1 /*
2 * linux/arch/sparc/mm/init.c
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 * Copyright (C) 2000 Anton Blanchard (anton@samba.org)
8 */
9
10 #include <linux/module.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17 #include <linux/ptrace.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/initrd.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/bootmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/poison.h>
27
28 #include <asm/sections.h>
29 #include <asm/system.h>
30 #include <asm/vac-ops.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/vaddrs.h>
34 #include <asm/pgalloc.h> /* bug in asm-generic/tlb.h: check_pgt_cache */
35 #include <asm/tlb.h>
36 #include <asm/prom.h>
37
38 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
39
40 unsigned long *sparc_valid_addr_bitmap;
41 EXPORT_SYMBOL(sparc_valid_addr_bitmap);
42
43 unsigned long phys_base;
44 EXPORT_SYMBOL(phys_base);
45
46 unsigned long pfn_base;
47 EXPORT_SYMBOL(pfn_base);
48
49 unsigned long page_kernel;
50 EXPORT_SYMBOL(page_kernel);
51
52 struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS+1];
53 unsigned long sparc_unmapped_base;
54
55 struct pgtable_cache_struct pgt_quicklists;
56
57 /* Initial ramdisk setup */
58 extern unsigned int sparc_ramdisk_image;
59 extern unsigned int sparc_ramdisk_size;
60
61 unsigned long highstart_pfn, highend_pfn;
62
63 pte_t *kmap_pte;
64 pgprot_t kmap_prot;
65
66 #define kmap_get_fixmap_pte(vaddr) \
67 pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr))
68
kmap_init(void)69 void __init kmap_init(void)
70 {
71 /* cache the first kmap pte */
72 kmap_pte = kmap_get_fixmap_pte(__fix_to_virt(FIX_KMAP_BEGIN));
73 kmap_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV | SRMMU_CACHE);
74 }
75
show_mem(void)76 void show_mem(void)
77 {
78 printk("Mem-info:\n");
79 show_free_areas();
80 printk("Free swap: %6ldkB\n",
81 nr_swap_pages << (PAGE_SHIFT-10));
82 printk("%ld pages of RAM\n", totalram_pages);
83 printk("%ld free pages\n", nr_free_pages());
84 #if 0 /* undefined pgtable_cache_size, pgd_cache_size */
85 printk("%ld pages in page table cache\n",pgtable_cache_size);
86 #ifndef CONFIG_SMP
87 if (sparc_cpu_model == sun4m || sparc_cpu_model == sun4d)
88 printk("%ld entries in page dir cache\n",pgd_cache_size);
89 #endif
90 #endif
91 }
92
sparc_context_init(int numctx)93 void __init sparc_context_init(int numctx)
94 {
95 int ctx;
96
97 ctx_list_pool = __alloc_bootmem(numctx * sizeof(struct ctx_list), SMP_CACHE_BYTES, 0UL);
98
99 for(ctx = 0; ctx < numctx; ctx++) {
100 struct ctx_list *clist;
101
102 clist = (ctx_list_pool + ctx);
103 clist->ctx_number = ctx;
104 clist->ctx_mm = NULL;
105 }
106 ctx_free.next = ctx_free.prev = &ctx_free;
107 ctx_used.next = ctx_used.prev = &ctx_used;
108 for(ctx = 0; ctx < numctx; ctx++)
109 add_to_free_ctxlist(ctx_list_pool + ctx);
110 }
111
112 extern unsigned long cmdline_memory_size;
113 unsigned long last_valid_pfn;
114
calc_highpages(void)115 unsigned long calc_highpages(void)
116 {
117 int i;
118 int nr = 0;
119
120 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
121 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
122 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
123
124 if (end_pfn <= max_low_pfn)
125 continue;
126
127 if (start_pfn < max_low_pfn)
128 start_pfn = max_low_pfn;
129
130 nr += end_pfn - start_pfn;
131 }
132
133 return nr;
134 }
135
calc_max_low_pfn(void)136 static unsigned long calc_max_low_pfn(void)
137 {
138 int i;
139 unsigned long tmp = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
140 unsigned long curr_pfn, last_pfn;
141
142 last_pfn = (sp_banks[0].base_addr + sp_banks[0].num_bytes) >> PAGE_SHIFT;
143 for (i = 1; sp_banks[i].num_bytes != 0; i++) {
144 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
145
146 if (curr_pfn >= tmp) {
147 if (last_pfn < tmp)
148 tmp = last_pfn;
149 break;
150 }
151
152 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
153 }
154
155 return tmp;
156 }
157
