• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  kernel/sched.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76 
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 
80 #include "sched_cpupri.h"
81 
82 /*
83  * Convert user-nice values [ -20 ... 0 ... 19 ]
84  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85  * and back.
86  */
87 #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)
90 
91 /*
92  * 'User priority' is the nice value converted to something we
93  * can work with better when scaling various scheduler parameters,
94  * it's a [ 0 ... 39 ] range.
95  */
96 #define USER_PRIO(p)		((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))
99 
100 /*
101  * Helpers for converting nanosecond timing to jiffy resolution
102  */
103 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104 
105 #define NICE_0_LOAD		SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
107 
108 /*
109  * These are the 'tuning knobs' of the scheduler:
110  *
111  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112  * Timeslices get refilled after they expire.
113  */
114 #define DEF_TIMESLICE		(100 * HZ / 1000)
115 
116 /*
117  * single value that denotes runtime == period, ie unlimited time.
118  */
119 #define RUNTIME_INF	((u64)~0ULL)
120 
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126 
127 #ifdef CONFIG_SMP
128 
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130 
131 /*
132  * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133  * Since cpu_power is a 'constant', we can use a reciprocal divide.
134  */
sg_div_cpu_power(const struct sched_group * sg,u32 load)135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136 {
137 	return reciprocal_divide(load, sg->reciprocal_cpu_power);
138 }
139 
140 /*
141  * Each time a sched group cpu_power is changed,
142  * we must compute its reciprocal value
143  */
sg_inc_cpu_power(struct sched_group * sg,u32 val)144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145 {
146 	sg->__cpu_power += val;
147 	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148 }
149 #endif
150 
rt_policy(int policy)151 static inline int rt_policy(int policy)
152 {
153 	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 		return 1;
155 	return 0;
156 }
157 
task_has_rt_policy(struct task_struct * p)158 static inline int task_has_rt_policy(struct task_struct *p)
159 {
160 	return rt_policy(p->policy);
161 }
162 
163 /*
164  * This is the priority-queue data structure of the RT scheduling class:
165  */
166 struct rt_prio_array {
167 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 	struct list_head queue[MAX_RT_PRIO];
169 };
170 
171 struct rt_bandwidth {
172 	/* nests inside the rq lock: */
173 	spinlock_t		rt_runtime_lock;
174 	ktime_t			rt_period;
175 	u64			rt_runtime;
176 	struct hrtimer		rt_period_timer;
177 };
178 
179 static struct rt_bandwidth def_rt_bandwidth;
180 
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182 
sched_rt_period_timer(struct hrtimer * timer)183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184 {
185 	struct rt_bandwidth *rt_b =
186 		container_of(timer, struct rt_bandwidth, rt_period_timer);
187 	ktime_t now;
188 	int overrun;
189 	int idle = 0;
190 
191 	for (;;) {
192 		now = hrtimer_cb_get_time(timer);
193 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194 
195 		if (!overrun)
196 			break;
197 
198 		idle = do_sched_rt_period_timer(rt_b, overrun);
199 	}
200 
201 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202 }
203 
204 static
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206 {
207 	rt_b->rt_period = ns_to_ktime(period);
208 	rt_b->rt_runtime = runtime;
209 
210 	spin_lock_init(&rt_b->rt_runtime_lock);
211 
212 	hrtimer_init(&rt_b->rt_period_timer,
213 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 	rt_b->rt_period_timer.function = sched_rt_period_timer;
215 }
216 
rt_bandwidth_enabled(void)217 static inline int rt_bandwidth_enabled(void)
218 {
219 	return sysctl_sched_rt_runtime >= 0;
220 }
221 
start_rt_bandwidth(struct rt_bandwidth * rt_b)222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223 {
224 	ktime_t now;
225 
226 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 		return;
228 
229 	if (hrtimer_active(&rt_b->rt_period_timer))
230 		return;
231 
232 	spin_lock(&rt_b->rt_runtime_lock);
233 	for (;;) {
234 		if (hrtimer_active(&rt_b->rt_period_timer))
235 			break;
236 
237 		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 		hrtimer_start_expires(&rt_b->rt_period_timer,
240 				HRTIMER_MODE_ABS);
241 	}
242 	spin_unlock(&rt_b->rt_runtime_lock);
243 }
244 
245 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247 {
248 	hrtimer_cancel(&rt_b->rt_period_timer);
249 }
250 #endif
251 
252 /*
253  * sched_domains_mutex serializes calls to arch_init_sched_domains,
254  * detach_destroy_domains and partition_sched_domains.
255  */
256 static DEFINE_MUTEX(sched_domains_mutex);
257 
258 #ifdef CONFIG_GROUP_SCHED
259 
260 #include <linux/cgroup.h>
261 
262 struct cfs_rq;
263 
264 static LIST_HEAD(task_groups);
265 
266 /* task group related information */
267 struct task_group {
268 #ifdef CONFIG_CGROUP_SCHED
269 	struct cgroup_subsys_state css;
270 #endif
271 
272 #ifdef CONFIG_USER_SCHED
273 	uid_t uid;
274 #endif
275 
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 	/* schedulable entities of this group on each cpu */
278 	struct sched_entity **se;
279 	/* runqueue "owned" by this group on each cpu */
280 	struct cfs_rq **cfs_rq;
281 	unsigned long shares;
282 #endif
283 
284 #ifdef CONFIG_RT_GROUP_SCHED
285 	struct sched_rt_entity **rt_se;
286 	struct rt_rq **rt_rq;
287 
288 	struct rt_bandwidth rt_bandwidth;
289 #endif
290 
291 	struct rcu_head rcu;
292 	struct list_head list;
293 
294 	struct task_group *parent;
295 	struct list_head siblings;
296 	struct list_head children;
297 };
298 
299 #ifdef CONFIG_USER_SCHED
300 
301 /* Helper function to pass uid information to create_sched_user() */
set_tg_uid(struct user_struct * user)302 void set_tg_uid(struct user_struct *user)
303 {
304 	user->tg->uid = user->uid;
305 }
306 
307 /*
308  * Root task group.
309  * 	Every UID task group (including init_task_group aka UID-0) will
310  * 	be a child to this group.
311  */
312 struct task_group root_task_group;
313 
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
320 
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
328 
329 /* task_group_lock serializes add/remove of task groups and also changes to
330  * a task group's cpu shares.
331  */
332 static DEFINE_SPINLOCK(task_group_lock);
333 
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
340 
341 /*
342  * A weight of 0 or 1 can cause arithmetics problems.
343  * A weight of a cfs_rq is the sum of weights of which entities
344  * are queued on this cfs_rq, so a weight of a entity should not be
345  * too large, so as the shares value of a task group.
346  * (The default weight is 1024 - so there's no practical
347  *  limitation from this.)
348  */
349 #define MIN_SHARES	2
350 #define MAX_SHARES	(1UL << 18)
351 
352 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353 #endif
354 
355 /* Default task group.
356  *	Every task in system belong to this group at bootup.
357  */
358 struct task_group init_task_group;
359 
360 /* return group to which a task belongs */
task_group(struct task_struct * p)361 static inline struct task_group *task_group(struct task_struct *p)
362 {
363 	struct task_group *tg;
364 
365 #ifdef CONFIG_USER_SCHED
366 	rcu_read_lock();
367 	tg = __task_cred(p)->user->tg;
368 	rcu_read_unlock();
369 #elif defined(CONFIG_CGROUP_SCHED)
370 	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 				struct task_group, css);
372 #else
373 	tg = &init_task_group;
374 #endif
375 	return tg;
376 }
377 
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
380 {
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 	p->se.parent = task_group(p)->se[cpu];
384 #endif
385 
386 #ifdef CONFIG_RT_GROUP_SCHED
387 	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
388 	p->rt.parent = task_group(p)->rt_se[cpu];
389 #endif
390 }
391 
392 #else
393 
set_task_rq(struct task_struct * p,unsigned int cpu)394 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)395 static inline struct task_group *task_group(struct task_struct *p)
396 {
397 	return NULL;
398 }
399 
400 #endif	/* CONFIG_GROUP_SCHED */
401 
402 /* CFS-related fields in a runqueue */
403 struct cfs_rq {
404 	struct load_weight load;
405 	unsigned long nr_running;
406 
407 	u64 exec_clock;
408 	u64 min_vruntime;
409 
410 	struct rb_root tasks_timeline;
411 	struct rb_node *rb_leftmost;
412 
413 	struct list_head tasks;
414 	struct list_head *balance_iterator;
415 
416 	/*
417 	 * 'curr' points to currently running entity on this cfs_rq.
418 	 * It is set to NULL otherwise (i.e when none are currently running).
419 	 */
420 	struct sched_entity *curr, *next, *last;
421 
422 	unsigned int nr_spread_over;
423 
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
426 
427 	/*
428 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 	 * (like users, containers etc.)
431 	 *
432 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 	 * list is used during load balance.
434 	 */
435 	struct list_head leaf_cfs_rq_list;
436 	struct task_group *tg;	/* group that "owns" this runqueue */
437 
438 #ifdef CONFIG_SMP
439 	/*
440 	 * the part of load.weight contributed by tasks
441 	 */
442 	unsigned long task_weight;
443 
444 	/*
445 	 *   h_load = weight * f(tg)
446 	 *
447 	 * Where f(tg) is the recursive weight fraction assigned to
448 	 * this group.
449 	 */
450 	unsigned long h_load;
451 
452 	/*
453 	 * this cpu's part of tg->shares
454 	 */
455 	unsigned long shares;
456 
457 	/*
458 	 * load.weight at the time we set shares
459 	 */
460 	unsigned long rq_weight;
461 #endif
462 #endif
463 };
464 
465 /* Real-Time classes' related field in a runqueue: */
466 struct rt_rq {
467 	struct rt_prio_array active;
468 	unsigned long rt_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 	int highest_prio; /* highest queued rt task prio */
471 #endif
472 #ifdef CONFIG_SMP
473 	unsigned long rt_nr_migratory;
474 	int overloaded;
475 #endif
476 	int rt_throttled;
477 	u64 rt_time;
478 	u64 rt_runtime;
479 	/* Nests inside the rq lock: */
480 	spinlock_t rt_runtime_lock;
481 
482 #ifdef CONFIG_RT_GROUP_SCHED
483 	unsigned long rt_nr_boosted;
484 
485 	struct rq *rq;
486 	struct list_head leaf_rt_rq_list;
487 	struct task_group *tg;
488 	struct sched_rt_entity *rt_se;
489 #endif
490 };
491 
492 #ifdef CONFIG_SMP
493 
494 /*
495  * We add the notion of a root-domain which will be used to define per-domain
496  * variables. Each exclusive cpuset essentially defines an island domain by
497  * fully partitioning the member cpus from any other cpuset. Whenever a new
498  * exclusive cpuset is created, we also create and attach a new root-domain
499  * object.
500  *
501  */
502 struct root_domain {
503 	atomic_t refcount;
504 	cpumask_var_t span;
505 	cpumask_var_t online;
506 
507 	/*
508 	 * The "RT overload" flag: it gets set if a CPU has more than
509 	 * one runnable RT task.
510 	 */
511 	cpumask_var_t rto_mask;
512 	atomic_t rto_count;
513 #ifdef CONFIG_SMP
514 	struct cpupri cpupri;
515 #endif
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 	/*
518 	 * Preferred wake up cpu nominated by sched_mc balance that will be
519 	 * used when most cpus are idle in the system indicating overall very
520 	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 	 */
522 	unsigned int sched_mc_preferred_wakeup_cpu;
523 #endif
524 };
525 
526 /*
527  * By default the system creates a single root-domain with all cpus as
528  * members (mimicking the global state we have today).
529  */
530 static struct root_domain def_root_domain;
531 
532 #endif
533 
534 /*
535  * This is the main, per-CPU runqueue data structure.
536  *
537  * Locking rule: those places that want to lock multiple runqueues
538  * (such as the load balancing or the thread migration code), lock
539  * acquire operations must be ordered by ascending &runqueue.
540  */
541 struct rq {
542 	/* runqueue lock: */
543 	spinlock_t lock;
544 
545 	/*
546 	 * nr_running and cpu_load should be in the same cacheline because
547 	 * remote CPUs use both these fields when doing load calculation.
548 	 */
549 	unsigned long nr_running;
550 	#define CPU_LOAD_IDX_MAX 5
551 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552 	unsigned char idle_at_tick;
553 #ifdef CONFIG_NO_HZ
554 	unsigned long last_tick_seen;
555 	unsigned char in_nohz_recently;
556 #endif
557 	/* capture load from *all* tasks on this cpu: */
558 	struct load_weight load;
559 	unsigned long nr_load_updates;
560 	u64 nr_switches;
561 
562 	struct cfs_rq cfs;
563 	struct rt_rq rt;
564 
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 	/* list of leaf cfs_rq on this cpu: */
567 	struct list_head leaf_cfs_rq_list;
568 #endif
569 #ifdef CONFIG_RT_GROUP_SCHED
570 	struct list_head leaf_rt_rq_list;
571 #endif
572 
573 	/*
574 	 * This is part of a global counter where only the total sum
575 	 * over all CPUs matters. A task can increase this counter on
576 	 * one CPU and if it got migrated afterwards it may decrease
577 	 * it on another CPU. Always updated under the runqueue lock:
578 	 */
579 	unsigned long nr_uninterruptible;
580 
581 	struct task_struct *curr, *idle;
582 	unsigned long next_balance;
583 	struct mm_struct *prev_mm;
584 
585 	u64 clock;
586 
587 	atomic_t nr_iowait;
588 
589 #ifdef CONFIG_SMP
590 	struct root_domain *rd;
591 	struct sched_domain *sd;
592 
593 	/* For active balancing */
594 	int active_balance;
595 	int push_cpu;
596 	/* cpu of this runqueue: */
597 	int cpu;
598 	int online;
599 
600 	unsigned long avg_load_per_task;
601 
602 	struct task_struct *migration_thread;
603 	struct list_head migration_queue;
604 #endif
605 
606 #ifdef CONFIG_SCHED_HRTICK
607 #ifdef CONFIG_SMP
608 	int hrtick_csd_pending;
609 	struct call_single_data hrtick_csd;
610 #endif
611 	struct hrtimer hrtick_timer;
612 #endif
613 
614 #ifdef CONFIG_SCHEDSTATS
615 	/* latency stats */
616 	struct sched_info rq_sched_info;
617 	unsigned long long rq_cpu_time;
618 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
619 
620 	/* sys_sched_yield() stats */
621 	unsigned int yld_exp_empty;
622 	unsigned int yld_act_empty;
623 	unsigned int yld_both_empty;
624 	unsigned int yld_count;
625 
626 	/* schedule() stats */
627 	unsigned int sched_switch;
628 	unsigned int sched_count;
629 	unsigned int sched_goidle;
630 
631 	/* try_to_wake_up() stats */
632 	unsigned int ttwu_count;
633 	unsigned int ttwu_local;
634 
635 	/* BKL stats */
636 	unsigned int bkl_count;
637 #endif
638 };
639 
640 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
641 
check_preempt_curr(struct rq * rq,struct task_struct * p,int sync)642 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
643 {
644 	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
645 }
646 
cpu_of(struct rq * rq)647 static inline int cpu_of(struct rq *rq)
648 {
649 #ifdef CONFIG_SMP
650 	return rq->cpu;
651 #else
652 	return 0;
653 #endif
654 }
655 
656 /*
657  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658  * See detach_destroy_domains: synchronize_sched for details.
659  *
660  * The domain tree of any CPU may only be accessed from within
661  * preempt-disabled sections.
662  */
663 #define for_each_domain(cpu, __sd) \
664 	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
665 
666 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
667 #define this_rq()		(&__get_cpu_var(runqueues))
668 #define task_rq(p)		cpu_rq(task_cpu(p))
669 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
670 
update_rq_clock(struct rq * rq)671 static inline void update_rq_clock(struct rq *rq)
672 {
673 	rq->clock = sched_clock_cpu(cpu_of(rq));
674 }
675 
676 /*
677  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
678  */
679 #ifdef CONFIG_SCHED_DEBUG
680 # define const_debug __read_mostly
681 #else
682 # define const_debug static const
683 #endif
684 
685 /**
686  * runqueue_is_locked
687  *
688  * Returns true if the current cpu runqueue is locked.
689  * This interface allows printk to be called with the runqueue lock
690  * held and know whether or not it is OK to wake up the klogd.
691  */
runqueue_is_locked(void)692 int runqueue_is_locked(void)
693 {
694 	int cpu = get_cpu();
695 	struct rq *rq = cpu_rq(cpu);
696 	int ret;
697 
698 	ret = spin_is_locked(&rq->lock);
699 	put_cpu();
700 	return ret;
701 }
702 
703 /*
704  * Debugging: various feature bits
705  */
706 
707 #define SCHED_FEAT(name, enabled)	\
708 	__SCHED_FEAT_##name ,
709 
710 enum {
711 #include "sched_features.h"
712 };
713 
714 #undef SCHED_FEAT
715 
716 #define SCHED_FEAT(name, enabled)	\
717 	(1UL << __SCHED_FEAT_##name) * enabled |
718 
719 const_debug unsigned int sysctl_sched_features =
720 #include "sched_features.h"
721 	0;
722 
723 #undef SCHED_FEAT
724 
725 #ifdef CONFIG_SCHED_DEBUG
726 #define SCHED_FEAT(name, enabled)	\
727 	#name ,
728 
729 static __read_mostly char *sched_feat_names[] = {
730 #include "sched_features.h"
731 	NULL
732 };
733 
734 #undef SCHED_FEAT
735 
sched_feat_show(struct seq_file * m,void * v)736 static int sched_feat_show(struct seq_file *m, void *v)
737 {
738 	int i;
739 
740 	for (i = 0; sched_feat_names[i]; i++) {
741 		if (!(sysctl_sched_features & (1UL << i)))
742 			seq_puts(m, "NO_");
743 		seq_printf(m, "%s ", sched_feat_names[i]);
744 	}
745 	seq_puts(m, "\n");
746 
747 	return 0;
748 }
749 
750 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)751 sched_feat_write(struct file *filp, const char __user *ubuf,
752 		size_t cnt, loff_t *ppos)
753 {
754 	char buf[64];
755 	char *cmp = buf;
756 	int neg = 0;
757 	int i;
758 
759 	if (cnt > 63)
760 		cnt = 63;
761 
762 	if (copy_from_user(&buf, ubuf, cnt))
763 		return -EFAULT;
764 
765 	buf[cnt] = 0;
766 
767 	if (strncmp(buf, "NO_", 3) == 0) {
768 		neg = 1;
769 		cmp += 3;
770 	}
771 
772 	for (i = 0; sched_feat_names[i]; i++) {
773 		int len = strlen(sched_feat_names[i]);
774 
775 		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 			if (neg)
777 				sysctl_sched_features &= ~(1UL << i);
778 			else
779 				sysctl_sched_features |= (1UL << i);
780 			break;
781 		}
782 	}
783 
784 	if (!sched_feat_names[i])
785 		return -EINVAL;
786 
787 	filp->f_pos += cnt;
788 
789 	return cnt;
790 }
791 
sched_feat_open(struct inode * inode,struct file * filp)792 static int sched_feat_open(struct inode *inode, struct file *filp)
793 {
794 	return single_open(filp, sched_feat_show, NULL);
795 }
796 
797 static struct file_operations sched_feat_fops = {
798 	.open		= sched_feat_open,
799 	.write		= sched_feat_write,
800 	.read		= seq_read,
801 	.llseek		= seq_lseek,
802 	.release	= single_release,
803 };
804 
sched_init_debug(void)805 static __init int sched_init_debug(void)
806 {
807 	debugfs_create_file("sched_features", 0644, NULL, NULL,
808 			&sched_feat_fops);
809 
810 	return 0;
811 }
812 late_initcall(sched_init_debug);
813 
814 #endif
815 
816 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
817 
818 /*
819  * Number of tasks to iterate in a single balance run.
820  * Limited because this is done with IRQs disabled.
821  */
822 const_debug unsigned int sysctl_sched_nr_migrate = 32;
823 
824 /*
825  * ratelimit for updating the group shares.
826  * default: 0.25ms
827  */
828 unsigned int sysctl_sched_shares_ratelimit = 250000;
829 
830 /*
831  * Inject some fuzzyness into changing the per-cpu group shares
832  * this avoids remote rq-locks at the expense of fairness.
833  * default: 4
834  */
835 unsigned int sysctl_sched_shares_thresh = 4;
836 
837 /*
838  * period over which we measure -rt task cpu usage in us.
839  * default: 1s
840  */
841 unsigned int sysctl_sched_rt_period = 1000000;
842 
843 static __read_mostly int scheduler_running;
844 
845 /*
846  * part of the period that we allow rt tasks to run in us.
847  * default: 0.95s
848  */
849 int sysctl_sched_rt_runtime = 950000;
850 
global_rt_period(void)851 static inline u64 global_rt_period(void)
852 {
853 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854 }
855 
global_rt_runtime(void)856 static inline u64 global_rt_runtime(void)
857 {
858 	if (sysctl_sched_rt_runtime < 0)
859 		return RUNTIME_INF;
860 
861 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862 }
863 
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next)	do { } while (0)
866 #endif
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev)	do { } while (0)
869 #endif
870 
task_current(struct rq * rq,struct task_struct * p)871 static inline int task_current(struct rq *rq, struct task_struct *p)
872 {
873 	return rq->curr == p;
874 }
875 
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
task_running(struct rq * rq,struct task_struct * p)877 static inline int task_running(struct rq *rq, struct task_struct *p)
878 {
879 	return task_current(rq, p);
880 }
881 
prepare_lock_switch(struct rq * rq,struct task_struct * next)882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 }
885 
finish_lock_switch(struct rq * rq,struct task_struct * prev)886 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887 {
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 	/* this is a valid case when another task releases the spinlock */
890 	rq->lock.owner = current;
891 #endif
892 	/*
893 	 * If we are tracking spinlock dependencies then we have to
894 	 * fix up the runqueue lock - which gets 'carried over' from
895 	 * prev into current:
896 	 */
897 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898 
899 	spin_unlock_irq(&rq->lock);
900 }
901 
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
task_running(struct rq * rq,struct task_struct * p)903 static inline int task_running(struct rq *rq, struct task_struct *p)
904 {
905 #ifdef CONFIG_SMP
906 	return p->oncpu;
907 #else
908 	return task_current(rq, p);
909 #endif
910 }
911 
prepare_lock_switch(struct rq * rq,struct task_struct * next)912 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 {
914 #ifdef CONFIG_SMP
915 	/*
916 	 * We can optimise this out completely for !SMP, because the
917 	 * SMP rebalancing from interrupt is the only thing that cares
918 	 * here.
919 	 */
920 	next->oncpu = 1;
921 #endif
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 	spin_unlock_irq(&rq->lock);
924 #else
925 	spin_unlock(&rq->lock);
926 #endif
927 }
928 
finish_lock_switch(struct rq * rq,struct task_struct * prev)929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 {
931 #ifdef CONFIG_SMP
932 	/*
933 	 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 	 * We must ensure this doesn't happen until the switch is completely
935 	 * finished.
936 	 */
937 	smp_wmb();
938 	prev->oncpu = 0;
939 #endif
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 	local_irq_enable();
942 #endif
943 }
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
945 
946 /*
947  * __task_rq_lock - lock the runqueue a given task resides on.
948  * Must be called interrupts disabled.
949  */
__task_rq_lock(struct task_struct * p)950 static inline struct rq *__task_rq_lock(struct task_struct *p)
951 	__acquires(rq->lock)
952 {
953 	for (;;) {
954 		struct rq *rq = task_rq(p);
955 		spin_lock(&rq->lock);
956 		if (likely(rq == task_rq(p)))
957 			return rq;
958 		spin_unlock(&rq->lock);
959 	}
960 }
961 
962 /*
963  * task_rq_lock - lock the runqueue a given task resides on and disable
964  * interrupts. Note the ordering: we can safely lookup the task_rq without
965  * explicitly disabling preemption.
966  */
task_rq_lock(struct task_struct * p,unsigned long * flags)967 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 	__acquires(rq->lock)
969 {
970 	struct rq *rq;
971 
972 	for (;;) {
973 		local_irq_save(*flags);
974 		rq = task_rq(p);
975 		spin_lock(&rq->lock);
976 		if (likely(rq == task_rq(p)))
977 			return rq;
978 		spin_unlock_irqrestore(&rq->lock, *flags);
979 	}
980 }
981 
task_rq_unlock_wait(struct task_struct * p)982 void task_rq_unlock_wait(struct task_struct *p)
983 {
984 	struct rq *rq = task_rq(p);
985 
986 	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 	spin_unlock_wait(&rq->lock);
988 }
989 
__task_rq_unlock(struct rq * rq)990 static void __task_rq_unlock(struct rq *rq)
991 	__releases(rq->lock)
992 {
993 	spin_unlock(&rq->lock);
994 }
995 
task_rq_unlock(struct rq * rq,unsigned long * flags)996 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
997 	__releases(rq->lock)
998 {
999 	spin_unlock_irqrestore(&rq->lock, *flags);
1000 }
1001 
1002 /*
1003  * this_rq_lock - lock this runqueue and disable interrupts.
