1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <net/arp.h>
40 #include "common.h"
41 #include "regs.h"
42 #include "sge_defs.h"
43 #include "t3_cpl.h"
44 #include "firmware_exports.h"
45
46 #define USE_GTS 0
47
48 #define SGE_RX_SM_BUF_SIZE 1536
49
50 #define SGE_RX_COPY_THRES 256
51 #define SGE_RX_PULL_LEN 128
52
53 /*
54 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
55 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
56 * directly.
57 */
58 #define FL0_PG_CHUNK_SIZE 2048
59 #define FL0_PG_ORDER 0
60 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
61 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
62
63 #define SGE_RX_DROP_THRES 16
64
65 /*
66 * Period of the Tx buffer reclaim timer. This timer does not need to run
67 * frequently as Tx buffers are usually reclaimed by new Tx packets.
68 */
69 #define TX_RECLAIM_PERIOD (HZ / 4)
70
71 /* WR size in bytes */
72 #define WR_LEN (WR_FLITS * 8)
73
74 /*
75 * Types of Tx queues in each queue set. Order here matters, do not change.
76 */
77 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
78
79 /* Values for sge_txq.flags */
80 enum {
81 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
82 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
83 };
84
85 struct tx_desc {
86 __be64 flit[TX_DESC_FLITS];
87 };
88
89 struct rx_desc {
90 __be32 addr_lo;
91 __be32 len_gen;
92 __be32 gen2;
93 __be32 addr_hi;
94 };
95
96 struct tx_sw_desc { /* SW state per Tx descriptor */
97 struct sk_buff *skb;
98 u8 eop; /* set if last descriptor for packet */
99 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
100 u8 fragidx; /* first page fragment associated with descriptor */
101 s8 sflit; /* start flit of first SGL entry in descriptor */
102 };
103
104 struct rx_sw_desc { /* SW state per Rx descriptor */
105 union {
106 struct sk_buff *skb;
107 struct fl_pg_chunk pg_chunk;
108 };
109 DECLARE_PCI_UNMAP_ADDR(dma_addr);
110 };
111
112 struct rsp_desc { /* response queue descriptor */
113 struct rss_header rss_hdr;
114 __be32 flags;
115 __be32 len_cq;
116 u8 imm_data[47];
117 u8 intr_gen;
118 };
119
120 /*
121 * Holds unmapping information for Tx packets that need deferred unmapping.
122 * This structure lives at skb->head and must be allocated by callers.
123 */
124 struct deferred_unmap_info {
125 struct pci_dev *pdev;
126 dma_addr_t addr[MAX_SKB_FRAGS + 1];
127 };
128
129 /*
130 * Maps a number of flits to the number of Tx descriptors that can hold them.
131 * The formula is
132 *
133 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
134 *
135 * HW allows up to 4 descriptors to be combined into a WR.
136 */
137 static u8 flit_desc_map[] = {
138 0,
139 #if SGE_NUM_GENBITS == 1
140 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
141 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
142 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
143 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
144 #elif SGE_NUM_GENBITS == 2
145 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
146 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
147 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
148 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
149 #else
150 # error "SGE_NUM_GENBITS must be 1 or 2"
151 #endif
152 };
153
fl_to_qset(const struct sge_fl * q,int qidx)154 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
155 {
156 return container_of(q, struct sge_qset, fl[qidx]);
157 }
158
rspq_to_qset(const struct sge_rspq * q)159 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
160 {
161 return container_of(q, struct sge_qset, rspq);
162 }
163
txq_to_qset(const struct sge_txq * q,int qidx)164 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
165 {
166 return container_of(q, struct sge_qset, txq[qidx]);
167 }
168
169 /**
170 * refill_rspq - replenish an SGE response queue
171 * @adapter: the adapter
172 * @q: the response queue to replenish
173 * @credits: how many new responses to make available
174 *
175 * Replenishes a response queue by making the supplied number of responses
176 * available to HW.
177 */
refill_rspq(struct adapter * adapter,const struct sge_rspq * q,unsigned int credits)178 static inline void refill_rspq(struct adapter *adapter,
179 const struct sge_rspq *q, unsigned int credits)
180 {
181 rmb();
182 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
183 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
184 }
185
186 /**
187 * need_skb_unmap - does the platform need unmapping of sk_buffs?
188 *
189 * Returns true if the platfrom needs sk_buff unmapping. The compiler
190 * optimizes away unecessary code if this returns true.
191 */
need_skb_unmap(void)192 static inline int need_skb_unmap(void)
193 {
194 /*
195 * This structure is used to tell if the platfrom needs buffer
196 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
197 */
198 struct dummy {
199 DECLARE_PCI_UNMAP_ADDR(addr);
200 };
201
202 return sizeof(struct dummy) != 0;
203 }
204
205 /**
206 * unmap_skb - unmap a packet main body and its page fragments
207 * @skb: the packet
208 * @q: the Tx queue containing Tx descriptors for the packet
209 * @cidx: index of Tx descriptor
210 * @pdev: the PCI device
211 *
212 * Unmap the main body of an sk_buff and its page fragments, if any.
213 * Because of the fairly complicated structure of our SGLs and the desire
214 * to conserve space for metadata, the information necessary to unmap an
215 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
216 * descriptors (the physical addresses of the various data buffers), and
217 * the SW descriptor state (assorted indices). The send functions
218 * initialize the indices for the first packet descriptor so we can unmap
219 * the buffers held in the first Tx descriptor here, and we have enough
220 * information at this point to set the state for the next Tx descriptor.
221 *
222 * Note that it is possible to clean up the first descriptor of a packet
223 * before the send routines have written the next descriptors, but this
224 * race does not cause any problem. We just end up writing the unmapping
225 * info for the descriptor first.
226 */
unmap_skb(struct sk_buff * skb,struct sge_txq * q,unsigned int cidx,struct pci_dev * pdev)227 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
228 unsigned int cidx, struct pci_dev *pdev)
229 {
230 const struct sg_ent *sgp;
231 struct tx_sw_desc *d = &q->sdesc[cidx];
232 int nfrags, frag_idx, curflit, j = d->addr_idx;
233
234 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
235 frag_idx = d->fragidx;
236
237 if (frag_idx == 0 && skb_headlen(skb)) {
238 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
239 skb_headlen(skb), PCI_DMA_TODEVICE);
240 j = 1;
241 }
242
243 curflit = d->sflit + 1 + j;
244 nfrags = skb_shinfo(skb)->nr_frags;
245
246 while (frag_idx < nfrags && curflit < WR_FLITS) {
247 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
248 skb_shinfo(skb)->frags[frag_idx].size,
249 PCI_DMA_TODEVICE);
250 j ^= 1;
251 if (j == 0) {
252 sgp++;
253 curflit++;
254 }
255 curflit++;
256 frag_idx++;
257 }
258
259 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
260 d = cidx + 1 == q->size ? q->sdesc : d + 1;
261 d->fragidx = frag_idx;
262 d->addr_idx = j;
263 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
264 }
265 }
266
267 /**
268 * free_tx_desc - reclaims Tx descriptors and their buffers
269 * @adapter: the adapter
270 * @q: the Tx queue to reclaim descriptors from
271 * @n: the number of descriptors to reclaim
272 *
273 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
274 * Tx buffers. Called with the Tx queue lock held.
275 */
free_tx_desc(struct adapter * adapter,struct sge_txq * q,unsigned int n)276 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
277 unsigned int n)
278 {
279 struct tx_sw_desc *d;
280 struct pci_dev *pdev = adapter->pdev;
281 unsigned int cidx = q->cidx;
282
283 const int need_unmap = need_skb_unmap() &&
284 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
285
286 d = &q->sdesc[cidx];
287 while (n--) {
288 if (d->skb) { /* an SGL is present */
289 if (need_unmap)
290 unmap_skb(d->skb, q, cidx, pdev);
291 if (d->eop)
292 kfree_skb(d->skb);
293 }
294 ++d;
295 if (++cidx == q->size) {
296 cidx = 0;
297 d = q->sdesc;
298 }
299 }
300 q->cidx = cidx;
301 }
302
303 /**
304 * reclaim_completed_tx - reclaims completed Tx descriptors
305 * @adapter: the adapter
306 * @q: the Tx queue to reclaim completed descriptors from
307 *
308 * Reclaims Tx descriptors that the SGE has indicated it has processed,
309 * and frees the associated buffers if possible. Called with the Tx
310 * queue's lock held.
311 */
reclaim_completed_tx(struct adapter * adapter,struct sge_txq * q)312 static inline void reclaim_completed_tx(struct adapter *adapter,
313 struct sge_txq *q)
314 {
315 unsigned int reclaim = q->processed - q->cleaned;
316
317 if (reclaim) {
318 free_tx_desc(adapter, q, reclaim);
319 q->cleaned += reclaim;
320 q->in_use -= reclaim;
321 }
322 }
323
324 /**
325 * should_restart_tx - are there enough resources to restart a Tx queue?
326 * @q: the Tx queue
327 *
328 * Checks if there are enough descriptors to restart a suspended Tx queue.
329 */
should_restart_tx(const struct sge_txq * q)330 static inline int should_restart_tx(const struct sge_txq *q)
331 {
332 unsigned int r = q->processed - q->cleaned;
333
334 return q->in_use - r < (q->size >> 1);
335 }
336
337 /**
338 * free_rx_bufs - free the Rx buffers on an SGE free list
339 * @pdev: the PCI device associated with the adapter
340 * @rxq: the SGE free list to clean up
341 *
342 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
343 * this queue should be stopped before calling this function.
344 */
free_rx_bufs(struct pci_dev * pdev,struct sge_fl * q)345 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
346 {
347 unsigned int cidx = q->cidx;
348
349 while (q->credits--) {
350 struct rx_sw_desc *d = &q->sdesc[cidx];
351
352 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
353 q->buf_size, PCI_DMA_FROMDEVICE);
354 if (q->use_pages) {
355 if (d->pg_chunk.page)
356 put_page(d->pg_chunk.page);
357 d->pg_chunk.page = NULL;
358 } else {
359 kfree_skb(d->skb);
360 d->skb = NULL;
361 }
362 if (++cidx == q->size)
363 cidx = 0;
364 }
365
366 if (q->pg_chunk.page) {
367 __free_pages(q->pg_chunk.page, q->order);
368 q->pg_chunk.page = NULL;
369 }
370 }
371
372 /**
373 * add_one_rx_buf - add a packet buffer to a free-buffer list
374 * @va: buffer start VA
375 * @len: the buffer length
376 * @d: the HW Rx descriptor to write
377 * @sd: the SW Rx descriptor to write
378 * @gen: the generation bit value
379 * @pdev: the PCI device associated with the adapter
380 *
381 * Add a buffer of the given length to the supplied HW and SW Rx
382 * descriptors.
383 */
add_one_rx_buf(void * va,unsigned int len,struct rx_desc * d,struct rx_sw_desc * sd,unsigned int gen,struct pci_dev * pdev)384 static inline int add_one_rx_buf(void *va, unsigned int len,
385 struct rx_desc *d, struct rx_sw_desc *sd,
386 unsigned int gen, struct pci_dev *pdev)
387 {
388 dma_addr_t mapping;
389
390 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
391 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
392 return -ENOMEM;
393
394 pci_unmap_addr_set(sd, dma_addr, mapping);
395
396 d->addr_lo = cpu_to_be32(mapping);
397 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
398 wmb();
399 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
400 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
401 return 0;
402 }
403
alloc_pg_chunk(struct sge_fl * q,struct rx_sw_desc * sd,gfp_t gfp,unsigned int order)404 static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp,
405 unsigned int order)
406 {
407 if (!q->pg_chunk.page) {
408 q->pg_chunk.page = alloc_pages(gfp, order);
409 if (unlikely(!q->pg_chunk.page))
410 return -ENOMEM;
411 q->pg_chunk.va = page_address(q->pg_chunk.page);
412 q->pg_chunk.offset = 0;
413 }
414 sd->pg_chunk = q->pg_chunk;
415
416 q->pg_chunk.offset += q->buf_size;
417 if (q->pg_chunk.offset == (PAGE_SIZE << order))
418 q->pg_chunk.page = NULL;
419 else {
420 q->pg_chunk.va += q->buf_size;
421 get_page(q->pg_chunk.page);
422 }
423 return 0;
424 }
425
426 /**
427 * refill_fl - refill an SGE free-buffer list
428 * @adapter: the adapter
429 * @q: the free-list to refill
430 * @n: the number of new buffers to allocate
431 * @gfp: the gfp flags for allocating new buffers
432 *
433 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
434 * allocated with the supplied gfp flags. The caller must assure that
435 * @n does not exceed the queue's capacity.
