• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 
12 /*
13  * Called after updating RLIMIT_CPU to set timer expiration if necessary.
14  */
update_rlimit_cpu(unsigned long rlim_new)15 void update_rlimit_cpu(unsigned long rlim_new)
16 {
17 	cputime_t cputime;
18 
19 	cputime = secs_to_cputime(rlim_new);
20 	if (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
21 	    cputime_lt(current->signal->it_prof_expires, cputime)) {
22 		spin_lock_irq(&current->sighand->siglock);
23 		set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
24 		spin_unlock_irq(&current->sighand->siglock);
25 	}
26 }
27 
check_clock(const clockid_t which_clock)28 static int check_clock(const clockid_t which_clock)
29 {
30 	int error = 0;
31 	struct task_struct *p;
32 	const pid_t pid = CPUCLOCK_PID(which_clock);
33 
34 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 		return -EINVAL;
36 
37 	if (pid == 0)
38 		return 0;
39 
40 	read_lock(&tasklist_lock);
41 	p = find_task_by_vpid(pid);
42 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 		   same_thread_group(p, current) : thread_group_leader(p))) {
44 		error = -EINVAL;
45 	}
46 	read_unlock(&tasklist_lock);
47 
48 	return error;
49 }
50 
51 static inline union cpu_time_count
timespec_to_sample(const clockid_t which_clock,const struct timespec * tp)52 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
53 {
54 	union cpu_time_count ret;
55 	ret.sched = 0;		/* high half always zero when .cpu used */
56 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
57 		ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
58 	} else {
59 		ret.cpu = timespec_to_cputime(tp);
60 	}
61 	return ret;
62 }
63 
sample_to_timespec(const clockid_t which_clock,union cpu_time_count cpu,struct timespec * tp)64 static void sample_to_timespec(const clockid_t which_clock,
65 			       union cpu_time_count cpu,
66 			       struct timespec *tp)
67 {
68 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 		*tp = ns_to_timespec(cpu.sched);
70 	else
71 		cputime_to_timespec(cpu.cpu, tp);
72 }
73 
cpu_time_before(const clockid_t which_clock,union cpu_time_count now,union cpu_time_count then)74 static inline int cpu_time_before(const clockid_t which_clock,
75 				  union cpu_time_count now,
76 				  union cpu_time_count then)
77 {
78 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 		return now.sched < then.sched;
80 	}  else {
81 		return cputime_lt(now.cpu, then.cpu);
82 	}
83 }
cpu_time_add(const clockid_t which_clock,union cpu_time_count * acc,union cpu_time_count val)84 static inline void cpu_time_add(const clockid_t which_clock,
85 				union cpu_time_count *acc,
86 			        union cpu_time_count val)
87 {
88 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 		acc->sched += val.sched;
90 	}  else {
91 		acc->cpu = cputime_add(acc->cpu, val.cpu);
92 	}
93 }
cpu_time_sub(const clockid_t which_clock,union cpu_time_count a,union cpu_time_count b)94 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
95 						union cpu_time_count a,
96 						union cpu_time_count b)
97 {
98 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 		a.sched -= b.sched;
100 	}  else {
101 		a.cpu = cputime_sub(a.cpu, b.cpu);
102 	}
103 	return a;
104 }
105 
106 /*
107  * Divide and limit the result to res >= 1
108  *
109  * This is necessary to prevent signal delivery starvation, when the result of
110  * the division would be rounded down to 0.
111  */
cputime_div_non_zero(cputime_t time,unsigned long div)112 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113 {
114 	cputime_t res = cputime_div(time, div);
115 
116 	return max_t(cputime_t, res, 1);
117 }
118 
119 /*
120  * Update expiry time from increment, and increase overrun count,
121  * given the current clock sample.
122  */
bump_cpu_timer(struct k_itimer * timer,union cpu_time_count now)123 static void bump_cpu_timer(struct k_itimer *timer,
124 				  union cpu_time_count now)
125 {
126 	int i;
127 
128 	if (timer->it.cpu.incr.sched == 0)
129 		return;
130 
131 	if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 		unsigned long long delta, incr;
133 
134 		if (now.sched < timer->it.cpu.expires.sched)
135 			return;
136 		incr = timer->it.cpu.incr.sched;
137 		delta = now.sched + incr - timer->it.cpu.expires.sched;
138 		/* Don't use (incr*2 < delta), incr*2 might overflow. */
139 		for (i = 0; incr < delta - incr; i++)
140 			incr = incr << 1;
141 		for (; i >= 0; incr >>= 1, i--) {
142 			if (delta < incr)
143 				continue;
144 			timer->it.cpu.expires.sched += incr;
145 			timer->it_overrun += 1 << i;
146 			delta -= incr;
147 		}
148 	} else {
149 		cputime_t delta, incr;
150 
151 		if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 			return;
153 		incr = timer->it.cpu.incr.cpu;
154 		delta = cputime_sub(cputime_add(now.cpu, incr),
155 				    timer->it.cpu.expires.cpu);
156 		/* Don't use (incr*2 < delta), incr*2 might overflow. */
157 		for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 			     incr = cputime_add(incr, incr);
159 		for (; i >= 0; incr = cputime_halve(incr), i--) {
160 			if (cputime_lt(delta, incr))
161 				continue;
162 			timer->it.cpu.expires.cpu =
163 				cputime_add(timer->it.cpu.expires.cpu, incr);
164 			timer->it_overrun += 1 << i;
165 			delta = cputime_sub(delta, incr);
166 		}
167 	}
168 }
169 
prof_ticks(struct task_struct * p)170 static inline cputime_t prof_ticks(struct task_struct *p)
171 {
172 	return cputime_add(p->utime, p->stime);
173 }
virt_ticks(struct task_struct * p)174 static inline cputime_t virt_ticks(struct task_struct *p)
175 {
176 	return p->utime;
177 }
178 
posix_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)179 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
180 {
181 	int error = check_clock(which_clock);
182 	if (!error) {
183 		tp->tv_sec = 0;
184 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186 			/*
187 			 * If sched_clock is using a cycle counter, we
188 			 * don't have any idea of its true resolution
189 			 * exported, but it is much more than 1s/HZ.
190 			 */
191 			tp->tv_nsec = 1;
192 		}
193 	}
194 	return error;
195 }
196 
posix_cpu_clock_set(const clockid_t which_clock,const struct timespec * tp)197 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
198 {
199 	/*
200 	 * You can never reset a CPU clock, but we check for other errors
201 	 * in the call before failing with EPERM.
202 	 */
203 	int error = check_clock(which_clock);
204 	if (error == 0) {
205 		error = -EPERM;
206 	}
207 	return error;
208 }
209 
210 
211 /*
212  * Sample a per-thread clock for the given task.