1004  */
this_rq_lock(void)1005 static struct rq *this_rq_lock(void)
1006 	__acquires(rq->lock)
1007 {
1008 	struct rq *rq;
1009 
1010 	local_irq_disable();
1011 	rq = this_rq();
1012 	spin_lock(&rq->lock);
1013 
1014 	return rq;
1015 }
1016 
1017 #ifdef CONFIG_SCHED_HRTICK
1018 /*
1019  * Use HR-timers to deliver accurate preemption points.
1020  *
1021  * Its all a bit involved since we cannot program an hrt while holding the
1022  * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023  * reschedule event.
1024  *
1025  * When we get rescheduled we reprogram the hrtick_timer outside of the
1026  * rq->lock.
1027  */
1028 
1029 /*
1030  * Use hrtick when:
1031  *  - enabled by features
1032  *  - hrtimer is actually high res
1033  */
hrtick_enabled(struct rq * rq)1034 static inline int hrtick_enabled(struct rq *rq)
1035 {
1036 	if (!sched_feat(HRTICK))
1037 		return 0;
1038 	if (!cpu_active(cpu_of(rq)))
1039 		return 0;
1040 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1041 }
1042 
hrtick_clear(struct rq * rq)1043 static void hrtick_clear(struct rq *rq)
1044 {
1045 	if (hrtimer_active(&rq->hrtick_timer))
1046 		hrtimer_cancel(&rq->hrtick_timer);
1047 }
1048 
1049 /*
1050  * High-resolution timer tick.
1051  * Runs from hardirq context with interrupts disabled.
1052  */
hrtick(struct hrtimer * timer)1053 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054 {
1055 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056 
1057 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058 
1059 	spin_lock(&rq->lock);
1060 	update_rq_clock(rq);
1061 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 	spin_unlock(&rq->lock);
1063 
1064 	return HRTIMER_NORESTART;
1065 }
1066 
1067 #ifdef CONFIG_SMP
1068 /*
1069  * called from hardirq (IPI) context
1070  */
__hrtick_start(void * arg)1071 static void __hrtick_start(void *arg)
1072 {
1073 	struct rq *rq = arg;
1074 
1075 	spin_lock(&rq->lock);
1076 	hrtimer_restart(&rq->hrtick_timer);
1077 	rq->hrtick_csd_pending = 0;
1078 	spin_unlock(&rq->lock);
1079 }
1080 
1081 /*
1082  * Called to set the hrtick timer state.
1083  *
1084  * called with rq->lock held and irqs disabled
1085  */
hrtick_start(struct rq * rq,u64 delay)1086 static void hrtick_start(struct rq *rq, u64 delay)
1087 {
1088 	struct hrtimer *timer = &rq->hrtick_timer;
1089 	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090 
1091 	hrtimer_set_expires(timer, time);
1092 
1093 	if (rq == this_rq()) {
1094 		hrtimer_restart(timer);
1095 	} else if (!rq->hrtick_csd_pending) {
1096 		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 		rq->hrtick_csd_pending = 1;
1098 	}
1099 }
1100 
1101 static int
hotplug_hrtick(struct notifier_block * nfb,unsigned long action,void * hcpu)1102 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103 {
1104 	int cpu = (int)(long)hcpu;
1105 
1106 	switch (action) {
1107 	case CPU_UP_CANCELED:
1108 	case CPU_UP_CANCELED_FROZEN:
1109 	case CPU_DOWN_PREPARE:
1110 	case CPU_DOWN_PREPARE_FROZEN:
1111 	case CPU_DEAD:
1112 	case CPU_DEAD_FROZEN:
1113 		hrtick_clear(cpu_rq(cpu));
1114 		return NOTIFY_OK;
1115 	}
1116 
1117 	return NOTIFY_DONE;
1118 }
1119 
init_hrtick(void)1120 static __init void init_hrtick(void)
1121 {
1122 	hotcpu_notifier(hotplug_hrtick, 0);
1123 }
1124 #else
1125 /*
1126  * Called to set the hrtick timer state.
1127  *
1128  * called with rq->lock held and irqs disabled
1129  */
hrtick_start(struct rq * rq,u64 delay)1130 static void hrtick_start(struct rq *rq, u64 delay)
1131 {
1132 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1133 }
1134 
init_hrtick(void)1135 static inline void init_hrtick(void)
1136 {
1137 }
1138 #endif /* CONFIG_SMP */
1139 
init_rq_hrtick(struct rq * rq)1140 static void init_rq_hrtick(struct rq *rq)
1141 {
1142 #ifdef CONFIG_SMP
1143 	rq->hrtick_csd_pending = 0;
1144 
1145 	rq->hrtick_csd.flags = 0;
1146 	rq->hrtick_csd.func = __hrtick_start;
1147 	rq->hrtick_csd.info = rq;
1148 #endif
1149 
1150 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 	rq->hrtick_timer.function = hrtick;
1152 }
1153 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)1154 static inline void hrtick_clear(struct rq *rq)
1155 {
1156 }
1157 
init_rq_hrtick(struct rq * rq)1158 static inline void init_rq_hrtick(struct rq *rq)
1159 {
1160 }
1161 
init_hrtick(void)1162 static inline void init_hrtick(void)
1163 {
1164 }
1165 #endif	/* CONFIG_SCHED_HRTICK */
1166 
1167 /*
1168  * resched_task - mark a task 'to be rescheduled now'.
1169  *
1170  * On UP this means the setting of the need_resched flag, on SMP it
1171  * might also involve a cross-CPU call to trigger the scheduler on
1172  * the target CPU.
1173  */
1174 #ifdef CONFIG_SMP
1175 
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1179 
resched_task(struct task_struct * p)1180 static void resched_task(struct task_struct *p)
1181 {
1182 	int cpu;
1183 
1184 	assert_spin_locked(&task_rq(p)->lock);
1185 
1186 	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1187 		return;
1188 
1189 	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1190 
1191 	cpu = task_cpu(p);
1192 	if (cpu == smp_processor_id())
1193 		return;
1194 
1195 	/* NEED_RESCHED must be visible before we test polling */
1196 	smp_mb();
1197 	if (!tsk_is_polling(p))
1198 		smp_send_reschedule(cpu);
1199 }
1200 
resched_cpu(int cpu)1201 static void resched_cpu(int cpu)
1202 {
1203 	struct rq *rq = cpu_rq(cpu);
1204 	unsigned long flags;
1205 
1206 	if (!spin_trylock_irqsave(&rq->lock, flags))
1207 		return;
1208 	resched_task(cpu_curr(cpu));
1209 	spin_unlock_irqrestore(&rq->lock, flags);
1210 }
1211 
1212 #ifdef CONFIG_NO_HZ
1213 /*
1214  * When add_timer_on() enqueues a timer into the timer wheel of an
1215  * idle CPU then this timer might expire before the next timer event
1216  * which is scheduled to wake up that CPU. In case of a completely
1217  * idle system the next event might even be infinite time into the
1218  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219  * leaves the inner idle loop so the newly added timer is taken into
1220  * account when the CPU goes back to idle and evaluates the timer
1221  * wheel for the next timer event.
1222  */
wake_up_idle_cpu(int cpu)1223 void wake_up_idle_cpu(int cpu)
1224 {
1225 	struct rq *rq = cpu_rq(cpu);
1226 
1227 	if (cpu == smp_processor_id())
1228 		return;
1229 
1230 	/*
1231 	 * This is safe, as this function is called with the timer
1232 	 * wheel base lock of (cpu) held. When the CPU is on the way
1233 	 * to idle and has not yet set rq->curr to idle then it will
1234 	 * be serialized on the timer wheel base lock and take the new
1235 	 * timer into account automatically.
1236 	 */
1237 	if (rq->curr != rq->idle)
1238 		return;
1239 
1240 	/*
1241 	 * We can set TIF_RESCHED on the idle task of the other CPU
1242 	 * lockless. The worst case is that the other CPU runs the
1243 	 * idle task through an additional NOOP schedule()
1244 	 */
1245 	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1246 
1247 	/* NEED_RESCHED must be visible before we test polling */
1248 	smp_mb();
1249 	if (!tsk_is_polling(rq->idle))
1250 		smp_send_reschedule(cpu);
1251 }
1252 #endif /* CONFIG_NO_HZ */
1253 
1254 #else /* !CONFIG_SMP */
resched_task(struct task_struct * p)1255 static void resched_task(struct task_struct *p)
1256 {
1257 	assert_spin_locked(&task_rq(p)->lock);
1258 	set_tsk_need_resched(p);
1259 }
1260 #endif /* CONFIG_SMP */
1261 
1262 #if BITS_PER_LONG == 32
1263 # define WMULT_CONST	(~0UL)
1264 #else
1265 # define WMULT_CONST	(1UL << 32)
1266 #endif
1267 
1268 #define WMULT_SHIFT	32
1269 
1270 /*
1271  * Shift right and round:
1272  */
1273 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1274 
1275 /*
1276  * delta *= weight / lw
1277  */
1278 static unsigned long
calc_delta_mine(unsigned long delta_exec,unsigned long weight,struct load_weight * lw)1279 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 		struct load_weight *lw)
1281 {
1282 	u64 tmp;
1283 
1284 	if (!lw->inv_weight) {
1285 		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1286 			lw->inv_weight = 1;
1287 		else
1288 			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1289 				/ (lw->weight+1);
1290 	}
1291 
1292 	tmp = (u64)delta_exec * weight;
1293 	/*
1294 	 * Check whether we'd overflow the 64-bit multiplication:
1295 	 */
1296 	if (unlikely(tmp > WMULT_CONST))
1297 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1298 			WMULT_SHIFT/2);
1299 	else
1300 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1301 
1302 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1303 }
1304 
update_load_add(struct load_weight * lw,unsigned long inc)1305 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1306 {
1307 	lw->weight += inc;
1308 	lw->inv_weight = 0;
1309 }
1310 
update_load_sub(struct load_weight * lw,unsigned long dec)1311 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1312 {
1313 	lw->weight -= dec;
1314 	lw->inv_weight = 0;
1315 }
1316 
1317 /*
1318  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319  * of tasks with abnormal "nice" values across CPUs the contribution that
1320  * each task makes to its run queue's load is weighted according to its
1321  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1322  * scaled version of the new time slice allocation that they receive on time
1323  * slice expiry etc.
1324  */
1325 
1326 #define WEIGHT_IDLEPRIO                3
1327 #define WMULT_IDLEPRIO         1431655765
1328 
1329 /*
1330  * Nice levels are multiplicative, with a gentle 10% change for every
1331  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333  * that remained on nice 0.
1334  *
1335  * The "10% effect" is relative and cumulative: from _any_ nice level,
1336  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1337  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338  * If a task goes up by ~10% and another task goes down by ~10% then
1339  * the relative distance between them is ~25%.)
1340  */
1341 static const int prio_to_weight[40] = {
1342  /* -20 */     88761,     71755,     56483,     46273,     36291,
1343  /* -15 */     29154,     23254,     18705,     14949,     11916,
1344  /* -10 */      9548,      7620,      6100,      4904,      3906,
1345  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1346  /*   0 */      1024,       820,       655,       526,       423,
1347  /*   5 */       335,       272,       215,       172,       137,
1348  /*  10 */       110,        87,        70,        56,        45,
1349  /*  15 */        36,        29,        23,        18,        15,
1350 };
1351 
1352 /*
1353  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1354  *
1355  * In cases where the weight does not change often, we can use the
1356  * precalculated inverse to speed up arithmetics by turning divisions
1357  * into multiplications:
1358  */
1359 static const u32 prio_to_wmult[40] = {
1360  /* -20 */     48388,     59856,     76040,     92818,    118348,
1361  /* -15 */    147320,    184698,    229616,    287308,    360437,
1362  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1363  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1364  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1365  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1366  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1367  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1368 };
1369 
1370 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1371 
1372 /*
1373  * runqueue iterator, to support SMP load-balancing between different
1374  * scheduling classes, without having to expose their internal data
1375  * structures to the load-balancing proper:
1376  */
1377 struct rq_iterator {
1378 	void *arg;
1379 	struct task_struct *(*start)(void *);
1380 	struct task_struct *(*next)(void *);
1381 };
1382 
1383 #ifdef CONFIG_SMP
1384 static unsigned long
1385 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 	      unsigned long max_load_move, struct sched_domain *sd,
1387 	      enum cpu_idle_type idle, int *all_pinned,
1388 	      int *this_best_prio, struct rq_iterator *iterator);
1389 
1390 static int
1391 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 		   struct sched_domain *sd, enum cpu_idle_type idle,
1393 		   struct rq_iterator *iterator);
1394 #endif
1395 
1396 #ifdef CONFIG_CGROUP_CPUACCT
1397 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398 #else
cpuacct_charge(struct task_struct * tsk,u64 cputime)1399 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400 #endif
1401 
inc_cpu_load(struct rq * rq,unsigned long load)1402 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1403 {
1404 	update_load_add(&rq->load, load);
1405 }
1406 
dec_cpu_load(struct rq * rq,unsigned long load)1407 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1408 {
1409 	update_load_sub(&rq->load, load);
1410 }
1411 
1412 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1413 typedef int (*tg_visitor)(struct task_group *, void *);
1414 
1415 /*
1416  * Iterate the full tree, calling @down when first entering a node and @up when
1417  * leaving it for the final time.
1418  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)1419 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1420 {
1421 	struct task_group *parent, *child;
1422 	int ret;
1423 
1424 	rcu_read_lock();
1425 	parent = &root_task_group;
1426 down:
1427 	ret = (*down)(parent, data);
1428 	if (ret)
1429 		goto out_unlock;
1430 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 		parent = child;
1432 		goto down;
1433 
1434 up:
1435 		continue;
1436 	}
1437 	ret = (*up)(parent, data);
1438 	if (ret)
1439 		goto out_unlock;
1440 
1441 	child = parent;
1442 	parent = parent->parent;
1443 	if (parent)
1444 		goto up;
1445 out_unlock:
1446 	rcu_read_unlock();
1447 
1448 	return ret;
1449 }
1450 
tg_nop(struct task_group * tg,void * data)1451 static int tg_nop(struct task_group *tg, void *data)
1452 {
1453 	return 0;
1454 }
1455 #endif
1456 
1457 #ifdef CONFIG_SMP
1458 static unsigned long source_load(int cpu, int type);
1459 static unsigned long target_load(int cpu, int type);
1460 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1461 
cpu_avg_load_per_task(int cpu)1462 static unsigned long cpu_avg_load_per_task(int cpu)
1463 {
1464 	struct rq *rq = cpu_rq(cpu);
1465 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1466 
1467 	if (nr_running)
1468 		rq->avg_load_per_task = rq->load.weight / nr_running;
1469 	else
1470 		rq->avg_load_per_task = 0;
1471 
1472 	return rq->avg_load_per_task;
1473 }
1474 
1475 #ifdef CONFIG_FAIR_GROUP_SCHED
1476 
1477 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1478 
1479 /*
1480  * Calculate and set the cpu's group shares.
1481  */
1482 static void
update_group_shares_cpu(struct task_group * tg,int cpu,unsigned long sd_shares,unsigned long sd_rq_weight)1483 update_group_shares_cpu(struct task_group *tg, int cpu,
1484 			unsigned long sd_shares, unsigned long sd_rq_weight)
1485 {
1486 	unsigned long shares;
1487 	unsigned long rq_weight;
1488 
1489 	if (!tg->se[cpu])
1490 		return;
1491 
1492 	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1493 
1494 	/*
1495 	 *           \Sum shares * rq_weight
1496 	 * shares =  -----------------------
1497 	 *               \Sum rq_weight
1498 	 *
1499 	 */
1500 	shares = (sd_shares * rq_weight) / sd_rq_weight;
1501 	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1502 
1503 	if (abs(shares - tg->se[cpu]->load.weight) >
1504 			sysctl_sched_shares_thresh) {
1505 		struct rq *rq = cpu_rq(cpu);
1506 		unsigned long flags;
1507 
1508 		spin_lock_irqsave(&rq->lock, flags);
1509 		tg->cfs_rq[cpu]->shares = shares;
1510 
1511 		__set_se_shares(tg->se[cpu], shares);
1512 		spin_unlock_irqrestore(&rq->lock, flags);
1513 	}
1514 }
1515 
1516 /*
1517  * Re-compute the task group their per cpu shares over the given domain.
1518  * This needs to be done in a bottom-up fashion because the rq weight of a
1519  * parent group depends on the shares of its child groups.
1520  */
tg_shares_up(struct task_group * tg,void * data)1521 static int tg_shares_up(struct task_group *tg, void *data)
1522 {
1523 	unsigned long weight, rq_weight = 0;
1524 	unsigned long shares = 0;
1525 	struct sched_domain *sd = data;
1526 	int i;
1527 
1528 	for_each_cpu(i, sched_domain_span(sd)) {
1529 		/*
1530 		 * If there are currently no tasks on the cpu pretend there
1531 		 * is one of average load so that when a new task gets to
1532 		 * run here it will not get delayed by group starvation.
1533 		 */
1534 		weight = tg->cfs_rq[i]->load.weight;
1535 		if (!weight)
1536 			weight = NICE_0_LOAD;
1537 
1538 		tg->cfs_rq[i]->rq_weight = weight;
1539 		rq_weight += weight;
1540 		shares += tg->cfs_rq[i]->shares;
1541 	}
1542 
1543 	if ((!shares && rq_weight) || shares > tg->shares)
1544 		shares = tg->shares;
1545 
1546 	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1547 		shares = tg->shares;
1548 
1549 	for_each_cpu(i, sched_domain_span(sd))
1550 		update_group_shares_cpu(tg, i, shares, rq_weight);
1551 
1552 	return 0;
1553 }
1554 
1555 /*
1556  * Compute the cpu's hierarchical load factor for each task group.
1557  * This needs to be done in a top-down fashion because the load of a child
1558  * group is a fraction of its parents load.
1559  */
tg_load_down(struct task_group * tg,void * data)1560 static int tg_load_down(struct task_group *tg, void *data)
1561 {
1562 	unsigned long load;
1563 	long cpu = (long)data;
1564 
1565 	if (!tg->parent) {
1566 		load = cpu_rq(cpu)->load.weight;
1567 	} else {
1568 		load = tg->parent->cfs_rq[cpu]->h_load;
1569 		load *= tg->cfs_rq[cpu]->shares;
1570 		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1571 	}
1572 
1573 	tg->cfs_rq[cpu]->h_load = load;
1574 
1575 	return 0;
1576 }
1577 
update_shares(struct sched_domain * sd)1578 static void update_shares(struct sched_domain *sd)
1579 {
1580 	u64 now = cpu_clock(raw_smp_processor_id());
1581 	s64 elapsed = now - sd->last_update;
1582 
1583 	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1584 		sd->last_update = now;
1585 		walk_tg_tree(tg_nop, tg_shares_up, sd);
1586 	}
1587 }
1588 
update_shares_locked(struct rq * rq,struct sched_domain * sd)1589 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1590 {
1591 	spin_unlock(&rq->lock);
1592 	update_shares(sd);
1593 	spin_lock(&rq->lock);
1594 }
1595 
update_h_load(long cpu)1596 static void update_h_load(long cpu)
1597 {
1598 	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1599 }
1600 
1601 #else
1602 
update_shares(struct sched_domain * sd)1603 static inline void update_shares(struct sched_domain *sd)
1604 {
1605 }
1606 
update_shares_locked(struct rq * rq,struct sched_domain * sd)1607 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1608 {
1609 }
1610 
1611 #endif
1612 
1613 /*
1614  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1615  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1616 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 	__releases(this_rq->lock)
1618 	__acquires(busiest->lock)
1619 	__acquires(this_rq->lock)
1620 {
1621 	int ret = 0;
1622 
1623 	if (unlikely(!irqs_disabled())) {
1624 		/* printk() doesn't work good under rq->lock */
1625 		spin_unlock(&this_rq->lock);
1626 		BUG_ON(1);
1627 	}
1628 	if (unlikely(!spin_trylock(&busiest->lock))) {
1629 		if (busiest < this_rq) {
1630 			spin_unlock(&this_rq->lock);
1631 			spin_lock(&busiest->lock);
1632 			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 			ret = 1;
1634 		} else
1635 			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1636 	}
1637 	return ret;
1638 }
1639 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1640 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 	__releases(busiest->lock)
1642 {
1643 	spin_unlock(&busiest->lock);
1644 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645 }
1646 #endif
1647 
1648 #ifdef CONFIG_FAIR_GROUP_SCHED
cfs_rq_set_shares(struct cfs_rq * cfs_rq,unsigned long shares)1649 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1650 {
1651 #ifdef CONFIG_SMP
1652 	cfs_rq->shares = shares;
1653 #endif
1654 }
1655 #endif
1656 
1657 #include "sched_stats.h"
1658 #include "sched_idletask.c"
1659 #include "sched_fair.c"
1660 #include "sched_rt.c"
1661 #ifdef CONFIG_SCHED_DEBUG
1662 # include "sched_debug.c"
1663 #endif
1664 
1665 #define sched_class_highest (&rt_sched_class)
1666 #define for_each_class(class) \
1667    for (class = sched_class_highest; class; class = class->next)
1668 
inc_nr_running(struct rq * rq)1669 static void inc_nr_running(struct rq *rq)
1670 {
1671 	rq->nr_running++;
1672 }
1673 
dec_nr_running(struct rq * rq)1674 static void dec_nr_running(struct rq *rq)
1675 {
1676 	rq->nr_running--;
1677 }
1678 
set_load_weight(struct task_struct * p)1679 static void set_load_weight(struct task_struct *p)
1680 {
1681 	if (task_has_rt_policy(p)) {
1682 		p->se.load.weight = prio_to_weight[0] * 2;
1683 		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 		return;
1685 	}
1686 
1687 	/*
1688 	 * SCHED_IDLE tasks get minimal weight:
1689 	 */
1690 	if (p->policy == SCHED_IDLE) {
1691 		p->se.load.weight = WEIGHT_IDLEPRIO;
1692 		p->se.load.inv_weight = WMULT_IDLEPRIO;
1693 		return;
1694 	}
1695 
1696 	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1697 	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1698 }
1699 
update_avg(u64 * avg,u64 sample)1700 static void update_avg(u64 *avg, u64 sample)
1701 {
1702 	s64 diff = sample - *avg;
1703 	*avg += diff >> 3;
1704 }
1705 
enqueue_task(struct rq * rq,struct task_struct * p,int wakeup)1706 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1707 {
1708 	sched_info_queued(p);
1709 	p->sched_class->enqueue_task(rq, p, wakeup);
1710 	p->se.on_rq = 1;
1711 }
1712 
dequeue_task(struct rq * rq,struct task_struct * p,int sleep)1713 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1714 {
1715 	if (sleep && p->se.last_wakeup) {
1716 		update_avg(&p->se.avg_overlap,
1717 			   p->se.sum_exec_runtime - p->se.last_wakeup);
1718 		p->se.last_wakeup = 0;
1719 	}
1720 
1721 	sched_info_dequeued(p);
1722 	p->sched_class->dequeue_task(rq, p, sleep);
1723 	p->se.on_rq = 0;
1724 }
1725 
1726 /*
1727  * __normal_prio - return the priority that is based on the static prio
1728  */
__normal_prio(struct task_struct * p)1729 static inline int __normal_prio(struct task_struct *p)
1730 {
1731 	return p->static_prio;
1732 }
1733 
1734 /*
1735  * Calculate the expected normal priority: i.e. priority
1736  * without taking RT-inheritance into account. Might be
1737  * boosted by interactivity modifiers. Changes upon fork,
1738  * setprio syscalls, and whenever the interactivity
1739  * estimator recalculates.
1740  */
normal_prio(struct task_struct * p)1741 static inline int normal_prio(struct task_struct *p)
1742 {
1743 	int prio;
1744 
1745 	if (task_has_rt_policy(p))
1746 		prio = MAX_RT_PRIO-1 - p->rt_priority;
1747 	else
1748 		prio = __normal_prio(p);
1749 	return prio;
1750 }
1751 
1752 /*
1753  * Calculate the current priority, i.e. the priority
1754  * taken into account by the scheduler. This value might
1755  * be boosted by RT tasks, or might be boosted by
1756  * interactivity modifiers. Will be RT if the task got
1757  * RT-boosted. If not then it returns p->normal_prio.
1758  */
effective_prio(struct task_struct * p)1759 static int effective_prio(struct task_struct *p)
1760 {
1761 	p->normal_prio = normal_prio(p);
1762 	/*
1763 	 * If we are RT tasks or we were boosted to RT priority,
1764 	 * keep the priority unchanged. Otherwise, update priority
1765 	 * to the normal priority:
1766 	 */
1767 	if (!rt_prio(p->prio))
1768 		return p->normal_prio;
1769 	return p->prio;
1770 }
1771 
1772 /*
1773  * activate_task - move a task to the runqueue.