436 */
refill_fl(struct adapter * adap,struct sge_fl * q,int n,gfp_t gfp)437 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
438 {
439 void *buf_start;
440 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
441 struct rx_desc *d = &q->desc[q->pidx];
442 unsigned int count = 0;
443
444 while (n--) {
445 int err;
446
447 if (q->use_pages) {
448 if (unlikely(alloc_pg_chunk(q, sd, gfp, q->order))) {
449 nomem: q->alloc_failed++;
450 break;
451 }
452 buf_start = sd->pg_chunk.va;
453 } else {
454 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
455
456 if (!skb)
457 goto nomem;
458
459 sd->skb = skb;
460 buf_start = skb->data;
461 }
462
463 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
464 adap->pdev);
465 if (unlikely(err)) {
466 if (!q->use_pages) {
467 kfree_skb(sd->skb);
468 sd->skb = NULL;
469 }
470 break;
471 }
472
473 d++;
474 sd++;
475 if (++q->pidx == q->size) {
476 q->pidx = 0;
477 q->gen ^= 1;
478 sd = q->sdesc;
479 d = q->desc;
480 }
481 q->credits++;
482 count++;
483 }
484 wmb();
485 if (likely(count))
486 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
487
488 return count;
489 }
490
__refill_fl(struct adapter * adap,struct sge_fl * fl)491 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
492 {
493 refill_fl(adap, fl, min(16U, fl->size - fl->credits),
494 GFP_ATOMIC | __GFP_COMP);
495 }
496
497 /**
498 * recycle_rx_buf - recycle a receive buffer
499 * @adapter: the adapter
500 * @q: the SGE free list
501 * @idx: index of buffer to recycle
502 *
503 * Recycles the specified buffer on the given free list by adding it at
504 * the next available slot on the list.
505 */
recycle_rx_buf(struct adapter * adap,struct sge_fl * q,unsigned int idx)506 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
507 unsigned int idx)
508 {
509 struct rx_desc *from = &q->desc[idx];
510 struct rx_desc *to = &q->desc[q->pidx];
511
512 q->sdesc[q->pidx] = q->sdesc[idx];
513 to->addr_lo = from->addr_lo; /* already big endian */
514 to->addr_hi = from->addr_hi; /* likewise */
515 wmb();
516 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
517 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
518 q->credits++;
519
520 if (++q->pidx == q->size) {
521 q->pidx = 0;
522 q->gen ^= 1;
523 }
524 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
525 }
526
527 /**
528 * alloc_ring - allocate resources for an SGE descriptor ring
529 * @pdev: the PCI device
530 * @nelem: the number of descriptors
531 * @elem_size: the size of each descriptor
532 * @sw_size: the size of the SW state associated with each ring element
533 * @phys: the physical address of the allocated ring
534 * @metadata: address of the array holding the SW state for the ring
535 *
536 * Allocates resources for an SGE descriptor ring, such as Tx queues,
537 * free buffer lists, or response queues. Each SGE ring requires
538 * space for its HW descriptors plus, optionally, space for the SW state
539 * associated with each HW entry (the metadata). The function returns
540 * three values: the virtual address for the HW ring (the return value
541 * of the function), the physical address of the HW ring, and the address
542 * of the SW ring.
543 */
alloc_ring(struct pci_dev * pdev,size_t nelem,size_t elem_size,size_t sw_size,dma_addr_t * phys,void * metadata)544 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
545 size_t sw_size, dma_addr_t * phys, void *metadata)
546 {
547 size_t len = nelem * elem_size;
548 void *s = NULL;
549 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
550
551 if (!p)
552 return NULL;
553 if (sw_size && metadata) {
554 s = kcalloc(nelem, sw_size, GFP_KERNEL);
555
556 if (!s) {
557 dma_free_coherent(&pdev->dev, len, p, *phys);
558 return NULL;
559 }
560 *(void **)metadata = s;
561 }
562 memset(p, 0, len);
563 return p;
564 }
565
566 /**
567 * t3_reset_qset - reset a sge qset
568 * @q: the queue set
569 *
570 * Reset the qset structure.
571 * the NAPI structure is preserved in the event of
572 * the qset's reincarnation, for example during EEH recovery.
573 */
t3_reset_qset(struct sge_qset * q)574 static void t3_reset_qset(struct sge_qset *q)
575 {
576 if (q->adap &&
577 !(q->adap->flags & NAPI_INIT)) {
578 memset(q, 0, sizeof(*q));
579 return;
580 }
581
582 q->adap = NULL;
583 memset(&q->rspq, 0, sizeof(q->rspq));
584 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
585 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
586 q->txq_stopped = 0;
587 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
588 kfree(q->lro_frag_tbl);
589 q->lro_nfrags = q->lro_frag_len = 0;
590 }
591
592
593 /**
594 * free_qset - free the resources of an SGE queue set
595 * @adapter: the adapter owning the queue set
596 * @q: the queue set
597 *
598 * Release the HW and SW resources associated with an SGE queue set, such
599 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
600 * queue set must be quiesced prior to calling this.
601 */
t3_free_qset(struct adapter * adapter,struct sge_qset * q)602 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
603 {
604 int i;
605 struct pci_dev *pdev = adapter->pdev;
606
607 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
608 if (q->fl[i].desc) {
609 spin_lock_irq(&adapter->sge.reg_lock);
610 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
611 spin_unlock_irq(&adapter->sge.reg_lock);
612 free_rx_bufs(pdev, &q->fl[i]);
613 kfree(q->fl[i].sdesc);
614 dma_free_coherent(&pdev->dev,
615 q->fl[i].size *
616 sizeof(struct rx_desc), q->fl[i].desc,
617 q->fl[i].phys_addr);
618 }
619
620 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
621 if (q->txq[i].desc) {
622 spin_lock_irq(&adapter->sge.reg_lock);
623 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
624 spin_unlock_irq(&adapter->sge.reg_lock);
625 if (q->txq[i].sdesc) {
626 free_tx_desc(adapter, &q->txq[i],
627 q->txq[i].in_use);
628 kfree(q->txq[i].sdesc);
629 }
630 dma_free_coherent(&pdev->dev,
631 q->txq[i].size *
632 sizeof(struct tx_desc),
633 q->txq[i].desc, q->txq[i].phys_addr);
634 __skb_queue_purge(&q->txq[i].sendq);
635 }
636
637 if (q->rspq.desc) {
638 spin_lock_irq(&adapter->sge.reg_lock);
639 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
640 spin_unlock_irq(&adapter->sge.reg_lock);
641 dma_free_coherent(&pdev->dev,
642 q->rspq.size * sizeof(struct rsp_desc),
643 q->rspq.desc, q->rspq.phys_addr);
644 }
645
646 t3_reset_qset(q);
647 }
648
649 /**
650 * init_qset_cntxt - initialize an SGE queue set context info
651 * @qs: the queue set
652 * @id: the queue set id
653 *
654 * Initializes the TIDs and context ids for the queues of a queue set.
655 */
init_qset_cntxt(struct sge_qset * qs,unsigned int id)656 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
657 {
658 qs->rspq.cntxt_id = id;
659 qs->fl[0].cntxt_id = 2 * id;
660 qs->fl[1].cntxt_id = 2 * id + 1;
661 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
662 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
663 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
664 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
665 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
666 }
667
668 /**
669 * sgl_len - calculates the size of an SGL of the given capacity
670 * @n: the number of SGL entries
671 *
672 * Calculates the number of flits needed for a scatter/gather list that
673 * can hold the given number of entries.
674 */
sgl_len(unsigned int n)675 static inline unsigned int sgl_len(unsigned int n)
676 {
677 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
678 return (3 * n) / 2 + (n & 1);
679 }
680
681 /**
682 * flits_to_desc - returns the num of Tx descriptors for the given flits
683 * @n: the number of flits
684 *
685 * Calculates the number of Tx descriptors needed for the supplied number
686 * of flits.
687 */
flits_to_desc(unsigned int n)688 static inline unsigned int flits_to_desc(unsigned int n)
689 {
690 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
691 return flit_desc_map[n];
692 }
693
694 /**
695 * get_packet - return the next ingress packet buffer from a free list
696 * @adap: the adapter that received the packet
697 * @fl: the SGE free list holding the packet
698 * @len: the packet length including any SGE padding
699 * @drop_thres: # of remaining buffers before we start dropping packets
700 *
701 * Get the next packet from a free list and complete setup of the
702 * sk_buff. If the packet is small we make a copy and recycle the
703 * original buffer, otherwise we use the original buffer itself. If a
704 * positive drop threshold is supplied packets are dropped and their
705 * buffers recycled if (a) the number of remaining buffers is under the
706 * threshold and the packet is too big to copy, or (b) the packet should
707 * be copied but there is no memory for the copy.
708 */
get_packet(struct adapter * adap,struct sge_fl * fl,unsigned int len,unsigned int drop_thres)709 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
710 unsigned int len, unsigned int drop_thres)
711 {
712 struct sk_buff *skb = NULL;
713 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
714
715 prefetch(sd->skb->data);
716 fl->credits--;
717
718 if (len <= SGE_RX_COPY_THRES) {
719 skb = alloc_skb(len, GFP_ATOMIC);
720 if (likely(skb != NULL)) {
721 __skb_put(skb, len);
722 pci_dma_sync_single_for_cpu(adap->pdev,
723 pci_unmap_addr(sd, dma_addr), len,
724 PCI_DMA_FROMDEVICE);
725 memcpy(skb->data, sd->skb->data, len);
726 pci_dma_sync_single_for_device(adap->pdev,
727 pci_unmap_addr(sd, dma_addr), len,
728 PCI_DMA_FROMDEVICE);
729 } else if (!drop_thres)
730 goto use_orig_buf;
731 recycle:
732 recycle_rx_buf(adap, fl, fl->cidx);
733 return skb;
734 }
735
736 if (unlikely(fl->credits < drop_thres))
737 goto recycle;
738
739 use_orig_buf:
740 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
741 fl->buf_size, PCI_DMA_FROMDEVICE);
742 skb = sd->skb;
743 skb_put(skb, len);
744 __refill_fl(adap, fl);
745 return skb;
746 }
747
748 /**
749 * get_packet_pg - return the next ingress packet buffer from a free list
750 * @adap: the adapter that received the packet
751 * @fl: the SGE free list holding the packet
752 * @len: the packet length including any SGE padding
753 * @drop_thres: # of remaining buffers before we start dropping packets
754 *
755 * Get the next packet from a free list populated with page chunks.
756 * If the packet is small we make a copy and recycle the original buffer,
757 * otherwise we attach the original buffer as a page fragment to a fresh
758 * sk_buff. If a positive drop threshold is supplied packets are dropped
759 * and their buffers recycled if (a) the number of remaining buffers is
760 * under the threshold and the packet is too big to copy, or (b) there's
761 * no system memory.
762 *
763 * Note: this function is similar to @get_packet but deals with Rx buffers
764 * that are page chunks rather than sk_buffs.
765 */
get_packet_pg(struct adapter * adap,struct sge_fl * fl,struct sge_rspq * q,unsigned int len,unsigned int drop_thres)766 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
767 struct sge_rspq *q, unsigned int len,
768 unsigned int drop_thres)
769 {
770 struct sk_buff *newskb, *skb;
771 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
772
773 newskb = skb = q->pg_skb;
774
775 if (!skb && (len <= SGE_RX_COPY_THRES)) {
776 newskb = alloc_skb(len, GFP_ATOMIC);
777 if (likely(newskb != NULL)) {
778 __skb_put(newskb, len);
779 pci_dma_sync_single_for_cpu(adap->pdev,
780 pci_unmap_addr(sd, dma_addr), len,
781 PCI_DMA_FROMDEVICE);
782 memcpy(newskb->data, sd->pg_chunk.va, len);
783 pci_dma_sync_single_for_device(adap->pdev,
784 pci_unmap_addr(sd, dma_addr), len,
785 PCI_DMA_FROMDEVICE);
786 } else if (!drop_thres)
787 return NULL;
788 recycle:
789 fl->credits--;
790 recycle_rx_buf(adap, fl, fl->cidx);
791 q->rx_recycle_buf++;
792 return newskb;
793 }
794
795 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
796 goto recycle;
797
798 if (!skb)
799 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
800 if (unlikely(!newskb)) {
801 if (!drop_thres)
802 return NULL;
803 goto recycle;
804 }
805
806 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
807 fl->buf_size, PCI_DMA_FROMDEVICE);
808 if (!skb) {
809 __skb_put(newskb, SGE_RX_PULL_LEN);
810 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
811 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
812 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
813 len - SGE_RX_PULL_LEN);
814 newskb->len = len;
815 newskb->data_len = len - SGE_RX_PULL_LEN;
816 } else {
817 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
818 sd->pg_chunk.page,
819 sd->pg_chunk.offset, len);
820 newskb->len += len;
821 newskb->data_len += len;
822 }
823 newskb->truesize += newskb->data_len;
824
825 fl->credits--;
826 /*
827 * We do not refill FLs here, we let the caller do it to overlap a
828 * prefetch.
829 */
830 return newskb;
831 }
832
833 /**
834 * get_imm_packet - return the next ingress packet buffer from a response
835 * @resp: the response descriptor containing the packet data
836 *
837 * Return a packet containing the immediate data of the given response.
838 */
get_imm_packet(const struct rsp_desc * resp)839 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
840 {
841 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
842
843 if (skb) {
844 __skb_put(skb, IMMED_PKT_SIZE);
845 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
846 }
847 return skb;
848 }
849
850 /**
851 * calc_tx_descs - calculate the number of Tx descriptors for a packet
852 * @skb: the packet
853 *
854 * Returns the number of Tx descriptors needed for the given Ethernet
855 * packet. Ethernet packets require addition of WR and CPL headers.
856 */
calc_tx_descs(const struct sk_buff * skb)857 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
858 {
859 unsigned int flits;
860
861 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
862 return 1;
863
864 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
865 if (skb_shinfo(skb)->gso_size)
866 flits++;
867 return flits_to_desc(flits);
868 }
869
870 /**
871 * make_sgl - populate a scatter/gather list for a packet
872 * @skb: the packet
873 * @sgp: the SGL to populate
874 * @start: start address of skb main body data to include in the SGL
875 * @len: length of skb main body data to include in the SGL
876 * @pdev: the PCI device
877 *
878 * Generates a scatter/gather list for the buffers that make up a packet
879 * and returns the SGL size in 8-byte words. The caller must size the SGL
880 * appropriately.