213  */
cpu_clock_sample(const clockid_t which_clock,struct task_struct * p,union cpu_time_count * cpu)214 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
215 			    union cpu_time_count *cpu)
216 {
217 	switch (CPUCLOCK_WHICH(which_clock)) {
218 	default:
219 		return -EINVAL;
220 	case CPUCLOCK_PROF:
221 		cpu->cpu = prof_ticks(p);
222 		break;
223 	case CPUCLOCK_VIRT:
224 		cpu->cpu = virt_ticks(p);
225 		break;
226 	case CPUCLOCK_SCHED:
227 		cpu->sched = task_sched_runtime(p);
228 		break;
229 	}
230 	return 0;
231 }
232 
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)233 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
234 {
235 	struct sighand_struct *sighand;
236 	struct signal_struct *sig;
237 	struct task_struct *t;
238 
239 	*times = INIT_CPUTIME;
240 
241 	rcu_read_lock();
242 	sighand = rcu_dereference(tsk->sighand);
243 	if (!sighand)
244 		goto out;
245 
246 	sig = tsk->signal;
247 
248 	t = tsk;
249 	do {
250 		times->utime = cputime_add(times->utime, t->utime);
251 		times->stime = cputime_add(times->stime, t->stime);
252 		times->sum_exec_runtime += t->se.sum_exec_runtime;
253 
254 		t = next_thread(t);
255 	} while (t != tsk);
256 
257 	times->utime = cputime_add(times->utime, sig->utime);
258 	times->stime = cputime_add(times->stime, sig->stime);
259 	times->sum_exec_runtime += sig->sum_sched_runtime;
260 out:
261 	rcu_read_unlock();
262 }
263 
update_gt_cputime(struct task_cputime * a,struct task_cputime * b)264 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
265 {
266 	if (cputime_gt(b->utime, a->utime))
267 		a->utime = b->utime;
268 
269 	if (cputime_gt(b->stime, a->stime))
270 		a->stime = b->stime;
271 
272 	if (b->sum_exec_runtime > a->sum_exec_runtime)
273 		a->sum_exec_runtime = b->sum_exec_runtime;
274 }
275 
thread_group_cputimer(struct task_struct * tsk,struct task_cputime * times)276 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
277 {
278 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
279 	struct task_cputime sum;
280 	unsigned long flags;
281 
282 	spin_lock_irqsave(&cputimer->lock, flags);
283 	if (!cputimer->running) {
284 		cputimer->running = 1;
285 		/*
286 		 * The POSIX timer interface allows for absolute time expiry
287 		 * values through the TIMER_ABSTIME flag, therefore we have
288 		 * to synchronize the timer to the clock every time we start
289 		 * it.
290 		 */
291 		thread_group_cputime(tsk, &sum);
292 		update_gt_cputime(&cputimer->cputime, &sum);
293 	}
294 	*times = cputimer->cputime;
295 	spin_unlock_irqrestore(&cputimer->lock, flags);
296 }
297 
298 /*
299  * Sample a process (thread group) clock for the given group_leader task.
300  * Must be called with tasklist_lock held for reading.
301  */
cpu_clock_sample_group(const clockid_t which_clock,struct task_struct * p,union cpu_time_count * cpu)302 static int cpu_clock_sample_group(const clockid_t which_clock,
303 				  struct task_struct *p,
304 				  union cpu_time_count *cpu)
305 {
306 	struct task_cputime cputime;
307 
308 	switch (CPUCLOCK_WHICH(which_clock)) {
309 	default:
310 		return -EINVAL;
311 	case CPUCLOCK_PROF:
312 		thread_group_cputime(p, &cputime);
313 		cpu->cpu = cputime_add(cputime.utime, cputime.stime);
314 		break;
315 	case CPUCLOCK_VIRT:
316 		thread_group_cputime(p, &cputime);
317 		cpu->cpu = cputime.utime;
318 		break;
319 	case CPUCLOCK_SCHED:
320 		cpu->sched = thread_group_sched_runtime(p);
321 		break;
322 	}
323 	return 0;
324 }
325 
326 
posix_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)327 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
328 {
329 	const pid_t pid = CPUCLOCK_PID(which_clock);
330 	int error = -EINVAL;
331 	union cpu_time_count rtn;
332 
333 	if (pid == 0) {
334 		/*
335 		 * Special case constant value for our own clocks.
336 		 * We don't have to do any lookup to find ourselves.
337 		 */
338 		if (CPUCLOCK_PERTHREAD(which_clock)) {
339 			/*
340 			 * Sampling just ourselves we can do with no locking.
341 			 */
342 			error = cpu_clock_sample(which_clock,
343 						 current, &rtn);
344 		} else {
345 			read_lock(&tasklist_lock);
346 			error = cpu_clock_sample_group(which_clock,
347 						       current, &rtn);
348 			read_unlock(&tasklist_lock);
349 		}
350 	} else {
351 		/*
352 		 * Find the given PID, and validate that the caller
353 		 * should be able to see it.
354 		 */
355 		struct task_struct *p;
356 		rcu_read_lock();
357 		p = find_task_by_vpid(pid);
358 		if (p) {
359 			if (CPUCLOCK_PERTHREAD(which_clock)) {
360 				if (same_thread_group(p, current)) {
361 					error = cpu_clock_sample(which_clock,
362 								 p, &rtn);
363 				}
364 			} else {
365 				read_lock(&tasklist_lock);
366 				if (thread_group_leader(p) && p->signal) {
367 					error =
368 					    cpu_clock_sample_group(which_clock,
369 							           p, &rtn);
370 				}
371 				read_unlock(&tasklist_lock);
372 			}
373 		}
374 		rcu_read_unlock();
375 	}
376 
377 	if (error)
378 		return error;
379 	sample_to_timespec(which_clock, rtn, tp);
380 	return 0;
381 }
382 
383 
384 /*
385  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
386  * This is called from sys_timer_create with the new timer already locked.
387  */
posix_cpu_timer_create(struct k_itimer * new_timer)388 int posix_cpu_timer_create(struct k_itimer *new_timer)
389 {
390 	int ret = 0;
391 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
392 	struct task_struct *p;
393 
394 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
395 		return -EINVAL;
396 
397 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
398 	new_timer->it.cpu.incr.sched = 0;
399 	new_timer->it.cpu.expires.sched = 0;
400 
401 	read_lock(&tasklist_lock);
402 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
403 		if (pid == 0) {
404 			p = current;
405 		} else {
406 			p = find_task_by_vpid(pid);
407 			if (p && !same_thread_group(p, current))
408 				p = NULL;
409 		}
410 	} else {
411 		if (pid == 0) {
412 			p = current->group_leader;
413 		} else {
414 			p = find_task_by_vpid(pid);
415 			if (p && !thread_group_leader(p))
416 				p = NULL;
417 		}
418 	}
419 	new_timer->it.cpu.task = p;
420 	if (p) {
421 		get_task_struct(p);
422 	} else {
423 		ret = -EINVAL;
424 	}
425 	read_unlock(&tasklist_lock);
426 
427 	return ret;
428 }
429 
430 /*
431  * Clean up a CPU-clock timer that is about to be destroyed.
432  * This is called from timer deletion with the timer already locked.
433  * If we return TIMER_RETRY, it's necessary to release the timer's lock
434  * and try again.  (This happens when the timer is in the middle of firing.)
435  */
posix_cpu_timer_del(struct k_itimer * timer)436 int posix_cpu_timer_del(struct k_itimer *timer)
437 {
438 	struct task_struct *p = timer->it.cpu.task;
439 	int ret = 0;
440 
441 	if (likely(p != NULL)) {
442 		read_lock(&tasklist_lock);
443 		if (unlikely(p->signal == NULL)) {
444 			/*
445 			 * We raced with the reaping of the task.
446 			 * The deletion should have cleared us off the list.
447 			 */
448 			BUG_ON(!list_empty(&timer->it.cpu.entry));
449 		} else {
450 			spin_lock(&p->sighand->siglock);
451 			if (timer->it.cpu.firing)
452 				ret = TIMER_RETRY;
453 			else
454 				list_del(&timer->it.cpu.entry);
455 			spin_unlock(&p->sighand->siglock);
456 		}
457 		read_unlock(&tasklist_lock);
458 
459 		if (!ret)
460 			put_task_struct(p);
461 	}
462 
463 	return ret;
464 }
465 
466 /*
467  * Clean out CPU timers still ticking when a thread exited.  The task
468  * pointer is cleared, and the expiry time is replaced with the residual
469  * time for later timer_gettime calls to return.