1774  */
activate_task(struct rq * rq,struct task_struct * p,int wakeup)1775 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1776 {
1777 	if (task_contributes_to_load(p))
1778 		rq->nr_uninterruptible--;
1779 
1780 	enqueue_task(rq, p, wakeup);
1781 	inc_nr_running(rq);
1782 }
1783 
1784 /*
1785  * deactivate_task - remove a task from the runqueue.
1786  */
deactivate_task(struct rq * rq,struct task_struct * p,int sleep)1787 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1788 {
1789 	if (task_contributes_to_load(p))
1790 		rq->nr_uninterruptible++;
1791 
1792 	dequeue_task(rq, p, sleep);
1793 	dec_nr_running(rq);
1794 }
1795 
1796 /**
1797  * task_curr - is this task currently executing on a CPU?
1798  * @p: the task in question.
1799  */
task_curr(const struct task_struct * p)1800 inline int task_curr(const struct task_struct *p)
1801 {
1802 	return cpu_curr(task_cpu(p)) == p;
1803 }
1804 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1805 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1806 {
1807 	set_task_rq(p, cpu);
1808 #ifdef CONFIG_SMP
1809 	/*
1810 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 	 * successfuly executed on another CPU. We must ensure that updates of
1812 	 * per-task data have been completed by this moment.
1813 	 */
1814 	smp_wmb();
1815 	task_thread_info(p)->cpu = cpu;
1816 #endif
1817 }
1818 
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio,int running)1819 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1820 				       const struct sched_class *prev_class,
1821 				       int oldprio, int running)
1822 {
1823 	if (prev_class != p->sched_class) {
1824 		if (prev_class->switched_from)
1825 			prev_class->switched_from(rq, p, running);
1826 		p->sched_class->switched_to(rq, p, running);
1827 	} else
1828 		p->sched_class->prio_changed(rq, p, oldprio, running);
1829 }
1830 
1831 #ifdef CONFIG_SMP
1832 
1833 /* Used instead of source_load when we know the type == 0 */
weighted_cpuload(const int cpu)1834 static unsigned long weighted_cpuload(const int cpu)
1835 {
1836 	return cpu_rq(cpu)->load.weight;
1837 }
1838 
1839 /*
1840  * Is this task likely cache-hot:
1841  */
1842 static int
task_hot(struct task_struct * p,u64 now,struct sched_domain * sd)1843 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1844 {
1845 	s64 delta;
1846 
1847 	/*
1848 	 * Buddy candidates are cache hot:
1849 	 */
1850 	if (sched_feat(CACHE_HOT_BUDDY) &&
1851 			(&p->se == cfs_rq_of(&p->se)->next ||
1852 			 &p->se == cfs_rq_of(&p->se)->last))
1853 		return 1;
1854 
1855 	if (p->sched_class != &fair_sched_class)
1856 		return 0;
1857 
1858 	if (sysctl_sched_migration_cost == -1)
1859 		return 1;
1860 	if (sysctl_sched_migration_cost == 0)
1861 		return 0;
1862 
1863 	delta = now - p->se.exec_start;
1864 
1865 	return delta < (s64)sysctl_sched_migration_cost;
1866 }
1867 
1868 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1869 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1870 {
1871 	int old_cpu = task_cpu(p);
1872 	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1873 	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1874 		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1875 	u64 clock_offset;
1876 
1877 	clock_offset = old_rq->clock - new_rq->clock;
1878 
1879 	trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1880 
1881 #ifdef CONFIG_SCHEDSTATS
1882 	if (p->se.wait_start)
1883 		p->se.wait_start -= clock_offset;
1884 	if (p->se.sleep_start)
1885 		p->se.sleep_start -= clock_offset;
1886 	if (p->se.block_start)
1887 		p->se.block_start -= clock_offset;
1888 	if (old_cpu != new_cpu) {
1889 		schedstat_inc(p, se.nr_migrations);
1890 		if (task_hot(p, old_rq->clock, NULL))
1891 			schedstat_inc(p, se.nr_forced2_migrations);
1892 	}
1893 #endif
1894 	p->se.vruntime -= old_cfsrq->min_vruntime -
1895 					 new_cfsrq->min_vruntime;
1896 
1897 	__set_task_cpu(p, new_cpu);
1898 }
1899 
1900 struct migration_req {
1901 	struct list_head list;
1902 
1903 	struct task_struct *task;
1904 	int dest_cpu;
1905 
1906 	struct completion done;
1907 };
1908 
1909 /*
1910  * The task's runqueue lock must be held.
1911  * Returns true if you have to wait for migration thread.
1912  */
1913 static int
migrate_task(struct task_struct * p,int dest_cpu,struct migration_req * req)1914 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1915 {
1916 	struct rq *rq = task_rq(p);
1917 
1918 	/*
1919 	 * If the task is not on a runqueue (and not running), then
1920 	 * it is sufficient to simply update the task's cpu field.
1921 	 */
1922 	if (!p->se.on_rq && !task_running(rq, p)) {
1923 		set_task_cpu(p, dest_cpu);
1924 		return 0;
1925 	}
1926 
1927 	init_completion(&req->done);
1928 	req->task = p;
1929 	req->dest_cpu = dest_cpu;
1930 	list_add(&req->list, &rq->migration_queue);
1931 
1932 	return 1;
1933 }
1934 
1935 /*
1936  * wait_task_inactive - wait for a thread to unschedule.
1937  *
1938  * If @match_state is nonzero, it's the @p->state value just checked and
1939  * not expected to change.  If it changes, i.e. @p might have woken up,
1940  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1941  * we return a positive number (its total switch count).  If a second call
1942  * a short while later returns the same number, the caller can be sure that
1943  * @p has remained unscheduled the whole time.
1944  *
1945  * The caller must ensure that the task *will* unschedule sometime soon,
1946  * else this function might spin for a *long* time. This function can't
1947  * be called with interrupts off, or it may introduce deadlock with
1948  * smp_call_function() if an IPI is sent by the same process we are
1949  * waiting to become inactive.
1950  */
wait_task_inactive(struct task_struct * p,long match_state)1951 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1952 {
1953 	unsigned long flags;
1954 	int running, on_rq;
1955 	unsigned long ncsw;
1956 	struct rq *rq;
1957 
1958 	for (;;) {
1959 		/*
1960 		 * We do the initial early heuristics without holding
1961 		 * any task-queue locks at all. We'll only try to get
1962 		 * the runqueue lock when things look like they will
1963 		 * work out!
1964 		 */
1965 		rq = task_rq(p);
1966 
1967 		/*
1968 		 * If the task is actively running on another CPU
1969 		 * still, just relax and busy-wait without holding
1970 		 * any locks.
1971 		 *
1972 		 * NOTE! Since we don't hold any locks, it's not
1973 		 * even sure that "rq" stays as the right runqueue!
1974 		 * But we don't care, since "task_running()" will
1975 		 * return false if the runqueue has changed and p
1976 		 * is actually now running somewhere else!
1977 		 */
1978 		while (task_running(rq, p)) {
1979 			if (match_state && unlikely(p->state != match_state))
1980 				return 0;
1981 			cpu_relax();
1982 		}
1983 
1984 		/*
1985 		 * Ok, time to look more closely! We need the rq
1986 		 * lock now, to be *sure*. If we're wrong, we'll
1987 		 * just go back and repeat.
1988 		 */
1989 		rq = task_rq_lock(p, &flags);
1990 		trace_sched_wait_task(rq, p);
1991 		running = task_running(rq, p);
1992 		on_rq = p->se.on_rq;
1993 		ncsw = 0;
1994 		if (!match_state || p->state == match_state)
1995 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1996 		task_rq_unlock(rq, &flags);
1997 
1998 		/*
1999 		 * If it changed from the expected state, bail out now.
2000 		 */
2001 		if (unlikely(!ncsw))
2002 			break;
2003 
2004 		/*
2005 		 * Was it really running after all now that we
2006 		 * checked with the proper locks actually held?
2007 		 *
2008 		 * Oops. Go back and try again..
2009 		 */
2010 		if (unlikely(running)) {
2011 			cpu_relax();
2012 			continue;
2013 		}
2014 
2015 		/*
2016 		 * It's not enough that it's not actively running,
2017 		 * it must be off the runqueue _entirely_, and not
2018 		 * preempted!
2019 		 *
2020 		 * So if it wa still runnable (but just not actively
2021 		 * running right now), it's preempted, and we should
2022 		 * yield - it could be a while.
2023 		 */
2024 		if (unlikely(on_rq)) {
2025 			schedule_timeout_uninterruptible(1);
2026 			continue;
2027 		}
2028 
2029 		/*
2030 		 * Ahh, all good. It wasn't running, and it wasn't
2031 		 * runnable, which means that it will never become
2032 		 * running in the future either. We're all done!
2033 		 */
2034 		break;
2035 	}
2036 
2037 	return ncsw;
2038 }
2039 
2040 /***
2041  * kick_process - kick a running thread to enter/exit the kernel
2042  * @p: the to-be-kicked thread
2043  *
2044  * Cause a process which is running on another CPU to enter
2045  * kernel-mode, without any delay. (to get signals handled.)
2046  *
2047  * NOTE: this function doesnt have to take the runqueue lock,
2048  * because all it wants to ensure is that the remote task enters
2049  * the kernel. If the IPI races and the task has been migrated
2050  * to another CPU then no harm is done and the purpose has been
2051  * achieved as well.
2052  */
kick_process(struct task_struct * p)2053 void kick_process(struct task_struct *p)
2054 {
2055 	int cpu;
2056 
2057 	preempt_disable();
2058 	cpu = task_cpu(p);
2059 	if ((cpu != smp_processor_id()) && task_curr(p))
2060 		smp_send_reschedule(cpu);
2061 	preempt_enable();
2062 }
2063 
2064 /*
2065  * Return a low guess at the load of a migration-source cpu weighted
2066  * according to the scheduling class and "nice" value.
2067  *
2068  * We want to under-estimate the load of migration sources, to
2069  * balance conservatively.
2070  */
source_load(int cpu,int type)2071 static unsigned long source_load(int cpu, int type)
2072 {
2073 	struct rq *rq = cpu_rq(cpu);
2074 	unsigned long total = weighted_cpuload(cpu);
2075 
2076 	if (type == 0 || !sched_feat(LB_BIAS))
2077 		return total;
2078 
2079 	return min(rq->cpu_load[type-1], total);
2080 }
2081 
2082 /*
2083  * Return a high guess at the load of a migration-target cpu weighted
2084  * according to the scheduling class and "nice" value.
2085  */
target_load(int cpu,int type)2086 static unsigned long target_load(int cpu, int type)
2087 {
2088 	struct rq *rq = cpu_rq(cpu);
2089 	unsigned long total = weighted_cpuload(cpu);
2090 
2091 	if (type == 0 || !sched_feat(LB_BIAS))
2092 		return total;
2093 
2094 	return max(rq->cpu_load[type-1], total);
2095 }
2096 
2097 /*
2098  * find_idlest_group finds and returns the least busy CPU group within the
2099  * domain.
2100  */
2101 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)2102 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2103 {
2104 	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2105 	unsigned long min_load = ULONG_MAX, this_load = 0;
2106 	int load_idx = sd->forkexec_idx;
2107 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2108 
2109 	do {
2110 		unsigned long load, avg_load;
2111 		int local_group;
2112 		int i;
2113 
2114 		/* Skip over this group if it has no CPUs allowed */
2115 		if (!cpumask_intersects(sched_group_cpus(group),
2116 					&p->cpus_allowed))
2117 			continue;
2118 
2119 		local_group = cpumask_test_cpu(this_cpu,
2120 					       sched_group_cpus(group));
2121 
2122 		/* Tally up the load of all CPUs in the group */
2123 		avg_load = 0;
2124 
2125 		for_each_cpu(i, sched_group_cpus(group)) {
2126 			/* Bias balancing toward cpus of our domain */
2127 			if (local_group)
2128 				load = source_load(i, load_idx);
2129 			else
2130 				load = target_load(i, load_idx);
2131 
2132 			avg_load += load;
2133 		}
2134 
2135 		/* Adjust by relative CPU power of the group */
2136 		avg_load = sg_div_cpu_power(group,
2137 				avg_load * SCHED_LOAD_SCALE);
2138 
2139 		if (local_group) {
2140 			this_load = avg_load;
2141 			this = group;
2142 		} else if (avg_load < min_load) {
2143 			min_load = avg_load;
2144 			idlest = group;
2145 		}
2146 	} while (group = group->next, group != sd->groups);
2147 
2148 	if (!idlest || 100*this_load < imbalance*min_load)
2149 		return NULL;
2150 	return idlest;
2151 }
2152 
2153 /*
2154  * find_idlest_cpu - find the idlest cpu among the cpus in group.
2155  */
2156 static int
find_idlest_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)2157 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2158 {
2159 	unsigned long load, min_load = ULONG_MAX;
2160 	int idlest = -1;
2161 	int i;
2162 
2163 	/* Traverse only the allowed CPUs */
2164 	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2165 		load = weighted_cpuload(i);
2166 
2167 		if (load < min_load || (load == min_load && i == this_cpu)) {
2168 			min_load = load;
2169 			idlest = i;
2170 		}
2171 	}
2172 
2173 	return idlest;
2174 }
2175 
2176 /*
2177  * sched_balance_self: balance the current task (running on cpu) in domains
2178  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2179  * SD_BALANCE_EXEC.
2180  *
2181  * Balance, ie. select the least loaded group.
2182  *
2183  * Returns the target CPU number, or the same CPU if no balancing is needed.
2184  *
2185  * preempt must be disabled.
2186  */
sched_balance_self(int cpu,int flag)2187 static int sched_balance_self(int cpu, int flag)
2188 {
2189 	struct task_struct *t = current;
2190 	struct sched_domain *tmp, *sd = NULL;
2191 
2192 	for_each_domain(cpu, tmp) {
2193 		/*
2194 		 * If power savings logic is enabled for a domain, stop there.
2195 		 */
2196 		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2197 			break;
2198 		if (tmp->flags & flag)
2199 			sd = tmp;
2200 	}
2201 
2202 	if (sd)
2203 		update_shares(sd);
2204 
2205 	while (sd) {
2206 		struct sched_group *group;
2207 		int new_cpu, weight;
2208 
2209 		if (!(sd->flags & flag)) {
2210 			sd = sd->child;
2211 			continue;
2212 		}
2213 
2214 		group = find_idlest_group(sd, t, cpu);
2215 		if (!group) {
2216 			sd = sd->child;
2217 			continue;
2218 		}
2219 
2220 		new_cpu = find_idlest_cpu(group, t, cpu);
2221 		if (new_cpu == -1 || new_cpu == cpu) {
2222 			/* Now try balancing at a lower domain level of cpu */
2223 			sd = sd->child;
2224 			continue;
2225 		}
2226 
2227 		/* Now try balancing at a lower domain level of new_cpu */
2228 		cpu = new_cpu;
2229 		weight = cpumask_weight(sched_domain_span(sd));
2230 		sd = NULL;
2231 		for_each_domain(cpu, tmp) {
2232 			if (weight <= cpumask_weight(sched_domain_span(tmp)))
2233 				break;
2234 			if (tmp->flags & flag)
2235 				sd = tmp;
2236 		}
2237 		/* while loop will break here if sd == NULL */
2238 	}
2239 
2240 	return cpu;
2241 }
2242 
2243 #endif /* CONFIG_SMP */
2244 
2245 /***
2246  * try_to_wake_up - wake up a thread
2247  * @p: the to-be-woken-up thread
2248  * @state: the mask of task states that can be woken
2249  * @sync: do a synchronous wakeup?
2250  *
2251  * Put it on the run-queue if it's not already there. The "current"
2252  * thread is always on the run-queue (except when the actual
2253  * re-schedule is in progress), and as such you're allowed to do
2254  * the simpler "current->state = TASK_RUNNING" to mark yourself
2255  * runnable without the overhead of this.
2256  *
2257  * returns failure only if the task is already active.
2258  */
try_to_wake_up(struct task_struct * p,unsigned int state,int sync)2259 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2260 {
2261 	int cpu, orig_cpu, this_cpu, success = 0;
2262 	unsigned long flags;
2263 	long old_state;
2264 	struct rq *rq;
2265 
2266 	if (!sched_feat(SYNC_WAKEUPS))
2267 		sync = 0;
2268 
2269 #ifdef CONFIG_SMP
2270 	if (sched_feat(LB_WAKEUP_UPDATE)) {
2271 		struct sched_domain *sd;
2272 
2273 		this_cpu = raw_smp_processor_id();
2274 		cpu = task_cpu(p);
2275 
2276 		for_each_domain(this_cpu, sd) {
2277 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2278 				update_shares(sd);
2279 				break;
2280 			}
2281 		}
2282 	}
2283 #endif
2284 
2285 	smp_wmb();
2286 	rq = task_rq_lock(p, &flags);
2287 	update_rq_clock(rq);
2288 	old_state = p->state;
2289 	if (!(old_state & state))
2290 		goto out;
2291 
2292 	if (p->se.on_rq)
2293 		goto out_running;
2294 
2295 	cpu = task_cpu(p);
2296 	orig_cpu = cpu;
2297 	this_cpu = smp_processor_id();
2298 
2299 #ifdef CONFIG_SMP
2300 	if (unlikely(task_running(rq, p)))
2301 		goto out_activate;
2302 
2303 	cpu = p->sched_class->select_task_rq(p, sync);
2304 	if (cpu != orig_cpu) {
2305 		set_task_cpu(p, cpu);
2306 		task_rq_unlock(rq, &flags);
2307 		/* might preempt at this point */
2308 		rq = task_rq_lock(p, &flags);
2309 		old_state = p->state;
2310 		if (!(old_state & state))
2311 			goto out;
2312 		if (p->se.on_rq)
2313 			goto out_running;
2314 
2315 		this_cpu = smp_processor_id();
2316 		cpu = task_cpu(p);
2317 	}
2318 
2319 #ifdef CONFIG_SCHEDSTATS
2320 	schedstat_inc(rq, ttwu_count);
2321 	if (cpu == this_cpu)
2322 		schedstat_inc(rq, ttwu_local);
2323 	else {
2324 		struct sched_domain *sd;
2325 		for_each_domain(this_cpu, sd) {
2326 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2327 				schedstat_inc(sd, ttwu_wake_remote);
2328 				break;
2329 			}
2330 		}
2331 	}
2332 #endif /* CONFIG_SCHEDSTATS */
2333 
2334 out_activate:
2335 #endif /* CONFIG_SMP */
2336 	schedstat_inc(p, se.nr_wakeups);
2337 	if (sync)
2338 		schedstat_inc(p, se.nr_wakeups_sync);
2339 	if (orig_cpu != cpu)
2340 		schedstat_inc(p, se.nr_wakeups_migrate);
2341 	if (cpu == this_cpu)
2342 		schedstat_inc(p, se.nr_wakeups_local);
2343 	else
2344 		schedstat_inc(p, se.nr_wakeups_remote);
2345 	activate_task(rq, p, 1);
2346 	success = 1;
2347 
2348 out_running:
2349 	trace_sched_wakeup(rq, p, success);
2350 	check_preempt_curr(rq, p, sync);
2351 
2352 	p->state = TASK_RUNNING;
2353 #ifdef CONFIG_SMP
2354 	if (p->sched_class->task_wake_up)
2355 		p->sched_class->task_wake_up(rq, p);
2356 #endif
2357 out:
2358 	current->se.last_wakeup = current->se.sum_exec_runtime;
2359 
2360 	task_rq_unlock(rq, &flags);
2361 
2362 	return success;
2363 }
2364 
wake_up_process(struct task_struct * p)2365 int wake_up_process(struct task_struct *p)
2366 {
2367 	return try_to_wake_up(p, TASK_ALL, 0);
2368 }
2369 EXPORT_SYMBOL(wake_up_process);
2370 
wake_up_state(struct task_struct * p,unsigned int state)2371 int wake_up_state(struct task_struct *p, unsigned int state)
2372 {
2373 	return try_to_wake_up(p, state, 0);
2374 }
2375 
2376 /*
2377  * Perform scheduler related setup for a newly forked process p.
2378  * p is forked by current.
2379  *
2380  * __sched_fork() is basic setup used by init_idle() too:
2381  */
__sched_fork(struct task_struct * p)2382 static void __sched_fork(struct task_struct *p)
2383 {
2384 	p->se.exec_start		= 0;
2385 	p->se.sum_exec_runtime		= 0;
2386 	p->se.prev_sum_exec_runtime	= 0;
2387 	p->se.last_wakeup		= 0;
2388 	p->se.avg_overlap		= 0;
2389 
2390 #ifdef CONFIG_SCHEDSTATS
2391 	p->se.wait_start		= 0;
2392 	p->se.sum_sleep_runtime		= 0;
2393 	p->se.sleep_start		= 0;
2394 	p->se.block_start		= 0;
2395 	p->se.sleep_max			= 0;
2396 	p->se.block_max			= 0;
2397 	p->se.exec_max			= 0;
2398 	p->se.slice_max			= 0;
2399 	p->se.wait_max			= 0;
2400 #endif
2401 
2402 	INIT_LIST_HEAD(&p->rt.run_list);
2403 	p->se.on_rq = 0;
2404 	INIT_LIST_HEAD(&p->se.group_node);
2405 
2406 #ifdef CONFIG_PREEMPT_NOTIFIERS
2407 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2408 #endif
2409 
2410 	/*
2411 	 * We mark the process as running here, but have not actually
2412 	 * inserted it onto the runqueue yet. This guarantees that
2413 	 * nobody will actually run it, and a signal or other external
2414 	 * event cannot wake it up and insert it on the runqueue either.
2415 	 */
2416 	p->state = TASK_RUNNING;
2417 }
2418 
2419 /*
2420  * fork()/clone()-time setup:
2421  */
sched_fork(struct task_struct * p,int clone_flags)2422 void sched_fork(struct task_struct *p, int clone_flags)
2423 {
2424 	int cpu = get_cpu();
2425 
2426 	__sched_fork(p);
2427 
2428 #ifdef CONFIG_SMP
2429 	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2430 #endif
2431 	set_task_cpu(p, cpu);
2432 
2433 	/*
2434 	 * Make sure we do not leak PI boosting priority to the child:
2435 	 */
2436 	p->prio = current->normal_prio;
2437 	if (!rt_prio(p->prio))
2438 		p->sched_class = &fair_sched_class;
2439 
2440 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2441 	if (likely(sched_info_on()))
2442 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2443 #endif
2444 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2445 	p->oncpu = 0;
2446 #endif
2447 #ifdef CONFIG_PREEMPT
2448 	/* Want to start with kernel preemption disabled. */
2449 	task_thread_info(p)->preempt_count = 1;
2450 #endif
2451 	put_cpu();
2452 }
2453 
2454 /*
2455  * wake_up_new_task - wake up a newly created task for the first time.
2456  *
2457  * This function will do some initial scheduler statistics housekeeping
2458  * that must be done for every newly created context, then puts the task
2459  * on the runqueue and wakes it.
2460  */
wake_up_new_task(struct task_struct * p,unsigned long clone_flags)2461 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2462 {
2463 	unsigned long flags;
2464 	struct rq *rq;
2465 
2466 	rq = task_rq_lock(p, &flags);
2467 	BUG_ON(p->state != TASK_RUNNING);
2468 	update_rq_clock(rq);
2469 
2470 	p->prio = effective_prio(p);
2471 
2472 	if (!p->sched_class->task_new || !current->se.on_rq) {
2473 		activate_task(rq, p, 0);
2474 	} else {
2475 		/*
2476 		 * Let the scheduling class do new task startup
2477 		 * management (if any):
2478 		 */
2479 		p->sched_class->task_new(rq, p);
2480 		inc_nr_running(rq);
2481 	}
2482 	trace_sched_wakeup_new(rq, p, 1);
2483 	check_preempt_curr(rq, p, 0);
2484 #ifdef CONFIG_SMP
2485 	if (p->sched_class->task_wake_up)
2486 		p->sched_class->task_wake_up(rq, p);
2487 #endif
2488 	task_rq_unlock(rq, &flags);
2489 }
2490 
2491 #ifdef CONFIG_PREEMPT_NOTIFIERS
2492 
2493 /**
2494  * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2495  * @notifier: notifier struct to register
2496  */
preempt_notifier_register(struct preempt_notifier * notifier)2497 void preempt_notifier_register(struct preempt_notifier *notifier)
2498 {
2499 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2500 }
2501 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2502 
2503 /**
2504  * preempt_notifier_unregister - no longer interested in preemption notifications
2505  * @notifier: notifier struct to unregister
2506  *
2507  * This is safe to call from within a preemption notifier.