bootmem_init(unsigned long * pages_avail)158 unsigned long __init bootmem_init(unsigned long *pages_avail)
159 {
160 unsigned long bootmap_size, start_pfn;
161 unsigned long end_of_phys_memory = 0UL;
162 unsigned long bootmap_pfn, bytes_avail, size;
163 int i;
164
165 bytes_avail = 0UL;
166 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
167 end_of_phys_memory = sp_banks[i].base_addr +
168 sp_banks[i].num_bytes;
169 bytes_avail += sp_banks[i].num_bytes;
170 if (cmdline_memory_size) {
171 if (bytes_avail > cmdline_memory_size) {
172 unsigned long slack = bytes_avail - cmdline_memory_size;
173
174 bytes_avail -= slack;
175 end_of_phys_memory -= slack;
176
177 sp_banks[i].num_bytes -= slack;
178 if (sp_banks[i].num_bytes == 0) {
179 sp_banks[i].base_addr = 0xdeadbeef;
180 } else {
181 sp_banks[i+1].num_bytes = 0;
182 sp_banks[i+1].base_addr = 0xdeadbeef;
183 }
184 break;
185 }
186 }
187 }
188
189 /* Start with page aligned address of last symbol in kernel
190 * image.
191 */
192 start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end));
193
194 /* Now shift down to get the real physical page frame number. */
195 start_pfn >>= PAGE_SHIFT;
196
197 bootmap_pfn = start_pfn;
198
199 max_pfn = end_of_phys_memory >> PAGE_SHIFT;
200
201 max_low_pfn = max_pfn;
202 highstart_pfn = highend_pfn = max_pfn;
203
204 if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) {
205 highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
206 max_low_pfn = calc_max_low_pfn();
207 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
208 calc_highpages() >> (20 - PAGE_SHIFT));
209 }
210
211 #ifdef CONFIG_BLK_DEV_INITRD
212 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
213 if (sparc_ramdisk_image) {
214 if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE)
215 sparc_ramdisk_image -= KERNBASE;
216 initrd_start = sparc_ramdisk_image + phys_base;
217 initrd_end = initrd_start + sparc_ramdisk_size;
218 if (initrd_end > end_of_phys_memory) {
219 printk(KERN_CRIT "initrd extends beyond end of memory "
220 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
221 initrd_end, end_of_phys_memory);
222 initrd_start = 0;
223 }
224 if (initrd_start) {
225 if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
226 initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
227 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
228 }
229 }
230 #endif
231 /* Initialize the boot-time allocator. */
232 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base,
233 max_low_pfn);
234
235 /* Now register the available physical memory with the
236 * allocator.
237 */
238 *pages_avail = 0;
239 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
240 unsigned long curr_pfn, last_pfn;
241
242 curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
243 if (curr_pfn >= max_low_pfn)
244 break;
245
246 last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
247 if (last_pfn > max_low_pfn)
248 last_pfn = max_low_pfn;
249
250 /*
251 * .. finally, did all the rounding and playing
252 * around just make the area go away?
253 */
254 if (last_pfn <= curr_pfn)
255 continue;
256
257 size = (last_pfn - curr_pfn) << PAGE_SHIFT;
258 *pages_avail += last_pfn - curr_pfn;
259
260 free_bootmem(sp_banks[i].base_addr, size);
261 }
262
263 #ifdef CONFIG_BLK_DEV_INITRD
264 if (initrd_start) {
265 /* Reserve the initrd image area. */
266 size = initrd_end - initrd_start;
267 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT);
268 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
269
270 initrd_start = (initrd_start - phys_base) + PAGE_OFFSET;
271 initrd_end = (initrd_end - phys_base) + PAGE_OFFSET;
272 }
273 #endif
274 /* Reserve the kernel text/data/bss. */
275 size = (start_pfn << PAGE_SHIFT) - phys_base;
276 reserve_bootmem(phys_base, size, BOOTMEM_DEFAULT);
277 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
278
279 /* Reserve the bootmem map. We do not account for it
280 * in pages_avail because we will release that memory
281 * in free_all_bootmem.