881 */
make_sgl(const struct sk_buff * skb,struct sg_ent * sgp,unsigned char * start,unsigned int len,struct pci_dev * pdev)882 static inline unsigned int make_sgl(const struct sk_buff *skb,
883 struct sg_ent *sgp, unsigned char *start,
884 unsigned int len, struct pci_dev *pdev)
885 {
886 dma_addr_t mapping;
887 unsigned int i, j = 0, nfrags;
888
889 if (len) {
890 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
891 sgp->len[0] = cpu_to_be32(len);
892 sgp->addr[0] = cpu_to_be64(mapping);
893 j = 1;
894 }
895
896 nfrags = skb_shinfo(skb)->nr_frags;
897 for (i = 0; i < nfrags; i++) {
898 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
899
900 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
901 frag->size, PCI_DMA_TODEVICE);
902 sgp->len[j] = cpu_to_be32(frag->size);
903 sgp->addr[j] = cpu_to_be64(mapping);
904 j ^= 1;
905 if (j == 0)
906 ++sgp;
907 }
908 if (j)
909 sgp->len[j] = 0;
910 return ((nfrags + (len != 0)) * 3) / 2 + j;
911 }
912
913 /**
914 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
915 * @adap: the adapter
916 * @q: the Tx queue
917 *
918 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
919 * where the HW is going to sleep just after we checked, however,
920 * then the interrupt handler will detect the outstanding TX packet
921 * and ring the doorbell for us.
922 *
923 * When GTS is disabled we unconditionally ring the doorbell.
924 */
check_ring_tx_db(struct adapter * adap,struct sge_txq * q)925 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
926 {
927 #if USE_GTS
928 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
929 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
930 set_bit(TXQ_LAST_PKT_DB, &q->flags);
931 t3_write_reg(adap, A_SG_KDOORBELL,
932 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
933 }
934 #else
935 wmb(); /* write descriptors before telling HW */
936 t3_write_reg(adap, A_SG_KDOORBELL,
937 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
938 #endif
939 }
940
wr_gen2(struct tx_desc * d,unsigned int gen)941 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
942 {
943 #if SGE_NUM_GENBITS == 2
944 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
945 #endif
946 }
947
948 /**
949 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
950 * @ndesc: number of Tx descriptors spanned by the SGL
951 * @skb: the packet corresponding to the WR
952 * @d: first Tx descriptor to be written
953 * @pidx: index of above descriptors
954 * @q: the SGE Tx queue
955 * @sgl: the SGL
956 * @flits: number of flits to the start of the SGL in the first descriptor
957 * @sgl_flits: the SGL size in flits
958 * @gen: the Tx descriptor generation
959 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
960 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
961 *
962 * Write a work request header and an associated SGL. If the SGL is
963 * small enough to fit into one Tx descriptor it has already been written
964 * and we just need to write the WR header. Otherwise we distribute the
965 * SGL across the number of descriptors it spans.
966 */
write_wr_hdr_sgl(unsigned int ndesc,struct sk_buff * skb,struct tx_desc * d,unsigned int pidx,const struct sge_txq * q,const struct sg_ent * sgl,unsigned int flits,unsigned int sgl_flits,unsigned int gen,__be32 wr_hi,__be32 wr_lo)967 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
968 struct tx_desc *d, unsigned int pidx,
969 const struct sge_txq *q,
970 const struct sg_ent *sgl,
971 unsigned int flits, unsigned int sgl_flits,
972 unsigned int gen, __be32 wr_hi,
973 __be32 wr_lo)
974 {
975 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
976 struct tx_sw_desc *sd = &q->sdesc[pidx];
977
978 sd->skb = skb;
979 if (need_skb_unmap()) {
980 sd->fragidx = 0;
981 sd->addr_idx = 0;
982 sd->sflit = flits;
983 }
984
985 if (likely(ndesc == 1)) {
986 sd->eop = 1;
987 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
988 V_WR_SGLSFLT(flits)) | wr_hi;
989 wmb();
990 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
991 V_WR_GEN(gen)) | wr_lo;
992 wr_gen2(d, gen);
993 } else {
994 unsigned int ogen = gen;
995 const u64 *fp = (const u64 *)sgl;
996 struct work_request_hdr *wp = wrp;
997
998 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
999 V_WR_SGLSFLT(flits)) | wr_hi;
1000
1001 while (sgl_flits) {
1002 unsigned int avail = WR_FLITS - flits;
1003
1004 if (avail > sgl_flits)
1005 avail = sgl_flits;
1006 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1007 sgl_flits -= avail;
1008 ndesc--;
1009 if (!sgl_flits)
1010 break;
1011
1012 fp += avail;
1013 d++;
1014 sd->eop = 0;
1015 sd++;
1016 if (++pidx == q->size) {
1017 pidx = 0;
1018 gen ^= 1;
1019 d = q->desc;
1020 sd = q->sdesc;
1021 }
1022
1023 sd->skb = skb;
1024 wrp = (struct work_request_hdr *)d;
1025 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1026 V_WR_SGLSFLT(1)) | wr_hi;
1027 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1028 sgl_flits + 1)) |
1029 V_WR_GEN(gen)) | wr_lo;
1030 wr_gen2(d, gen);
1031 flits = 1;
1032 }
1033 sd->eop = 1;
1034 wrp->wr_hi |= htonl(F_WR_EOP);
1035 wmb();
1036 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1037 wr_gen2((struct tx_desc *)wp, ogen);
1038 WARN_ON(ndesc != 0);
1039 }
1040 }
1041
1042 /**
1043 * write_tx_pkt_wr - write a TX_PKT work request
1044 * @adap: the adapter
1045 * @skb: the packet to send
1046 * @pi: the egress interface
1047 * @pidx: index of the first Tx descriptor to write
1048 * @gen: the generation value to use
1049 * @q: the Tx queue
1050 * @ndesc: number of descriptors the packet will occupy
1051 * @compl: the value of the COMPL bit to use
1052 *
1053 * Generate a TX_PKT work request to send the supplied packet.
1054 */
write_tx_pkt_wr(struct adapter * adap,struct sk_buff * skb,const struct port_info * pi,unsigned int pidx,unsigned int gen,struct sge_txq * q,unsigned int ndesc,unsigned int compl)1055 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1056 const struct port_info *pi,
1057 unsigned int pidx, unsigned int gen,
1058 struct sge_txq *q, unsigned int ndesc,
1059 unsigned int compl)
1060 {
1061 unsigned int flits, sgl_flits, cntrl, tso_info;
1062 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1063 struct tx_desc *d = &q->desc[pidx];
1064 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1065
1066 cpl->len = htonl(skb->len | 0x80000000);
1067 cntrl = V_TXPKT_INTF(pi->port_id);
1068
1069 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1070 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1071
1072 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1073 if (tso_info) {
1074 int eth_type;
1075 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1076
1077 d->flit[2] = 0;
1078 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1079 hdr->cntrl = htonl(cntrl);
1080 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1081 CPL_ETH_II : CPL_ETH_II_VLAN;
1082 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1083 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1084 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1085 hdr->lso_info = htonl(tso_info);
1086 flits = 3;
1087 } else {
1088 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1089 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1090 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1091 cpl->cntrl = htonl(cntrl);
1092
1093 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1094 q->sdesc[pidx].skb = NULL;
1095 if (!skb->data_len)
1096 skb_copy_from_linear_data(skb, &d->flit[2],
1097 skb->len);
1098 else
1099 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1100
1101 flits = (skb->len + 7) / 8 + 2;
1102 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1103 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1104 | F_WR_SOP | F_WR_EOP | compl);
1105 wmb();
1106 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1107 V_WR_TID(q->token));
1108 wr_gen2(d, gen);
1109 kfree_skb(skb);
1110 return;
1111 }
1112
1113 flits = 2;
1114 }
1115
1116 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1117 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1118
1119 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1120 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1121 htonl(V_WR_TID(q->token)));
1122 }
1123
t3_stop_tx_queue(struct netdev_queue * txq,struct sge_qset * qs,struct sge_txq * q)1124 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1125 struct sge_qset *qs, struct sge_txq *q)
1126 {
1127 netif_tx_stop_queue(txq);
1128 set_bit(TXQ_ETH, &qs->txq_stopped);
1129 q->stops++;
1130 }
1131
1132 /**
1133 * eth_xmit - add a packet to the Ethernet Tx queue
1134 * @skb: the packet
1135 * @dev: the egress net device
1136 *
1137 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1138 */
t3_eth_xmit(struct sk_buff * skb,struct net_device * dev)1139 int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1140 {
1141 int qidx;
1142 unsigned int ndesc, pidx, credits, gen, compl;
1143 const struct port_info *pi = netdev_priv(dev);
1144 struct adapter *adap = pi->adapter;
1145 struct netdev_queue *txq;
1146 struct sge_qset *qs;
1147 struct sge_txq *q;
1148
1149 /*
1150 * The chip min packet length is 9 octets but play safe and reject
1151 * anything shorter than an Ethernet header.
1152 */
1153 if (unlikely(skb->len < ETH_HLEN)) {
1154 dev_kfree_skb(skb);
1155 return NETDEV_TX_OK;
1156 }
1157
1158 qidx = skb_get_queue_mapping(skb);
1159 qs = &pi->qs[qidx];
1160 q = &qs->txq[TXQ_ETH];
1161 txq = netdev_get_tx_queue(dev, qidx);
1162
1163 spin_lock(&q->lock);
1164 reclaim_completed_tx(adap, q);
1165
1166 credits = q->size - q->in_use;
1167 ndesc = calc_tx_descs(skb);
1168
1169 if (unlikely(credits < ndesc)) {
1170 t3_stop_tx_queue(txq, qs, q);
1171 dev_err(&adap->pdev->dev,
1172 "%s: Tx ring %u full while queue awake!\n",
1173 dev->name, q->cntxt_id & 7);
1174 spin_unlock(&q->lock);
1175 return NETDEV_TX_BUSY;
1176 }
1177
1178 q->in_use += ndesc;
1179 if (unlikely(credits - ndesc < q->stop_thres)) {
1180 t3_stop_tx_queue(txq, qs, q);
1181
1182 if (should_restart_tx(q) &&
1183 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1184 q->restarts++;
1185 netif_tx_wake_queue(txq);
1186 }
1187 }
1188
1189 gen = q->gen;
1190 q->unacked += ndesc;
1191 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1192 q->unacked &= 7;
1193 pidx = q->pidx;
1194 q->pidx += ndesc;
1195 if (q->pidx >= q->size) {
1196 q->pidx -= q->size;
1197 q->gen ^= 1;
1198 }
1199
1200 /* update port statistics */
1201 if (skb->ip_summed == CHECKSUM_COMPLETE)
1202 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1203 if (skb_shinfo(skb)->gso_size)
1204 qs->port_stats[SGE_PSTAT_TSO]++;
1205 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1206 qs->port_stats[SGE_PSTAT_VLANINS]++;
1207
1208 dev->trans_start = jiffies;
1209 spin_unlock(&q->lock);
1210
1211 /*
1212 * We do not use Tx completion interrupts to free DMAd Tx packets.
1213 * This is good for performamce but means that we rely on new Tx
1214 * packets arriving to run the destructors of completed packets,
1215 * which open up space in their sockets' send queues. Sometimes
1216 * we do not get such new packets causing Tx to stall. A single
1217 * UDP transmitter is a good example of this situation. We have
1218 * a clean up timer that periodically reclaims completed packets
1219 * but it doesn't run often enough (nor do we want it to) to prevent
1220 * lengthy stalls. A solution to this problem is to run the
1221 * destructor early, after the packet is queued but before it's DMAd.
1222 * A cons is that we lie to socket memory accounting, but the amount
1223 * of extra memory is reasonable (limited by the number of Tx
1224 * descriptors), the packets do actually get freed quickly by new
1225 * packets almost always, and for protocols like TCP that wait for
1226 * acks to really free up the data the extra memory is even less.
1227 * On the positive side we run the destructors on the sending CPU
1228 * rather than on a potentially different completing CPU, usually a
1229 * good thing. We also run them without holding our Tx queue lock,
1230 * unlike what reclaim_completed_tx() would otherwise do.
1231 *
1232 * Run the destructor before telling the DMA engine about the packet
1233 * to make sure it doesn't complete and get freed prematurely.
1234 */
1235 if (likely(!skb_shared(skb)))
1236 skb_orphan(skb);
1237
1238 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1239 check_ring_tx_db(adap, q);
1240 return NETDEV_TX_OK;
1241 }
1242
1243 /**
1244 * write_imm - write a packet into a Tx descriptor as immediate data
1245 * @d: the Tx descriptor to write
1246 * @skb: the packet
1247 * @len: the length of packet data to write as immediate data
1248 * @gen: the generation bit value to write
1249 *
1250 * Writes a packet as immediate data into a Tx descriptor. The packet
1251 * contains a work request at its beginning. We must write the packet
1252 * carefully so the SGE doesn't read it accidentally before it's written
1253 * in its entirety.