470  * This must be called with the siglock held.
471  */
cleanup_timers(struct list_head * head,cputime_t utime,cputime_t stime,unsigned long long sum_exec_runtime)472 static void cleanup_timers(struct list_head *head,
473 			   cputime_t utime, cputime_t stime,
474 			   unsigned long long sum_exec_runtime)
475 {
476 	struct cpu_timer_list *timer, *next;
477 	cputime_t ptime = cputime_add(utime, stime);
478 
479 	list_for_each_entry_safe(timer, next, head, entry) {
480 		list_del_init(&timer->entry);
481 		if (cputime_lt(timer->expires.cpu, ptime)) {
482 			timer->expires.cpu = cputime_zero;
483 		} else {
484 			timer->expires.cpu = cputime_sub(timer->expires.cpu,
485 							 ptime);
486 		}
487 	}
488 
489 	++head;
490 	list_for_each_entry_safe(timer, next, head, entry) {
491 		list_del_init(&timer->entry);
492 		if (cputime_lt(timer->expires.cpu, utime)) {
493 			timer->expires.cpu = cputime_zero;
494 		} else {
495 			timer->expires.cpu = cputime_sub(timer->expires.cpu,
496 							 utime);
497 		}
498 	}
499 
500 	++head;
501 	list_for_each_entry_safe(timer, next, head, entry) {
502 		list_del_init(&timer->entry);
503 		if (timer->expires.sched < sum_exec_runtime) {
504 			timer->expires.sched = 0;
505 		} else {
506 			timer->expires.sched -= sum_exec_runtime;
507 		}
508 	}
509 }
510 
511 /*
512  * These are both called with the siglock held, when the current thread
513  * is being reaped.  When the final (leader) thread in the group is reaped,
514  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
515  */
posix_cpu_timers_exit(struct task_struct * tsk)516 void posix_cpu_timers_exit(struct task_struct *tsk)
517 {
518 	cleanup_timers(tsk->cpu_timers,
519 		       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
520 
521 }
posix_cpu_timers_exit_group(struct task_struct * tsk)522 void posix_cpu_timers_exit_group(struct task_struct *tsk)
523 {
524 	struct task_cputime cputime;
525 
526 	thread_group_cputimer(tsk, &cputime);
527 	cleanup_timers(tsk->signal->cpu_timers,
528 		       cputime.utime, cputime.stime, cputime.sum_exec_runtime);
529 }
530 
clear_dead_task(struct k_itimer * timer,union cpu_time_count now)531 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
532 {
533 	/*
534 	 * That's all for this thread or process.
535 	 * We leave our residual in expires to be reported.
536 	 */
537 	put_task_struct(timer->it.cpu.task);
538 	timer->it.cpu.task = NULL;
539 	timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
540 					     timer->it.cpu.expires,
541 					     now);
542 }
543 
544 /*
545  * Insert the timer on the appropriate list before any timers that
546  * expire later.  This must be called with the tasklist_lock held
547  * for reading, and interrupts disabled.
548  */
arm_timer(struct k_itimer * timer,union cpu_time_count now)549 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
550 {
551 	struct task_struct *p = timer->it.cpu.task;
552 	struct list_head *head, *listpos;
553 	struct cpu_timer_list *const nt = &timer->it.cpu;
554 	struct cpu_timer_list *next;
555 	unsigned long i;
556 
557 	head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
558 		p->cpu_timers : p->signal->cpu_timers);
559 	head += CPUCLOCK_WHICH(timer->it_clock);
560 
561 	BUG_ON(!irqs_disabled());
562 	spin_lock(&p->sighand->siglock);
563 
564 	listpos = head;
565 	if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
566 		list_for_each_entry(next, head, entry) {
567 			if (next->expires.sched > nt->expires.sched)
568 				break;
569 			listpos = &next->entry;
570 		}
571 	} else {
572 		list_for_each_entry(next, head, entry) {
573 			if (cputime_gt(next->expires.cpu, nt->expires.cpu))
574 				break;
575 			listpos = &next->entry;
576 		}
577 	}
578 	list_add(&nt->entry, listpos);
579 
580 	if (listpos == head) {
581 		/*
582 		 * We are the new earliest-expiring timer.
583 		 * If we are a thread timer, there can always
584 		 * be a process timer telling us to stop earlier.
585 		 */
586 
587 		if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
588 			switch (CPUCLOCK_WHICH(timer->it_clock)) {
589 			default:
590 				BUG();
591 			case CPUCLOCK_PROF:
592 				if (cputime_eq(p->cputime_expires.prof_exp,
593 					       cputime_zero) ||
594 				    cputime_gt(p->cputime_expires.prof_exp,
595 					       nt->expires.cpu))
596 					p->cputime_expires.prof_exp =
597 						nt->expires.cpu;
598 				break;
599 			case CPUCLOCK_VIRT:
600 				if (cputime_eq(p->cputime_expires.virt_exp,
601 					       cputime_zero) ||
602 				    cputime_gt(p->cputime_expires.virt_exp,
603 					       nt->expires.cpu))
604 					p->cputime_expires.virt_exp =
605 						nt->expires.cpu;
606 				break;
607 			case CPUCLOCK_SCHED:
608 				if (p->cputime_expires.sched_exp == 0 ||
609 				    p->cputime_expires.sched_exp >
610 							nt->expires.sched)
611 					p->cputime_expires.sched_exp =
612 						nt->expires.sched;
613 				break;
614 			}
615 		} else {
616 			/*
617 			 * For a process timer, set the cached expiration time.
618 			 */
619 			switch (CPUCLOCK_WHICH(timer->it_clock)) {
620 			default:
621 				BUG();
622 			case CPUCLOCK_VIRT:
623 				if (!cputime_eq(p->signal->it_virt_expires,
624 						cputime_zero) &&
625 				    cputime_lt(p->signal->it_virt_expires,
626 					       timer->it.cpu.expires.cpu))
627 					break;
628 				p->signal->cputime_expires.virt_exp =
629 					timer->it.cpu.expires.cpu;
630 				break;
631 			case CPUCLOCK_PROF:
632 				if (!cputime_eq(p->signal->it_prof_expires,
633 						cputime_zero) &&
634 				    cputime_lt(p->signal->it_prof_expires,
635 					       timer->it.cpu.expires.cpu))
636 					break;
637 				i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
638 				if (i != RLIM_INFINITY &&
639 				    i <= cputime_to_secs(timer->it.cpu.expires.cpu))
640 					break;
641 				p->signal->cputime_expires.prof_exp =
642 					timer->it.cpu.expires.cpu;
643 				break;
644 			case CPUCLOCK_SCHED:
645 				p->signal->cputime_expires.sched_exp =
646 					timer->it.cpu.expires.sched;
647 				break;
648 			}
649 		}
650 	}
651 
652 	spin_unlock(&p->sighand->siglock);
653 }
654 
655 /*
656  * The timer is locked, fire it and arrange for its reload.
657  */
cpu_timer_fire(struct k_itimer * timer)658 static void cpu_timer_fire(struct k_itimer *timer)
659 {
660 	if (unlikely(timer->sigq == NULL)) {
661 		/*
662 		 * This a special case for clock_nanosleep,
663 		 * not a normal timer from sys_timer_create.