282 */
283 size = bootmap_size;
284 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT);
285 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
286
287 return max_pfn;
288 }
289
290 /*
291 * check_pgt_cache
292 *
293 * This is called at the end of unmapping of VMA (zap_page_range),
294 * to rescan the page cache for architecture specific things,
295 * presumably something like sun4/sun4c PMEGs. Most architectures
296 * define check_pgt_cache empty.
297 *
298 * We simply copy the 2.4 implementation for now.
299 */
300 static int pgt_cache_water[2] = { 25, 50 };
301
check_pgt_cache(void)302 void check_pgt_cache(void)
303 {
304 do_check_pgt_cache(pgt_cache_water[0], pgt_cache_water[1]);
305 }
306
307 /*
308 * paging_init() sets up the page tables: We call the MMU specific
309 * init routine based upon the Sun model type on the Sparc.
310 *
311 */
312 extern void sun4c_paging_init(void);
313 extern void srmmu_paging_init(void);
314 extern void device_scan(void);
315
316 pgprot_t PAGE_SHARED __read_mostly;
317 EXPORT_SYMBOL(PAGE_SHARED);
318
paging_init(void)319 void __init paging_init(void)
320 {
321 switch(sparc_cpu_model) {
322 case sun4c:
323 case sun4e:
324 case sun4:
325 sun4c_paging_init();
326 sparc_unmapped_base = 0xe0000000;
327 BTFIXUPSET_SETHI(sparc_unmapped_base, 0xe0000000);
328 break;
329 case sun4m:
330 case sun4d:
331 srmmu_paging_init();
332 sparc_unmapped_base = 0x50000000;
333 BTFIXUPSET_SETHI(sparc_unmapped_base, 0x50000000);
334 break;
335 default:
336 prom_printf("paging_init: Cannot init paging on this Sparc\n");
337 prom_printf("paging_init: sparc_cpu_model = %d\n", sparc_cpu_model);
338 prom_printf("paging_init: Halting...\n");
339 prom_halt();
340 };
341
342 /* Initialize the protection map with non-constant, MMU dependent values. */
343 protection_map[0] = PAGE_NONE;
344 protection_map[1] = PAGE_READONLY;
345 protection_map[2] = PAGE_COPY;
346 protection_map[3] = PAGE_COPY;
347 protection_map[4] = PAGE_READONLY;
348 protection_map[5] = PAGE_READONLY;
349 protection_map[6] = PAGE_COPY;
350 protection_map[7] = PAGE_COPY;
351 protection_map[8] = PAGE_NONE;
352 protection_map[9] = PAGE_READONLY;
353 protection_map[10] = PAGE_SHARED;
354 protection_map[11] = PAGE_SHARED;
355 protection_map[12] = PAGE_READONLY;
356 protection_map[13] = PAGE_READONLY;
357 protection_map[14] = PAGE_SHARED;
358 protection_map[15] = PAGE_SHARED;
359 btfixup();
360 prom_build_devicetree();
361 device_scan();
362 }
363
taint_real_pages(void)364 static void __init taint_real_pages(void)
365 {
366 int i;
367
368 for (i = 0; sp_banks[i].num_bytes; i++) {
369 unsigned long start, end;
370
371 start = sp_banks[i].base_addr;
372 end = start + sp_banks[i].num_bytes;
373
374 while (start < end) {
375 set_bit(start >> 20, sparc_valid_addr_bitmap);
376 start += PAGE_SIZE;
377 }
378 }
379 }
380
map_high_region(unsigned long start_pfn,unsigned long end_pfn)381 static void map_high_region(unsigned long start_pfn, unsigned long end_pfn)
382 {
383 unsigned long tmp;
384
385 #ifdef CONFIG_DEBUG_HIGHMEM
386 printk("mapping high region %08lx - %08lx\n", start_pfn, end_pfn);
387 #endif
388
389 for (tmp = start_pfn; tmp < end_pfn; tmp++) {
390 struct page *page = pfn_to_page(tmp);
391
392 ClearPageReserved(page);
393 init_page_count(page);
394 __free_page(page);
395 totalhigh_pages++;
396 }
397 }
398
mem_init(void)399 void __init mem_init(void)
400 {
401 int codepages = 0;
402 int datapages = 0;
403 int initpages = 0;
404 int reservedpages = 0;
405 int i;
406
407 if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) {
408 prom_printf("BUG: fixmap and pkmap areas overlap\n");
409 prom_printf("pkbase: 0x%lx pkend: 0x%lx fixstart 0x%lx\n",