2508  */
preempt_notifier_unregister(struct preempt_notifier * notifier)2509 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2510 {
2511 	hlist_del(&notifier->link);
2512 }
2513 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2514 
fire_sched_in_preempt_notifiers(struct task_struct * curr)2515 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2516 {
2517 	struct preempt_notifier *notifier;
2518 	struct hlist_node *node;
2519 
2520 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2521 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2522 }
2523 
2524 static void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2525 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2526 				 struct task_struct *next)
2527 {
2528 	struct preempt_notifier *notifier;
2529 	struct hlist_node *node;
2530 
2531 	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2532 		notifier->ops->sched_out(notifier, next);
2533 }
2534 
2535 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2536 
fire_sched_in_preempt_notifiers(struct task_struct * curr)2537 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2538 {
2539 }
2540 
2541 static void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2542 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2543 				 struct task_struct *next)
2544 {
2545 }
2546 
2547 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2548 
2549 /**
2550  * prepare_task_switch - prepare to switch tasks
2551  * @rq: the runqueue preparing to switch
2552  * @prev: the current task that is being switched out
2553  * @next: the task we are going to switch to.
2554  *
2555  * This is called with the rq lock held and interrupts off. It must
2556  * be paired with a subsequent finish_task_switch after the context
2557  * switch.
2558  *
2559  * prepare_task_switch sets up locking and calls architecture specific
2560  * hooks.
2561  */
2562 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2563 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2564 		    struct task_struct *next)
2565 {
2566 	fire_sched_out_preempt_notifiers(prev, next);
2567 	prepare_lock_switch(rq, next);
2568 	prepare_arch_switch(next);
2569 }
2570 
2571 /**
2572  * finish_task_switch - clean up after a task-switch
2573  * @rq: runqueue associated with task-switch
2574  * @prev: the thread we just switched away from.
2575  *
2576  * finish_task_switch must be called after the context switch, paired
2577  * with a prepare_task_switch call before the context switch.
2578  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2579  * and do any other architecture-specific cleanup actions.
2580  *
2581  * Note that we may have delayed dropping an mm in context_switch(). If
2582  * so, we finish that here outside of the runqueue lock. (Doing it
2583  * with the lock held can cause deadlocks; see schedule() for
2584  * details.)
2585  */
finish_task_switch(struct rq * rq,struct task_struct * prev)2586 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2587 	__releases(rq->lock)
2588 {
2589 	struct mm_struct *mm = rq->prev_mm;
2590 	long prev_state;
2591 
2592 	rq->prev_mm = NULL;
2593 
2594 	/*
2595 	 * A task struct has one reference for the use as "current".
2596 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2597 	 * schedule one last time. The schedule call will never return, and
2598 	 * the scheduled task must drop that reference.
2599 	 * The test for TASK_DEAD must occur while the runqueue locks are
2600 	 * still held, otherwise prev could be scheduled on another cpu, die
2601 	 * there before we look at prev->state, and then the reference would
2602 	 * be dropped twice.
2603 	 *		Manfred Spraul <manfred@colorfullife.com>
2604 	 */
2605 	prev_state = prev->state;
2606 	finish_arch_switch(prev);
2607 	finish_lock_switch(rq, prev);
2608 #ifdef CONFIG_SMP
2609 	if (current->sched_class->post_schedule)
2610 		current->sched_class->post_schedule(rq);
2611 #endif
2612 
2613 	fire_sched_in_preempt_notifiers(current);
2614 	if (mm)
2615 		mmdrop(mm);
2616 	if (unlikely(prev_state == TASK_DEAD)) {
2617 		/*
2618 		 * Remove function-return probe instances associated with this
2619 		 * task and put them back on the free list.
2620 		 */
2621 		kprobe_flush_task(prev);
2622 		put_task_struct(prev);
2623 	}
2624 }
2625 
2626 /**
2627  * schedule_tail - first thing a freshly forked thread must call.
2628  * @prev: the thread we just switched away from.
2629  */
schedule_tail(struct task_struct * prev)2630 asmlinkage void schedule_tail(struct task_struct *prev)
2631 	__releases(rq->lock)
2632 {
2633 	struct rq *rq = this_rq();
2634 
2635 	finish_task_switch(rq, prev);
2636 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2637 	/* In this case, finish_task_switch does not reenable preemption */
2638 	preempt_enable();
2639 #endif
2640 	if (current->set_child_tid)
2641 		put_user(task_pid_vnr(current), current->set_child_tid);
2642 }
2643 
2644 #ifdef CONFIG_QEMU_TRACE
2645 void qemu_trace_cs(struct task_struct *next);
2646 #endif
2647 
2648 /*
2649  * context_switch - switch to the new MM and the new
2650  * thread's register state.
2651  */
2652 static inline void
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2653 context_switch(struct rq *rq, struct task_struct *prev,
2654 	       struct task_struct *next)
2655 {
2656 	struct mm_struct *mm, *oldmm;
2657 
2658 	prepare_task_switch(rq, prev, next);
2659 	trace_sched_switch(rq, prev, next);
2660 	mm = next->mm;
2661 	oldmm = prev->active_mm;
2662 	/*
2663 	 * For paravirt, this is coupled with an exit in switch_to to
2664 	 * combine the page table reload and the switch backend into
2665 	 * one hypercall.
2666 	 */
2667 	arch_enter_lazy_cpu_mode();
2668 
2669 	if (unlikely(!mm)) {
2670 		next->active_mm = oldmm;
2671 		atomic_inc(&oldmm->mm_count);
2672 		enter_lazy_tlb(oldmm, next);
2673 	} else
2674 		switch_mm(oldmm, mm, next);
2675 
2676 	if (unlikely(!prev->mm)) {
2677 		prev->active_mm = NULL;
2678 		rq->prev_mm = oldmm;
2679 	}
2680 	/*
2681 	 * Since the runqueue lock will be released by the next
2682 	 * task (which is an invalid locking op but in the case
2683 	 * of the scheduler it's an obvious special-case), so we
2684 	 * do an early lockdep release here:
2685 	 */
2686 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2687 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2688 #endif
2689 
2690 #ifdef CONFIG_QEMU_TRACE
2691 	/* Emit a trace record for the context switch. */
2692 	qemu_trace_cs(next);
2693 #endif
2694 
2695 	/* Here we just switch the register state and the stack. */
2696 	switch_to(prev, next, prev);
2697 
2698 	barrier();
2699 	/*
2700 	 * this_rq must be evaluated again because prev may have moved
2701 	 * CPUs since it called schedule(), thus the 'rq' on its stack
2702 	 * frame will be invalid.
2703 	 */
2704 	finish_task_switch(this_rq(), prev);
2705 }
2706 
2707 /*
2708  * nr_running, nr_uninterruptible and nr_context_switches:
2709  *
2710  * externally visible scheduler statistics: current number of runnable
2711  * threads, current number of uninterruptible-sleeping threads, total
2712  * number of context switches performed since bootup.
2713  */
nr_running(void)2714 unsigned long nr_running(void)
2715 {
2716 	unsigned long i, sum = 0;
2717 
2718 	for_each_online_cpu(i)
2719 		sum += cpu_rq(i)->nr_running;
2720 
2721 	return sum;
2722 }
2723 
nr_uninterruptible(void)2724 unsigned long nr_uninterruptible(void)
2725 {
2726 	unsigned long i, sum = 0;
2727 
2728 	for_each_possible_cpu(i)
2729 		sum += cpu_rq(i)->nr_uninterruptible;
2730 
2731 	/*
2732 	 * Since we read the counters lockless, it might be slightly
2733 	 * inaccurate. Do not allow it to go below zero though:
2734 	 */
2735 	if (unlikely((long)sum < 0))
2736 		sum = 0;
2737 
2738 	return sum;
2739 }
2740 
nr_context_switches(void)2741 unsigned long long nr_context_switches(void)
2742 {
2743 	int i;
2744 	unsigned long long sum = 0;
2745 
2746 	for_each_possible_cpu(i)
2747 		sum += cpu_rq(i)->nr_switches;
2748 
2749 	return sum;
2750 }
2751 
nr_iowait(void)2752 unsigned long nr_iowait(void)
2753 {
2754 	unsigned long i, sum = 0;
2755 
2756 	for_each_possible_cpu(i)
2757 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2758 
2759 	return sum;
2760 }
2761 
nr_active(void)2762 unsigned long nr_active(void)
2763 {
2764 	unsigned long i, running = 0, uninterruptible = 0;
2765 
2766 	for_each_online_cpu(i) {
2767 		running += cpu_rq(i)->nr_running;
2768 		uninterruptible += cpu_rq(i)->nr_uninterruptible;
2769 	}
2770 
2771 	if (unlikely((long)uninterruptible < 0))
2772 		uninterruptible = 0;
2773 
2774 	return running + uninterruptible;
2775 }
2776 
2777 /*
2778  * Update rq->cpu_load[] statistics. This function is usually called every
2779  * scheduler tick (TICK_NSEC).
2780  */
update_cpu_load(struct rq * this_rq)2781 static void update_cpu_load(struct rq *this_rq)
2782 {
2783 	unsigned long this_load = this_rq->load.weight;
2784 	int i, scale;
2785 
2786 	this_rq->nr_load_updates++;
2787 
2788 	/* Update our load: */
2789 	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2790 		unsigned long old_load, new_load;
2791 
2792 		/* scale is effectively 1 << i now, and >> i divides by scale */
2793 
2794 		old_load = this_rq->cpu_load[i];
2795 		new_load = this_load;
2796 		/*
2797 		 * Round up the averaging division if load is increasing. This
2798 		 * prevents us from getting stuck on 9 if the load is 10, for
2799 		 * example.
2800 		 */
2801 		if (new_load > old_load)
2802 			new_load += scale-1;
2803 		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2804 	}
2805 }
2806 
2807 #ifdef CONFIG_SMP
2808 
2809 /*
2810  * double_rq_lock - safely lock two runqueues
2811  *
2812  * Note this does not disable interrupts like task_rq_lock,
2813  * you need to do so manually before calling.
2814  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2815 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2816 	__acquires(rq1->lock)
2817 	__acquires(rq2->lock)
2818 {
2819 	BUG_ON(!irqs_disabled());
2820 	if (rq1 == rq2) {
2821 		spin_lock(&rq1->lock);
2822 		__acquire(rq2->lock);	/* Fake it out ;) */
2823 	} else {
2824 		if (rq1 < rq2) {
2825 			spin_lock(&rq1->lock);
2826 			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2827 		} else {
2828 			spin_lock(&rq2->lock);
2829 			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2830 		}
2831 	}
2832 	update_rq_clock(rq1);
2833 	update_rq_clock(rq2);
2834 }
2835 
2836 /*
2837  * double_rq_unlock - safely unlock two runqueues
2838  *
2839  * Note this does not restore interrupts like task_rq_unlock,
2840  * you need to do so manually after calling.
2841  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2842 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2843 	__releases(rq1->lock)
2844 	__releases(rq2->lock)
2845 {
2846 	spin_unlock(&rq1->lock);
2847 	if (rq1 != rq2)
2848 		spin_unlock(&rq2->lock);
2849 	else
2850 		__release(rq2->lock);
2851 }
2852 
2853 /*
2854  * If dest_cpu is allowed for this process, migrate the task to it.
2855  * This is accomplished by forcing the cpu_allowed mask to only
2856  * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2857  * the cpu_allowed mask is restored.
2858  */
sched_migrate_task(struct task_struct * p,int dest_cpu)2859 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2860 {
2861 	struct migration_req req;
2862 	unsigned long flags;
2863 	struct rq *rq;
2864 
2865 	rq = task_rq_lock(p, &flags);
2866 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2867 	    || unlikely(!cpu_active(dest_cpu)))
2868 		goto out;
2869 
2870 	/* force the process onto the specified CPU */
2871 	if (migrate_task(p, dest_cpu, &req)) {
2872 		/* Need to wait for migration thread (might exit: take ref). */
2873 		struct task_struct *mt = rq->migration_thread;
2874 
2875 		get_task_struct(mt);
2876 		task_rq_unlock(rq, &flags);
2877 		wake_up_process(mt);
2878 		put_task_struct(mt);
2879 		wait_for_completion(&req.done);
2880 
2881 		return;
2882 	}
2883 out:
2884 	task_rq_unlock(rq, &flags);
2885 }
2886 
2887 /*
2888  * sched_exec - execve() is a valuable balancing opportunity, because at
2889  * this point the task has the smallest effective memory and cache footprint.
2890  */
sched_exec(void)2891 void sched_exec(void)
2892 {
2893 	int new_cpu, this_cpu = get_cpu();
2894 	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2895 	put_cpu();
2896 	if (new_cpu != this_cpu)
2897 		sched_migrate_task(current, new_cpu);
2898 }
2899 
2900 /*
2901  * pull_task - move a task from a remote runqueue to the local runqueue.
2902  * Both runqueues must be locked.
2903  */
pull_task(struct rq * src_rq,struct task_struct * p,struct rq * this_rq,int this_cpu)2904 static void pull_task(struct rq *src_rq, struct task_struct *p,
2905 		      struct rq *this_rq, int this_cpu)
2906 {
2907 	deactivate_task(src_rq, p, 0);
2908 	set_task_cpu(p, this_cpu);
2909 	activate_task(this_rq, p, 0);
2910 	/*
2911 	 * Note that idle threads have a prio of MAX_PRIO, for this test
2912 	 * to be always true for them.
2913 	 */
2914 	check_preempt_curr(this_rq, p, 0);
2915 }
2916 
2917 /*
2918  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2919  */
2920 static
can_migrate_task(struct task_struct * p,struct rq * rq,int this_cpu,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned)2921 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2922 		     struct sched_domain *sd, enum cpu_idle_type idle,
2923 		     int *all_pinned)
2924 {
2925 	/*
2926 	 * We do not migrate tasks that are:
2927 	 * 1) running (obviously), or
2928 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2929 	 * 3) are cache-hot on their current CPU.
2930 	 */
2931 	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2932 		schedstat_inc(p, se.nr_failed_migrations_affine);
2933 		return 0;
2934 	}
2935 	*all_pinned = 0;
2936 
2937 	if (task_running(rq, p)) {
2938 		schedstat_inc(p, se.nr_failed_migrations_running);
2939 		return 0;
2940 	}
2941 
2942 	/*
2943 	 * Aggressive migration if:
2944 	 * 1) task is cache cold, or
2945 	 * 2) too many balance attempts have failed.
2946 	 */
2947 
2948 	if (!task_hot(p, rq->clock, sd) ||
2949 			sd->nr_balance_failed > sd->cache_nice_tries) {
2950 #ifdef CONFIG_SCHEDSTATS
2951 		if (task_hot(p, rq->clock, sd)) {
2952 			schedstat_inc(sd, lb_hot_gained[idle]);
2953 			schedstat_inc(p, se.nr_forced_migrations);
2954 		}
2955 #endif
2956 		return 1;
2957 	}
2958 
2959 	if (task_hot(p, rq->clock, sd)) {
2960 		schedstat_inc(p, se.nr_failed_migrations_hot);
2961 		return 0;
2962 	}
2963 	return 1;
2964 }
2965 
2966 static unsigned long
balance_tasks(struct rq * this_rq,int this_cpu,struct rq * busiest,unsigned long max_load_move,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned,int * this_best_prio,struct rq_iterator * iterator)2967 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2968 	      unsigned long max_load_move, struct sched_domain *sd,
2969 	      enum cpu_idle_type idle, int *all_pinned,
2970 	      int *this_best_prio, struct rq_iterator *iterator)
2971 {
2972 	int loops = 0, pulled = 0, pinned = 0;
2973 	struct task_struct *p;
2974 	long rem_load_move = max_load_move;
2975 
2976 	if (max_load_move == 0)
2977 		goto out;
2978 
2979 	pinned = 1;
2980 
2981 	/*
2982 	 * Start the load-balancing iterator:
2983 	 */
2984 	p = iterator->start(iterator->arg);
2985 next:
2986 	if (!p || loops++ > sysctl_sched_nr_migrate)
2987 		goto out;
2988 
2989 	if ((p->se.load.weight >> 1) > rem_load_move ||
2990 	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2991 		p = iterator->next(iterator->arg);
2992 		goto next;
2993 	}
2994 
2995 	pull_task(busiest, p, this_rq, this_cpu);
2996 	pulled++;
2997 	rem_load_move -= p->se.load.weight;
2998 
2999 	/*
3000 	 * We only want to steal up to the prescribed amount of weighted load.
3001 	 */
3002 	if (rem_load_move > 0) {
3003 		if (p->prio < *this_best_prio)
3004 			*this_best_prio = p->prio;
3005 		p = iterator->next(iterator->arg);
3006 		goto next;
3007 	}
3008 out:
3009 	/*
3010 	 * Right now, this is one of only two places pull_task() is called,
3011 	 * so we can safely collect pull_task() stats here rather than
3012 	 * inside pull_task().
3013 	 */
3014 	schedstat_add(sd, lb_gained[idle], pulled);
3015 
3016 	if (all_pinned)
3017 		*all_pinned = pinned;
3018 
3019 	return max_load_move - rem_load_move;
3020 }
3021 
3022 /*
3023  * move_tasks tries to move up to max_load_move weighted load from busiest to
3024  * this_rq, as part of a balancing operation within domain "sd".
3025  * Returns 1 if successful and 0 otherwise.
3026  *
3027  * Called with both runqueues locked.
3028  */
move_tasks(struct rq * this_rq,int this_cpu,struct rq * busiest,unsigned long max_load_move,struct sched_domain * sd,enum cpu_idle_type idle,int * all_pinned)3029 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3030 		      unsigned long max_load_move,
3031 		      struct sched_domain *sd, enum cpu_idle_type idle,
3032 		      int *all_pinned)
3033 {
3034 	const struct sched_class *class = sched_class_highest;
3035 	unsigned long total_load_moved = 0;
3036 	int this_best_prio = this_rq->curr->prio;
3037 
3038 	do {
3039 		total_load_moved +=
3040 			class->load_balance(this_rq, this_cpu, busiest,
3041 				max_load_move - total_load_moved,
3042 				sd, idle, all_pinned, &this_best_prio);
3043 		class = class->next;
3044 
3045 		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3046 			break;
3047 
3048 	} while (class && max_load_move > total_load_moved);
3049 
3050 	return total_load_moved > 0;
3051 }
3052 
3053 static int
iter_move_one_task(struct rq * this_rq,int this_cpu,struct rq * busiest,struct sched_domain * sd,enum cpu_idle_type idle,struct rq_iterator * iterator)3054 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3055 		   struct sched_domain *sd, enum cpu_idle_type idle,
3056 		   struct rq_iterator *iterator)
3057 {
3058 	struct task_struct *p = iterator->start(iterator->arg);
3059 	int pinned = 0;
3060 
3061 	while (p) {
3062 		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3063 			pull_task(busiest, p, this_rq, this_cpu);
3064 			/*
3065 			 * Right now, this is only the second place pull_task()
3066 			 * is called, so we can safely collect pull_task()
3067 			 * stats here rather than inside pull_task().
3068 			 */
3069 			schedstat_inc(sd, lb_gained[idle]);
3070 
3071 			return 1;
3072 		}
3073 		p = iterator->next(iterator->arg);
3074 	}
3075 
3076 	return 0;
3077 }
3078 
3079 /*
3080  * move_one_task tries to move exactly one task from busiest to this_rq, as
3081  * part of active balancing operations within "domain".
3082  * Returns 1 if successful and 0 otherwise.
3083  *
3084  * Called with both runqueues locked.
3085  */
move_one_task(struct rq * this_rq,int this_cpu,struct rq * busiest,struct sched_domain * sd,enum cpu_idle_type idle)3086 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3087 			 struct sched_domain *sd, enum cpu_idle_type idle)
3088 {
3089 	const struct sched_class *class;
3090 
3091 	for (class = sched_class_highest; class; class = class->next)
3092 		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3093 			return 1;
3094 
3095 	return 0;
3096 }
3097 
3098 /*
3099  * find_busiest_group finds and returns the busiest CPU group within the
3100  * domain. It calculates and returns the amount of weighted load which
3101  * should be moved to restore balance via the imbalance parameter.
3102  */
3103 static struct sched_group *
find_busiest_group(struct sched_domain * sd,int this_cpu,unsigned long * imbalance,enum cpu_idle_type idle,int * sd_idle,const struct cpumask * cpus,int * balance)3104 find_busiest_group(struct sched_domain *sd, int this_cpu,
3105 		   unsigned long *imbalance, enum cpu_idle_type idle,
3106 		   int *sd_idle, const struct cpumask *cpus, int *balance)
3107 {
3108 	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3109 	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3110 	unsigned long max_pull;
3111 	unsigned long busiest_load_per_task, busiest_nr_running;
3112 	unsigned long this_load_per_task, this_nr_running;
3113 	int load_idx, group_imb = 0;
3114 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3115 	int power_savings_balance = 1;
3116 	unsigned long leader_nr_running = 0, min_load_per_task = 0;
3117 	unsigned long min_nr_running = ULONG_MAX;
3118 	struct sched_group *group_min = NULL, *group_leader = NULL;
3119 #endif
3120 
3121 	max_load = this_load = total_load = total_pwr = 0;
3122 	busiest_load_per_task = busiest_nr_running = 0;
3123 	this_load_per_task = this_nr_running = 0;
3124 
3125 	if (idle == CPU_NOT_IDLE)
3126 		load_idx = sd->busy_idx;
3127 	else if (idle == CPU_NEWLY_IDLE)
3128 		load_idx = sd->newidle_idx;
3129 	else
3130 		load_idx = sd->idle_idx;
3131 
3132 	do {
3133 		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3134 		int local_group;
3135 		int i;
3136 		int __group_imb = 0;
3137 		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3138 		unsigned long sum_nr_running, sum_weighted_load;
3139 		unsigned long sum_avg_load_per_task;
3140 		unsigned long avg_load_per_task;
3141 
3142 		local_group = cpumask_test_cpu(this_cpu,
3143 					       sched_group_cpus(group));
3144 
3145 		if (local_group)
3146 			balance_cpu = cpumask_first(sched_group_cpus(group));
3147 
3148 		/* Tally up the load of all CPUs in the group */
3149 		sum_weighted_load = sum_nr_running = avg_load = 0;
3150 		sum_avg_load_per_task = avg_load_per_task = 0;
3151 
3152 		max_cpu_load = 0;
3153 		min_cpu_load = ~0UL;
3154 
3155 		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3156 			struct rq *rq = cpu_rq(i);
3157 
3158 			if (*sd_idle && rq->nr_running)
3159 				*sd_idle = 0;
3160 
3161 			/* Bias balancing toward cpus of our domain */
3162 			if (local_group) {
3163 				if (idle_cpu(i) && !first_idle_cpu) {
3164 					first_idle_cpu = 1;
3165 					balance_cpu = i;
3166 				}
3167 
3168 				load = target_load(i, load_idx);
3169 			} else {
3170 				load = source_load(i, load_idx);
3171 				if (load > max_cpu_load)
3172 					max_cpu_load = load;
3173 				if (min_cpu_load > load)
3174 					min_cpu_load = load;
3175 			}
3176 
3177 			avg_load += load;
3178 			sum_nr_running += rq->nr_running;
3179 			sum_weighted_load += weighted_cpuload(i);
3180 
3181 			sum_avg_load_per_task += cpu_avg_load_per_task(i);
3182 		}
3183 
3184 		/*
3185 		 * First idle cpu or the first cpu(busiest) in this sched group
3186 		 * is eligible for doing load balancing at this and above
3187 		 * domains. In the newly idle case, we will allow all the cpu's
3188 		 * to do the newly idle load balance.
3189 		 */
3190 		if (idle != CPU_NEWLY_IDLE && local_group &&
3191 		    balance_cpu != this_cpu && balance) {
3192 			*balance = 0;
3193 			goto ret;
3194 		}
3195 
3196 		total_load += avg_load;
3197 		total_pwr += group->__cpu_power;
3198 
3199 		/* Adjust by relative CPU power of the group */
3200 		avg_load = sg_div_cpu_power(group,
3201 				avg_load * SCHED_LOAD_SCALE);
3202 
3203 
3204 		/*
3205 		 * Consider the group unbalanced when the imbalance is larger
3206 		 * than the average weight of two tasks.
3207 		 *
3208 		 * APZ: with cgroup the avg task weight can vary wildly and
3209 		 *      might not be a suitable number - should we keep a
3210 		 *      normalized nr_running number somewhere that negates
3211 		 *      the hierarchy?
3212 		 */
3213 		avg_load_per_task = sg_div_cpu_power(group,
3214 				sum_avg_load_per_task * SCHED_LOAD_SCALE);
3215 
3216 		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3217 			__group_imb = 1;
3218 
3219 		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3220 
3221 		if (local_group) {
3222 			this_load = avg_load;
3223 			this = group;
3224 			this_nr_running = sum_nr_running;
3225 			this_load_per_task = sum_weighted_load;
3226 		} else if (avg_load > max_load &&
3227 			   (sum_nr_running > group_capacity || __group_imb)) {
3228 			max_load = avg_load;
3229 			busiest = group;
3230 			busiest_nr_running = sum_nr_running;
3231 			busiest_load_per_task = sum_weighted_load;
3232 			group_imb = __group_imb;
3233 		}
3234 
3235 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3236 		/*
3237 		 * Busy processors will not participate in power savings
3238 		 * balance.