664 		 */
665 		wake_up_process(timer->it_process);
666 		timer->it.cpu.expires.sched = 0;
667 	} else if (timer->it.cpu.incr.sched == 0) {
668 		/*
669 		 * One-shot timer.  Clear it as soon as it's fired.
670 		 */
671 		posix_timer_event(timer, 0);
672 		timer->it.cpu.expires.sched = 0;
673 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
674 		/*
675 		 * The signal did not get queued because the signal
676 		 * was ignored, so we won't get any callback to
677 		 * reload the timer.  But we need to keep it
678 		 * ticking in case the signal is deliverable next time.
679 		 */
680 		posix_cpu_timer_schedule(timer);
681 	}
682 }
683 
684 /*
685  * Sample a process (thread group) timer for the given group_leader task.
686  * Must be called with tasklist_lock held for reading.
687  */
cpu_timer_sample_group(const clockid_t which_clock,struct task_struct * p,union cpu_time_count * cpu)688 static int cpu_timer_sample_group(const clockid_t which_clock,
689 				  struct task_struct *p,
690 				  union cpu_time_count *cpu)
691 {
692 	struct task_cputime cputime;
693 
694 	thread_group_cputimer(p, &cputime);
695 	switch (CPUCLOCK_WHICH(which_clock)) {
696 	default:
697 		return -EINVAL;
698 	case CPUCLOCK_PROF:
699 		cpu->cpu = cputime_add(cputime.utime, cputime.stime);
700 		break;
701 	case CPUCLOCK_VIRT:
702 		cpu->cpu = cputime.utime;
703 		break;
704 	case CPUCLOCK_SCHED:
705 		cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
706 		break;
707 	}
708 	return 0;
709 }
710 
711 /*
712  * Guts of sys_timer_settime for CPU timers.
713  * This is called with the timer locked and interrupts disabled.
714  * If we return TIMER_RETRY, it's necessary to release the timer's lock
715  * and try again.  (This happens when the timer is in the middle of firing.)
716  */
posix_cpu_timer_set(struct k_itimer * timer,int flags,struct itimerspec * new,struct itimerspec * old)717 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
718 			struct itimerspec *new, struct itimerspec *old)
719 {
720 	struct task_struct *p = timer->it.cpu.task;
721 	union cpu_time_count old_expires, new_expires, val;
722 	int ret;
723 
724 	if (unlikely(p == NULL)) {
725 		/*
726 		 * Timer refers to a dead task's clock.
727 		 */
728 		return -ESRCH;
729 	}
730 
731 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
732 
733 	read_lock(&tasklist_lock);
734 	/*
735 	 * We need the tasklist_lock to protect against reaping that
736 	 * clears p->signal.  If p has just been reaped, we can no
737 	 * longer get any information about it at all.
738 	 */
739 	if (unlikely(p->signal == NULL)) {
740 		read_unlock(&tasklist_lock);
741 		put_task_struct(p);
742 		timer->it.cpu.task = NULL;
743 		return -ESRCH;
744 	}
745 
746 	/*
747 	 * Disarm any old timer after extracting its expiry time.
748 	 */
749 	BUG_ON(!irqs_disabled());
750 
751 	ret = 0;
752 	spin_lock(&p->sighand->siglock);
753 	old_expires = timer->it.cpu.expires;
754 	if (unlikely(timer->it.cpu.firing)) {
755 		timer->it.cpu.firing = -1;
756 		ret = TIMER_RETRY;
757 	} else
758 		list_del_init(&timer->it.cpu.entry);
759 	spin_unlock(&p->sighand->siglock);
760 
761 	/*
762 	 * We need to sample the current value to convert the new
763 	 * value from to relative and absolute, and to convert the
764 	 * old value from absolute to relative.  To set a process
765 	 * timer, we need a sample to balance the thread expiry
766 	 * times (in arm_timer).  With an absolute time, we must
767 	 * check if it's already passed.  In short, we need a sample.
768 	 */
769 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
770 		cpu_clock_sample(timer->it_clock, p, &val);
771 	} else {
772 		cpu_timer_sample_group(timer->it_clock, p, &val);
773 	}
774 
775 	if (old) {
776 		if (old_expires.sched == 0) {
777 			old->it_value.tv_sec = 0;
778 			old->it_value.tv_nsec = 0;
779 		} else {
780 			/*
781 			 * Update the timer in case it has
782 			 * overrun already.  If it has,
783 			 * we'll report it as having overrun
784 			 * and with the next reloaded timer
785 			 * already ticking, though we are
786 			 * swallowing that pending
787 			 * notification here to install the
788 			 * new setting.
789 			 */
790 			bump_cpu_timer(timer, val);
791 			if (cpu_time_before(timer->it_clock, val,
792 					    timer->it.cpu.expires)) {
793 				old_expires = cpu_time_sub(
794 					timer->it_clock,
795 					timer->it.cpu.expires, val);
796 				sample_to_timespec(timer->it_clock,
797 						   old_expires,
798 						   &old->it_value);
799 			} else {
800 				old->it_value.tv_nsec = 1;
801 				old->it_value.tv_sec = 0;
802 			}
803 		}
804 	}
805 
806 	if (unlikely(ret)) {
807 		/*
808 		 * We are colliding with the timer actually firing.
809 		 * Punt after filling in the timer's old value, and
810 		 * disable this firing since we are already reporting
811 		 * it as an overrun (thanks to bump_cpu_timer above).
812 		 */
813 		read_unlock(&tasklist_lock);
814 		goto out;
815 	}
816 
817 	if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
818 		cpu_time_add(timer->it_clock, &new_expires, val);
819 	}
820 
821 	/*
822 	 * Install the new expiry time (or zero).
823 	 * For a timer with no notification action, we don't actually
824 	 * arm the timer (we'll just fake it for timer_gettime).
825 	 */
826 	timer->it.cpu.expires = new_expires;
827 	if (new_expires.sched != 0 &&
828 	    (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
829 	    cpu_time_before(timer->it_clock, val, new_expires)) {
830 		arm_timer(timer, val);
831 	}
832 
833 	read_unlock(&tasklist_lock);
834 
835 	/*
836 	 * Install the new reload setting, and
837 	 * set up the signal and overrun bookkeeping.
838 	 */
839 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
840 						&new->it_interval);
841 
842 	/*
843 	 * This acts as a modification timestamp for the timer,
844 	 * so any automatic reload attempt will punt on seeing
845 	 * that we have reset the timer manually.
846 	 */
847 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
848 		~REQUEUE_PENDING;
849 	timer->it_overrun_last = 0;
850 	timer->it_overrun = -1;
851 
852 	if (new_expires.sched != 0 &&
853 	    (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
854 	    !cpu_time_before(timer->it_clock, val, new_expires)) {
855 		/*
856 		 * The designated time already passed, so we notify
857 		 * immediately, even if the thread never runs to
858 		 * accumulate more time on this clock.
859 		 */
860 		cpu_timer_fire(timer);
861 	}
862 
863 	ret = 0;
864  out:
865 	if (old) {
866 		sample_to_timespec(timer->it_clock,
867 				   timer->it.cpu.incr, &old->it_interval);
868 	}
869 	return ret;
870 }
871 
posix_cpu_timer_get(struct k_itimer * timer,struct itimerspec * itp)872 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
873 {
874 	union cpu_time_count now;
875 	struct task_struct *p = timer->it.cpu.task;
876 	int clear_dead;
877 
878 	/*
879 	 * Easy part: convert the reload time.
