.
1338 */
1339 if (chip->macio_base)
1340 out_8(chip->macio_base + 0x37, 3);
1341 }
1342
1343 /* Reset dbdma channels */
1344 snd_pmac_dbdma_reset(chip);
1345
1346 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1347 goto __error;
1348
1349 *chip_return = chip;
1350 return 0;
1351
1352 __error:
1353 snd_pmac_free(chip);
1354 return err;
1355 }
1356
1357
1358 /*
1359 * sleep notify for powerbook
1360 */
1361
1362 #ifdef CONFIG_PM
1363
1364 /*
1365 * Save state when going to sleep, restore it afterwards.
1366 */
1367
snd_pmac_suspend(struct snd_pmac * chip)1368 void snd_pmac_suspend(struct snd_pmac *chip)
1369 {
1370 unsigned long flags;
1371
1372 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1373 if (chip->suspend)
1374 chip->suspend(chip);
1375 snd_pcm_suspend_all(chip->pcm);
1376 spin_lock_irqsave(&chip->reg_lock, flags);
1377 snd_pmac_beep_stop(chip);
1378 spin_unlock_irqrestore(&chip->reg_lock, flags);
1379 if (chip->irq >= 0)
1380 disable_irq(chip->irq);
1381 if (chip->tx_irq >= 0)
1382 disable_irq(chip->tx_irq);
1383 if (chip->rx_irq >= 0)
1384 disable_irq(chip->rx_irq);
1385 snd_pmac_sound_feature(chip, 0);
1386 }
1387
snd_pmac_resume(struct snd_pmac * chip)1388 void snd_pmac_resume(struct snd_pmac *chip)
1389 {
1390 snd_pmac_sound_feature(chip, 1);
1391 if (chip->resume)
1392 chip->resume(chip);
1393 /* enable CD sound input */
1394 if (chip->macio_base && chip->is_pbook_G3)
1395 out_8(chip->macio_base + 0x37, 3);
1396 else if (chip->is_pbook_3400)
1397 in_8(chip->latch_base + 0x190);
1398
1399 snd_pmac_pcm_set_format(chip);
1400
1401 if (chip->irq >= 0)
1402 enable_irq(chip->irq);
1403 if (chip->tx_irq >= 0)
1404 enable_irq(chip->tx_irq);
1405 if (chip->rx_irq >= 0)
1406 enable_irq(chip->rx_irq);
1407
1408 snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1409 }
1410
1411 #endif /* CONFIG_PM */
1412
1413