1254 */
write_imm(struct tx_desc * d,struct sk_buff * skb,unsigned int len,unsigned int gen)1255 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1256 unsigned int len, unsigned int gen)
1257 {
1258 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1259 struct work_request_hdr *to = (struct work_request_hdr *)d;
1260
1261 if (likely(!skb->data_len))
1262 memcpy(&to[1], &from[1], len - sizeof(*from));
1263 else
1264 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1265
1266 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1267 V_WR_BCNTLFLT(len & 7));
1268 wmb();
1269 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1270 V_WR_LEN((len + 7) / 8));
1271 wr_gen2(d, gen);
1272 kfree_skb(skb);
1273 }
1274
1275 /**
1276 * check_desc_avail - check descriptor availability on a send queue
1277 * @adap: the adapter
1278 * @q: the send queue
1279 * @skb: the packet needing the descriptors
1280 * @ndesc: the number of Tx descriptors needed
1281 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1282 *
1283 * Checks if the requested number of Tx descriptors is available on an
1284 * SGE send queue. If the queue is already suspended or not enough
1285 * descriptors are available the packet is queued for later transmission.
1286 * Must be called with the Tx queue locked.
1287 *
1288 * Returns 0 if enough descriptors are available, 1 if there aren't
1289 * enough descriptors and the packet has been queued, and 2 if the caller
1290 * needs to retry because there weren't enough descriptors at the
1291 * beginning of the call but some freed up in the mean time.
1292 */
check_desc_avail(struct adapter * adap,struct sge_txq * q,struct sk_buff * skb,unsigned int ndesc,unsigned int qid)1293 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1294 struct sk_buff *skb, unsigned int ndesc,
1295 unsigned int qid)
1296 {
1297 if (unlikely(!skb_queue_empty(&q->sendq))) {
1298 addq_exit:__skb_queue_tail(&q->sendq, skb);
1299 return 1;
1300 }
1301 if (unlikely(q->size - q->in_use < ndesc)) {
1302 struct sge_qset *qs = txq_to_qset(q, qid);
1303
1304 set_bit(qid, &qs->txq_stopped);
1305 smp_mb__after_clear_bit();
1306
1307 if (should_restart_tx(q) &&
1308 test_and_clear_bit(qid, &qs->txq_stopped))
1309 return 2;
1310
1311 q->stops++;
1312 goto addq_exit;
1313 }
1314 return 0;
1315 }
1316
1317 /**
1318 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1319 * @q: the SGE control Tx queue
1320 *
1321 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1322 * that send only immediate data (presently just the control queues) and
1323 * thus do not have any sk_buffs to release.
1324 */
reclaim_completed_tx_imm(struct sge_txq * q)1325 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1326 {
1327 unsigned int reclaim = q->processed - q->cleaned;
1328
1329 q->in_use -= reclaim;
1330 q->cleaned += reclaim;
1331 }
1332
immediate(const struct sk_buff * skb)1333 static inline int immediate(const struct sk_buff *skb)
1334 {
1335 return skb->len <= WR_LEN;
1336 }
1337
1338 /**
1339 * ctrl_xmit - send a packet through an SGE control Tx queue
1340 * @adap: the adapter
1341 * @q: the control queue
1342 * @skb: the packet
1343 *
1344 * Send a packet through an SGE control Tx queue. Packets sent through
1345 * a control queue must fit entirely as immediate data in a single Tx
1346 * descriptor and have no page fragments.
1347 */
ctrl_xmit(struct adapter * adap,struct sge_txq * q,struct sk_buff * skb)1348 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1349 struct sk_buff *skb)
1350 {
1351 int ret;
1352 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1353
1354 if (unlikely(!immediate(skb))) {
1355 WARN_ON(1);
1356 dev_kfree_skb(skb);
1357 return NET_XMIT_SUCCESS;
1358 }
1359
1360 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1361 wrp->wr_lo = htonl(V_WR_TID(q->token));
1362
1363 spin_lock(&q->lock);
1364 again:reclaim_completed_tx_imm(q);
1365
1366 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1367 if (unlikely(ret)) {
1368 if (ret == 1) {
1369 spin_unlock(&q->lock);
1370 return NET_XMIT_CN;
1371 }
1372 goto again;
1373 }
1374
1375 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1376
1377 q->in_use++;
1378 if (++q->pidx >= q->size) {
1379 q->pidx = 0;
1380 q->gen ^= 1;
1381 }
1382 spin_unlock(&q->lock);
1383 wmb();
1384 t3_write_reg(adap, A_SG_KDOORBELL,
1385 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1386 return NET_XMIT_SUCCESS;
1387 }
1388
1389 /**
1390 * restart_ctrlq - restart a suspended control queue
1391 * @qs: the queue set cotaining the control queue
1392 *
1393 * Resumes transmission on a suspended Tx control queue.
1394 */
restart_ctrlq(unsigned long data)1395 static void restart_ctrlq(unsigned long data)
1396 {
1397 struct sk_buff *skb;
1398 struct sge_qset *qs = (struct sge_qset *)data;
1399 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1400
1401 spin_lock(&q->lock);
1402 again:reclaim_completed_tx_imm(q);
1403
1404 while (q->in_use < q->size &&
1405 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1406
1407 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1408
1409 if (++q->pidx >= q->size) {
1410 q->pidx = 0;
1411 q->gen ^= 1;
1412 }
1413 q->in_use++;
1414 }
1415
1416 if (!skb_queue_empty(&q->sendq)) {
1417 set_bit(TXQ_CTRL, &qs->txq_stopped);
1418 smp_mb__after_clear_bit();
1419
1420 if (should_restart_tx(q) &&
1421 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1422 goto again;
1423 q->stops++;
1424 }
1425
1426 spin_unlock(&q->lock);
1427 wmb();
1428 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1429 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1430 }
1431
1432 /*
1433 * Send a management message through control queue 0
1434 */
t3_mgmt_tx(struct adapter * adap,struct sk_buff * skb)1435 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1436 {
1437 int ret;
1438 local_bh_disable();
1439 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1440 local_bh_enable();
1441
1442 return ret;
1443 }
1444
1445 /**
1446 * deferred_unmap_destructor - unmap a packet when it is freed
1447 * @skb: the packet
1448 *
1449 * This is the packet destructor used for Tx packets that need to remain
1450 * mapped until they are freed rather than until their Tx descriptors are
1451 * freed.
1452 */
deferred_unmap_destructor(struct sk_buff * skb)1453 static void deferred_unmap_destructor(struct sk_buff *skb)
1454 {
1455 int i;
1456 const dma_addr_t *p;
1457 const struct skb_shared_info *si;
1458 const struct deferred_unmap_info *dui;
1459
1460 dui = (struct deferred_unmap_info *)skb->head;
1461 p = dui->addr;
1462
1463 if (skb->tail - skb->transport_header)
1464 pci_unmap_single(dui->pdev, *p++,
1465 skb->tail - skb->transport_header,
1466 PCI_DMA_TODEVICE);
1467
1468 si = skb_shinfo(skb);
1469 for (i = 0; i < si->nr_frags; i++)
1470 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1471 PCI_DMA_TODEVICE);
1472 }
1473
setup_deferred_unmapping(struct sk_buff * skb,struct pci_dev * pdev,const struct sg_ent * sgl,int sgl_flits)1474 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1475 const struct sg_ent *sgl, int sgl_flits)
1476 {
1477 dma_addr_t *p;
1478 struct deferred_unmap_info *dui;
1479
1480 dui = (struct deferred_unmap_info *)skb->head;
1481 dui->pdev = pdev;
1482 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1483 *p++ = be64_to_cpu(sgl->addr[0]);
1484 *p++ = be64_to_cpu(sgl->addr[1]);
1485 }
1486 if (sgl_flits)
1487 *p = be64_to_cpu(sgl->addr[0]);
1488 }
1489
1490 /**
1491 * write_ofld_wr - write an offload work request
1492 * @adap: the adapter
1493 * @skb: the packet to send
1494 * @q: the Tx queue
1495 * @pidx: index of the first Tx descriptor to write
1496 * @gen: the generation value to use
1497 * @ndesc: number of descriptors the packet will occupy
1498 *
1499 * Write an offload work request to send the supplied packet. The packet
1500 * data already carry the work request with most fields populated.
1501 */
write_ofld_wr(struct adapter * adap,struct sk_buff * skb,struct sge_txq * q,unsigned int pidx,unsigned int gen,unsigned int ndesc)1502 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1503 struct sge_txq *q, unsigned int pidx,
1504 unsigned int gen, unsigned int ndesc)
1505 {
1506 unsigned int sgl_flits, flits;
1507 struct work_request_hdr *from;
1508 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1509 struct tx_desc *d = &q->desc[pidx];
1510
1511 if (immediate(skb)) {
1512 q->sdesc[pidx].skb = NULL;
1513 write_imm(d, skb, skb->len, gen);
1514 return;
1515 }
1516
1517 /* Only TX_DATA builds SGLs */
1518
1519 from = (struct work_request_hdr *)skb->data;
1520 memcpy(&d->flit[1], &from[1],
1521 skb_transport_offset(skb) - sizeof(*from));
1522
1523 flits = skb_transport_offset(skb) / 8;
1524 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1525 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1526 skb->tail - skb->transport_header,
1527 adap->pdev);
1528 if (need_skb_unmap()) {
1529 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1530 skb->destructor = deferred_unmap_destructor;
1531 }
1532
1533 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1534 gen, from->wr_hi, from->wr_lo);
1535 }
1536
1537 /**
1538 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1539 * @skb: the packet
1540 *
1541 * Returns the number of Tx descriptors needed for the given offload
1542 * packet. These packets are already fully constructed.
1543 */
calc_tx_descs_ofld(const struct sk_buff * skb)1544 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1545 {
1546 unsigned int flits, cnt;
1547
1548 if (skb->len <= WR_LEN)
1549 return 1; /* packet fits as immediate data */
1550
1551 flits = skb_transport_offset(skb) / 8; /* headers */
1552 cnt = skb_shinfo(skb)->nr_frags;
1553 if (skb->tail != skb->transport_header)
1554 cnt++;
1555 return flits_to_desc(flits + sgl_len(cnt));
1556 }
1557
1558 /**
1559 * ofld_xmit - send a packet through an offload queue
1560 * @adap: the adapter
1561 * @q: the Tx offload queue
1562 * @skb: the packet
1563 *
1564 * Send an offload packet through an SGE offload queue.
1565 */
ofld_xmit(struct adapter * adap,struct sge_txq * q,struct sk_buff * skb)1566 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1567 struct sk_buff *skb)
1568 {
1569 int ret;
1570 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1571
1572 spin_lock(&q->lock);
1573 again:reclaim_completed_tx(adap, q);
1574
1575 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1576 if (unlikely(ret)) {
1577 if (ret == 1) {
1578 skb->priority = ndesc; /* save for restart */
1579 spin_unlock(&q->lock);
1580 return NET_XMIT_CN;
1581 }
1582 goto again;
1583 }
1584
1585 gen = q->gen;
1586 q->in_use += ndesc;
1587 pidx = q->pidx;
1588 q->pidx += ndesc;
1589 if (q->pidx >= q->size) {
1590 q->pidx -= q->size;
1591 q->gen ^= 1;
1592 }
1593 spin_unlock(&q->lock);
1594
1595 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1596 check_ring_tx_db(adap, q);
1597 return NET_XMIT_SUCCESS;
1598 }
1599
1600 /**
1601 * restart_offloadq - restart a suspended offload queue
1602 * @qs: the queue set cotaining the offload queue
1603 *
1604 * Resumes transmission on a suspended Tx offload queue.
1605 */
restart_offloadq(unsigned long data)1606 static void restart_offloadq(unsigned long data)
1607 {
1608 struct sk_buff *skb;
1609 struct sge_qset *qs = (struct sge_qset *)data;
1610 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1611 const struct port_info *pi = netdev_priv(qs->netdev);
1612 struct adapter *adap = pi->adapter;
1613
1614 spin_lock(&q->lock);
1615 again:reclaim_completed_tx(adap, q);
1616
1617 while ((skb = skb_peek(&q->sendq)) != NULL) {
1618 unsigned int gen, pidx;
1619 unsigned int ndesc = skb->priority;
1620
1621 if (unlikely(q->size - q->in_use < ndesc)) {
1622 set_bit(TXQ_OFLD, &qs->txq_stopped);
1623 smp_mb__after_clear_bit();
1624
1625 if (should_restart_tx(q) &&
1626 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1627 goto again;
1628 q->stops++;
1629 break;
1630 }
1631
1632 gen = q->gen;
1633 q->in_use += ndesc;
1634 pidx = q->pidx;
1635 q->pidx += ndesc;
1636 if (q->pidx >= q->size) {
1637 q->pidx -= q->size;
1638 q->gen ^= 1;
1639 }
1640 __skb_unlink(skb, &q->sendq);
1641 spin_unlock(&q->lock);
1642
1643 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1644 spin_lock(&q->lock);
1645 }
1646 spin_unlock(&q->lock);
1647
1648 #if USE_GTS
1649 set_bit(TXQ_RUNNING, &q->flags);
1650 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1651 #endif
1652 wmb();
1653 t3_write_reg(adap, A_SG_KDOORBELL,
1654 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1655 }
1656
1657 /**
1658 * queue_set - return the queue set a packet should use
1659 * @skb: the packet
1660 *
1661 * Maps a packet to the SGE queue set it should use. The desired queue
1662 * set is carried in bits 1-3 in the packet's priority.
1663 */
queue_set(const struct sk_buff * skb)1664 static inline int queue_set(const struct sk_buff *skb)
1665 {
1666 return skb->priority >> 1;
1667 }
1668
1669 /**
1670 * is_ctrl_pkt - return whether an offload packet is a control packet
1671 * @skb: the packet
1672 *
1673 * Determines whether an offload packet should use an OFLD or a CTRL
1674 * Tx queue. This is indicated by bit 0 in the packet's priority.