3239 		 */
3240 		if (idle == CPU_NOT_IDLE ||
3241 				!(sd->flags & SD_POWERSAVINGS_BALANCE))
3242 			goto group_next;
3243 
3244 		/*
3245 		 * If the local group is idle or completely loaded
3246 		 * no need to do power savings balance at this domain
3247 		 */
3248 		if (local_group && (this_nr_running >= group_capacity ||
3249 				    !this_nr_running))
3250 			power_savings_balance = 0;
3251 
3252 		/*
3253 		 * If a group is already running at full capacity or idle,
3254 		 * don't include that group in power savings calculations
3255 		 */
3256 		if (!power_savings_balance || sum_nr_running >= group_capacity
3257 		    || !sum_nr_running)
3258 			goto group_next;
3259 
3260 		/*
3261 		 * Calculate the group which has the least non-idle load.
3262 		 * This is the group from where we need to pick up the load
3263 		 * for saving power
3264 		 */
3265 		if ((sum_nr_running < min_nr_running) ||
3266 		    (sum_nr_running == min_nr_running &&
3267 		     cpumask_first(sched_group_cpus(group)) >
3268 		     cpumask_first(sched_group_cpus(group_min)))) {
3269 			group_min = group;
3270 			min_nr_running = sum_nr_running;
3271 			min_load_per_task = sum_weighted_load /
3272 						sum_nr_running;
3273 		}
3274 
3275 		/*
3276 		 * Calculate the group which is almost near its
3277 		 * capacity but still has some space to pick up some load
3278 		 * from other group and save more power
3279 		 */
3280 		if (sum_nr_running <= group_capacity - 1) {
3281 			if (sum_nr_running > leader_nr_running ||
3282 			    (sum_nr_running == leader_nr_running &&
3283 			     cpumask_first(sched_group_cpus(group)) <
3284 			     cpumask_first(sched_group_cpus(group_leader)))) {
3285 				group_leader = group;
3286 				leader_nr_running = sum_nr_running;
3287 			}
3288 		}
3289 group_next:
3290 #endif
3291 		group = group->next;
3292 	} while (group != sd->groups);
3293 
3294 	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3295 		goto out_balanced;
3296 
3297 	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3298 
3299 	if (this_load >= avg_load ||
3300 			100*max_load <= sd->imbalance_pct*this_load)
3301 		goto out_balanced;
3302 
3303 	busiest_load_per_task /= busiest_nr_running;
3304 	if (group_imb)
3305 		busiest_load_per_task = min(busiest_load_per_task, avg_load);
3306 
3307 	/*
3308 	 * We're trying to get all the cpus to the average_load, so we don't
3309 	 * want to push ourselves above the average load, nor do we wish to
3310 	 * reduce the max loaded cpu below the average load, as either of these
3311 	 * actions would just result in more rebalancing later, and ping-pong
3312 	 * tasks around. Thus we look for the minimum possible imbalance.
3313 	 * Negative imbalances (*we* are more loaded than anyone else) will
3314 	 * be counted as no imbalance for these purposes -- we can't fix that
3315 	 * by pulling tasks to us. Be careful of negative numbers as they'll
3316 	 * appear as very large values with unsigned longs.
3317 	 */
3318 	if (max_load <= busiest_load_per_task)
3319 		goto out_balanced;
3320 
3321 	/*
3322 	 * In the presence of smp nice balancing, certain scenarios can have
3323 	 * max load less than avg load(as we skip the groups at or below
3324 	 * its cpu_power, while calculating max_load..)
3325 	 */
3326 	if (max_load < avg_load) {
3327 		*imbalance = 0;
3328 		goto small_imbalance;
3329 	}
3330 
3331 	/* Don't want to pull so many tasks that a group would go idle */
3332 	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3333 
3334 	/* How much load to actually move to equalise the imbalance */
3335 	*imbalance = min(max_pull * busiest->__cpu_power,
3336 				(avg_load - this_load) * this->__cpu_power)
3337 			/ SCHED_LOAD_SCALE;
3338 
3339 	/*
3340 	 * if *imbalance is less than the average load per runnable task
3341 	 * there is no gaurantee that any tasks will be moved so we'll have
3342 	 * a think about bumping its value to force at least one task to be
3343 	 * moved
3344 	 */
3345 	if (*imbalance < busiest_load_per_task) {
3346 		unsigned long tmp, pwr_now, pwr_move;
3347 		unsigned int imbn;
3348 
3349 small_imbalance:
3350 		pwr_move = pwr_now = 0;
3351 		imbn = 2;
3352 		if (this_nr_running) {
3353 			this_load_per_task /= this_nr_running;
3354 			if (busiest_load_per_task > this_load_per_task)
3355 				imbn = 1;
3356 		} else
3357 			this_load_per_task = cpu_avg_load_per_task(this_cpu);
3358 
3359 		if (max_load - this_load + busiest_load_per_task >=
3360 					busiest_load_per_task * imbn) {
3361 			*imbalance = busiest_load_per_task;
3362 			return busiest;
3363 		}
3364 
3365 		/*
3366 		 * OK, we don't have enough imbalance to justify moving tasks,
3367 		 * however we may be able to increase total CPU power used by
3368 		 * moving them.
3369 		 */
3370 
3371 		pwr_now += busiest->__cpu_power *
3372 				min(busiest_load_per_task, max_load);
3373 		pwr_now += this->__cpu_power *
3374 				min(this_load_per_task, this_load);
3375 		pwr_now /= SCHED_LOAD_SCALE;
3376 
3377 		/* Amount of load we'd subtract */
3378 		tmp = sg_div_cpu_power(busiest,
3379 				busiest_load_per_task * SCHED_LOAD_SCALE);
3380 		if (max_load > tmp)
3381 			pwr_move += busiest->__cpu_power *
3382 				min(busiest_load_per_task, max_load - tmp);
3383 
3384 		/* Amount of load we'd add */
3385 		if (max_load * busiest->__cpu_power <
3386 				busiest_load_per_task * SCHED_LOAD_SCALE)
3387 			tmp = sg_div_cpu_power(this,
3388 					max_load * busiest->__cpu_power);
3389 		else
3390 			tmp = sg_div_cpu_power(this,
3391 				busiest_load_per_task * SCHED_LOAD_SCALE);
3392 		pwr_move += this->__cpu_power *
3393 				min(this_load_per_task, this_load + tmp);
3394 		pwr_move /= SCHED_LOAD_SCALE;
3395 
3396 		/* Move if we gain throughput */
3397 		if (pwr_move > pwr_now)
3398 			*imbalance = busiest_load_per_task;
3399 	}
3400 
3401 	return busiest;
3402 
3403 out_balanced:
3404 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3405 	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3406 		goto ret;
3407 
3408 	if (this == group_leader && group_leader != group_min) {
3409 		*imbalance = min_load_per_task;
3410 		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3411 			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3412 				cpumask_first(sched_group_cpus(group_leader));
3413 		}
3414 		return group_min;
3415 	}
3416 #endif
3417 ret:
3418 	*imbalance = 0;
3419 	return NULL;
3420 }
3421 
3422 /*
3423  * find_busiest_queue - find the busiest runqueue among the cpus in group.
3424  */
3425 static struct rq *
find_busiest_queue(struct sched_group * group,enum cpu_idle_type idle,unsigned long imbalance,const struct cpumask * cpus)3426 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3427 		   unsigned long imbalance, const struct cpumask *cpus)
3428 {
3429 	struct rq *busiest = NULL, *rq;
3430 	unsigned long max_load = 0;
3431 	int i;
3432 
3433 	for_each_cpu(i, sched_group_cpus(group)) {
3434 		unsigned long wl;
3435 
3436 		if (!cpumask_test_cpu(i, cpus))
3437 			continue;
3438 
3439 		rq = cpu_rq(i);
3440 		wl = weighted_cpuload(i);
3441 
3442 		if (rq->nr_running == 1 && wl > imbalance)
3443 			continue;
3444 
3445 		if (wl > max_load) {
3446 			max_load = wl;
3447 			busiest = rq;
3448 		}
3449 	}
3450 
3451 	return busiest;
3452 }
3453 
3454 /*
3455  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3456  * so long as it is large enough.
3457  */
3458 #define MAX_PINNED_INTERVAL	512
3459 
3460 /*
3461  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3462  * tasks if there is an imbalance.
3463  */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * balance,struct cpumask * cpus)3464 static int load_balance(int this_cpu, struct rq *this_rq,
3465 			struct sched_domain *sd, enum cpu_idle_type idle,
3466 			int *balance, struct cpumask *cpus)
3467 {
3468 	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3469 	struct sched_group *group;
3470 	unsigned long imbalance;
3471 	struct rq *busiest;
3472 	unsigned long flags;
3473 
3474 	cpumask_setall(cpus);
3475 
3476 	/*
3477 	 * When power savings policy is enabled for the parent domain, idle
3478 	 * sibling can pick up load irrespective of busy siblings. In this case,
3479 	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3480 	 * portraying it as CPU_NOT_IDLE.
3481 	 */
3482 	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3483 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3484 		sd_idle = 1;
3485 
3486 	schedstat_inc(sd, lb_count[idle]);
3487 
3488 redo:
3489 	update_shares(sd);
3490 	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3491 				   cpus, balance);
3492 
3493 	if (*balance == 0)
3494 		goto out_balanced;
3495 
3496 	if (!group) {
3497 		schedstat_inc(sd, lb_nobusyg[idle]);
3498 		goto out_balanced;
3499 	}
3500 
3501 	busiest = find_busiest_queue(group, idle, imbalance, cpus);
3502 	if (!busiest) {
3503 		schedstat_inc(sd, lb_nobusyq[idle]);
3504 		goto out_balanced;
3505 	}
3506 
3507 	BUG_ON(busiest == this_rq);
3508 
3509 	schedstat_add(sd, lb_imbalance[idle], imbalance);
3510 
3511 	ld_moved = 0;
3512 	if (busiest->nr_running > 1) {
3513 		/*
3514 		 * Attempt to move tasks. If find_busiest_group has found
3515 		 * an imbalance but busiest->nr_running <= 1, the group is
3516 		 * still unbalanced. ld_moved simply stays zero, so it is
3517 		 * correctly treated as an imbalance.
3518 		 */
3519 		local_irq_save(flags);
3520 		double_rq_lock(this_rq, busiest);
3521 		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3522 				      imbalance, sd, idle, &all_pinned);
3523 		double_rq_unlock(this_rq, busiest);
3524 		local_irq_restore(flags);
3525 
3526 		/*
3527 		 * some other cpu did the load balance for us.
3528 		 */
3529 		if (ld_moved && this_cpu != smp_processor_id())
3530 			resched_cpu(this_cpu);
3531 
3532 		/* All tasks on this runqueue were pinned by CPU affinity */
3533 		if (unlikely(all_pinned)) {
3534 			cpumask_clear_cpu(cpu_of(busiest), cpus);
3535 			if (!cpumask_empty(cpus))
3536 				goto redo;
3537 			goto out_balanced;
3538 		}
3539 	}
3540 
3541 	if (!ld_moved) {
3542 		schedstat_inc(sd, lb_failed[idle]);
3543 		sd->nr_balance_failed++;
3544 
3545 		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3546 
3547 			spin_lock_irqsave(&busiest->lock, flags);
3548 
3549 			/* don't kick the migration_thread, if the curr
3550 			 * task on busiest cpu can't be moved to this_cpu
3551 			 */
3552 			if (!cpumask_test_cpu(this_cpu,
3553 					      &busiest->curr->cpus_allowed)) {
3554 				spin_unlock_irqrestore(&busiest->lock, flags);
3555 				all_pinned = 1;
3556 				goto out_one_pinned;
3557 			}
3558 
3559 			if (!busiest->active_balance) {
3560 				busiest->active_balance = 1;
3561 				busiest->push_cpu = this_cpu;
3562 				active_balance = 1;
3563 			}
3564 			spin_unlock_irqrestore(&busiest->lock, flags);
3565 			if (active_balance)
3566 				wake_up_process(busiest->migration_thread);
3567 
3568 			/*
3569 			 * We've kicked active balancing, reset the failure
3570 			 * counter.
3571 			 */
3572 			sd->nr_balance_failed = sd->cache_nice_tries+1;
3573 		}
3574 	} else
3575 		sd->nr_balance_failed = 0;
3576 
3577 	if (likely(!active_balance)) {
3578 		/* We were unbalanced, so reset the balancing interval */
3579 		sd->balance_interval = sd->min_interval;
3580 	} else {
3581 		/*
3582 		 * If we've begun active balancing, start to back off. This
3583 		 * case may not be covered by the all_pinned logic if there
3584 		 * is only 1 task on the busy runqueue (because we don't call
3585 		 * move_tasks).
3586 		 */
3587 		if (sd->balance_interval < sd->max_interval)
3588 			sd->balance_interval *= 2;
3589 	}
3590 
3591 	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3592 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3593 		ld_moved = -1;
3594 
3595 	goto out;
3596 
3597 out_balanced:
3598 	schedstat_inc(sd, lb_balanced[idle]);
3599 
3600 	sd->nr_balance_failed = 0;
3601 
3602 out_one_pinned:
3603 	/* tune up the balancing interval */
3604 	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3605 			(sd->balance_interval < sd->max_interval))
3606 		sd->balance_interval *= 2;
3607 
3608 	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3609 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3610 		ld_moved = -1;
3611 	else
3612 		ld_moved = 0;
3613 out:
3614 	if (ld_moved)
3615 		update_shares(sd);
3616 	return ld_moved;
3617 }
3618 
3619 /*
3620  * Check this_cpu to ensure it is balanced within domain. Attempt to move
3621  * tasks if there is an imbalance.
3622  *
3623  * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3624  * this_rq is locked.
3625  */
3626 static int
load_balance_newidle(int this_cpu,struct rq * this_rq,struct sched_domain * sd,struct cpumask * cpus)3627 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3628 			struct cpumask *cpus)
3629 {
3630 	struct sched_group *group;
3631 	struct rq *busiest = NULL;
3632 	unsigned long imbalance;
3633 	int ld_moved = 0;
3634 	int sd_idle = 0;
3635 	int all_pinned = 0;
3636 
3637 	cpumask_setall(cpus);
3638 
3639 	/*
3640 	 * When power savings policy is enabled for the parent domain, idle
3641 	 * sibling can pick up load irrespective of busy siblings. In this case,
3642 	 * let the state of idle sibling percolate up as IDLE, instead of
3643 	 * portraying it as CPU_NOT_IDLE.
3644 	 */
3645 	if (sd->flags & SD_SHARE_CPUPOWER &&
3646 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3647 		sd_idle = 1;
3648 
3649 	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3650 redo:
3651 	update_shares_locked(this_rq, sd);
3652 	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3653 				   &sd_idle, cpus, NULL);
3654 	if (!group) {
3655 		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3656 		goto out_balanced;
3657 	}
3658 
3659 	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3660 	if (!busiest) {
3661 		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3662 		goto out_balanced;
3663 	}
3664 
3665 	BUG_ON(busiest == this_rq);
3666 
3667 	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3668 
3669 	ld_moved = 0;
3670 	if (busiest->nr_running > 1) {
3671 		/* Attempt to move tasks */
3672 		double_lock_balance(this_rq, busiest);
3673 		/* this_rq->clock is already updated */
3674 		update_rq_clock(busiest);
3675 		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3676 					imbalance, sd, CPU_NEWLY_IDLE,
3677 					&all_pinned);
3678 		double_unlock_balance(this_rq, busiest);
3679 
3680 		if (unlikely(all_pinned)) {
3681 			cpumask_clear_cpu(cpu_of(busiest), cpus);
3682 			if (!cpumask_empty(cpus))
3683 				goto redo;
3684 		}
3685 	}
3686 
3687 	if (!ld_moved) {
3688 		int active_balance = 0;
3689 
3690 		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3691 		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3692 		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3693 			return -1;
3694 
3695 		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3696 			return -1;
3697 
3698 		if (sd->nr_balance_failed++ < 2)
3699 			return -1;
3700 
3701 		/*
3702 		 * The only task running in a non-idle cpu can be moved to this
3703 		 * cpu in an attempt to completely freeup the other CPU
3704 		 * package. The same method used to move task in load_balance()
3705 		 * have been extended for load_balance_newidle() to speedup
3706 		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3707 		 *
3708 		 * The package power saving logic comes from
3709 		 * find_busiest_group().  If there are no imbalance, then
3710 		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
3711 		 * f_b_g() will select a group from which a running task may be
3712 		 * pulled to this cpu in order to make the other package idle.
3713 		 * If there is no opportunity to make a package idle and if
3714 		 * there are no imbalance, then f_b_g() will return NULL and no
3715 		 * action will be taken in load_balance_newidle().
3716 		 *
3717 		 * Under normal task pull operation due to imbalance, there
3718 		 * will be more than one task in the source run queue and
3719 		 * move_tasks() will succeed.  ld_moved will be true and this
3720 		 * active balance code will not be triggered.
3721 		 */
3722 
3723 		/* Lock busiest in correct order while this_rq is held */
3724 		double_lock_balance(this_rq, busiest);
3725 
3726 		/*
3727 		 * don't kick the migration_thread, if the curr
3728 		 * task on busiest cpu can't be moved to this_cpu
3729 		 */
3730 		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3731 			double_unlock_balance(this_rq, busiest);
3732 			all_pinned = 1;
3733 			return ld_moved;
3734 		}
3735 
3736 		if (!busiest->active_balance) {
3737 			busiest->active_balance = 1;
3738 			busiest->push_cpu = this_cpu;
3739 			active_balance = 1;
3740 		}
3741 
3742 		double_unlock_balance(this_rq, busiest);
3743 		/*
3744 		 * Should not call ttwu while holding a rq->lock
3745 		 */
3746 		spin_unlock(&this_rq->lock);
3747 		if (active_balance)
3748 			wake_up_process(busiest->migration_thread);
3749 		spin_lock(&this_rq->lock);
3750 
3751 	} else
3752 		sd->nr_balance_failed = 0;
3753 
3754 	update_shares_locked(this_rq, sd);
3755 	return ld_moved;
3756 
3757 out_balanced:
3758 	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3759 	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3760 	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3761 		return -1;
3762 	sd->nr_balance_failed = 0;
3763 
3764 	return 0;
3765 }
3766 
3767 /*
3768  * idle_balance is called by schedule() if this_cpu is about to become
3769  * idle. Attempts to pull tasks from other CPUs.
3770  */
idle_balance(int this_cpu,struct rq * this_rq)3771 static void idle_balance(int this_cpu, struct rq *this_rq)
3772 {
3773 	struct sched_domain *sd;
3774 	int pulled_task = 0;
3775 	unsigned long next_balance = jiffies + HZ;
3776 	cpumask_var_t tmpmask;
3777 
3778 	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3779 		return;
3780 
3781 	for_each_domain(this_cpu, sd) {
3782 		unsigned long interval;
3783 
3784 		if (!(sd->flags & SD_LOAD_BALANCE))
3785 			continue;
3786 
3787 		if (sd->flags & SD_BALANCE_NEWIDLE)
3788 			/* If we've pulled tasks over stop searching: */
3789 			pulled_task = load_balance_newidle(this_cpu, this_rq,
3790 							   sd, tmpmask);
3791 
3792 		interval = msecs_to_jiffies(sd->balance_interval);
3793 		if (time_after(next_balance, sd->last_balance + interval))
3794 			next_balance = sd->last_balance + interval;
3795 		if (pulled_task)
3796 			break;
3797 	}
3798 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3799 		/*
3800 		 * We are going idle. next_balance may be set based on
3801 		 * a busy processor. So reset next_balance.
3802 		 */
3803 		this_rq->next_balance = next_balance;
3804 	}
3805 	free_cpumask_var(tmpmask);
3806 }
3807 
3808 /*
3809  * active_load_balance is run by migration threads. It pushes running tasks
3810  * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3811  * running on each physical CPU where possible, and avoids physical /
3812  * logical imbalances.
3813  *
3814  * Called with busiest_rq locked.
3815  */
active_load_balance(struct rq * busiest_rq,int busiest_cpu)3816 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3817 {
3818 	int target_cpu = busiest_rq->push_cpu;
3819 	struct sched_domain *sd;
3820 	struct rq *target_rq;
3821 
3822 	/* Is there any task to move? */
3823 	if (busiest_rq->nr_running <= 1)
3824 		return;
3825 
3826 	target_rq = cpu_rq(target_cpu);
3827 
3828 	/*
3829 	 * This condition is "impossible", if it occurs
3830 	 * we need to fix it. Originally reported by
3831 	 * Bjorn Helgaas on a 128-cpu setup.
3832 	 */
3833 	BUG_ON(busiest_rq == target_rq);
3834 
3835 	/* move a task from busiest_rq to target_rq */
3836 	double_lock_balance(busiest_rq, target_rq);
3837 	update_rq_clock(busiest_rq);
3838 	update_rq_clock(target_rq);
3839 
3840 	/* Search for an sd spanning us and the target CPU. */
3841 	for_each_domain(target_cpu, sd) {
3842 		if ((sd->flags & SD_LOAD_BALANCE) &&
3843 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3844 				break;
3845 	}
3846 
3847 	if (likely(sd)) {
3848 		schedstat_inc(sd, alb_count);
3849 
3850 		if (move_one_task(target_rq, target_cpu, busiest_rq,
3851 				  sd, CPU_IDLE))
3852 			schedstat_inc(sd, alb_pushed);
3853 		else
3854 			schedstat_inc(sd, alb_failed);
3855 	}
3856 	double_unlock_balance(busiest_rq, target_rq);
3857 }
3858 
3859 #ifdef CONFIG_NO_HZ
3860 static struct {
3861 	atomic_t load_balancer;
3862 	cpumask_var_t cpu_mask;
3863 } nohz ____cacheline_aligned = {
3864 	.load_balancer = ATOMIC_INIT(-1),
3865 };
3866 
3867 /*
3868  * This routine will try to nominate the ilb (idle load balancing)
3869  * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3870  * load balancing on behalf of all those cpus. If all the cpus in the system
3871  * go into this tickless mode, then there will be no ilb owner (as there is
3872  * no need for one) and all the cpus will sleep till the next wakeup event
3873  * arrives...
3874  *
3875  * For the ilb owner, tick is not stopped. And this tick will be used
3876  * for idle load balancing. ilb owner will still be part of
3877  * nohz.cpu_mask..
3878  *
3879  * While stopping the tick, this cpu will become the ilb owner if there
3880  * is no other owner. And will be the owner till that cpu becomes busy
3881  * or if all cpus in the system stop their ticks at which point
3882  * there is no need for ilb owner.
3883  *
3884  * When the ilb owner becomes busy, it nominates another owner, during the
3885  * next busy scheduler_tick()
3886  */
select_nohz_load_balancer(int stop_tick)3887 int select_nohz_load_balancer(int stop_tick)
3888 {
3889 	int cpu = smp_processor_id();
3890 
3891 	if (stop_tick) {
3892 		cpu_rq(cpu)->in_nohz_recently = 1;
3893 
3894 		if (!cpu_active(cpu)) {
3895 			if (atomic_read(&nohz.load_balancer) != cpu)
3896 				return 0;
3897 
3898 			/*
3899 			 * If we are going offline and still the leader,
3900 			 * give up!
3901 			 */
3902 			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3903 				BUG();
3904 
3905 			return 0;
3906 		}
3907 
3908 		cpumask_set_cpu(cpu, nohz.cpu_mask);
3909 
3910 		/* time for ilb owner also to sleep */
3911 		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3912 			if (atomic_read(&nohz.load_balancer) == cpu)
3913 				atomic_set(&nohz.load_balancer, -1);
3914 			return 0;
3915 		}
3916 
3917 		if (atomic_read(&nohz.load_balancer) == -1) {
3918 			/* make me the ilb owner */
3919 			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3920 				return 1;
3921 		} else if (atomic_read(&nohz.load_balancer) == cpu)
3922 			return 1;
3923 	} else {
3924 		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3925 			return 0;
3926 
3927 		cpumask_clear_cpu(cpu, nohz.cpu_mask);
3928 
3929 		if (atomic_read(&nohz.load_balancer) == cpu)
3930 			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3931 				BUG();
3932 	}
3933 	return 0;
3934 }
3935 #endif
3936 
3937 static DEFINE_SPINLOCK(balancing);
3938 
3939 /*
3940  * It checks each scheduling domain to see if it is due to be balanced,
3941  * and initiates a balancing operation if so.
3942  *
3943  * Balancing parameters are set up in arch_init_sched_domains.