880 	 */
881 	sample_to_timespec(timer->it_clock,
882 			   timer->it.cpu.incr, &itp->it_interval);
883 
884 	if (timer->it.cpu.expires.sched == 0) {	/* Timer not armed at all.  */
885 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
886 		return;
887 	}
888 
889 	if (unlikely(p == NULL)) {
890 		/*
891 		 * This task already died and the timer will never fire.
892 		 * In this case, expires is actually the dead value.
893 		 */
894 	dead:
895 		sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
896 				   &itp->it_value);
897 		return;
898 	}
899 
900 	/*
901 	 * Sample the clock to take the difference with the expiry time.
902 	 */
903 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
904 		cpu_clock_sample(timer->it_clock, p, &now);
905 		clear_dead = p->exit_state;
906 	} else {
907 		read_lock(&tasklist_lock);
908 		if (unlikely(p->signal == NULL)) {
909 			/*
910 			 * The process has been reaped.
911 			 * We can't even collect a sample any more.
912 			 * Call the timer disarmed, nothing else to do.
913 			 */
914 			put_task_struct(p);
915 			timer->it.cpu.task = NULL;
916 			timer->it.cpu.expires.sched = 0;
917 			read_unlock(&tasklist_lock);
918 			goto dead;
919 		} else {
920 			cpu_timer_sample_group(timer->it_clock, p, &now);
921 			clear_dead = (unlikely(p->exit_state) &&
922 				      thread_group_empty(p));
923 		}
924 		read_unlock(&tasklist_lock);
925 	}
926 
927 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
928 		if (timer->it.cpu.incr.sched == 0 &&
929 		    cpu_time_before(timer->it_clock,
930 				    timer->it.cpu.expires, now)) {
931 			/*
932 			 * Do-nothing timer expired and has no reload,
933 			 * so it's as if it was never set.
934 			 */
935 			timer->it.cpu.expires.sched = 0;
936 			itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
937 			return;
938 		}
939 		/*
940 		 * Account for any expirations and reloads that should
941 		 * have happened.
942 		 */
943 		bump_cpu_timer(timer, now);
944 	}
945 
946 	if (unlikely(clear_dead)) {
947 		/*
948 		 * We've noticed that the thread is dead, but
949 		 * not yet reaped.  Take this opportunity to
950 		 * drop our task ref.
951 		 */
952 		clear_dead_task(timer, now);
953 		goto dead;
954 	}
955 
956 	if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
957 		sample_to_timespec(timer->it_clock,
958 				   cpu_time_sub(timer->it_clock,
959 						timer->it.cpu.expires, now),
960 				   &itp->it_value);
961 	} else {
962 		/*
963 		 * The timer should have expired already, but the firing
964 		 * hasn't taken place yet.  Say it's just about to expire.
965 		 */
966 		itp->it_value.tv_nsec = 1;
967 		itp->it_value.tv_sec = 0;
968 	}
969 }
970 
971 /*
972  * Check for any per-thread CPU timers that have fired and move them off
973  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
974  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
975  */
check_thread_timers(struct task_struct * tsk,struct list_head * firing)976 static void check_thread_timers(struct task_struct *tsk,
977 				struct list_head *firing)
978 {
979 	int maxfire;
980 	struct list_head *timers = tsk->cpu_timers;
981 	struct signal_struct *const sig = tsk->signal;
982 
983 	maxfire = 20;
984 	tsk->cputime_expires.prof_exp = cputime_zero;
985 	while (!list_empty(timers)) {
986 		struct cpu_timer_list *t = list_first_entry(timers,
987 						      struct cpu_timer_list,
988 						      entry);
989 		if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
990 			tsk->cputime_expires.prof_exp = t->expires.cpu;
991 			break;
992 		}
993 		t->firing = 1;
994 		list_move_tail(&t->entry, firing);
995 	}
996 
997 	++timers;
998 	maxfire = 20;
999 	tsk->cputime_expires.virt_exp = cputime_zero;
1000 	while (!list_empty(timers)) {
1001 		struct cpu_timer_list *t = list_first_entry(timers,
1002 						      struct cpu_timer_list,
1003 						      entry);
1004 		if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
1005 			tsk->cputime_expires.virt_exp = t->expires.cpu;
1006 			break;
1007 		}
1008 		t->firing = 1;
1009 		list_move_tail(&t->entry, firing);
1010 	}
1011 
1012 	++timers;
1013 	maxfire = 20;
1014 	tsk->cputime_expires.sched_exp = 0;
1015 	while (!list_empty(timers)) {
1016 		struct cpu_timer_list *t = list_first_entry(timers,
1017 						      struct cpu_timer_list,
1018 						      entry);
1019 		if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1020 			tsk->cputime_expires.sched_exp = t->expires.sched;
1021 			break;
1022 		}
1023 		t->firing = 1;
1024 		list_move_tail(&t->entry, firing);
1025 	}
1026 
1027 	/*
1028 	 * Check for the special case thread timers.
1029 	 */
1030 	if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1031 		unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1032 		unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1033 
1034 		if (hard != RLIM_INFINITY &&
1035 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
1036 			/*
1037 			 * At the hard limit, we just die.
1038 			 * No need to calculate anything else now.
1039 			 */
1040 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1041 			return;
1042 		}
1043 		if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1044 			/*
1045 			 * At the soft limit, send a SIGXCPU every second.
1046 			 */
1047 			if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1048 			    < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1049 				sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1050 								USEC_PER_SEC;
1051 			}
1052 			printk(KERN_INFO
1053 				"RT Watchdog Timeout: %s[%d]\n",
1054 				tsk->comm, task_pid_nr(tsk));
1055 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1056 		}
1057 	}
1058 }
1059 
stop_process_timers(struct task_struct * tsk)1060 static void stop_process_timers(struct task_struct *tsk)
1061 {
1062 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1063 	unsigned long flags;
1064 
1065 	if (!cputimer->running)
1066 		return;
1067 
1068 	spin_lock_irqsave(&cputimer->lock, flags);
1069 	cputimer->running = 0;
1070 	spin_unlock_irqrestore(&cputimer->lock, flags);
1071 }
1072 
1073 /*
1074  * Check for any per-thread CPU timers that have fired and move them
1075  * off the tsk->*_timers list onto the firing list.  Per-thread timers
1076  * have already been taken off.
1077  */
check_process_timers(struct task_struct * tsk,struct list_head * firing)1078 static void check_process_timers(struct task_struct *tsk,
1079 				 struct list_head *firing)
1080 {
1081 	int maxfire;
1082 	struct signal_struct *const sig = tsk->signal;
1083 	cputime_t utime, ptime, virt_expires, prof_expires;
1084 	unsigned long long sum_sched_runtime, sched_expires;
1085 	struct list_head *timers = sig->cpu_timers;
1086 	struct task_cputime cputime;
1087 
1088 	/*
1089 	 * Don't sample the current process CPU clocks if there are no timers.
1090 	 */
1091 	if (list_empty(&timers[CPUCLOCK_PROF]) &&
1092 	    cputime_eq(sig->it_prof_expires, cputime_zero) &&
1093 	    sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1094 	    list_empty(&timers[CPUCLOCK_VIRT]) &&
1095 	    cputime_eq(sig->it_virt_expires, cputime_zero) &&
1096 	    list_empty(&timers[CPUCLOCK_SCHED])) {
1097 		stop_process_timers(tsk);
1098 		return;
1099 	}
1100 
1101 	/*
1102 	 * Collect the current process totals.