1675 */
is_ctrl_pkt(const struct sk_buff * skb)1676 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1677 {
1678 return skb->priority & 1;
1679 }
1680
1681 /**
1682 * t3_offload_tx - send an offload packet
1683 * @tdev: the offload device to send to
1684 * @skb: the packet
1685 *
1686 * Sends an offload packet. We use the packet priority to select the
1687 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1688 * should be sent as regular or control, bits 1-3 select the queue set.
1689 */
t3_offload_tx(struct t3cdev * tdev,struct sk_buff * skb)1690 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1691 {
1692 struct adapter *adap = tdev2adap(tdev);
1693 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1694
1695 if (unlikely(is_ctrl_pkt(skb)))
1696 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1697
1698 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1699 }
1700
1701 /**
1702 * offload_enqueue - add an offload packet to an SGE offload receive queue
1703 * @q: the SGE response queue
1704 * @skb: the packet
1705 *
1706 * Add a new offload packet to an SGE response queue's offload packet
1707 * queue. If the packet is the first on the queue it schedules the RX
1708 * softirq to process the queue.
1709 */
offload_enqueue(struct sge_rspq * q,struct sk_buff * skb)1710 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1711 {
1712 int was_empty = skb_queue_empty(&q->rx_queue);
1713
1714 __skb_queue_tail(&q->rx_queue, skb);
1715
1716 if (was_empty) {
1717 struct sge_qset *qs = rspq_to_qset(q);
1718
1719 napi_schedule(&qs->napi);
1720 }
1721 }
1722
1723 /**
1724 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1725 * @tdev: the offload device that will be receiving the packets
1726 * @q: the SGE response queue that assembled the bundle
1727 * @skbs: the partial bundle
1728 * @n: the number of packets in the bundle
1729 *
1730 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1731 */
deliver_partial_bundle(struct t3cdev * tdev,struct sge_rspq * q,struct sk_buff * skbs[],int n)1732 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1733 struct sge_rspq *q,
1734 struct sk_buff *skbs[], int n)
1735 {
1736 if (n) {
1737 q->offload_bundles++;
1738 tdev->recv(tdev, skbs, n);
1739 }
1740 }
1741
1742 /**
1743 * ofld_poll - NAPI handler for offload packets in interrupt mode
1744 * @dev: the network device doing the polling
1745 * @budget: polling budget
1746 *
1747 * The NAPI handler for offload packets when a response queue is serviced
1748 * by the hard interrupt handler, i.e., when it's operating in non-polling
1749 * mode. Creates small packet batches and sends them through the offload
1750 * receive handler. Batches need to be of modest size as we do prefetches
1751 * on the packets in each.
1752 */
ofld_poll(struct napi_struct * napi,int budget)1753 static int ofld_poll(struct napi_struct *napi, int budget)
1754 {
1755 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1756 struct sge_rspq *q = &qs->rspq;
1757 struct adapter *adapter = qs->adap;
1758 int work_done = 0;
1759
1760 while (work_done < budget) {
1761 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1762 struct sk_buff_head queue;
1763 int ngathered;
1764
1765 spin_lock_irq(&q->lock);
1766 __skb_queue_head_init(&queue);
1767 skb_queue_splice_init(&q->rx_queue, &queue);
1768 if (skb_queue_empty(&queue)) {
1769 napi_complete(napi);
1770 spin_unlock_irq(&q->lock);
1771 return work_done;
1772 }
1773 spin_unlock_irq(&q->lock);
1774
1775 ngathered = 0;
1776 skb_queue_walk_safe(&queue, skb, tmp) {
1777 if (work_done >= budget)
1778 break;
1779 work_done++;
1780
1781 __skb_unlink(skb, &queue);
1782 prefetch(skb->data);
1783 skbs[ngathered] = skb;
1784 if (++ngathered == RX_BUNDLE_SIZE) {
1785 q->offload_bundles++;
1786 adapter->tdev.recv(&adapter->tdev, skbs,
1787 ngathered);
1788 ngathered = 0;
1789 }
1790 }
1791 if (!skb_queue_empty(&queue)) {
1792 /* splice remaining packets back onto Rx queue */
1793 spin_lock_irq(&q->lock);
1794 skb_queue_splice(&queue, &q->rx_queue);
1795 spin_unlock_irq(&q->lock);
1796 }
1797 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1798 }
1799
1800 return work_done;
1801 }
1802
1803 /**
1804 * rx_offload - process a received offload packet
1805 * @tdev: the offload device receiving the packet
1806 * @rq: the response queue that received the packet
1807 * @skb: the packet
1808 * @rx_gather: a gather list of packets if we are building a bundle
1809 * @gather_idx: index of the next available slot in the bundle
1810 *
1811 * Process an ingress offload pakcet and add it to the offload ingress
1812 * queue. Returns the index of the next available slot in the bundle.
1813 */
rx_offload(struct t3cdev * tdev,struct sge_rspq * rq,struct sk_buff * skb,struct sk_buff * rx_gather[],unsigned int gather_idx)1814 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1815 struct sk_buff *skb, struct sk_buff *rx_gather[],
1816 unsigned int gather_idx)
1817 {
1818 skb_reset_mac_header(skb);
1819 skb_reset_network_header(skb);
1820 skb_reset_transport_header(skb);
1821
1822 if (rq->polling) {
1823 rx_gather[gather_idx++] = skb;
1824 if (gather_idx == RX_BUNDLE_SIZE) {
1825 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1826 gather_idx = 0;
1827 rq->offload_bundles++;
1828 }
1829 } else
1830 offload_enqueue(rq, skb);
1831
1832 return gather_idx;
1833 }
1834
1835 /**
1836 * restart_tx - check whether to restart suspended Tx queues
1837 * @qs: the queue set to resume
1838 *
1839 * Restarts suspended Tx queues of an SGE queue set if they have enough
1840 * free resources to resume operation.
1841 */
restart_tx(struct sge_qset * qs)1842 static void restart_tx(struct sge_qset *qs)
1843 {
1844 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1845 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1846 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1847 qs->txq[TXQ_ETH].restarts++;
1848 if (netif_running(qs->netdev))
1849 netif_tx_wake_queue(qs->tx_q);
1850 }
1851
1852 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1853 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1854 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1855 qs->txq[TXQ_OFLD].restarts++;
1856 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1857 }
1858 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1859 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1860 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1861 qs->txq[TXQ_CTRL].restarts++;
1862 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1863 }
1864 }
1865
1866 /**
1867 * cxgb3_arp_process - process an ARP request probing a private IP address
1868 * @adapter: the adapter
1869 * @skb: the skbuff containing the ARP request
1870 *
1871 * Check if the ARP request is probing the private IP address
1872 * dedicated to iSCSI, generate an ARP reply if so.
1873 */
cxgb3_arp_process(struct adapter * adapter,struct sk_buff * skb)1874 static void cxgb3_arp_process(struct adapter *adapter, struct sk_buff *skb)
1875 {
1876 struct net_device *dev = skb->dev;
1877 struct port_info *pi;
1878 struct arphdr *arp;
1879 unsigned char *arp_ptr;
1880 unsigned char *sha;
1881 __be32 sip, tip;
1882
1883 if (!dev)
1884 return;
1885
1886 skb_reset_network_header(skb);
1887 arp = arp_hdr(skb);
1888
1889 if (arp->ar_op != htons(ARPOP_REQUEST))
1890 return;
1891
1892 arp_ptr = (unsigned char *)(arp + 1);
1893 sha = arp_ptr;
1894 arp_ptr += dev->addr_len;
1895 memcpy(&sip, arp_ptr, sizeof(sip));
1896 arp_ptr += sizeof(sip);
1897 arp_ptr += dev->addr_len;
1898 memcpy(&tip, arp_ptr, sizeof(tip));
1899
1900 pi = netdev_priv(dev);
1901 if (tip != pi->iscsi_ipv4addr)
1902 return;
1903
1904 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1905 dev->dev_addr, sha);
1906
1907 }
1908
is_arp(struct sk_buff * skb)1909 static inline int is_arp(struct sk_buff *skb)
1910 {
1911 return skb->protocol == htons(ETH_P_ARP);
1912 }
1913
1914 /**
1915 * rx_eth - process an ingress ethernet packet
1916 * @adap: the adapter
1917 * @rq: the response queue that received the packet
1918 * @skb: the packet
1919 * @pad: amount of padding at the start of the buffer
1920 *
1921 * Process an ingress ethernet pakcet and deliver it to the stack.
1922 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1923 * if it was immediate data in a response.
1924 */
rx_eth(struct adapter * adap,struct sge_rspq * rq,struct sk_buff * skb,int pad,int lro)1925 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1926 struct sk_buff *skb, int pad, int lro)
1927 {
1928 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1929 struct sge_qset *qs = rspq_to_qset(rq);
1930 struct port_info *pi;
1931
1932 skb_pull(skb, sizeof(*p) + pad);
1933 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
1934 pi = netdev_priv(skb->dev);
1935 if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid && p->csum == htons(0xffff) &&
1936 !p->fragment) {
1937 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1938 skb->ip_summed = CHECKSUM_UNNECESSARY;
1939 } else
1940 skb->ip_summed = CHECKSUM_NONE;
1941
1942 if (unlikely(p->vlan_valid)) {
1943 struct vlan_group *grp = pi->vlan_grp;
1944
1945 qs->port_stats[SGE_PSTAT_VLANEX]++;
1946 if (likely(grp))
1947 if (lro)
1948 lro_vlan_hwaccel_receive_skb(&qs->lro_mgr, skb,
1949 grp,
1950 ntohs(p->vlan),
1951 p);
1952 else {
1953 if (unlikely(pi->iscsi_ipv4addr &&
1954 is_arp(skb))) {
1955 unsigned short vtag = ntohs(p->vlan) &
1956 VLAN_VID_MASK;
1957 skb->dev = vlan_group_get_device(grp,
1958 vtag);
1959 cxgb3_arp_process(adap, skb);
1960 }
1961 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1962 rq->polling);
1963 }
1964 else
1965 dev_kfree_skb_any(skb);
1966 } else if (rq->polling) {
1967 if (lro)
1968 lro_receive_skb(&qs->lro_mgr, skb, p);
1969 else {
1970 if (unlikely(pi->iscsi_ipv4addr && is_arp(skb)))
1971 cxgb3_arp_process(adap, skb);
1972 netif_receive_skb(skb);
1973 }
1974 } else
1975 netif_rx(skb);
1976 }
1977
is_eth_tcp(u32 rss)1978 static inline int is_eth_tcp(u32 rss)
1979 {
1980 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
1981 }
1982
1983 /**
1984 * lro_frame_ok - check if an ingress packet is eligible for LRO
1985 * @p: the CPL header of the packet
1986 *
1987 * Returns true if a received packet is eligible for LRO.
1988 * The following conditions must be true:
1989 * - packet is TCP/IP Ethernet II (checked elsewhere)
1990 * - not an IP fragment
1991 * - no IP options
1992 * - TCP/IP checksums are correct
1993 * - the packet is for this host
1994 */
lro_frame_ok(const struct cpl_rx_pkt * p)1995 static inline int lro_frame_ok(const struct cpl_rx_pkt *p)
1996 {
1997 const struct ethhdr *eh = (struct ethhdr *)(p + 1);
1998 const struct iphdr *ih = (struct iphdr *)(eh + 1);
1999
2000 return (*((u8 *)p + 1) & 0x90) == 0x10 && p->csum == htons(0xffff) &&
2001 eh->h_proto == htons(ETH_P_IP) && ih->ihl == (sizeof(*ih) >> 2);
2002 }
2003
t3_get_lro_header(void ** eh,void ** iph,void ** tcph,u64 * hdr_flags,void * priv)2004 static int t3_get_lro_header(void **eh, void **iph, void **tcph,
2005 u64 *hdr_flags, void *priv)
2006 {
2007 const struct cpl_rx_pkt *cpl = priv;
2008
2009 if (!lro_frame_ok(cpl))
2010 return -1;
2011
2012 *eh = (struct ethhdr *)(cpl + 1);
2013 *iph = (struct iphdr *)((struct ethhdr *)*eh + 1);
2014 *tcph = (struct tcphdr *)((struct iphdr *)*iph + 1);
2015
2016 *hdr_flags = LRO_IPV4 | LRO_TCP;
2017 return 0;
2018 }
2019
t3_get_skb_header(struct sk_buff * skb,void ** iph,void ** tcph,u64 * hdr_flags,void * priv)2020 static int t3_get_skb_header(struct sk_buff *skb,
2021 void **iph, void **tcph, u64 *hdr_flags,
2022 void *priv)
2023 {
2024 void *eh;
2025
2026 return t3_get_lro_header(&eh, iph, tcph, hdr_flags, priv);
2027 }
2028
t3_get_frag_header(struct skb_frag_struct * frag,void ** eh,void ** iph,void ** tcph,u64 * hdr_flags,void * priv)2029 static int t3_get_frag_header(struct skb_frag_struct *frag, void **eh,
2030 void **iph, void **tcph, u64 *hdr_flags,
2031 void *priv)
2032 {
2033 return t3_get_lro_header(eh, iph, tcph, hdr_flags, priv);
2034 }
2035
2036 /**
2037 * lro_add_page - add a page chunk to an LRO session
2038 * @adap: the adapter
2039 * @qs: the associated queue set
2040 * @fl: the free list containing the page chunk to add
2041 * @len: packet length
2042 * @complete: Indicates the last fragment of a frame
2043 *
2044 * Add a received packet contained in a page chunk to an existing LRO
2045 * session.