3944  */
rebalance_domains(int cpu,enum cpu_idle_type idle)3945 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3946 {
3947 	int balance = 1;
3948 	struct rq *rq = cpu_rq(cpu);
3949 	unsigned long interval;
3950 	struct sched_domain *sd;
3951 	/* Earliest time when we have to do rebalance again */
3952 	unsigned long next_balance = jiffies + 60*HZ;
3953 	int update_next_balance = 0;
3954 	int need_serialize;
3955 	cpumask_var_t tmp;
3956 
3957 	/* Fails alloc?  Rebalancing probably not a priority right now. */
3958 	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3959 		return;
3960 
3961 	for_each_domain(cpu, sd) {
3962 		if (!(sd->flags & SD_LOAD_BALANCE))
3963 			continue;
3964 
3965 		interval = sd->balance_interval;
3966 		if (idle != CPU_IDLE)
3967 			interval *= sd->busy_factor;
3968 
3969 		/* scale ms to jiffies */
3970 		interval = msecs_to_jiffies(interval);
3971 		if (unlikely(!interval))
3972 			interval = 1;
3973 		if (interval > HZ*NR_CPUS/10)
3974 			interval = HZ*NR_CPUS/10;
3975 
3976 		need_serialize = sd->flags & SD_SERIALIZE;
3977 
3978 		if (need_serialize) {
3979 			if (!spin_trylock(&balancing))
3980 				goto out;
3981 		}
3982 
3983 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3984 			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3985 				/*
3986 				 * We've pulled tasks over so either we're no
3987 				 * longer idle, or one of our SMT siblings is
3988 				 * not idle.
3989 				 */
3990 				idle = CPU_NOT_IDLE;
3991 			}
3992 			sd->last_balance = jiffies;
3993 		}
3994 		if (need_serialize)
3995 			spin_unlock(&balancing);
3996 out:
3997 		if (time_after(next_balance, sd->last_balance + interval)) {
3998 			next_balance = sd->last_balance + interval;
3999 			update_next_balance = 1;
4000 		}
4001 
4002 		/*
4003 		 * Stop the load balance at this level. There is another
4004 		 * CPU in our sched group which is doing load balancing more
4005 		 * actively.
4006 		 */
4007 		if (!balance)
4008 			break;
4009 	}
4010 
4011 	/*
4012 	 * next_balance will be updated only when there is a need.
4013 	 * When the cpu is attached to null domain for ex, it will not be
4014 	 * updated.
4015 	 */
4016 	if (likely(update_next_balance))
4017 		rq->next_balance = next_balance;
4018 
4019 	free_cpumask_var(tmp);
4020 }
4021 
4022 /*
4023  * run_rebalance_domains is triggered when needed from the scheduler tick.
4024  * In CONFIG_NO_HZ case, the idle load balance owner will do the
4025  * rebalancing for all the cpus for whom scheduler ticks are stopped.
4026  */
run_rebalance_domains(struct softirq_action * h)4027 static void run_rebalance_domains(struct softirq_action *h)
4028 {
4029 	int this_cpu = smp_processor_id();
4030 	struct rq *this_rq = cpu_rq(this_cpu);
4031 	enum cpu_idle_type idle = this_rq->idle_at_tick ?
4032 						CPU_IDLE : CPU_NOT_IDLE;
4033 
4034 	rebalance_domains(this_cpu, idle);
4035 
4036 #ifdef CONFIG_NO_HZ
4037 	/*
4038 	 * If this cpu is the owner for idle load balancing, then do the
4039 	 * balancing on behalf of the other idle cpus whose ticks are
4040 	 * stopped.
4041 	 */
4042 	if (this_rq->idle_at_tick &&
4043 	    atomic_read(&nohz.load_balancer) == this_cpu) {
4044 		struct rq *rq;
4045 		int balance_cpu;
4046 
4047 		for_each_cpu(balance_cpu, nohz.cpu_mask) {
4048 			if (balance_cpu == this_cpu)
4049 				continue;
4050 
4051 			/*
4052 			 * If this cpu gets work to do, stop the load balancing
4053 			 * work being done for other cpus. Next load
4054 			 * balancing owner will pick it up.
4055 			 */
4056 			if (need_resched())
4057 				break;
4058 
4059 			rebalance_domains(balance_cpu, CPU_IDLE);
4060 
4061 			rq = cpu_rq(balance_cpu);
4062 			if (time_after(this_rq->next_balance, rq->next_balance))
4063 				this_rq->next_balance = rq->next_balance;
4064 		}
4065 	}
4066 #endif
4067 }
4068 
4069 /*
4070  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4071  *
4072  * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4073  * idle load balancing owner or decide to stop the periodic load balancing,
4074  * if the whole system is idle.
4075  */
trigger_load_balance(struct rq * rq,int cpu)4076 static inline void trigger_load_balance(struct rq *rq, int cpu)
4077 {
4078 #ifdef CONFIG_NO_HZ
4079 	/*
4080 	 * If we were in the nohz mode recently and busy at the current
4081 	 * scheduler tick, then check if we need to nominate new idle
4082 	 * load balancer.
4083 	 */
4084 	if (rq->in_nohz_recently && !rq->idle_at_tick) {
4085 		rq->in_nohz_recently = 0;
4086 
4087 		if (atomic_read(&nohz.load_balancer) == cpu) {
4088 			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4089 			atomic_set(&nohz.load_balancer, -1);
4090 		}
4091 
4092 		if (atomic_read(&nohz.load_balancer) == -1) {
4093 			/*
4094 			 * simple selection for now: Nominate the
4095 			 * first cpu in the nohz list to be the next
4096 			 * ilb owner.
4097 			 *
4098 			 * TBD: Traverse the sched domains and nominate
4099 			 * the nearest cpu in the nohz.cpu_mask.
4100 			 */
4101 			int ilb = cpumask_first(nohz.cpu_mask);
4102 
4103 			if (ilb < nr_cpu_ids)
4104 				resched_cpu(ilb);
4105 		}
4106 	}
4107 
4108 	/*
4109 	 * If this cpu is idle and doing idle load balancing for all the
4110 	 * cpus with ticks stopped, is it time for that to stop?
4111 	 */
4112 	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4113 	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4114 		resched_cpu(cpu);
4115 		return;
4116 	}
4117 
4118 	/*
4119 	 * If this cpu is idle and the idle load balancing is done by
4120 	 * someone else, then no need raise the SCHED_SOFTIRQ
4121 	 */
4122 	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4123 	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4124 		return;
4125 #endif
4126 	if (time_after_eq(jiffies, rq->next_balance))
4127 		raise_softirq(SCHED_SOFTIRQ);
4128 }
4129 
4130 #else	/* CONFIG_SMP */
4131 
4132 /*
4133  * on UP we do not need to balance between CPUs:
4134  */
idle_balance(int cpu,struct rq * rq)4135 static inline void idle_balance(int cpu, struct rq *rq)
4136 {
4137 }
4138 
4139 #endif
4140 
4141 DEFINE_PER_CPU(struct kernel_stat, kstat);
4142 
4143 EXPORT_PER_CPU_SYMBOL(kstat);
4144 
4145 /*
4146  * Return any ns on the sched_clock that have not yet been accounted in
4147  * @p in case that task is currently running.
4148  *
4149  * Called with task_rq_lock() held on @rq.
4150  */
do_task_delta_exec(struct task_struct * p,struct rq * rq)4151 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4152 {
4153 	u64 ns = 0;
4154 
4155 	if (task_current(rq, p)) {
4156 		update_rq_clock(rq);
4157 		ns = rq->clock - p->se.exec_start;
4158 		if ((s64)ns < 0)
4159 			ns = 0;
4160 	}
4161 
4162 	return ns;
4163 }
4164 
task_delta_exec(struct task_struct * p)4165 unsigned long long task_delta_exec(struct task_struct *p)
4166 {
4167 	unsigned long flags;
4168 	struct rq *rq;
4169 	u64 ns = 0;
4170 
4171 	rq = task_rq_lock(p, &flags);
4172 	ns = do_task_delta_exec(p, rq);
4173 	task_rq_unlock(rq, &flags);
4174 
4175 	return ns;
4176 }
4177 
4178 /*
4179  * Return accounted runtime for the task.
4180  * In case the task is currently running, return the runtime plus current's
4181  * pending runtime that have not been accounted yet.
4182  */
task_sched_runtime(struct task_struct * p)4183 unsigned long long task_sched_runtime(struct task_struct *p)
4184 {
4185 	unsigned long flags;
4186 	struct rq *rq;
4187 	u64 ns = 0;
4188 
4189 	rq = task_rq_lock(p, &flags);
4190 	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4191 	task_rq_unlock(rq, &flags);
4192 
4193 	return ns;
4194 }
4195 
4196 /*
4197  * Return sum_exec_runtime for the thread group.
4198  * In case the task is currently running, return the sum plus current's
4199  * pending runtime that have not been accounted yet.
4200  *
4201  * Note that the thread group might have other running tasks as well,
4202  * so the return value not includes other pending runtime that other
4203  * running tasks might have.
4204  */
thread_group_sched_runtime(struct task_struct * p)4205 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4206 {
4207 	struct task_cputime totals;
4208 	unsigned long flags;
4209 	struct rq *rq;
4210 	u64 ns;
4211 
4212 	rq = task_rq_lock(p, &flags);
4213 	thread_group_cputime(p, &totals);
4214 	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4215 	task_rq_unlock(rq, &flags);
4216 
4217 	return ns;
4218 }
4219 
4220 /*
4221  * Account user cpu time to a process.
4222  * @p: the process that the cpu time gets accounted to
4223  * @cputime: the cpu time spent in user space since the last update
4224  * @cputime_scaled: cputime scaled by cpu frequency
4225  */
account_user_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled)4226 void account_user_time(struct task_struct *p, cputime_t cputime,
4227 		       cputime_t cputime_scaled)
4228 {
4229 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4230 	cputime64_t tmp;
4231 
4232 	/* Add user time to process. */
4233 	p->utime = cputime_add(p->utime, cputime);
4234 	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4235 	account_group_user_time(p, cputime);
4236 
4237 	/* Add user time to cpustat. */
4238 	tmp = cputime_to_cputime64(cputime);
4239 	if (TASK_NICE(p) > 0)
4240 		cpustat->nice = cputime64_add(cpustat->nice, tmp);
4241 	else
4242 		cpustat->user = cputime64_add(cpustat->user, tmp);
4243 	/* Account for user time used */
4244 	acct_update_integrals(p);
4245 }
4246 
4247 /*
4248  * Account guest cpu time to a process.
4249  * @p: the process that the cpu time gets accounted to
4250  * @cputime: the cpu time spent in virtual machine since the last update
4251  * @cputime_scaled: cputime scaled by cpu frequency
4252  */
account_guest_time(struct task_struct * p,cputime_t cputime,cputime_t cputime_scaled)4253 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4254 			       cputime_t cputime_scaled)
4255 {
4256 	cputime64_t tmp;
4257 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4258 
4259 	tmp = cputime_to_cputime64(cputime);
4260 
4261 	/* Add guest time to process. */
4262 	p->utime = cputime_add(p->utime, cputime);
4263 	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4264 	account_group_user_time(p, cputime);
4265 	p->gtime = cputime_add(p->gtime, cputime);
4266 
4267 	/* Add guest time to cpustat. */
4268 	cpustat->user = cputime64_add(cpustat->user, tmp);
4269 	cpustat->guest = cputime64_add(cpustat->guest, tmp);
4270 }
4271 
4272 /*
4273  * Account system cpu time to a process.
4274  * @p: the process that the cpu time gets accounted to
4275  * @hardirq_offset: the offset to subtract from hardirq_count()
4276  * @cputime: the cpu time spent in kernel space since the last update
4277  * @cputime_scaled: cputime scaled by cpu frequency
4278  */
account_system_time(struct task_struct * p,int hardirq_offset,cputime_t cputime,cputime_t cputime_scaled)4279 void account_system_time(struct task_struct *p, int hardirq_offset,
4280 			 cputime_t cputime, cputime_t cputime_scaled)
4281 {
4282 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4283 	cputime64_t tmp;
4284 
4285 	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4286 		account_guest_time(p, cputime, cputime_scaled);
4287 		return;
4288 	}
4289 
4290 	/* Add system time to process. */
4291 	p->stime = cputime_add(p->stime, cputime);
4292 	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4293 	account_group_system_time(p, cputime);
4294 
4295 	/* Add system time to cpustat. */
4296 	tmp = cputime_to_cputime64(cputime);
4297 	if (hardirq_count() - hardirq_offset)
4298 		cpustat->irq = cputime64_add(cpustat->irq, tmp);
4299 	else if (softirq_count())
4300 		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4301 	else
4302 		cpustat->system = cputime64_add(cpustat->system, tmp);
4303 
4304 	/* Account for system time used */
4305 	acct_update_integrals(p);
4306 }
4307 
4308 /*
4309  * Account for involuntary wait time.
4310  * @steal: the cpu time spent in involuntary wait
4311  */
account_steal_time(cputime_t cputime)4312 void account_steal_time(cputime_t cputime)
4313 {
4314 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4315 	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4316 
4317 	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4318 }
4319 
4320 /*
4321  * Account for idle time.
4322  * @cputime: the cpu time spent in idle wait
4323  */
account_idle_time(cputime_t cputime)4324 void account_idle_time(cputime_t cputime)
4325 {
4326 	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4327 	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4328 	struct rq *rq = this_rq();
4329 
4330 	if (atomic_read(&rq->nr_iowait) > 0)
4331 		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4332 	else
4333 		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4334 }
4335 
4336 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4337 
4338 /*
4339  * Account a single tick of cpu time.
4340  * @p: the process that the cpu time gets accounted to
4341  * @user_tick: indicates if the tick is a user or a system tick
4342  */
account_process_tick(struct task_struct * p,int user_tick)4343 void account_process_tick(struct task_struct *p, int user_tick)
4344 {
4345 	cputime_t one_jiffy = jiffies_to_cputime(1);
4346 	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4347 	struct rq *rq = this_rq();
4348 
4349 	if (user_tick)
4350 		account_user_time(p, one_jiffy, one_jiffy_scaled);
4351 	else if (p != rq->idle)
4352 		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4353 				    one_jiffy_scaled);
4354 	else
4355 		account_idle_time(one_jiffy);
4356 }
4357 
4358 /*
4359  * Account multiple ticks of steal time.
4360  * @p: the process from which the cpu time has been stolen
4361  * @ticks: number of stolen ticks
4362  */
account_steal_ticks(unsigned long ticks)4363 void account_steal_ticks(unsigned long ticks)
4364 {
4365 	account_steal_time(jiffies_to_cputime(ticks));
4366 }
4367 
4368 /*
4369  * Account multiple ticks of idle time.
4370  * @ticks: number of stolen ticks
4371  */
account_idle_ticks(unsigned long ticks)4372 void account_idle_ticks(unsigned long ticks)
4373 {
4374 	account_idle_time(jiffies_to_cputime(ticks));
4375 }
4376 
4377 #endif
4378 
4379 /*
4380  * Use precise platform statistics if available:
4381  */
4382 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
task_utime(struct task_struct * p)4383 cputime_t task_utime(struct task_struct *p)
4384 {
4385 	return p->utime;
4386 }
4387 
task_stime(struct task_struct * p)4388 cputime_t task_stime(struct task_struct *p)
4389 {
4390 	return p->stime;
4391 }
4392 #else
task_utime(struct task_struct * p)4393 cputime_t task_utime(struct task_struct *p)
4394 {
4395 	clock_t utime = cputime_to_clock_t(p->utime),
4396 		total = utime + cputime_to_clock_t(p->stime);
4397 	u64 temp;
4398 
4399 	/*
4400 	 * Use CFS's precise accounting:
4401 	 */
4402 	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4403 
4404 	if (total) {
4405 		temp *= utime;
4406 		do_div(temp, total);
4407 	}
4408 	utime = (clock_t)temp;
4409 
4410 	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4411 	return p->prev_utime;
4412 }
4413 
task_stime(struct task_struct * p)4414 cputime_t task_stime(struct task_struct *p)
4415 {
4416 	clock_t stime;
4417 
4418 	/*
4419 	 * Use CFS's precise accounting. (we subtract utime from
4420 	 * the total, to make sure the total observed by userspace
4421 	 * grows monotonically - apps rely on that):
4422 	 */
4423 	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4424 			cputime_to_clock_t(task_utime(p));
4425 
4426 	if (stime >= 0)
4427 		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4428 
4429 	return p->prev_stime;
4430 }
4431 #endif
4432 
task_gtime(struct task_struct * p)4433 inline cputime_t task_gtime(struct task_struct *p)
4434 {
4435 	return p->gtime;
4436 }
4437 
4438 /*
4439  * This function gets called by the timer code, with HZ frequency.
4440  * We call it with interrupts disabled.
4441  *
4442  * It also gets called by the fork code, when changing the parent's
4443  * timeslices.
4444  */
scheduler_tick(void)4445 void scheduler_tick(void)
4446 {
4447 	int cpu = smp_processor_id();
4448 	struct rq *rq = cpu_rq(cpu);
4449 	struct task_struct *curr = rq->curr;
4450 
4451 	sched_clock_tick();
4452 
4453 	spin_lock(&rq->lock);
4454 	update_rq_clock(rq);
4455 	update_cpu_load(rq);
4456 	curr->sched_class->task_tick(rq, curr, 0);
4457 	spin_unlock(&rq->lock);
4458 
4459 #ifdef CONFIG_SMP
4460 	rq->idle_at_tick = idle_cpu(cpu);
4461 	trigger_load_balance(rq, cpu);
4462 #endif
4463 }
4464 
4465 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4466 				defined(CONFIG_PREEMPT_TRACER))
4467 
get_parent_ip(unsigned long addr)4468 static inline unsigned long get_parent_ip(unsigned long addr)
4469 {
4470 	if (in_lock_functions(addr)) {
4471 		addr = CALLER_ADDR2;
4472 		if (in_lock_functions(addr))
4473 			addr = CALLER_ADDR3;
4474 	}
4475 	return addr;
4476 }
4477 
add_preempt_count(int val)4478 void __kprobes add_preempt_count(int val)
4479 {
4480 #ifdef CONFIG_DEBUG_PREEMPT
4481 	/*
4482 	 * Underflow?
4483 	 */
4484 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4485 		return;
4486 #endif
4487 	preempt_count() += val;
4488 #ifdef CONFIG_DEBUG_PREEMPT
4489 	/*
4490 	 * Spinlock count overflowing soon?
4491 	 */
4492 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4493 				PREEMPT_MASK - 10);
4494 #endif
4495 	if (preempt_count() == val)
4496 		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4497 }
4498 EXPORT_SYMBOL(add_preempt_count);
4499 
sub_preempt_count(int val)4500 void __kprobes sub_preempt_count(int val)
4501 {
4502 #ifdef CONFIG_DEBUG_PREEMPT
4503 	/*
4504 	 * Underflow?
4505 	 */
4506 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4507 		return;
4508 	/*
4509 	 * Is the spinlock portion underflowing?
4510 	 */
4511 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4512 			!(preempt_count() & PREEMPT_MASK)))
4513 		return;
4514 #endif
4515 
4516 	if (preempt_count() == val)
4517 		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4518 	preempt_count() -= val;
4519 }
4520 EXPORT_SYMBOL(sub_preempt_count);
4521 
4522 #endif
4523 
4524 /*
4525  * Print scheduling while atomic bug:
4526  */
__schedule_bug(struct task_struct * prev)4527 static noinline void __schedule_bug(struct task_struct *prev)
4528 {
4529 	struct pt_regs *regs = get_irq_regs();
4530 
4531 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4532 		prev->comm, prev->pid, preempt_count());
4533 
4534 	debug_show_held_locks(prev);
4535 	print_modules();
4536 	if (irqs_disabled())
4537 		print_irqtrace_events(prev);
4538 
4539 	if (regs)
4540 		show_regs(regs);
4541 	else
4542 		dump_stack();
4543 }
4544 
4545 /*
4546  * Various schedule()-time debugging checks and statistics:
4547  */
schedule_debug(struct task_struct * prev)4548 static inline void schedule_debug(struct task_struct *prev)
4549 {
4550 	/*
4551 	 * Test if we are atomic. Since do_exit() needs to call into
4552 	 * schedule() atomically, we ignore that path for now.
4553 	 * Otherwise, whine if we are scheduling when we should not be.
4554 	 */
4555 	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4556 		__schedule_bug(prev);
4557 
4558 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4559 
4560 	schedstat_inc(this_rq(), sched_count);
4561 #ifdef CONFIG_SCHEDSTATS
4562 	if (unlikely(prev->lock_depth >= 0)) {
4563 		schedstat_inc(this_rq(), bkl_count);
4564 		schedstat_inc(prev, sched_info.bkl_count);
4565 	}
4566 #endif
4567 }
4568 
4569 /*
4570  * Pick up the highest-prio task:
4571  */
4572 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev)4573 pick_next_task(struct rq *rq, struct task_struct *prev)
4574 {
4575 	const struct sched_class *class;
4576 	struct task_struct *p;
4577 
4578 	/*
4579 	 * Optimization: we know that if all tasks are in
4580 	 * the fair class we can call that function directly:
4581 	 */
4582 	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4583 		p = fair_sched_class.pick_next_task(rq);
4584 		if (likely(p))
4585 			return p;
4586 	}
4587 
4588 	class = sched_class_highest;
4589 	for ( ; ; ) {
4590 		p = class->pick_next_task(rq);
4591 		if (p)
4592 			return p;
4593 		/*
4594 		 * Will never be NULL as the idle class always
4595 		 * returns a non-NULL p:
4596 		 */
4597 		class = class->next;
4598 	}
4599 }
4600 
4601 /*
4602  * schedule() is the main scheduler function.
4603  */
schedule(void)4604 asmlinkage void __sched schedule(void)
4605 {
4606 	struct task_struct *prev, *next;
4607 	unsigned long *switch_count;
4608 	struct rq *rq;
4609 	int cpu;
4610 
4611 need_resched:
4612 	preempt_disable();
4613 	cpu = smp_processor_id();
4614 	rq = cpu_rq(cpu);
4615 	rcu_qsctr_inc(cpu);
4616 	prev = rq->curr;
4617 	switch_count = &prev->nivcsw;
4618 
4619 	release_kernel_lock(prev);
4620 need_resched_nonpreemptible:
4621 
4622 	schedule_debug(prev);
4623 
4624 	if (sched_feat(HRTICK))
4625 		hrtick_clear(rq);
4626 
4627 	spin_lock_irq(&rq->lock);
4628 	update_rq_clock(rq);
4629 	clear_tsk_need_resched(prev);
4630 
4631 	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4632 		if (unlikely(signal_pending_state(prev->state, prev)))
4633 			prev->state = TASK_RUNNING;
4634 		else
4635 			deactivate_task(rq, prev, 1);
4636 		switch_count = &prev->nvcsw;
4637 	}
4638 
4639 #ifdef CONFIG_SMP
4640 	if (prev->sched_class->pre_schedule)
4641 		prev->sched_class->pre_schedule(rq, prev);
4642 #endif
4643 
4644 	if (unlikely(!rq->nr_running))
4645 		idle_balance(cpu, rq);
4646 
4647 	prev->sched_class->put_prev_task(rq, prev);
4648 	next = pick_next_task(rq, prev);
4649 
4650 	if (likely(prev != next)) {
4651 		sched_info_switch(prev, next);
4652 
4653 		rq->nr_switches++;
4654 		rq->curr = next;
4655 		++*switch_count;
4656 
4657 		context_switch(rq, prev, next); /* unlocks the rq */
4658 		/*
4659 		 * the context switch might have flipped the stack from under
4660 		 * us, hence refresh the local variables.
4661 		 */
4662 		cpu = smp_processor_id();
4663 		rq = cpu_rq(cpu);
4664 	} else
4665 		spin_unlock_irq(&rq->lock);
4666 
4667 	if (unlikely(reacquire_kernel_lock(current) < 0))
4668 		goto need_resched_nonpreemptible;
4669 
4670 	preempt_enable_no_resched();
4671 	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4672 		goto need_resched;
4673 }
4674 EXPORT_SYMBOL(schedule);
4675 
4676 #ifdef CONFIG_PREEMPT
4677 /*
4678  * this is the entry point to schedule() from in-kernel preemption
4679  * off of preempt_enable. Kernel preemptions off return from interrupt
4680  * occur there and call schedule directly.
4681  */
preempt_schedule(void)4682 asmlinkage void __sched preempt_schedule(void)
4683 {
4684 	struct thread_info *ti = current_thread_info();
4685 
4686 	/*
4687 	 * If there is a non-zero preempt_count or interrupts are disabled,
4688 	 * we do not want to preempt the current task. Just return..
4689 	 */
4690 	if (likely(ti->preempt_count || irqs_disabled()))
4691 		return;
4692 
4693 	do {
4694 		add_preempt_count(PREEMPT_ACTIVE);
4695 		schedule();
4696 		sub_preempt_count(PREEMPT_ACTIVE);
4697 
4698 		/*
4699 		 * Check again in case we missed a preemption opportunity
4700 		 * between schedule and now.