410 PKMAP_BASE,
411 (unsigned long)PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,
412 FIXADDR_START);
413 prom_printf("Please mail sparclinux@vger.kernel.org.\n");
414 prom_halt();
415 }
416
417
418 /* Saves us work later. */
419 memset((void *)&empty_zero_page, 0, PAGE_SIZE);
420
421 i = last_valid_pfn >> ((20 - PAGE_SHIFT) + 5);
422 i += 1;
423 sparc_valid_addr_bitmap = (unsigned long *)
424 __alloc_bootmem(i << 2, SMP_CACHE_BYTES, 0UL);
425
426 if (sparc_valid_addr_bitmap == NULL) {
427 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
428 prom_halt();
429 }
430 memset(sparc_valid_addr_bitmap, 0, i << 2);
431
432 taint_real_pages();
433
434 max_mapnr = last_valid_pfn - pfn_base;
435 high_memory = __va(max_low_pfn << PAGE_SHIFT);
436
437 totalram_pages = free_all_bootmem();
438
439 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
440 unsigned long start_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
441 unsigned long end_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
442
443 num_physpages += sp_banks[i].num_bytes >> PAGE_SHIFT;
444
445 if (end_pfn <= highstart_pfn)
446 continue;
447
448 if (start_pfn < highstart_pfn)
449 start_pfn = highstart_pfn;
450
451 map_high_region(start_pfn, end_pfn);
452 }
453
454 totalram_pages += totalhigh_pages;
455
456 codepages = (((unsigned long) &_etext) - ((unsigned long)&_start));
457 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
458 datapages = (((unsigned long) &_edata) - ((unsigned long)&_etext));
459 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
460 initpages = (((unsigned long) &__init_end) - ((unsigned long) &__init_begin));
461 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
462
463 /* Ignore memory holes for the purpose of counting reserved pages */
464 for (i=0; i < max_low_pfn; i++)
465 if (test_bit(i >> (20 - PAGE_SHIFT), sparc_valid_addr_bitmap)
466 && PageReserved(pfn_to_page(i)))
467 reservedpages++;
468
469 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
470 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
471 num_physpages << (PAGE_SHIFT - 10),
472 codepages << (PAGE_SHIFT-10),
473 reservedpages << (PAGE_SHIFT - 10),
474 datapages << (PAGE_SHIFT-10),
475 initpages << (PAGE_SHIFT-10),
476 totalhigh_pages << (PAGE_SHIFT-10));
477 }
478
free_initmem(void)479 void free_initmem (void)
480 {
481 unsigned long addr;
482 unsigned long freed;
483
484 addr = (unsigned long)(&__init_begin);
485 freed = (unsigned long)(&__init_end) - addr;
486 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
487 struct page *p;
488
489 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
490 p = virt_to_page(addr);
491
492 ClearPageReserved(p);
493 init_page_count(p);
494 __free_page(p);
495 totalram_pages++;
496 num_physpages++;
497 }
498 printk(KERN_INFO "Freeing unused kernel memory: %ldk freed\n",
499 freed >> 10);
500 }
501
502 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)503 void free_initrd_mem(unsigned long start, unsigned long end)
504 {
505 if (start < end)
506 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n",
507 (end - start) >> 10);
508 for (; start < end; start += PAGE_SIZE) {
509 struct page *p;
510
511 memset((void *)start, POISON_FREE_INITMEM, PAGE_SIZE);
512 p = virt_to_page(start);
513
514 ClearPageReserved(p);
515 init_page_count(p);
516 __free_page(p);
517 totalram_pages++;
518 num_physpages++;
519 }
520 }
521 #endif
522
sparc_flush_page_to_ram(struct page * page)523 void sparc_flush_page_to_ram(struct page *page)
524 {
525 unsigned long vaddr = (unsigned long)page_address(page);
526
527 if (vaddr)
528 __flush_page_to_ram(vaddr);
529 }
530 EXPORT_SYMBOL(sparc_flush_page_to_ram);
531