2046 */
lro_add_page(struct adapter * adap,struct sge_qset * qs,struct sge_fl * fl,int len,int complete)2047 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2048 struct sge_fl *fl, int len, int complete)
2049 {
2050 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2051 struct cpl_rx_pkt *cpl;
2052 struct skb_frag_struct *rx_frag = qs->lro_frag_tbl;
2053 int nr_frags = qs->lro_nfrags, frag_len = qs->lro_frag_len;
2054 int offset = 0;
2055
2056 if (!nr_frags) {
2057 offset = 2 + sizeof(struct cpl_rx_pkt);
2058 qs->lro_va = cpl = sd->pg_chunk.va + 2;
2059 }
2060
2061 fl->credits--;
2062
2063 len -= offset;
2064 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
2065 fl->buf_size, PCI_DMA_FROMDEVICE);
2066
2067 rx_frag += nr_frags;
2068 rx_frag->page = sd->pg_chunk.page;
2069 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2070 rx_frag->size = len;
2071 frag_len += len;
2072 qs->lro_nfrags++;
2073 qs->lro_frag_len = frag_len;
2074
2075 if (!complete)
2076 return;
2077
2078 qs->lro_nfrags = qs->lro_frag_len = 0;
2079 cpl = qs->lro_va;
2080
2081 if (unlikely(cpl->vlan_valid)) {
2082 struct net_device *dev = qs->netdev;
2083 struct port_info *pi = netdev_priv(dev);
2084 struct vlan_group *grp = pi->vlan_grp;
2085
2086 if (likely(grp != NULL)) {
2087 lro_vlan_hwaccel_receive_frags(&qs->lro_mgr,
2088 qs->lro_frag_tbl,
2089 frag_len, frag_len,
2090 grp, ntohs(cpl->vlan),
2091 cpl, 0);
2092 return;
2093 }
2094 }
2095 lro_receive_frags(&qs->lro_mgr, qs->lro_frag_tbl,
2096 frag_len, frag_len, cpl, 0);
2097 }
2098
2099 /**
2100 * init_lro_mgr - initialize a LRO manager object
2101 * @lro_mgr: the LRO manager object
2102 */
init_lro_mgr(struct sge_qset * qs,struct net_lro_mgr * lro_mgr)2103 static void init_lro_mgr(struct sge_qset *qs, struct net_lro_mgr *lro_mgr)
2104 {
2105 lro_mgr->dev = qs->netdev;
2106 lro_mgr->features = LRO_F_NAPI;
2107 lro_mgr->frag_align_pad = NET_IP_ALIGN;
2108 lro_mgr->ip_summed = CHECKSUM_UNNECESSARY;
2109 lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY;
2110 lro_mgr->max_desc = T3_MAX_LRO_SES;
2111 lro_mgr->lro_arr = qs->lro_desc;
2112 lro_mgr->get_frag_header = t3_get_frag_header;
2113 lro_mgr->get_skb_header = t3_get_skb_header;
2114 lro_mgr->max_aggr = T3_MAX_LRO_MAX_PKTS;
2115 if (lro_mgr->max_aggr > MAX_SKB_FRAGS)
2116 lro_mgr->max_aggr = MAX_SKB_FRAGS;
2117 }
2118
2119 /**
2120 * handle_rsp_cntrl_info - handles control information in a response
2121 * @qs: the queue set corresponding to the response
2122 * @flags: the response control flags
2123 *
2124 * Handles the control information of an SGE response, such as GTS
2125 * indications and completion credits for the queue set's Tx queues.
2126 * HW coalesces credits, we don't do any extra SW coalescing.
2127 */
handle_rsp_cntrl_info(struct sge_qset * qs,u32 flags)2128 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2129 {
2130 unsigned int credits;
2131
2132 #if USE_GTS
2133 if (flags & F_RSPD_TXQ0_GTS)
2134 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2135 #endif
2136
2137 credits = G_RSPD_TXQ0_CR(flags);
2138 if (credits)
2139 qs->txq[TXQ_ETH].processed += credits;
2140
2141 credits = G_RSPD_TXQ2_CR(flags);
2142 if (credits)
2143 qs->txq[TXQ_CTRL].processed += credits;
2144
2145 # if USE_GTS
2146 if (flags & F_RSPD_TXQ1_GTS)
2147 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2148 # endif
2149 credits = G_RSPD_TXQ1_CR(flags);
2150 if (credits)
2151 qs->txq[TXQ_OFLD].processed += credits;
2152 }
2153
2154 /**
2155 * check_ring_db - check if we need to ring any doorbells
2156 * @adapter: the adapter
2157 * @qs: the queue set whose Tx queues are to be examined
2158 * @sleeping: indicates which Tx queue sent GTS
2159 *
2160 * Checks if some of a queue set's Tx queues need to ring their doorbells
2161 * to resume transmission after idling while they still have unprocessed
2162 * descriptors.
2163 */
check_ring_db(struct adapter * adap,struct sge_qset * qs,unsigned int sleeping)2164 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2165 unsigned int sleeping)
2166 {
2167 if (sleeping & F_RSPD_TXQ0_GTS) {
2168 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2169
2170 if (txq->cleaned + txq->in_use != txq->processed &&
2171 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2172 set_bit(TXQ_RUNNING, &txq->flags);
2173 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2174 V_EGRCNTX(txq->cntxt_id));
2175 }
2176 }
2177
2178 if (sleeping & F_RSPD_TXQ1_GTS) {
2179 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2180
2181 if (txq->cleaned + txq->in_use != txq->processed &&
2182 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2183 set_bit(TXQ_RUNNING, &txq->flags);
2184 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2185 V_EGRCNTX(txq->cntxt_id));
2186 }
2187 }
2188 }
2189
2190 /**
2191 * is_new_response - check if a response is newly written
2192 * @r: the response descriptor
2193 * @q: the response queue
2194 *
2195 * Returns true if a response descriptor contains a yet unprocessed
2196 * response.
2197 */
is_new_response(const struct rsp_desc * r,const struct sge_rspq * q)2198 static inline int is_new_response(const struct rsp_desc *r,
2199 const struct sge_rspq *q)
2200 {
2201 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2202 }
2203
clear_rspq_bufstate(struct sge_rspq * const q)2204 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2205 {
2206 q->pg_skb = NULL;
2207 q->rx_recycle_buf = 0;
2208 }
2209
2210 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2211 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2212 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2213 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2214 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2215
2216 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2217 #define NOMEM_INTR_DELAY 2500
2218
2219 /**
2220 * process_responses - process responses from an SGE response queue
2221 * @adap: the adapter
2222 * @qs: the queue set to which the response queue belongs
2223 * @budget: how many responses can be processed in this round
2224 *
2225 * Process responses from an SGE response queue up to the supplied budget.
2226 * Responses include received packets as well as credits and other events
2227 * for the queues that belong to the response queue's queue set.
2228 * A negative budget is effectively unlimited.
2229 *
2230 * Additionally choose the interrupt holdoff time for the next interrupt
2231 * on this queue. If the system is under memory shortage use a fairly
2232 * long delay to help recovery.
2233 */
process_responses(struct adapter * adap,struct sge_qset * qs,int budget)2234 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2235 int budget)
2236 {
2237 struct sge_rspq *q = &qs->rspq;
2238 struct rsp_desc *r = &q->desc[q->cidx];
2239 int budget_left = budget;
2240 unsigned int sleeping = 0;
2241 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2242 int ngathered = 0;
2243
2244 q->next_holdoff = q->holdoff_tmr;
2245
2246 while (likely(budget_left && is_new_response(r, q))) {
2247 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
2248 struct sk_buff *skb = NULL;
2249 u32 len, flags = ntohl(r->flags);
2250 __be32 rss_hi = *(const __be32 *)r,
2251 rss_lo = r->rss_hdr.rss_hash_val;
2252
2253 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2254
2255 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2256 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2257 if (!skb)
2258 goto no_mem;
2259
2260 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2261 skb->data[0] = CPL_ASYNC_NOTIF;
2262 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2263 q->async_notif++;
2264 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2265 skb = get_imm_packet(r);
2266 if (unlikely(!skb)) {
2267 no_mem:
2268 q->next_holdoff = NOMEM_INTR_DELAY;
2269 q->nomem++;
2270 /* consume one credit since we tried */
2271 budget_left--;
2272 break;
2273 }
2274 q->imm_data++;
2275 ethpad = 0;
2276 } else if ((len = ntohl(r->len_cq)) != 0) {
2277 struct sge_fl *fl;
2278
2279 lro &= eth && is_eth_tcp(rss_hi);
2280
2281 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2282 if (fl->use_pages) {
2283 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2284
2285 prefetch(addr);
2286 #if L1_CACHE_BYTES < 128
2287 prefetch(addr + L1_CACHE_BYTES);
2288 #endif
2289 __refill_fl(adap, fl);
2290 if (lro > 0) {
2291 lro_add_page(adap, qs, fl,
2292 G_RSPD_LEN(len),
2293 flags & F_RSPD_EOP);
2294 goto next_fl;
2295 }
2296
2297 skb = get_packet_pg(adap, fl, q,
2298 G_RSPD_LEN(len),
2299 eth ?
2300 SGE_RX_DROP_THRES : 0);
2301 q->pg_skb = skb;
2302 } else
2303 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2304 eth ? SGE_RX_DROP_THRES : 0);
2305 if (unlikely(!skb)) {
2306 if (!eth)
2307 goto no_mem;
2308 q->rx_drops++;
2309 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2310 __skb_pull(skb, 2);
2311 next_fl:
2312 if (++fl->cidx == fl->size)
2313 fl->cidx = 0;
2314 } else
2315 q->pure_rsps++;
2316
2317 if (flags & RSPD_CTRL_MASK) {
2318 sleeping |= flags & RSPD_GTS_MASK;
2319 handle_rsp_cntrl_info(qs, flags);
2320 }
2321
2322 r++;
2323 if (unlikely(++q->cidx == q->size)) {
2324 q->cidx = 0;
2325 q->gen ^= 1;
2326 r = q->desc;
2327 }
2328 prefetch(r);
2329
2330 if (++q->credits >= (q->size / 4)) {
2331 refill_rspq(adap, q, q->credits);
2332 q->credits = 0;
2333 }
2334
2335 packet_complete = flags &
2336 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2337 F_RSPD_ASYNC_NOTIF);
2338
2339 if (skb != NULL && packet_complete) {
2340 if (eth)
2341 rx_eth(adap, q, skb, ethpad, lro);
2342 else {
2343 q->offload_pkts++;
2344 /* Preserve the RSS info in csum & priority */
2345 skb->csum = rss_hi;
2346 skb->priority = rss_lo;
2347 ngathered = rx_offload(&adap->tdev, q, skb,
2348 offload_skbs,
2349 ngathered);
2350 }
2351
2352 if (flags & F_RSPD_EOP)
2353 clear_rspq_bufstate(q);
2354 }
2355 --budget_left;
2356 }
2357
2358 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2359 lro_flush_all(&qs->lro_mgr);
2360 qs->port_stats[SGE_PSTAT_LRO_AGGR] = qs->lro_mgr.stats.aggregated;
2361 qs->port_stats[SGE_PSTAT_LRO_FLUSHED] = qs->lro_mgr.stats.flushed;
2362 qs->port_stats[SGE_PSTAT_LRO_NO_DESC] = qs->lro_mgr.stats.no_desc;
2363
2364 if (sleeping)
2365 check_ring_db(adap, qs, sleeping);
2366
2367 smp_mb(); /* commit Tx queue .processed updates */
2368 if (unlikely(qs->txq_stopped != 0))
2369 restart_tx(qs);
2370
2371 budget -= budget_left;
2372 return budget;
2373 }
2374
is_pure_response(const struct rsp_desc * r)2375 static inline int is_pure_response(const struct rsp_desc *r)
2376 {
2377 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2378
2379 return (n | r->len_cq) == 0;
2380 }
2381
2382 /**
2383 * napi_rx_handler - the NAPI handler for Rx processing
2384 * @napi: the napi instance
2385 * @budget: how many packets we can process in this round
2386 *
2387 * Handler for new data events when using NAPI.
2388 */
napi_rx_handler(struct napi_struct * napi,int budget)2389 static int napi_rx_handler(struct napi_struct *napi, int budget)
2390 {
2391 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2392 struct adapter *adap = qs->adap;
2393 int work_done = process_responses(adap, qs, budget);
2394
2395 if (likely(work_done < budget)) {
2396 napi_complete(napi);
2397
2398 /*
2399 * Because we don't atomically flush the following
2400 * write it is possible that in very rare cases it can
2401 * reach the device in a way that races with a new
2402 * response being written plus an error interrupt
2403 * causing the NAPI interrupt handler below to return
2404 * unhandled status to the OS. To protect against
2405 * this would require flushing the write and doing
2406 * both the write and the flush with interrupts off.
2407 * Way too expensive and unjustifiable given the
2408 * rarity of the race.
2409 *
2410 * The race cannot happen at all with MSI-X.
2411 */
2412 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2413 V_NEWTIMER(qs->rspq.next_holdoff) |
2414 V_NEWINDEX(qs->rspq.cidx));
2415 }
2416 return work_done;
2417 }
2418
2419 /*
2420 * Returns true if the device is already scheduled for polling.