4701 		 */
4702 		barrier();
4703 	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4704 }
4705 EXPORT_SYMBOL(preempt_schedule);
4706 
4707 /*
4708  * this is the entry point to schedule() from kernel preemption
4709  * off of irq context.
4710  * Note, that this is called and return with irqs disabled. This will
4711  * protect us against recursive calling from irq.
4712  */
preempt_schedule_irq(void)4713 asmlinkage void __sched preempt_schedule_irq(void)
4714 {
4715 	struct thread_info *ti = current_thread_info();
4716 
4717 	/* Catch callers which need to be fixed */
4718 	BUG_ON(ti->preempt_count || !irqs_disabled());
4719 
4720 	do {
4721 		add_preempt_count(PREEMPT_ACTIVE);
4722 		local_irq_enable();
4723 		schedule();
4724 		local_irq_disable();
4725 		sub_preempt_count(PREEMPT_ACTIVE);
4726 
4727 		/*
4728 		 * Check again in case we missed a preemption opportunity
4729 		 * between schedule and now.
4730 		 */
4731 		barrier();
4732 	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4733 }
4734 
4735 #endif /* CONFIG_PREEMPT */
4736 
default_wake_function(wait_queue_t * curr,unsigned mode,int sync,void * key)4737 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4738 			  void *key)
4739 {
4740 	return try_to_wake_up(curr->private, mode, sync);
4741 }
4742 EXPORT_SYMBOL(default_wake_function);
4743 
4744 /*
4745  * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4746  * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4747  * number) then we wake all the non-exclusive tasks and one exclusive task.
4748  *
4749  * There are circumstances in which we can try to wake a task which has already
4750  * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4751  * zero in this (rare) case, and we handle it by continuing to scan the queue.
4752  */
__wake_up_common(wait_queue_head_t * q,unsigned int mode,int nr_exclusive,int sync,void * key)4753 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4754 			int nr_exclusive, int sync, void *key)
4755 {
4756 	wait_queue_t *curr, *next;
4757 
4758 	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4759 		unsigned flags = curr->flags;
4760 
4761 		if (curr->func(curr, mode, sync, key) &&
4762 				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4763 			break;
4764 	}
4765 }
4766 
4767 /**
4768  * __wake_up - wake up threads blocked on a waitqueue.
4769  * @q: the waitqueue
4770  * @mode: which threads
4771  * @nr_exclusive: how many wake-one or wake-many threads to wake up
4772  * @key: is directly passed to the wakeup function
4773  */
__wake_up(wait_queue_head_t * q,unsigned int mode,int nr_exclusive,void * key)4774 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4775 			int nr_exclusive, void *key)
4776 {
4777 	unsigned long flags;
4778 
4779 	spin_lock_irqsave(&q->lock, flags);
4780 	__wake_up_common(q, mode, nr_exclusive, 0, key);
4781 	spin_unlock_irqrestore(&q->lock, flags);
4782 }
4783 EXPORT_SYMBOL(__wake_up);
4784 
4785 /*
4786  * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4787  */
__wake_up_locked(wait_queue_head_t * q,unsigned int mode)4788 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4789 {
4790 	__wake_up_common(q, mode, 1, 0, NULL);
4791 }
4792 
4793 /**
4794  * __wake_up_sync - wake up threads blocked on a waitqueue.
4795  * @q: the waitqueue
4796  * @mode: which threads
4797  * @nr_exclusive: how many wake-one or wake-many threads to wake up
4798  *
4799  * The sync wakeup differs that the waker knows that it will schedule
4800  * away soon, so while the target thread will be woken up, it will not
4801  * be migrated to another CPU - ie. the two threads are 'synchronized'
4802  * with each other. This can prevent needless bouncing between CPUs.
4803  *
4804  * On UP it can prevent extra preemption.
4805  */
4806 void
__wake_up_sync(wait_queue_head_t * q,unsigned int mode,int nr_exclusive)4807 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4808 {
4809 	unsigned long flags;
4810 	int sync = 1;
4811 
4812 	if (unlikely(!q))
4813 		return;
4814 
4815 	if (unlikely(!nr_exclusive))
4816 		sync = 0;
4817 
4818 	spin_lock_irqsave(&q->lock, flags);
4819 	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
4820 	spin_unlock_irqrestore(&q->lock, flags);
4821 }
4822 EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
4823 
4824 /**
4825  * complete: - signals a single thread waiting on this completion
4826  * @x:  holds the state of this particular completion
4827  *
4828  * This will wake up a single thread waiting on this completion. Threads will be
4829  * awakened in the same order in which they were queued.
4830  *
4831  * See also complete_all(), wait_for_completion() and related routines.
4832  */
complete(struct completion * x)4833 void complete(struct completion *x)
4834 {
4835 	unsigned long flags;
4836 
4837 	spin_lock_irqsave(&x->wait.lock, flags);
4838 	x->done++;
4839 	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4840 	spin_unlock_irqrestore(&x->wait.lock, flags);
4841 }
4842 EXPORT_SYMBOL(complete);
4843 
4844 /**
4845  * complete_all: - signals all threads waiting on this completion
4846  * @x:  holds the state of this particular completion
4847  *
4848  * This will wake up all threads waiting on this particular completion event.
4849  */
complete_all(struct completion * x)4850 void complete_all(struct completion *x)
4851 {
4852 	unsigned long flags;
4853 
4854 	spin_lock_irqsave(&x->wait.lock, flags);
4855 	x->done += UINT_MAX/2;
4856 	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4857 	spin_unlock_irqrestore(&x->wait.lock, flags);
4858 }
4859 EXPORT_SYMBOL(complete_all);
4860 
4861 static inline long __sched
do_wait_for_common(struct completion * x,long timeout,int state)4862 do_wait_for_common(struct completion *x, long timeout, int state)
4863 {
4864 	if (!x->done) {
4865 		DECLARE_WAITQUEUE(wait, current);
4866 
4867 		wait.flags |= WQ_FLAG_EXCLUSIVE;
4868 		__add_wait_queue_tail(&x->wait, &wait);
4869 		do {
4870 			if (signal_pending_state(state, current)) {
4871 				timeout = -ERESTARTSYS;
4872 				break;
4873 			}
4874 			__set_current_state(state);
4875 			spin_unlock_irq(&x->wait.lock);
4876 			timeout = schedule_timeout(timeout);
4877 			spin_lock_irq(&x->wait.lock);
4878 		} while (!x->done && timeout);
4879 		__remove_wait_queue(&x->wait, &wait);
4880 		if (!x->done)
4881 			return timeout;
4882 	}
4883 	x->done--;
4884 	return timeout ?: 1;
4885 }
4886 
4887 static long __sched
wait_for_common(struct completion * x,long timeout,int state)4888 wait_for_common(struct completion *x, long timeout, int state)
4889 {
4890 	might_sleep();
4891 
4892 	spin_lock_irq(&x->wait.lock);
4893 	timeout = do_wait_for_common(x, timeout, state);
4894 	spin_unlock_irq(&x->wait.lock);
4895 	return timeout;
4896 }
4897 
4898 /**
4899  * wait_for_completion: - waits for completion of a task
4900  * @x:  holds the state of this particular completion
4901  *
4902  * This waits to be signaled for completion of a specific task. It is NOT
4903  * interruptible and there is no timeout.
4904  *
4905  * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4906  * and interrupt capability. Also see complete().
4907  */
wait_for_completion(struct completion * x)4908 void __sched wait_for_completion(struct completion *x)
4909 {
4910 	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4911 }
4912 EXPORT_SYMBOL(wait_for_completion);
4913 
4914 /**
4915  * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4916  * @x:  holds the state of this particular completion
4917  * @timeout:  timeout value in jiffies
4918  *
4919  * This waits for either a completion of a specific task to be signaled or for a
4920  * specified timeout to expire. The timeout is in jiffies. It is not
4921  * interruptible.
4922  */
4923 unsigned long __sched
wait_for_completion_timeout(struct completion * x,unsigned long timeout)4924 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4925 {
4926 	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4927 }
4928 EXPORT_SYMBOL(wait_for_completion_timeout);
4929 
4930 /**
4931  * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4932  * @x:  holds the state of this particular completion
4933  *
4934  * This waits for completion of a specific task to be signaled. It is
4935  * interruptible.
4936  */
wait_for_completion_interruptible(struct completion * x)4937 int __sched wait_for_completion_interruptible(struct completion *x)
4938 {
4939 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4940 	if (t == -ERESTARTSYS)
4941 		return t;
4942 	return 0;
4943 }
4944 EXPORT_SYMBOL(wait_for_completion_interruptible);
4945 
4946 /**
4947  * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4948  * @x:  holds the state of this particular completion
4949  * @timeout:  timeout value in jiffies
4950  *
4951  * This waits for either a completion of a specific task to be signaled or for a
4952  * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4953  */
4954 unsigned long __sched
wait_for_completion_interruptible_timeout(struct completion * x,unsigned long timeout)4955 wait_for_completion_interruptible_timeout(struct completion *x,
4956 					  unsigned long timeout)
4957 {
4958 	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4959 }
4960 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4961 
4962 /**
4963  * wait_for_completion_killable: - waits for completion of a task (killable)
4964  * @x:  holds the state of this particular completion
4965  *
4966  * This waits to be signaled for completion of a specific task. It can be
4967  * interrupted by a kill signal.
4968  */
wait_for_completion_killable(struct completion * x)4969 int __sched wait_for_completion_killable(struct completion *x)
4970 {
4971 	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4972 	if (t == -ERESTARTSYS)
4973 		return t;
4974 	return 0;
4975 }
4976 EXPORT_SYMBOL(wait_for_completion_killable);
4977 
4978 /**
4979  *	try_wait_for_completion - try to decrement a completion without blocking
4980  *	@x:	completion structure
4981  *
4982  *	Returns: 0 if a decrement cannot be done without blocking
4983  *		 1 if a decrement succeeded.
4984  *
4985  *	If a completion is being used as a counting completion,
4986  *	attempt to decrement the counter without blocking. This
4987  *	enables us to avoid waiting if the resource the completion
4988  *	is protecting is not available.
4989  */
try_wait_for_completion(struct completion * x)4990 bool try_wait_for_completion(struct completion *x)
4991 {
4992 	int ret = 1;
4993 
4994 	spin_lock_irq(&x->wait.lock);
4995 	if (!x->done)
4996 		ret = 0;
4997 	else
4998 		x->done--;
4999 	spin_unlock_irq(&x->wait.lock);
5000 	return ret;
5001 }
5002 EXPORT_SYMBOL(try_wait_for_completion);
5003 
5004 /**
5005  *	completion_done - Test to see if a completion has any waiters
5006  *	@x:	completion structure
5007  *
5008  *	Returns: 0 if there are waiters (wait_for_completion() in progress)
5009  *		 1 if there are no waiters.
5010  *
5011  */
completion_done(struct completion * x)5012 bool completion_done(struct completion *x)
5013 {
5014 	int ret = 1;
5015 
5016 	spin_lock_irq(&x->wait.lock);
5017 	if (!x->done)
5018 		ret = 0;
5019 	spin_unlock_irq(&x->wait.lock);
5020 	return ret;
5021 }
5022 EXPORT_SYMBOL(completion_done);
5023 
5024 static long __sched
sleep_on_common(wait_queue_head_t * q,int state,long timeout)5025 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5026 {
5027 	unsigned long flags;
5028 	wait_queue_t wait;
5029 
5030 	init_waitqueue_entry(&wait, current);
5031 
5032 	__set_current_state(state);
5033 
5034 	spin_lock_irqsave(&q->lock, flags);
5035 	__add_wait_queue(q, &wait);
5036 	spin_unlock(&q->lock);
5037 	timeout = schedule_timeout(timeout);
5038 	spin_lock_irq(&q->lock);
5039 	__remove_wait_queue(q, &wait);
5040 	spin_unlock_irqrestore(&q->lock, flags);
5041 
5042 	return timeout;
5043 }
5044 
interruptible_sleep_on(wait_queue_head_t * q)5045 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5046 {
5047 	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5048 }
5049 EXPORT_SYMBOL(interruptible_sleep_on);
5050 
5051 long __sched
interruptible_sleep_on_timeout(wait_queue_head_t * q,long timeout)5052 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5053 {
5054 	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5055 }
5056 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5057 
sleep_on(wait_queue_head_t * q)5058 void __sched sleep_on(wait_queue_head_t *q)
5059 {
5060 	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5061 }
5062 EXPORT_SYMBOL(sleep_on);
5063 
sleep_on_timeout(wait_queue_head_t * q,long timeout)5064 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5065 {
5066 	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5067 }
5068 EXPORT_SYMBOL(sleep_on_timeout);
5069 
5070 #ifdef CONFIG_RT_MUTEXES
5071 
5072 /*
5073  * rt_mutex_setprio - set the current priority of a task
5074  * @p: task
5075  * @prio: prio value (kernel-internal form)
5076  *
5077  * This function changes the 'effective' priority of a task. It does
5078  * not touch ->normal_prio like __setscheduler().
5079  *
5080  * Used by the rt_mutex code to implement priority inheritance logic.
5081  */
rt_mutex_setprio(struct task_struct * p,int prio)5082 void rt_mutex_setprio(struct task_struct *p, int prio)
5083 {
5084 	unsigned long flags;
5085 	int oldprio, on_rq, running;
5086 	struct rq *rq;
5087 	const struct sched_class *prev_class = p->sched_class;
5088 
5089 	BUG_ON(prio < 0 || prio > MAX_PRIO);
5090 
5091 	rq = task_rq_lock(p, &flags);
5092 	update_rq_clock(rq);
5093 
5094 	oldprio = p->prio;
5095 	on_rq = p->se.on_rq;
5096 	running = task_current(rq, p);
5097 	if (on_rq)
5098 		dequeue_task(rq, p, 0);
5099 	if (running)
5100 		p->sched_class->put_prev_task(rq, p);
5101 
5102 	if (rt_prio(prio))
5103 		p->sched_class = &rt_sched_class;
5104 	else
5105 		p->sched_class = &fair_sched_class;
5106 
5107 	p->prio = prio;
5108 
5109 	if (running)
5110 		p->sched_class->set_curr_task(rq);
5111 	if (on_rq) {
5112 		enqueue_task(rq, p, 0);
5113 
5114 		check_class_changed(rq, p, prev_class, oldprio, running);
5115 	}
5116 	task_rq_unlock(rq, &flags);
5117 }
5118 
5119 #endif
5120 
set_user_nice(struct task_struct * p,long nice)5121 void set_user_nice(struct task_struct *p, long nice)
5122 {
5123 	int old_prio, delta, on_rq;
5124 	unsigned long flags;
5125 	struct rq *rq;
5126 
5127 	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5128 		return;
5129 	/*
5130 	 * We have to be careful, if called from sys_setpriority(),
5131 	 * the task might be in the middle of scheduling on another CPU.
5132 	 */
5133 	rq = task_rq_lock(p, &flags);
5134 	update_rq_clock(rq);
5135 	/*
5136 	 * The RT priorities are set via sched_setscheduler(), but we still
5137 	 * allow the 'normal' nice value to be set - but as expected
5138 	 * it wont have any effect on scheduling until the task is
5139 	 * SCHED_FIFO/SCHED_RR:
5140 	 */
5141 	if (task_has_rt_policy(p)) {
5142 		p->static_prio = NICE_TO_PRIO(nice);
5143 		goto out_unlock;
5144 	}
5145 	on_rq = p->se.on_rq;
5146 	if (on_rq)
5147 		dequeue_task(rq, p, 0);
5148 
5149 	p->static_prio = NICE_TO_PRIO(nice);
5150 	set_load_weight(p);
5151 	old_prio = p->prio;
5152 	p->prio = effective_prio(p);
5153 	delta = p->prio - old_prio;
5154 
5155 	if (on_rq) {
5156 		enqueue_task(rq, p, 0);
5157 		/*
5158 		 * If the task increased its priority or is running and
5159 		 * lowered its priority, then reschedule its CPU:
5160 		 */
5161 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
5162 			resched_task(rq->curr);
5163 	}
5164 out_unlock:
5165 	task_rq_unlock(rq, &flags);
5166 }
5167 EXPORT_SYMBOL(set_user_nice);
5168 
5169 /*
5170  * can_nice - check if a task can reduce its nice value
5171  * @p: task
5172  * @nice: nice value
5173  */
can_nice(const struct task_struct * p,const int nice)5174 int can_nice(const struct task_struct *p, const int nice)
5175 {
5176 	/* convert nice value [19,-20] to rlimit style value [1,40] */
5177 	int nice_rlim = 20 - nice;
5178 
5179 	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5180 		capable(CAP_SYS_NICE));
5181 }
5182 
5183 #ifdef __ARCH_WANT_SYS_NICE
5184 
5185 /*
5186  * sys_nice - change the priority of the current process.
5187  * @increment: priority increment
5188  *
5189  * sys_setpriority is a more generic, but much slower function that
5190  * does similar things.
5191  */
SYSCALL_DEFINE1(nice,int,increment)5192 SYSCALL_DEFINE1(nice, int, increment)
5193 {
5194 	long nice, retval;
5195 
5196 	/*
5197 	 * Setpriority might change our priority at the same moment.
5198 	 * We don't have to worry. Conceptually one call occurs first
5199 	 * and we have a single winner.
5200 	 */
5201 	if (increment < -40)
5202 		increment = -40;
5203 	if (increment > 40)
5204 		increment = 40;
5205 
5206 	nice = PRIO_TO_NICE(current->static_prio) + increment;
5207 	if (nice < -20)
5208 		nice = -20;
5209 	if (nice > 19)
5210 		nice = 19;
5211 
5212 	if (increment < 0 && !can_nice(current, nice))
5213 		return -EPERM;
5214 
5215 	retval = security_task_setnice(current, nice);
5216 	if (retval)
5217 		return retval;
5218 
5219 	set_user_nice(current, nice);
5220 	return 0;
5221 }
5222 
5223 #endif
5224 
5225 /**
5226  * task_prio - return the priority value of a given task.
5227  * @p: the task in question.
5228  *
5229  * This is the priority value as seen by users in /proc.
5230  * RT tasks are offset by -200. Normal tasks are centered
5231  * around 0, value goes from -16 to +15.
5232  */
task_prio(const struct task_struct * p)5233 int task_prio(const struct task_struct *p)
5234 {
5235 	return p->prio - MAX_RT_PRIO;
5236 }
5237 
5238 /**
5239  * task_nice - return the nice value of a given task.
5240  * @p: the task in question.
5241  */
task_nice(const struct task_struct * p)5242 int task_nice(const struct task_struct *p)
5243 {
5244 	return TASK_NICE(p);
5245 }
5246 EXPORT_SYMBOL(task_nice);
5247 
5248 /**
5249  * idle_cpu - is a given cpu idle currently?
5250  * @cpu: the processor in question.
5251  */
idle_cpu(int cpu)5252 int idle_cpu(int cpu)
5253 {
5254 	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5255 }
5256 
5257 /**
5258  * idle_task - return the idle task for a given cpu.
5259  * @cpu: the processor in question.
5260  */
idle_task(int cpu)5261 struct task_struct *idle_task(int cpu)
5262 {
5263 	return cpu_rq(cpu)->idle;
5264 }
5265 
5266 /**
5267  * find_process_by_pid - find a process with a matching PID value.
5268  * @pid: the pid in question.
5269  */
find_process_by_pid(pid_t pid)5270 static struct task_struct *find_process_by_pid(pid_t pid)
5271 {
5272 	return pid ? find_task_by_vpid(pid) : current;
5273 }
5274 
5275 /* Actually do priority change: must hold rq lock. */
5276 static void
__setscheduler(struct rq * rq,struct task_struct * p,int policy,int prio)5277 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5278 {
5279 	BUG_ON(p->se.on_rq);
5280 
5281 	p->policy = policy;
5282 	switch (p->policy) {
5283 	case SCHED_NORMAL:
5284 	case SCHED_BATCH:
5285 	case SCHED_IDLE:
5286 		p->sched_class = &fair_sched_class;
5287 		break;
5288 	case SCHED_FIFO:
5289 	case SCHED_RR:
5290 		p->sched_class = &rt_sched_class;
5291 		break;
5292 	}
5293 
5294 	p->rt_priority = prio;
5295 	p->normal_prio = normal_prio(p);
5296 	/* we are holding p->pi_lock already */
5297 	p->prio = rt_mutex_getprio(p);
5298 	set_load_weight(p);
5299 }
5300 
5301 /*
5302  * check the target process has a UID that matches the current process's
5303  */
check_same_owner(struct task_struct * p)5304 static bool check_same_owner(struct task_struct *p)
5305 {
5306 	const struct cred *cred = current_cred(), *pcred;
5307 	bool match;
5308 
5309 	rcu_read_lock();
5310 	pcred = __task_cred(p);
5311 	match = (cred->euid == pcred->euid ||
5312 		 cred->euid == pcred->uid);
5313 	rcu_read_unlock();
5314 	return match;
5315 }
5316 
__sched_setscheduler(struct task_struct * p,int policy,struct sched_param * param,bool user)5317 static int __sched_setscheduler(struct task_struct *p, int policy,
5318 				struct sched_param *param, bool user)
5319 {
5320 	int retval, oldprio, oldpolicy = -1, on_rq, running;
5321 	unsigned long flags;
5322 	const struct sched_class *prev_class = p->sched_class;
5323 	struct rq *rq;
5324 
5325 	/* may grab non-irq protected spin_locks */
5326 	BUG_ON(in_interrupt());
5327 recheck:
5328 	/* double check policy once rq lock held */
5329 	if (policy < 0)
5330 		policy = oldpolicy = p->policy;
5331 	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5332 			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5333 			policy != SCHED_IDLE)
5334 		return -EINVAL;
5335 	/*
5336 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5337 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5338 	 * SCHED_BATCH and SCHED_IDLE is 0.
5339 	 */
5340 	if (param->sched_priority < 0 ||
5341 	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5342 	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5343 		return -EINVAL;
5344 	if (rt_policy(policy) != (param->sched_priority != 0))
5345 		return -EINVAL;
5346 
5347 	/*
5348 	 * Allow unprivileged RT tasks to decrease priority:
5349 	 */
5350 	if (user && !capable(CAP_SYS_NICE)) {
5351 		if (rt_policy(policy)) {
5352 			unsigned long rlim_rtprio;
5353 
5354 			if (!lock_task_sighand(p, &flags))
5355 				return -ESRCH;
5356 			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5357 			unlock_task_sighand(p, &flags);
5358 
5359 			/* can't set/change the rt policy */
5360 			if (policy != p->policy && !rlim_rtprio)
5361 				return -EPERM;
5362 
5363 			/* can't increase priority */
5364 			if (param->sched_priority > p->rt_priority &&
5365 			    param->sched_priority > rlim_rtprio)
5366 				return -EPERM;
5367 		}
5368 		/*
5369 		 * Like positive nice levels, dont allow tasks to
5370 		 * move out of SCHED_IDLE either:
5371 		 */
5372 		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5373 			return -EPERM;
5374 
5375 		/* can't change other user's priorities */
5376 		if (!check_same_owner(p))
5377 			return -EPERM;
5378 	}
5379 
5380 	if (user) {
5381 #ifdef CONFIG_RT_GROUP_SCHED
5382 		/*
5383 		 * Do not allow realtime tasks into groups that have no runtime
5384 		 * assigned.
5385 		 */
5386 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5387 				task_group(p)->rt_bandwidth.rt_runtime == 0)
5388 			return -EPERM;
5389 #endif
5390 
5391 		retval = security_task_setscheduler(p, policy, param);
5392 		if (retval)
5393 			return retval;
5394 	}
5395 
5396 	/*
5397 	 * make sure no PI-waiters arrive (or leave) while we are
5398 	 * changing the priority of the task:
5399 	 */
5400 	spin_lock_irqsave(&p->pi_lock, flags);
5401 	/*
5402 	 * To be able to change p->policy safely, the apropriate
5403 	 * runqueue lock must be held.
5404 	 */
5405 	rq = __task_rq_lock(p);
5406 	/* recheck policy now with rq lock held */
5407 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5408 		policy = oldpolicy = -1;
5409 		__task_rq_unlock(rq);
5410 		spin_unlock_irqrestore(&p->pi_lock, flags);
5411 		goto recheck;
5412 	}
5413 	update_rq_clock(rq);
5414 	on_rq = p->se.on_rq;
5415 	running = task_current(rq, p);
5416 	if (on_rq)
5417 		deactivate_task(rq, p, 0);
5418 	if (running)
5419 		p->sched_class->put_prev_task(rq, p);
5420 
5421 	oldprio = p->prio;
5422 	__setscheduler(rq, p, policy, param->sched_priority);
5423 
5424 	if (running)
5425 		p->sched_class->set_curr_task(rq);
5426 	if (on_rq) {
5427 		activate_task(rq, p, 0);
5428 
5429 		check_class_changed(rq, p, prev_class, oldprio, running);
5430 	}
5431 	__task_rq_unlock(rq);
5432 	spin_unlock_irqrestore(&p->pi_lock, flags);
5433 
5434 	rt_mutex_adjust_pi(p);
5435 
5436 	return 0;
5437 }
5438 
5439 /**
5440  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5441  * @p: the task in question.