1103 	 */
1104 	thread_group_cputimer(tsk, &cputime);
1105 	utime = cputime.utime;
1106 	ptime = cputime_add(utime, cputime.stime);
1107 	sum_sched_runtime = cputime.sum_exec_runtime;
1108 	maxfire = 20;
1109 	prof_expires = cputime_zero;
1110 	while (!list_empty(timers)) {
1111 		struct cpu_timer_list *tl = list_first_entry(timers,
1112 						      struct cpu_timer_list,
1113 						      entry);
1114 		if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1115 			prof_expires = tl->expires.cpu;
1116 			break;
1117 		}
1118 		tl->firing = 1;
1119 		list_move_tail(&tl->entry, firing);
1120 	}
1121 
1122 	++timers;
1123 	maxfire = 20;
1124 	virt_expires = cputime_zero;
1125 	while (!list_empty(timers)) {
1126 		struct cpu_timer_list *tl = list_first_entry(timers,
1127 						      struct cpu_timer_list,
1128 						      entry);
1129 		if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1130 			virt_expires = tl->expires.cpu;
1131 			break;
1132 		}
1133 		tl->firing = 1;
1134 		list_move_tail(&tl->entry, firing);
1135 	}
1136 
1137 	++timers;
1138 	maxfire = 20;
1139 	sched_expires = 0;
1140 	while (!list_empty(timers)) {
1141 		struct cpu_timer_list *tl = list_first_entry(timers,
1142 						      struct cpu_timer_list,
1143 						      entry);
1144 		if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1145 			sched_expires = tl->expires.sched;
1146 			break;
1147 		}
1148 		tl->firing = 1;
1149 		list_move_tail(&tl->entry, firing);
1150 	}
1151 
1152 	/*
1153 	 * Check for the special case process timers.
1154 	 */
1155 	if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1156 		if (cputime_ge(ptime, sig->it_prof_expires)) {
1157 			/* ITIMER_PROF fires and reloads.  */
1158 			sig->it_prof_expires = sig->it_prof_incr;
1159 			if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1160 				sig->it_prof_expires = cputime_add(
1161 					sig->it_prof_expires, ptime);
1162 			}
1163 			__group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1164 		}
1165 		if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1166 		    (cputime_eq(prof_expires, cputime_zero) ||
1167 		     cputime_lt(sig->it_prof_expires, prof_expires))) {
1168 			prof_expires = sig->it_prof_expires;
1169 		}
1170 	}
1171 	if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1172 		if (cputime_ge(utime, sig->it_virt_expires)) {
1173 			/* ITIMER_VIRTUAL fires and reloads.  */
1174 			sig->it_virt_expires = sig->it_virt_incr;
1175 			if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1176 				sig->it_virt_expires = cputime_add(
1177 					sig->it_virt_expires, utime);
1178 			}
1179 			__group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1180 		}
1181 		if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1182 		    (cputime_eq(virt_expires, cputime_zero) ||
1183 		     cputime_lt(sig->it_virt_expires, virt_expires))) {
1184 			virt_expires = sig->it_virt_expires;
1185 		}
1186 	}
1187 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1188 		unsigned long psecs = cputime_to_secs(ptime);
1189 		cputime_t x;
1190 		if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1191 			/*
1192 			 * At the hard limit, we just die.
1193 			 * No need to calculate anything else now.
1194 			 */
1195 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1196 			return;
1197 		}
1198 		if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1199 			/*
1200 			 * At the soft limit, send a SIGXCPU every second.
1201 			 */
1202 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1203 			if (sig->rlim[RLIMIT_CPU].rlim_cur
1204 			    < sig->rlim[RLIMIT_CPU].rlim_max) {
1205 				sig->rlim[RLIMIT_CPU].rlim_cur++;
1206 			}
1207 		}
1208 		x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1209 		if (cputime_eq(prof_expires, cputime_zero) ||
1210 		    cputime_lt(x, prof_expires)) {
1211 			prof_expires = x;
1212 		}
1213 	}
1214 
1215 	if (!cputime_eq(prof_expires, cputime_zero) &&
1216 	    (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1217 	     cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1218 		sig->cputime_expires.prof_exp = prof_expires;
1219 	if (!cputime_eq(virt_expires, cputime_zero) &&
1220 	    (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1221 	     cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1222 		sig->cputime_expires.virt_exp = virt_expires;
1223 	if (sched_expires != 0 &&
1224 	    (sig->cputime_expires.sched_exp == 0 ||
1225 	     sig->cputime_expires.sched_exp > sched_expires))
1226 		sig->cputime_expires.sched_exp = sched_expires;
1227 }
1228 
1229 /*
1230  * This is called from the signal code (via do_schedule_next_timer)
1231  * when the last timer signal was delivered and we have to reload the timer.
1232  */
posix_cpu_timer_schedule(struct k_itimer * timer)1233 void posix_cpu_timer_schedule(struct k_itimer *timer)
1234 {
1235 	struct task_struct *p = timer->it.cpu.task;
1236 	union cpu_time_count now;
1237 
1238 	if (unlikely(p == NULL))
1239 		/*
1240 		 * The task was cleaned up already, no future firings.
1241 		 */
1242 		goto out;
1243 
1244 	/*
1245 	 * Fetch the current sample and update the timer's expiry time.
1246 	 */
1247 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1248 		cpu_clock_sample(timer->it_clock, p, &now);
1249 		bump_cpu_timer(timer, now);
1250 		if (unlikely(p->exit_state)) {
1251 			clear_dead_task(timer, now);
1252 			goto out;
1253 		}
1254 		read_lock(&tasklist_lock); /* arm_timer needs it.  */
1255 	} else {
1256 		read_lock(&tasklist_lock);
1257 		if (unlikely(p->signal == NULL)) {
1258 			/*
1259 			 * The process has been reaped.
1260 			 * We can't even collect a sample any more.
1261 			 */
1262 			put_task_struct(p);
1263 			timer->it.cpu.task = p = NULL;
1264 			timer->it.cpu.expires.sched = 0;
1265 			goto out_unlock;
1266 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1267 			/*
1268 			 * We've noticed that the thread is dead, but
1269 			 * not yet reaped.  Take this opportunity to
1270 			 * drop our task ref.
1271 			 */
1272 			clear_dead_task(timer, now);
1273 			goto out_unlock;
1274 		}
1275 		cpu_timer_sample_group(timer->it_clock, p, &now);
1276 		bump_cpu_timer(timer, now);
1277 		/* Leave the tasklist_lock locked for the call below.  */
1278 	}
1279 
1280 	/*
1281 	 * Now re-arm for the new expiry time.
1282 	 */
1283 	arm_timer(timer, now);
1284 
1285 out_unlock:
1286 	read_unlock(&tasklist_lock);
1287 
1288 out:
1289 	timer->it_overrun_last = timer->it_overrun;
1290 	timer->it_overrun = -1;
1291 	++timer->it_requeue_pending;
1292 }
1293 
1294 /**
1295  * task_cputime_zero - Check a task_cputime struct for all zero fields.
1296  *
1297  * @cputime:	The struct to compare.
1298  *
1299  * Checks @cputime to see if all fields are zero.  Returns true if all fields
1300  * are zero, false if any field is nonzero.