2421 */
napi_is_scheduled(struct napi_struct * napi)2422 static inline int napi_is_scheduled(struct napi_struct *napi)
2423 {
2424 return test_bit(NAPI_STATE_SCHED, &napi->state);
2425 }
2426
2427 /**
2428 * process_pure_responses - process pure responses from a response queue
2429 * @adap: the adapter
2430 * @qs: the queue set owning the response queue
2431 * @r: the first pure response to process
2432 *
2433 * A simpler version of process_responses() that handles only pure (i.e.,
2434 * non data-carrying) responses. Such respones are too light-weight to
2435 * justify calling a softirq under NAPI, so we handle them specially in
2436 * the interrupt handler. The function is called with a pointer to a
2437 * response, which the caller must ensure is a valid pure response.
2438 *
2439 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2440 */
process_pure_responses(struct adapter * adap,struct sge_qset * qs,struct rsp_desc * r)2441 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2442 struct rsp_desc *r)
2443 {
2444 struct sge_rspq *q = &qs->rspq;
2445 unsigned int sleeping = 0;
2446
2447 do {
2448 u32 flags = ntohl(r->flags);
2449
2450 r++;
2451 if (unlikely(++q->cidx == q->size)) {
2452 q->cidx = 0;
2453 q->gen ^= 1;
2454 r = q->desc;
2455 }
2456 prefetch(r);
2457
2458 if (flags & RSPD_CTRL_MASK) {
2459 sleeping |= flags & RSPD_GTS_MASK;
2460 handle_rsp_cntrl_info(qs, flags);
2461 }
2462
2463 q->pure_rsps++;
2464 if (++q->credits >= (q->size / 4)) {
2465 refill_rspq(adap, q, q->credits);
2466 q->credits = 0;
2467 }
2468 } while (is_new_response(r, q) && is_pure_response(r));
2469
2470 if (sleeping)
2471 check_ring_db(adap, qs, sleeping);
2472
2473 smp_mb(); /* commit Tx queue .processed updates */
2474 if (unlikely(qs->txq_stopped != 0))
2475 restart_tx(qs);
2476
2477 return is_new_response(r, q);
2478 }
2479
2480 /**
2481 * handle_responses - decide what to do with new responses in NAPI mode
2482 * @adap: the adapter
2483 * @q: the response queue
2484 *
2485 * This is used by the NAPI interrupt handlers to decide what to do with
2486 * new SGE responses. If there are no new responses it returns -1. If
2487 * there are new responses and they are pure (i.e., non-data carrying)
2488 * it handles them straight in hard interrupt context as they are very
2489 * cheap and don't deliver any packets. Finally, if there are any data
2490 * signaling responses it schedules the NAPI handler. Returns 1 if it
2491 * schedules NAPI, 0 if all new responses were pure.
2492 *
2493 * The caller must ascertain NAPI is not already running.
2494 */
handle_responses(struct adapter * adap,struct sge_rspq * q)2495 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2496 {
2497 struct sge_qset *qs = rspq_to_qset(q);
2498 struct rsp_desc *r = &q->desc[q->cidx];
2499
2500 if (!is_new_response(r, q))
2501 return -1;
2502 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2503 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2504 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2505 return 0;
2506 }
2507 napi_schedule(&qs->napi);
2508 return 1;
2509 }
2510
2511 /*
2512 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2513 * (i.e., response queue serviced in hard interrupt).
2514 */
t3_sge_intr_msix(int irq,void * cookie)2515 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2516 {
2517 struct sge_qset *qs = cookie;
2518 struct adapter *adap = qs->adap;
2519 struct sge_rspq *q = &qs->rspq;
2520
2521 spin_lock(&q->lock);
2522 if (process_responses(adap, qs, -1) == 0)
2523 q->unhandled_irqs++;
2524 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2525 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2526 spin_unlock(&q->lock);
2527 return IRQ_HANDLED;
2528 }
2529
2530 /*
2531 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2532 * (i.e., response queue serviced by NAPI polling).
2533 */
t3_sge_intr_msix_napi(int irq,void * cookie)2534 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2535 {
2536 struct sge_qset *qs = cookie;
2537 struct sge_rspq *q = &qs->rspq;
2538
2539 spin_lock(&q->lock);
2540
2541 if (handle_responses(qs->adap, q) < 0)
2542 q->unhandled_irqs++;
2543 spin_unlock(&q->lock);
2544 return IRQ_HANDLED;
2545 }
2546
2547 /*
2548 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2549 * SGE response queues as well as error and other async events as they all use
2550 * the same MSI vector. We use one SGE response queue per port in this mode
2551 * and protect all response queues with queue 0's lock.
2552 */
t3_intr_msi(int irq,void * cookie)2553 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2554 {
2555 int new_packets = 0;
2556 struct adapter *adap = cookie;
2557 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2558
2559 spin_lock(&q->lock);
2560
2561 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2562 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2563 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2564 new_packets = 1;
2565 }
2566
2567 if (adap->params.nports == 2 &&
2568 process_responses(adap, &adap->sge.qs[1], -1)) {
2569 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2570
2571 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2572 V_NEWTIMER(q1->next_holdoff) |
2573 V_NEWINDEX(q1->cidx));
2574 new_packets = 1;
2575 }
2576
2577 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2578 q->unhandled_irqs++;
2579
2580 spin_unlock(&q->lock);
2581 return IRQ_HANDLED;
2582 }
2583
rspq_check_napi(struct sge_qset * qs)2584 static int rspq_check_napi(struct sge_qset *qs)
2585 {
2586 struct sge_rspq *q = &qs->rspq;
2587
2588 if (!napi_is_scheduled(&qs->napi) &&
2589 is_new_response(&q->desc[q->cidx], q)) {
2590 napi_schedule(&qs->napi);
2591 return 1;
2592 }
2593 return 0;
2594 }
2595
2596 /*
2597 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2598 * by NAPI polling). Handles data events from SGE response queues as well as
2599 * error and other async events as they all use the same MSI vector. We use
2600 * one SGE response queue per port in this mode and protect all response
2601 * queues with queue 0's lock.
2602 */
t3_intr_msi_napi(int irq,void * cookie)2603 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2604 {
2605 int new_packets;
2606 struct adapter *adap = cookie;
2607 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2608
2609 spin_lock(&q->lock);
2610
2611 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2612 if (adap->params.nports == 2)
2613 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2614 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2615 q->unhandled_irqs++;
2616
2617 spin_unlock(&q->lock);
2618 return IRQ_HANDLED;
2619 }
2620
2621 /*
2622 * A helper function that processes responses and issues GTS.
2623 */
process_responses_gts(struct adapter * adap,struct sge_rspq * rq)2624 static inline int process_responses_gts(struct adapter *adap,
2625 struct sge_rspq *rq)
2626 {
2627 int work;
2628
2629 work = process_responses(adap, rspq_to_qset(rq), -1);
2630 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2631 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2632 return work;
2633 }
2634
2635 /*
2636 * The legacy INTx interrupt handler. This needs to handle data events from
2637 * SGE response queues as well as error and other async events as they all use
2638 * the same interrupt pin. We use one SGE response queue per port in this mode
2639 * and protect all response queues with queue 0's lock.
2640 */
t3_intr(int irq,void * cookie)2641 static irqreturn_t t3_intr(int irq, void *cookie)
2642 {
2643 int work_done, w0, w1;
2644 struct adapter *adap = cookie;
2645 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2646 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2647
2648 spin_lock(&q0->lock);
2649
2650 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2651 w1 = adap->params.nports == 2 &&
2652 is_new_response(&q1->desc[q1->cidx], q1);
2653
2654 if (likely(w0 | w1)) {
2655 t3_write_reg(adap, A_PL_CLI, 0);
2656 t3_read_reg(adap, A_PL_CLI); /* flush */
2657
2658 if (likely(w0))
2659 process_responses_gts(adap, q0);
2660
2661 if (w1)
2662 process_responses_gts(adap, q1);
2663
2664 work_done = w0 | w1;
2665 } else
2666 work_done = t3_slow_intr_handler(adap);
2667
2668 spin_unlock(&q0->lock);
2669 return IRQ_RETVAL(work_done != 0);
2670 }
2671
2672 /*
2673 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2674 * Handles data events from SGE response queues as well as error and other
2675 * async events as they all use the same interrupt pin. We use one SGE
2676 * response queue per port in this mode and protect all response queues with
2677 * queue 0's lock.
2678 */
t3b_intr(int irq,void * cookie)2679 static irqreturn_t t3b_intr(int irq, void *cookie)
2680 {
2681 u32 map;
2682 struct adapter *adap = cookie;
2683 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2684
2685 t3_write_reg(adap, A_PL_CLI, 0);
2686 map = t3_read_reg(adap, A_SG_DATA_INTR);
2687
2688 if (unlikely(!map)) /* shared interrupt, most likely */
2689 return IRQ_NONE;
2690
2691 spin_lock(&q0->lock);
2692
2693 if (unlikely(map & F_ERRINTR))
2694 t3_slow_intr_handler(adap);
2695
2696 if (likely(map & 1))
2697 process_responses_gts(adap, q0);
2698
2699 if (map & 2)
2700 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2701
2702 spin_unlock(&q0->lock);
2703 return IRQ_HANDLED;
2704 }
2705
2706 /*
2707 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2708 * Handles data events from SGE response queues as well as error and other
2709 * async events as they all use the same interrupt pin. We use one SGE
2710 * response queue per port in this mode and protect all response queues with
2711 * queue 0's lock.
2712 */
t3b_intr_napi(int irq,void * cookie)2713 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2714 {
2715 u32 map;
2716 struct adapter *adap = cookie;
2717 struct sge_qset *qs0 = &adap->sge.qs[0];
2718 struct sge_rspq *q0 = &qs0->rspq;
2719
2720 t3_write_reg(adap, A_PL_CLI, 0);
2721 map = t3_read_reg(adap, A_SG_DATA_INTR);
2722
2723 if (unlikely(!map)) /* shared interrupt, most likely */
2724 return IRQ_NONE;
2725
2726 spin_lock(&q0->lock);
2727
2728 if (unlikely(map & F_ERRINTR))
2729 t3_slow_intr_handler(adap);
2730
2731 if (likely(map & 1))
2732 napi_schedule(&qs0->napi);
2733
2734 if (map & 2)
2735 napi_schedule(&adap->sge.qs[1].napi);
2736
2737 spin_unlock(&q0->lock);
2738 return IRQ_HANDLED;
2739 }
2740
2741 /**
2742 * t3_intr_handler - select the top-level interrupt handler
2743 * @adap: the adapter
2744 * @polling: whether using NAPI to service response queues
2745 *
2746 * Selects the top-level interrupt handler based on the type of interrupts
2747 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2748 * response queues.
2749 */
t3_intr_handler(struct adapter * adap,int polling)2750 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2751 {
2752 if (adap->flags & USING_MSIX)
2753 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2754 if (adap->flags & USING_MSI)
2755 return polling ? t3_intr_msi_napi : t3_intr_msi;
2756 if (adap->params.rev > 0)
2757 return polling ? t3b_intr_napi : t3b_intr;
2758 return t3_intr;
2759 }
2760
2761 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2762 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2763 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2764 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2765 F_HIRCQPARITYERROR)
2766 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2767 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2768 F_RSPQDISABLED)
2769
2770 /**
2771 * t3_sge_err_intr_handler - SGE async event interrupt handler
2772 * @adapter: the adapter
2773 *
2774 * Interrupt handler for SGE asynchronous (non-data) events.
2775 */
t3_sge_err_intr_handler(struct adapter * adapter)2776 void t3_sge_err_intr_handler(struct adapter *adapter)
2777 {
2778 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2779
2780 if (status & SGE_PARERR)
2781 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2782 status & SGE_PARERR);
2783 if (status & SGE_FRAMINGERR)
2784 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2785 status & SGE_FRAMINGERR);
2786
2787 if (status & F_RSPQCREDITOVERFOW)
2788 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2789
2790 if (status & F_RSPQDISABLED) {
2791 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2792
2793 CH_ALERT(adapter,
2794 "packet delivered to disabled response queue "
2795 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2796 }
2797
2798 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2799 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2800 status & F_HIPIODRBDROPERR ? "high" : "lo");
2801
2802 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2803 if (status & SGE_FATALERR)
2804 t3_fatal_err(adapter);
2805 }
2806
2807 /**
2808 * sge_timer_cb - perform periodic maintenance of an SGE qset
2809 * @data: the SGE queue set to maintain
2810 *
2811 * Runs periodically from a timer to perform maintenance of an SGE queue
2812 * set. It performs two tasks:
2813 *
2814 * a) Cleans up any completed Tx descriptors that may still be pending.
2815 * Normal descriptor cleanup happens when new packets are added to a Tx
2816 * queue so this timer is relatively infrequent and does any cleanup only
2817 * if the Tx queue has not seen any new packets in a while. We make a
2818 * best effort attempt to reclaim descriptors, in that we don't wait
2819 * around if we cannot get a queue's lock (which most likely is because
2820 * someone else is queueing new packets and so will also handle the clean
2821 * up). Since control queues use immediate data exclusively we don't
2822 * bother cleaning them up here.
2823 *
2824 * b) Replenishes Rx queues that have run out due to memory shortage.
2825 * Normally new Rx buffers are added when existing ones are consumed but
2826 * when out of memory a queue can become empty. We try to add only a few
2827 * buffers here, the queue will be replenished fully as these new buffers
2828 * are used up if memory shortage has subsided.