1301  */
task_cputime_zero(const struct task_cputime * cputime)1302 static inline int task_cputime_zero(const struct task_cputime *cputime)
1303 {
1304 	if (cputime_eq(cputime->utime, cputime_zero) &&
1305 	    cputime_eq(cputime->stime, cputime_zero) &&
1306 	    cputime->sum_exec_runtime == 0)
1307 		return 1;
1308 	return 0;
1309 }
1310 
1311 /**
1312  * task_cputime_expired - Compare two task_cputime entities.
1313  *
1314  * @sample:	The task_cputime structure to be checked for expiration.
1315  * @expires:	Expiration times, against which @sample will be checked.
1316  *
1317  * Checks @sample against @expires to see if any field of @sample has expired.
1318  * Returns true if any field of the former is greater than the corresponding
1319  * field of the latter if the latter field is set.  Otherwise returns false.
1320  */
task_cputime_expired(const struct task_cputime * sample,const struct task_cputime * expires)1321 static inline int task_cputime_expired(const struct task_cputime *sample,
1322 					const struct task_cputime *expires)
1323 {
1324 	if (!cputime_eq(expires->utime, cputime_zero) &&
1325 	    cputime_ge(sample->utime, expires->utime))
1326 		return 1;
1327 	if (!cputime_eq(expires->stime, cputime_zero) &&
1328 	    cputime_ge(cputime_add(sample->utime, sample->stime),
1329 		       expires->stime))
1330 		return 1;
1331 	if (expires->sum_exec_runtime != 0 &&
1332 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1333 		return 1;
1334 	return 0;
1335 }
1336 
1337 /**
1338  * fastpath_timer_check - POSIX CPU timers fast path.
1339  *
1340  * @tsk:	The task (thread) being checked.
1341  *
1342  * Check the task and thread group timers.  If both are zero (there are no
1343  * timers set) return false.  Otherwise snapshot the task and thread group
1344  * timers and compare them with the corresponding expiration times.  Return
1345  * true if a timer has expired, else return false.
1346  */
fastpath_timer_check(struct task_struct * tsk)1347 static inline int fastpath_timer_check(struct task_struct *tsk)
1348 {
1349 	struct signal_struct *sig;
1350 
1351 	/* tsk == current, ensure it is safe to use ->signal/sighand */
1352 	if (unlikely(tsk->exit_state))
1353 		return 0;
1354 
1355 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1356 		struct task_cputime task_sample = {
1357 			.utime = tsk->utime,
1358 			.stime = tsk->stime,
1359 			.sum_exec_runtime = tsk->se.sum_exec_runtime
1360 		};
1361 
1362 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1363 			return 1;
1364 	}
1365 
1366 	sig = tsk->signal;
1367 	if (!task_cputime_zero(&sig->cputime_expires)) {
1368 		struct task_cputime group_sample;
1369 
1370 		thread_group_cputimer(tsk, &group_sample);
1371 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1372 			return 1;
1373 	}
1374 	return 0;
1375 }
1376 
1377 /*
1378  * This is called from the timer interrupt handler.  The irq handler has
1379  * already updated our counts.  We need to check if any timers fire now.
1380  * Interrupts are disabled.
1381  */
run_posix_cpu_timers(struct task_struct * tsk)1382 void run_posix_cpu_timers(struct task_struct *tsk)
1383 {
1384 	LIST_HEAD(firing);
1385 	struct k_itimer *timer, *next;
1386 
1387 	BUG_ON(!irqs_disabled());
1388 
1389 	/*
1390 	 * The fast path checks that there are no expired thread or thread
1391 	 * group timers.  If that's so, just return.
1392 	 */
1393 	if (!fastpath_timer_check(tsk))
1394 		return;
1395 
1396 	spin_lock(&tsk->sighand->siglock);
1397 	/*
1398 	 * Here we take off tsk->signal->cpu_timers[N] and
1399 	 * tsk->cpu_timers[N] all the timers that are firing, and
1400 	 * put them on the firing list.
1401 	 */
1402 	check_thread_timers(tsk, &firing);
1403 	check_process_timers(tsk, &firing);
1404 
1405 	/*
1406 	 * We must release these locks before taking any timer's lock.
1407 	 * There is a potential race with timer deletion here, as the
1408 	 * siglock now protects our private firing list.  We have set
1409 	 * the firing flag in each timer, so that a deletion attempt
1410 	 * that gets the timer lock before we do will give it up and
1411 	 * spin until we've taken care of that timer below.
1412 	 */
1413 	spin_unlock(&tsk->sighand->siglock);
1414 
1415 	/*
1416 	 * Now that all the timers on our list have the firing flag,
1417 	 * noone will touch their list entries but us.  We'll take
1418 	 * each timer's lock before clearing its firing flag, so no
1419 	 * timer call will interfere.
1420 	 */
1421 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1422 		int firing;
1423 		spin_lock(&timer->it_lock);
1424 		list_del_init(&timer->it.cpu.entry);
1425 		firing = timer->it.cpu.firing;
1426 		timer->it.cpu.firing = 0;
1427 		/*
1428 		 * The firing flag is -1 if we collided with a reset
1429 		 * of the timer, which already reported this
1430 		 * almost-firing as an overrun.  So don't generate an event.
1431 		 */
1432 		if (likely(firing >= 0)) {
1433 			cpu_timer_fire(timer);
1434 		}
1435 		spin_unlock(&timer->it_lock);
1436 	}
1437 }
1438 
1439 /*
1440  * Set one of the process-wide special case CPU timers.
1441  * The tsk->sighand->siglock must be held by the caller.
1442  * The *newval argument is relative and we update it to be absolute, *oldval
1443  * is absolute and we update it to be relative.
1444  */
set_process_cpu_timer(struct task_struct * tsk,unsigned int clock_idx,cputime_t * newval,cputime_t * oldval)1445 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1446 			   cputime_t *newval, cputime_t *oldval)
1447 {
1448 	union cpu_time_count now;
1449 	struct list_head *head;
1450 
1451 	BUG_ON(clock_idx == CPUCLOCK_SCHED);
1452 	cpu_timer_sample_group(clock_idx, tsk, &now);
1453 
1454 	if (oldval) {
1455 		if (!cputime_eq(*oldval, cputime_zero)) {
1456 			if (cputime_le(*oldval, now.cpu)) {
1457 				/* Just about to fire. */
1458 				*oldval = jiffies_to_cputime(1);
1459 			} else {
1460 				*oldval = cputime_sub(*oldval, now.cpu);
1461 			}
1462 		}
1463 
1464 		if (cputime_eq(*newval, cputime_zero))
1465 			return;
1466 		*newval = cputime_add(*newval, now.cpu);
1467 
1468 		/*
1469 		 * If the RLIMIT_CPU timer will expire before the
1470 		 * ITIMER_PROF timer, we have nothing else to do.
1471 		 */
1472 		if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1473 		    < cputime_to_secs(*newval))
1474 			return;
1475 	}
1476 
1477 	/*
1478 	 * Check whether there are any process timers already set to fire
1479 	 * before this one.  If so, we don't have anything more to do.
1480 	 */
1481 	head = &tsk->signal->cpu_timers[clock_idx];
1482 	if (list_empty(head) ||
1483 	    cputime_ge(list_first_entry(head,
1484 				  struct cpu_timer_list, entry)->expires.cpu,
1485 		       *newval)) {
1486 		switch (clock_idx) {
1487 		case CPUCLOCK_PROF:
1488 			tsk->signal->cputime_expires.prof_exp = *newval;
1489 			break;
1490 		case CPUCLOCK_VIRT:
1491 			tsk->signal->cputime_expires.virt_exp = *newval;
1492 			break;
1493 		}
1494 	}
1495 }
1496 
do_cpu_nanosleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct itimerspec * it)1497 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1498 			    struct timespec *rqtp, struct itimerspec *it)
1499 {
1500 	struct k_itimer timer;
1501 	int error;
1502 
1503 	/*
1504 	 * Set up a temporary timer and then wait for it to go off.
1505 	 */
1506 	memset(&timer, 0, sizeof timer);
1507 	spin_lock_init(&timer.it_lock);
1508 	timer.it_clock = which_clock;
1509 	timer.it_overrun = -1;
1510 	error = posix_cpu_timer_create(&timer);
1511 	timer.it_process = current;
1512 	if (!error) {
1513 		static struct itimerspec zero_it;
1514 
1515 		memset(it, 0, sizeof *it);
1516 		it->it_value = *rqtp;
1517 
1518 		spin_lock_irq(&timer.it_lock);
1519 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1520 		if (error) {
1521 			spin_unlock_irq(&timer.it_lock);
1522 			return error;
1523 		}
1524 
1525 		while (!signal_pending(current)) {
1526 			if (timer.it.cpu.expires.sched == 0) {
1527 				/*
1528 				 * Our timer fired and was reset.
1529 				 */
1530 				spin_unlock_irq(&timer.it_lock);
1531 				return 0;
1532 			}
1533 
1534 			/*
1535 			 * Block until cpu_timer_fire (or a signal) wakes us.
1536 			 */
1537 			__set_current_state(TASK_INTERRUPTIBLE);
1538 			spin_unlock_irq(&timer.it_lock);
1539 			schedule();
1540 			spin_lock_irq(&timer.it_lock);
1541 		}
1542 
1543 		/*
1544 		 * We were interrupted by a signal.
1545 		 */
1546 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1547 		posix_cpu_timer_set(&timer, 0, &zero_it, it);
1548 		spin_unlock_irq(&timer.it_lock);
1549 
1550 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1551 			/*
1552 			 * It actually did fire already.
1553 			 */
1554 			return 0;
1555 		}
1556 
1557 		error = -ERESTART_RESTARTBLOCK;
1558 	}
1559 
1560 	return error;
1561 }
1562 
posix_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1563 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1564 		     struct timespec *rqtp, struct timespec __user *rmtp)
1565 {
1566 	struct restart_block *restart_block =
1567 	    &current_thread_info()->restart_block;
1568 	struct itimerspec it;
1569 	int error;
1570 
1571 	/*
1572 	 * Diagnose required errors first.
1573 	 */
1574 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1575 	    (CPUCLOCK_PID(which_clock) == 0 ||
1576 	     CPUCLOCK_PID(which_clock) == current->pid))
1577 		return -EINVAL;
1578 
1579 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1580 
1581 	if (error == -ERESTART_RESTARTBLOCK) {
1582 
1583 	       	if (flags & TIMER_ABSTIME)
1584 			return -ERESTARTNOHAND;
1585 		/*
1586 	 	 * Report back to the user the time still remaining.
1587 	 	 */
1588 		if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1589 			return -EFAULT;
1590 
1591 		restart_block->fn = posix_cpu_nsleep_restart;
1592 		restart_block->arg0 = which_clock;
1593 		restart_block->arg1 = (unsigned long) rmtp;
1594 		restart_block->arg2 = rqtp->tv_sec;
1595 		restart_block->arg3 = rqtp->tv_nsec;
1596 	}
1597 	return error;
1598 }
1599 
posix_cpu_nsleep_restart(struct restart_block * restart_block)1600 long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1601 {
1602 	clockid_t which_clock = restart_block->arg0;
1603 	struct timespec __user *rmtp;
1604 	struct timespec t;
1605 	struct itimerspec it;
1606 	int error;
1607 
1608 	rmtp = (struct timespec __user *) restart_block->arg1;
1609 	t.tv_sec = restart_block->arg2;
1610 	t.tv_nsec = restart_block->arg3;
1611 
1612 	restart_block->fn = do_no_restart_syscall;
1613 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1614 
1615 	if (error == -ERESTART_RESTARTBLOCK) {
1616 		/*
1617 	 	 * Report back to the user the time still remaining.
1618 	 	 */
1619 		if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1620 			return -EFAULT;
1621 
1622 		restart_block->fn = posix_cpu_nsleep_restart;
1623 		restart_block->arg0 = which_clock;
1624 		restart_block->arg1 = (unsigned long) rmtp;
1625 		restart_block->arg2 = t.tv_sec;
1626 		restart_block->arg3 = t.tv_nsec;
1627 	}
1628 	return error;
1629 
1630 }
1631 
1632 
1633 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1634 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1635 
process_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)1636 static int process_cpu_clock_getres(const clockid_t which_clock,
1637 				    struct timespec *tp)
1638 {
1639 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1640 }
process_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)1641 static int process_cpu_clock_get(const clockid_t which_clock,
1642 				 struct timespec *tp)
1643 {
1644 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1645 }
process_cpu_timer_create(struct k_itimer * timer)1646 static int process_cpu_timer_create(struct k_itimer *timer)
1647 {
1648 	timer->it_clock = PROCESS_CLOCK;
1649 	return posix_cpu_timer_create(timer);
1650 }
process_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1651 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1652 			      struct timespec *rqtp,
1653 			      struct timespec __user *rmtp)
1654 {
1655 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1656 }
process_cpu_nsleep_restart(struct restart_block * restart_block)1657 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1658 {
1659 	return -EINVAL;
1660 }
thread_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)1661 static int thread_cpu_clock_getres(const clockid_t which_clock,
1662 				   struct timespec *tp)
1663 {
1664 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1665 }
thread_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)1666 static int thread_cpu_clock_get(const clockid_t which_clock,
1667 				struct timespec *tp)
1668 {
1669 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1670 }
thread_cpu_timer_create(struct k_itimer * timer)1671 static int thread_cpu_timer_create(struct k_itimer *timer)
1672 {
1673 	timer->it_clock = THREAD_CLOCK;
1674 	return posix_cpu_timer_create(timer);
1675 }
thread_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1676 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1677 			      struct timespec *rqtp, struct timespec __user *rmtp)
1678 {
1679 	return -EINVAL;
1680 }
thread_cpu_nsleep_restart(struct restart_block * restart_block)1681 static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1682 {
1683 	return -EINVAL;
1684 }
1685 
init_posix_cpu_timers(void)1686 static __init int init_posix_cpu_timers(void)
1687 {
1688 	struct k_clock process = {
1689 		.clock_getres = process_cpu_clock_getres,
1690 		.clock_get = process_cpu_clock_get,
1691 		.clock_set = do_posix_clock_nosettime,
1692 		.timer_create = process_cpu_timer_create,
1693 		.nsleep = process_cpu_nsleep,
1694 		.nsleep_restart = process_cpu_nsleep_restart,
1695 	};
1696 	struct k_clock thread = {
1697 		.clock_getres = thread_cpu_clock_getres,
1698 		.clock_get = thread_cpu_clock_get,
1699 		.clock_set = do_posix_clock_nosettime,
1700 		.timer_create = thread_cpu_timer_create,
1701 		.nsleep = thread_cpu_nsleep,
1702 		.nsleep_restart = thread_cpu_nsleep_restart,
1703 	};
1704 
1705 	register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1706 	register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1707 
1708 	return 0;
1709 }
1710 __initcall(init_posix_cpu_timers);
1711