2829 */
sge_timer_cb(unsigned long data)2830 static void sge_timer_cb(unsigned long data)
2831 {
2832 spinlock_t *lock;
2833 struct sge_qset *qs = (struct sge_qset *)data;
2834 struct adapter *adap = qs->adap;
2835
2836 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2837 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2838 spin_unlock(&qs->txq[TXQ_ETH].lock);
2839 }
2840 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2841 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2842 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2843 }
2844 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
2845 &adap->sge.qs[0].rspq.lock;
2846 if (spin_trylock_irq(lock)) {
2847 if (!napi_is_scheduled(&qs->napi)) {
2848 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2849
2850 if (qs->fl[0].credits < qs->fl[0].size)
2851 __refill_fl(adap, &qs->fl[0]);
2852 if (qs->fl[1].credits < qs->fl[1].size)
2853 __refill_fl(adap, &qs->fl[1]);
2854
2855 if (status & (1 << qs->rspq.cntxt_id)) {
2856 qs->rspq.starved++;
2857 if (qs->rspq.credits) {
2858 refill_rspq(adap, &qs->rspq, 1);
2859 qs->rspq.credits--;
2860 qs->rspq.restarted++;
2861 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2862 1 << qs->rspq.cntxt_id);
2863 }
2864 }
2865 }
2866 spin_unlock_irq(lock);
2867 }
2868 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2869 }
2870
2871 /**
2872 * t3_update_qset_coalesce - update coalescing settings for a queue set
2873 * @qs: the SGE queue set
2874 * @p: new queue set parameters
2875 *
2876 * Update the coalescing settings for an SGE queue set. Nothing is done
2877 * if the queue set is not initialized yet.
2878 */
t3_update_qset_coalesce(struct sge_qset * qs,const struct qset_params * p)2879 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2880 {
2881 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2882 qs->rspq.polling = p->polling;
2883 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2884 }
2885
2886 /**
2887 * t3_sge_alloc_qset - initialize an SGE queue set
2888 * @adapter: the adapter
2889 * @id: the queue set id
2890 * @nports: how many Ethernet ports will be using this queue set
2891 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2892 * @p: configuration parameters for this queue set
2893 * @ntxq: number of Tx queues for the queue set
2894 * @netdev: net device associated with this queue set
2895 * @netdevq: net device TX queue associated with this queue set
2896 *
2897 * Allocate resources and initialize an SGE queue set. A queue set
2898 * comprises a response queue, two Rx free-buffer queues, and up to 3
2899 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2900 * queue, offload queue, and control queue.
2901 */
t3_sge_alloc_qset(struct adapter * adapter,unsigned int id,int nports,int irq_vec_idx,const struct qset_params * p,int ntxq,struct net_device * dev,struct netdev_queue * netdevq)2902 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2903 int irq_vec_idx, const struct qset_params *p,
2904 int ntxq, struct net_device *dev,
2905 struct netdev_queue *netdevq)
2906 {
2907 int i, avail, ret = -ENOMEM;
2908 struct sge_qset *q = &adapter->sge.qs[id];
2909 struct net_lro_mgr *lro_mgr = &q->lro_mgr;
2910
2911 init_qset_cntxt(q, id);
2912 setup_timer(&q->tx_reclaim_timer, sge_timer_cb, (unsigned long)q);
2913
2914 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2915 sizeof(struct rx_desc),
2916 sizeof(struct rx_sw_desc),
2917 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2918 if (!q->fl[0].desc)
2919 goto err;
2920
2921 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2922 sizeof(struct rx_desc),
2923 sizeof(struct rx_sw_desc),
2924 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2925 if (!q->fl[1].desc)
2926 goto err;
2927
2928 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2929 sizeof(struct rsp_desc), 0,
2930 &q->rspq.phys_addr, NULL);
2931 if (!q->rspq.desc)
2932 goto err;
2933
2934 for (i = 0; i < ntxq; ++i) {
2935 /*
2936 * The control queue always uses immediate data so does not
2937 * need to keep track of any sk_buffs.
2938 */
2939 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2940
2941 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2942 sizeof(struct tx_desc), sz,
2943 &q->txq[i].phys_addr,
2944 &q->txq[i].sdesc);
2945 if (!q->txq[i].desc)
2946 goto err;
2947
2948 q->txq[i].gen = 1;
2949 q->txq[i].size = p->txq_size[i];
2950 spin_lock_init(&q->txq[i].lock);
2951 skb_queue_head_init(&q->txq[i].sendq);
2952 }
2953
2954 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2955 (unsigned long)q);
2956 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2957 (unsigned long)q);
2958
2959 q->fl[0].gen = q->fl[1].gen = 1;
2960 q->fl[0].size = p->fl_size;
2961 q->fl[1].size = p->jumbo_size;
2962
2963 q->rspq.gen = 1;
2964 q->rspq.size = p->rspq_size;
2965 spin_lock_init(&q->rspq.lock);
2966 skb_queue_head_init(&q->rspq.rx_queue);
2967
2968 q->txq[TXQ_ETH].stop_thres = nports *
2969 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2970
2971 #if FL0_PG_CHUNK_SIZE > 0
2972 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
2973 #else
2974 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
2975 #endif
2976 #if FL1_PG_CHUNK_SIZE > 0
2977 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
2978 #else
2979 q->fl[1].buf_size = is_offload(adapter) ?
2980 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2981 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
2982 #endif
2983
2984 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2985 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
2986 q->fl[0].order = FL0_PG_ORDER;
2987 q->fl[1].order = FL1_PG_ORDER;
2988
2989 q->lro_frag_tbl = kcalloc(MAX_FRAME_SIZE / FL1_PG_CHUNK_SIZE + 1,
2990 sizeof(struct skb_frag_struct),
2991 GFP_KERNEL);
2992 q->lro_nfrags = q->lro_frag_len = 0;
2993 spin_lock_irq(&adapter->sge.reg_lock);
2994
2995 /* FL threshold comparison uses < */
2996 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2997 q->rspq.phys_addr, q->rspq.size,
2998 q->fl[0].buf_size, 1, 0);
2999 if (ret)
3000 goto err_unlock;
3001
3002 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3003 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3004 q->fl[i].phys_addr, q->fl[i].size,
3005 q->fl[i].buf_size, p->cong_thres, 1,
3006 0);
3007 if (ret)
3008 goto err_unlock;
3009 }
3010
3011 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3012 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3013 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3014 1, 0);
3015 if (ret)
3016 goto err_unlock;
3017
3018 if (ntxq > 1) {
3019 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3020 USE_GTS, SGE_CNTXT_OFLD, id,
3021 q->txq[TXQ_OFLD].phys_addr,
3022 q->txq[TXQ_OFLD].size, 0, 1, 0);
3023 if (ret)
3024 goto err_unlock;
3025 }
3026
3027 if (ntxq > 2) {
3028 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3029 SGE_CNTXT_CTRL, id,
3030 q->txq[TXQ_CTRL].phys_addr,
3031 q->txq[TXQ_CTRL].size,
3032 q->txq[TXQ_CTRL].token, 1, 0);
3033 if (ret)
3034 goto err_unlock;
3035 }
3036
3037 spin_unlock_irq(&adapter->sge.reg_lock);
3038
3039 q->adap = adapter;
3040 q->netdev = dev;
3041 q->tx_q = netdevq;
3042 t3_update_qset_coalesce(q, p);
3043
3044 init_lro_mgr(q, lro_mgr);
3045
3046 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3047 GFP_KERNEL | __GFP_COMP);
3048 if (!avail) {
3049 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3050 goto err;
3051 }
3052 if (avail < q->fl[0].size)
3053 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3054 avail);
3055
3056 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3057 GFP_KERNEL | __GFP_COMP);
3058 if (avail < q->fl[1].size)
3059 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3060 avail);
3061 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3062
3063 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3064 V_NEWTIMER(q->rspq.holdoff_tmr));
3065
3066 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3067 return 0;
3068
3069 err_unlock:
3070 spin_unlock_irq(&adapter->sge.reg_lock);
3071 err:
3072 t3_free_qset(adapter, q);
3073 return ret;
3074 }
3075
3076 /**
3077 * t3_stop_sge_timers - stop SGE timer call backs
3078 * @adap: the adapter
3079 *
3080 * Stops each SGE queue set's timer call back
3081 */
t3_stop_sge_timers(struct adapter * adap)3082 void t3_stop_sge_timers(struct adapter *adap)
3083 {
3084 int i;
3085
3086 for (i = 0; i < SGE_QSETS; ++i) {
3087 struct sge_qset *q = &adap->sge.qs[i];
3088
3089 if (q->tx_reclaim_timer.function)
3090 del_timer_sync(&q->tx_reclaim_timer);
3091 }
3092 }
3093
3094 /**
3095 * t3_free_sge_resources - free SGE resources
3096 * @adap: the adapter
3097 *
3098 * Frees resources used by the SGE queue sets.
3099 */
t3_free_sge_resources(struct adapter * adap)3100 void t3_free_sge_resources(struct adapter *adap)
3101 {
3102 int i;
3103
3104 for (i = 0; i < SGE_QSETS; ++i)
3105 t3_free_qset(adap, &adap->sge.qs[i]);
3106 }
3107
3108 /**
3109 * t3_sge_start - enable SGE
3110 * @adap: the adapter
3111 *
3112 * Enables the SGE for DMAs. This is the last step in starting packet
3113 * transfers.
3114 */
t3_sge_start(struct adapter * adap)3115 void t3_sge_start(struct adapter *adap)
3116 {
3117 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3118 }
3119
3120 /**
3121 * t3_sge_stop - disable SGE operation
3122 * @adap: the adapter
3123 *
3124 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3125 * from error interrupts) or from normal process context. In the latter
3126 * case it also disables any pending queue restart tasklets. Note that
3127 * if it is called in interrupt context it cannot disable the restart
3128 * tasklets as it cannot wait, however the tasklets will have no effect
3129 * since the doorbells are disabled and the driver will call this again
3130 * later from process context, at which time the tasklets will be stopped
3131 * if they are still running.
3132 */
t3_sge_stop(struct adapter * adap)3133 void t3_sge_stop(struct adapter *adap)
3134 {
3135 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3136 if (!in_interrupt()) {
3137 int i;
3138
3139 for (i = 0; i < SGE_QSETS; ++i) {
3140 struct sge_qset *qs = &adap->sge.qs[i];
3141
3142 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3143 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3144 }
3145 }
3146 }
3147
3148 /**
3149 * t3_sge_init - initialize SGE
3150 * @adap: the adapter
3151 * @p: the SGE parameters
3152 *
3153 * Performs SGE initialization needed every time after a chip reset.
3154 * We do not initialize any of the queue sets here, instead the driver
3155 * top-level must request those individually. We also do not enable DMA
3156 * here, that should be done after the queues have been set up.
3157 */
t3_sge_init(struct adapter * adap,struct sge_params * p)3158 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3159 {
3160 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3161
3162 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3163 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3164 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3165 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3166 #if SGE_NUM_GENBITS == 1
3167 ctrl |= F_EGRGENCTRL;
3168 #endif
3169 if (adap->params.rev > 0) {
3170 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3171 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3172 }
3173 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3174 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3175 V_LORCQDRBTHRSH(512));
3176 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3177 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3178 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3179 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3180 adap->params.rev < T3_REV_C ? 1000 : 500);
3181 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3182 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3183 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3184 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3185 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3186 }
3187
3188 /**
3189 * t3_sge_prep - one-time SGE initialization
3190 * @adap: the associated adapter
3191 * @p: SGE parameters
3192 *
3193 * Performs one-time initialization of SGE SW state. Includes determining
3194 * defaults for the assorted SGE parameters, which admins can change until
3195 * they are used to initialize the SGE.
3196 */
t3_sge_prep(struct adapter * adap,struct sge_params * p)3197 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3198 {
3199 int i;
3200
3201 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3202 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3203
3204 for (i = 0; i < SGE_QSETS; ++i) {
3205 struct qset_params *q = p->qset + i;
3206
3207 q->polling = adap->params.rev > 0;
3208 q->coalesce_usecs = 5;
3209 q->rspq_size = 1024;
3210 q->fl_size = 1024;
3211 q->jumbo_size = 512;
3212 q->txq_size[TXQ_ETH] = 1024;
3213 q->txq_size[TXQ_OFLD] = 1024;
3214 q->txq_size[TXQ_CTRL] = 256;
3215 q->cong_thres = 0;
3216 }
3217
3218 spin_lock_init(&adap->sge.reg_lock);
3219 }
3220
3221 /**
3222 * t3_get_desc - dump an SGE descriptor for debugging purposes
3223 * @qs: the queue set
3224 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3225 * @idx: the descriptor index in the queue
3226 * @data: where to dump the descriptor contents
3227 *
3228 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3229 * size of the descriptor.
3230 */
t3_get_desc(const struct sge_qset * qs,unsigned int qnum,unsigned int idx,unsigned char * data)3231 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3232 unsigned char *data)
3233 {
3234 if (qnum >= 6)
3235 return -EINVAL;
3236
3237 if (qnum < 3) {
3238 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3239 return -EINVAL;
3240 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3241 return sizeof(struct tx_desc);
3242 }
3243
3244 if (qnum == 3) {
3245 if (!qs->rspq.desc || idx >= qs->rspq.size)
3246 return -EINVAL;
3247 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3248 return sizeof(struct rsp_desc);
3249 }
3250
3251 qnum -= 4;
3252 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3253 return -EINVAL;
3254 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3255 return sizeof(struct rx_desc);
3256 }
3257