5442  * @policy: new policy.
5443  * @param: structure containing the new RT priority.
5444  *
5445  * NOTE that the task may be already dead.
5446  */
sched_setscheduler(struct task_struct * p,int policy,struct sched_param * param)5447 int sched_setscheduler(struct task_struct *p, int policy,
5448 		       struct sched_param *param)
5449 {
5450 	return __sched_setscheduler(p, policy, param, true);
5451 }
5452 EXPORT_SYMBOL_GPL(sched_setscheduler);
5453 
5454 /**
5455  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5456  * @p: the task in question.
5457  * @policy: new policy.
5458  * @param: structure containing the new RT priority.
5459  *
5460  * Just like sched_setscheduler, only don't bother checking if the
5461  * current context has permission.  For example, this is needed in
5462  * stop_machine(): we create temporary high priority worker threads,
5463  * but our caller might not have that capability.
5464  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,struct sched_param * param)5465 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5466 			       struct sched_param *param)
5467 {
5468 	return __sched_setscheduler(p, policy, param, false);
5469 }
5470 
5471 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5472 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5473 {
5474 	struct sched_param lparam;
5475 	struct task_struct *p;
5476 	int retval;
5477 
5478 	if (!param || pid < 0)
5479 		return -EINVAL;
5480 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5481 		return -EFAULT;
5482 
5483 	rcu_read_lock();
5484 	retval = -ESRCH;
5485 	p = find_process_by_pid(pid);
5486 	if (p != NULL)
5487 		retval = sched_setscheduler(p, policy, &lparam);
5488 	rcu_read_unlock();
5489 
5490 	return retval;
5491 }
5492 
5493 /**
5494  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5495  * @pid: the pid in question.
5496  * @policy: new policy.
5497  * @param: structure containing the new RT priority.
5498  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5499 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5500 		struct sched_param __user *, param)
5501 {
5502 	/* negative values for policy are not valid */
5503 	if (policy < 0)
5504 		return -EINVAL;
5505 
5506 	return do_sched_setscheduler(pid, policy, param);
5507 }
5508 
5509 /**
5510  * sys_sched_setparam - set/change the RT priority of a thread
5511  * @pid: the pid in question.
5512  * @param: structure containing the new RT priority.
5513  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5514 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5515 {
5516 	return do_sched_setscheduler(pid, -1, param);
5517 }
5518 
5519 /**
5520  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5521  * @pid: the pid in question.
5522  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)5523 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5524 {
5525 	struct task_struct *p;
5526 	int retval;
5527 
5528 	if (pid < 0)
5529 		return -EINVAL;
5530 
5531 	retval = -ESRCH;
5532 	read_lock(&tasklist_lock);
5533 	p = find_process_by_pid(pid);
5534 	if (p) {
5535 		retval = security_task_getscheduler(p);
5536 		if (!retval)
5537 			retval = p->policy;
5538 	}
5539 	read_unlock(&tasklist_lock);
5540 	return retval;
5541 }
5542 
5543 /**
5544  * sys_sched_getscheduler - get the RT priority of a thread
5545  * @pid: the pid in question.
5546  * @param: structure containing the RT priority.
5547  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)5548 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5549 {
5550 	struct sched_param lp;
5551 	struct task_struct *p;
5552 	int retval;
5553 
5554 	if (!param || pid < 0)
5555 		return -EINVAL;
5556 
5557 	read_lock(&tasklist_lock);
5558 	p = find_process_by_pid(pid);
5559 	retval = -ESRCH;
5560 	if (!p)
5561 		goto out_unlock;
5562 
5563 	retval = security_task_getscheduler(p);
5564 	if (retval)
5565 		goto out_unlock;
5566 
5567 	lp.sched_priority = p->rt_priority;
5568 	read_unlock(&tasklist_lock);
5569 
5570 	/*
5571 	 * This one might sleep, we cannot do it with a spinlock held ...
5572 	 */
5573 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5574 
5575 	return retval;
5576 
5577 out_unlock:
5578 	read_unlock(&tasklist_lock);
5579 	return retval;
5580 }
5581 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)5582 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5583 {
5584 	cpumask_var_t cpus_allowed, new_mask;
5585 	struct task_struct *p;
5586 	int retval;
5587 
5588 	get_online_cpus();
5589 	read_lock(&tasklist_lock);
5590 
5591 	p = find_process_by_pid(pid);
5592 	if (!p) {
5593 		read_unlock(&tasklist_lock);
5594 		put_online_cpus();
5595 		return -ESRCH;
5596 	}
5597 
5598 	/*
5599 	 * It is not safe to call set_cpus_allowed with the
5600 	 * tasklist_lock held. We will bump the task_struct's
5601 	 * usage count and then drop tasklist_lock.
5602 	 */
5603 	get_task_struct(p);
5604 	read_unlock(&tasklist_lock);
5605 
5606 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5607 		retval = -ENOMEM;
5608 		goto out_put_task;
5609 	}
5610 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5611 		retval = -ENOMEM;
5612 		goto out_free_cpus_allowed;
5613 	}
5614 	retval = -EPERM;
5615 	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5616 		goto out_unlock;
5617 
5618 	retval = security_task_setscheduler(p, 0, NULL);
5619 	if (retval)
5620 		goto out_unlock;
5621 
5622 	cpuset_cpus_allowed(p, cpus_allowed);
5623 	cpumask_and(new_mask, in_mask, cpus_allowed);
5624  again:
5625 	retval = set_cpus_allowed_ptr(p, new_mask);
5626 
5627 	if (!retval) {
5628 		cpuset_cpus_allowed(p, cpus_allowed);
5629 		if (!cpumask_subset(new_mask, cpus_allowed)) {
5630 			/*
5631 			 * We must have raced with a concurrent cpuset
5632 			 * update. Just reset the cpus_allowed to the
5633 			 * cpuset's cpus_allowed
5634 			 */
5635 			cpumask_copy(new_mask, cpus_allowed);
5636 			goto again;
5637 		}
5638 	}
5639 out_unlock:
5640 	free_cpumask_var(new_mask);
5641 out_free_cpus_allowed:
5642 	free_cpumask_var(cpus_allowed);
5643 out_put_task:
5644 	put_task_struct(p);
5645 	put_online_cpus();
5646 	return retval;
5647 }
5648 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)5649 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5650 			     struct cpumask *new_mask)
5651 {
5652 	if (len < cpumask_size())
5653 		cpumask_clear(new_mask);
5654 	else if (len > cpumask_size())
5655 		len = cpumask_size();
5656 
5657 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5658 }
5659 
5660 /**
5661  * sys_sched_setaffinity - set the cpu affinity of a process
5662  * @pid: pid of the process
5663  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5664  * @user_mask_ptr: user-space pointer to the new cpu mask
5665  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)5666 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5667 		unsigned long __user *, user_mask_ptr)
5668 {
5669 	cpumask_var_t new_mask;
5670 	int retval;
5671 
5672 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5673 		return -ENOMEM;
5674 
5675 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5676 	if (retval == 0)
5677 		retval = sched_setaffinity(pid, new_mask);
5678 	free_cpumask_var(new_mask);
5679 	return retval;
5680 }
5681 
sched_getaffinity(pid_t pid,struct cpumask * mask)5682 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5683 {
5684 	struct task_struct *p;
5685 	int retval;
5686 
5687 	get_online_cpus();
5688 	read_lock(&tasklist_lock);
5689 
5690 	retval = -ESRCH;
5691 	p = find_process_by_pid(pid);
5692 	if (!p)
5693 		goto out_unlock;
5694 
5695 	retval = security_task_getscheduler(p);
5696 	if (retval)
5697 		goto out_unlock;
5698 
5699 	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5700 
5701 out_unlock:
5702 	read_unlock(&tasklist_lock);
5703 	put_online_cpus();
5704 
5705 	return retval;
5706 }
5707 
5708 /**
5709  * sys_sched_getaffinity - get the cpu affinity of a process
5710  * @pid: pid of the process
5711  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5712  * @user_mask_ptr: user-space pointer to hold the current cpu mask
5713  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)5714 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5715 		unsigned long __user *, user_mask_ptr)
5716 {
5717 	int ret;
5718 	cpumask_var_t mask;
5719 
5720 	if (len < cpumask_size())
5721 		return -EINVAL;
5722 
5723 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5724 		return -ENOMEM;
5725 
5726 	ret = sched_getaffinity(pid, mask);
5727 	if (ret == 0) {
5728 		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5729 			ret = -EFAULT;
5730 		else
5731 			ret = cpumask_size();
5732 	}
5733 	free_cpumask_var(mask);
5734 
5735 	return ret;
5736 }
5737 
5738 /**
5739  * sys_sched_yield - yield the current processor to other threads.
5740  *
5741  * This function yields the current CPU to other tasks. If there are no
5742  * other threads running on this CPU then this function will return.
5743  */
SYSCALL_DEFINE0(sched_yield)5744 SYSCALL_DEFINE0(sched_yield)
5745 {
5746 	struct rq *rq = this_rq_lock();
5747 
5748 	schedstat_inc(rq, yld_count);
5749 	current->sched_class->yield_task(rq);
5750 
5751 	/*
5752 	 * Since we are going to call schedule() anyway, there's
5753 	 * no need to preempt or enable interrupts:
5754 	 */
5755 	__release(rq->lock);
5756 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5757 	_raw_spin_unlock(&rq->lock);
5758 	preempt_enable_no_resched();
5759 
5760 	schedule();
5761 
5762 	return 0;
5763 }
5764 
__cond_resched(void)5765 static void __cond_resched(void)
5766 {
5767 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5768 	__might_sleep(__FILE__, __LINE__);
5769 #endif
5770 	/*
5771 	 * The BKS might be reacquired before we have dropped
5772 	 * PREEMPT_ACTIVE, which could trigger a second
5773 	 * cond_resched() call.
5774 	 */
5775 	do {
5776 		add_preempt_count(PREEMPT_ACTIVE);
5777 		schedule();
5778 		sub_preempt_count(PREEMPT_ACTIVE);
5779 	} while (need_resched());
5780 }
5781 
_cond_resched(void)5782 int __sched _cond_resched(void)
5783 {
5784 	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5785 					system_state == SYSTEM_RUNNING) {
5786 		__cond_resched();
5787 		return 1;
5788 	}
5789 	return 0;
5790 }
5791 EXPORT_SYMBOL(_cond_resched);
5792 
5793 /*
5794  * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5795  * call schedule, and on return reacquire the lock.
5796  *
5797  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5798  * operations here to prevent schedule() from being called twice (once via
5799  * spin_unlock(), once by hand).
5800  */
cond_resched_lock(spinlock_t * lock)5801 int cond_resched_lock(spinlock_t *lock)
5802 {
5803 	int resched = need_resched() && system_state == SYSTEM_RUNNING;
5804 	int ret = 0;
5805 
5806 	if (spin_needbreak(lock) || resched) {
5807 		spin_unlock(lock);
5808 		if (resched && need_resched())
5809 			__cond_resched();
5810 		else
5811 			cpu_relax();
5812 		ret = 1;
5813 		spin_lock(lock);
5814 	}
5815 	return ret;
5816 }
5817 EXPORT_SYMBOL(cond_resched_lock);
5818 
cond_resched_softirq(void)5819 int __sched cond_resched_softirq(void)
5820 {
5821 	BUG_ON(!in_softirq());
5822 
5823 	if (need_resched() && system_state == SYSTEM_RUNNING) {
5824 		local_bh_enable();
5825 		__cond_resched();
5826 		local_bh_disable();
5827 		return 1;
5828 	}
5829 	return 0;
5830 }
5831 EXPORT_SYMBOL(cond_resched_softirq);
5832 
5833 /**
5834  * yield - yield the current processor to other threads.
5835  *
5836  * This is a shortcut for kernel-space yielding - it marks the
5837  * thread runnable and calls sys_sched_yield().
5838  */
yield(void)5839 void __sched yield(void)
5840 {
5841 	set_current_state(TASK_RUNNING);
5842 	sys_sched_yield();
5843 }
5844 EXPORT_SYMBOL(yield);
5845 
5846 /*
5847  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5848  * that process accounting knows that this is a task in IO wait state.
5849  *
5850  * But don't do that if it is a deliberate, throttling IO wait (this task
5851  * has set its backing_dev_info: the queue against which it should throttle)
5852  */
io_schedule(void)5853 void __sched io_schedule(void)
5854 {
5855 	struct rq *rq = &__raw_get_cpu_var(runqueues);
5856 
5857 	delayacct_blkio_start();
5858 	atomic_inc(&rq->nr_iowait);
5859 	schedule();
5860 	atomic_dec(&rq->nr_iowait);
5861 	delayacct_blkio_end();
5862 }
5863 EXPORT_SYMBOL(io_schedule);
5864 
io_schedule_timeout(long timeout)5865 long __sched io_schedule_timeout(long timeout)
5866 {
5867 	struct rq *rq = &__raw_get_cpu_var(runqueues);
5868 	long ret;
5869 
5870 	delayacct_blkio_start();
5871 	atomic_inc(&rq->nr_iowait);
5872 	ret = schedule_timeout(timeout);
5873 	atomic_dec(&rq->nr_iowait);
5874 	delayacct_blkio_end();
5875 	return ret;
5876 }
5877 
5878 /**
5879  * sys_sched_get_priority_max - return maximum RT priority.
5880  * @policy: scheduling class.
5881  *
5882  * this syscall returns the maximum rt_priority that can be used
5883  * by a given scheduling class.
5884  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)5885 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5886 {
5887 	int ret = -EINVAL;
5888 
5889 	switch (policy) {
5890 	case SCHED_FIFO:
5891 	case SCHED_RR:
5892 		ret = MAX_USER_RT_PRIO-1;
5893 		break;
5894 	case SCHED_NORMAL:
5895 	case SCHED_BATCH:
5896 	case SCHED_IDLE:
5897 		ret = 0;
5898 		break;
5899 	}
5900 	return ret;
5901 }
5902 
5903 /**
5904  * sys_sched_get_priority_min - return minimum RT priority.
5905  * @policy: scheduling class.
5906  *
5907  * this syscall returns the minimum rt_priority that can be used
5908  * by a given scheduling class.
5909  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)5910 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5911 {
5912 	int ret = -EINVAL;
5913 
5914 	switch (policy) {
5915 	case SCHED_FIFO:
5916 	case SCHED_RR:
5917 		ret = 1;
5918 		break;
5919 	case SCHED_NORMAL:
5920 	case SCHED_BATCH:
5921 	case SCHED_IDLE:
5922 		ret = 0;
5923 	}
5924 	return ret;
5925 }
5926 
5927 /**
5928  * sys_sched_rr_get_interval - return the default timeslice of a process.
5929  * @pid: pid of the process.
5930  * @interval: userspace pointer to the timeslice value.
5931  *
5932  * this syscall writes the default timeslice value of a given process
5933  * into the user-space timespec buffer. A value of '0' means infinity.
5934  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)5935 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5936 		struct timespec __user *, interval)
5937 {
5938 	struct task_struct *p;
5939 	unsigned int time_slice;
5940 	int retval;
5941 	struct timespec t;
5942 
5943 	if (pid < 0)
5944 		return -EINVAL;
5945 
5946 	retval = -ESRCH;
5947 	read_lock(&tasklist_lock);
5948 	p = find_process_by_pid(pid);
5949 	if (!p)
5950 		goto out_unlock;
5951 
5952 	retval = security_task_getscheduler(p);
5953 	if (retval)
5954 		goto out_unlock;
5955 
5956 	/*
5957 	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5958 	 * tasks that are on an otherwise idle runqueue:
5959 	 */
5960 	time_slice = 0;
5961 	if (p->policy == SCHED_RR) {
5962 		time_slice = DEF_TIMESLICE;
5963 	} else if (p->policy != SCHED_FIFO) {
5964 		struct sched_entity *se = &p->se;
5965 		unsigned long flags;
5966 		struct rq *rq;
5967 
5968 		rq = task_rq_lock(p, &flags);
5969 		if (rq->cfs.load.weight)
5970 			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5971 		task_rq_unlock(rq, &flags);
5972 	}
5973 	read_unlock(&tasklist_lock);
5974 	jiffies_to_timespec(time_slice, &t);
5975 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5976 	return retval;
5977 
5978 out_unlock:
5979 	read_unlock(&tasklist_lock);
5980 	return retval;
5981 }
5982 
5983 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5984 
sched_show_task(struct task_struct * p)5985 void sched_show_task(struct task_struct *p)
5986 {
5987 	unsigned long free = 0;
5988 	unsigned state;
5989 
5990 	state = p->state ? __ffs(p->state) + 1 : 0;
5991 	printk(KERN_INFO "%-13.13s %c", p->comm,
5992 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5993 #if BITS_PER_LONG == 32
5994 	if (state == TASK_RUNNING)
5995 		printk(KERN_CONT " running  ");
5996 	else
5997 		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5998 #else
5999 	if (state == TASK_RUNNING)
6000 		printk(KERN_CONT "  running task    ");
6001 	else
6002 		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6003 #endif
6004 #ifdef CONFIG_DEBUG_STACK_USAGE
6005 	{
6006 		unsigned long *n = end_of_stack(p);
6007 		while (!*n)
6008 			n++;
6009 		free = (unsigned long)n - (unsigned long)end_of_stack(p);
6010 	}
6011 #endif
6012 	printk(KERN_CONT "%5lu %5d %6d\n", free,
6013 		task_pid_nr(p), task_pid_nr(p->real_parent));
6014 
6015 	show_stack(p, NULL);
6016 }
6017 
show_state_filter(unsigned long state_filter)6018 void show_state_filter(unsigned long state_filter)
6019 {
6020 	struct task_struct *g, *p;
6021 
6022 #if BITS_PER_LONG == 32
6023 	printk(KERN_INFO
6024 		"  task                PC stack   pid father\n");
6025 #else
6026 	printk(KERN_INFO
6027 		"  task                        PC stack   pid father\n");
6028 #endif
6029 	read_lock(&tasklist_lock);
6030 	do_each_thread(g, p) {
6031 		/*
6032 		 * reset the NMI-timeout, listing all files on a slow
6033 		 * console might take alot of time:
6034 		 */
6035 		touch_nmi_watchdog();
6036 		if (!state_filter || (p->state & state_filter))
6037 			sched_show_task(p);
6038 	} while_each_thread(g, p);
6039 
6040 	touch_all_softlockup_watchdogs();
6041 
6042 #ifdef CONFIG_SCHED_DEBUG
6043 	sysrq_sched_debug_show();
6044 #endif
6045 	read_unlock(&tasklist_lock);
6046 	/*
6047 	 * Only show locks if all tasks are dumped:
6048 	 */
6049 	if (state_filter == -1)
6050 		debug_show_all_locks();
6051 }
6052 
init_idle_bootup_task(struct task_struct * idle)6053 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6054 {
6055 	idle->sched_class = &idle_sched_class;
6056 }
6057 
6058 /**
6059  * init_idle - set up an idle thread for a given CPU
6060  * @idle: task in question
6061  * @cpu: cpu the idle task belongs to
6062  *
6063  * NOTE: this function does not set the idle thread's NEED_RESCHED
6064  * flag, to make booting more robust.
6065  */
init_idle(struct task_struct * idle,int cpu)6066 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6067 {
6068 	struct rq *rq = cpu_rq(cpu);
6069 	unsigned long flags;
6070 
6071 	spin_lock_irqsave(&rq->lock, flags);
6072 
6073 	__sched_fork(idle);
6074 	idle->se.exec_start = sched_clock();
6075 
6076 	idle->prio = idle->normal_prio = MAX_PRIO;
6077 	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6078 	__set_task_cpu(idle, cpu);
6079 
6080 	rq->curr = rq->idle = idle;
6081 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6082 	idle->oncpu = 1;
6083 #endif
6084 	spin_unlock_irqrestore(&rq->lock, flags);
6085 
6086 	/* Set the preempt count _outside_ the spinlocks! */
6087 #if defined(CONFIG_PREEMPT)
6088 	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6089 #else
6090 	task_thread_info(idle)->preempt_count = 0;
6091 #endif
6092 	/*
6093 	 * The idle tasks have their own, simple scheduling class:
6094 	 */
6095 	idle->sched_class = &idle_sched_class;
6096 	ftrace_graph_init_task(idle);
6097 }
6098 
6099 /*
6100  * In a system that switches off the HZ timer nohz_cpu_mask
6101  * indicates which cpus entered this state. This is used
6102  * in the rcu update to wait only for active cpus. For system
6103  * which do not switch off the HZ timer nohz_cpu_mask should
6104  * always be CPU_BITS_NONE.
6105  */
6106 cpumask_var_t nohz_cpu_mask;
6107 
6108 /*
6109  * Increase the granularity value when there are more CPUs,
6110  * because with more CPUs the 'effective latency' as visible
6111  * to users decreases. But the relationship is not linear,
6112  * so pick a second-best guess by going with the log2 of the
6113  * number of CPUs.
6114  *
6115  * This idea comes from the SD scheduler of Con Kolivas:
6116  */
sched_init_granularity(void)6117 static inline void sched_init_granularity(void)
6118 {
6119 	unsigned int factor = 1 + ilog2(num_online_cpus());
6120 	const unsigned long limit = 200000000;
6121 
6122 	sysctl_sched_min_granularity *= factor;
6123 	if (sysctl_sched_min_granularity > limit)
6124 		sysctl_sched_min_granularity = limit;
6125 
6126 	sysctl_sched_latency *= factor;
6127 	if (sysctl_sched_latency > limit)
6128 		sysctl_sched_latency = limit;
6129 
6130 	sysctl_sched_wakeup_granularity *= factor;
6131 
6132 	sysctl_sched_shares_ratelimit *= factor;
6133 }
6134 
6135 #ifdef CONFIG_SMP
6136 /*
6137  * This is how migration works:
6138  *
6139  * 1) we queue a struct migration_req structure in the source CPU's
6140  *    runqueue and wake up that CPU's migration thread.
6141  * 2) we down() the locked semaphore => thread blocks.
6142  * 3) migration thread wakes up (implicitly it forces the migrated
6143  *    thread off the CPU)
6144  * 4) it gets the migration request and checks whether the migrated
6145  *    task is still in the wrong runqueue.
6146  * 5) if it's in the wrong runqueue then the migration thread removes
6147  *    it and puts it into the right queue.
6148  * 6) migration thread up()s the semaphore.
6149  * 7) we wake up and the migration is done.
6150  */
6151 
6152 /*
6153  * Change a given task's CPU affinity. Migrate the thread to a
6154  * proper CPU and schedule it away if the CPU it's executing on
6155  * is removed from the allowed bitmask.
6156  *
6157  * NOTE: the caller must have a valid reference to the task, the
6158  * task must not exit() & deallocate itself prematurely. The
6159  * call is not atomic; no spinlocks may be held.
6160  */
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)6161 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6162 {
6163 	struct migration_req req;
6164 	unsigned long flags;
6165 	struct rq *rq;
6166 	int ret = 0;
6167 
6168 	rq = task_rq_lock(p, &flags);
6169 	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6170 		ret = -EINVAL;
6171 		goto out;
6172 	}
6173 
6174 	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6175 		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6176 		ret = -EINVAL;
6177 		goto out;
6178 	}
6179 
6180 	if (p->sched_class->set_cpus_allowed)
6181 		p->sched_class->set_cpus_allowed(p, new_mask);
6182 	else {
6183 		cpumask_copy(&p->cpus_allowed, new_mask);
6184 		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6185 	}
6186 
6187 	/* Can the task run on the task's current CPU? If so, we're done */
6188 	if (cpumask_test_cpu(task_cpu(p), new_mask))
6189 		goto out;
6190 
6191 	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6192 		/* Need help from migration thread: drop lock and wait. */
6193 		task_rq_unlock(rq, &flags);
6194 		wake_up_process(rq->migration_thread);
6195 		wait_for_completion(&req.done);
6196 		tlb_migrate_finish(p->mm);
6197 		return 0;
6198 	}
6199 out:
6200 	task_rq_unlock(rq, &flags);
6201 
6202 	return ret;
6203 }
6204 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6205 
6206 /*
6207  * Move (not current) task off this cpu, onto dest cpu. We're doing
6208  * this because either it can't run here any more (set_cpus_allowed()
6209  * away from this CPU, or CPU going down), or because we're
6210  * attempting to rebalance this task on exec (sched_exec).
6211  *
6212  * So we race with normal scheduler movements, but that's OK, as long
6213  * as the task is no longer on this CPU.
6214  *
6215  * Returns non-zero if task was successfully migrated.
6216  */
__migrate_task(struct task_struct * p,int src_cpu,int dest_cpu)6217 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6218 {
6219 	struct rq *rq_dest, *rq_src;
6220 	int ret = 0, on_rq;
6221 
6222 	if (unlikely(!cpu_active(dest_cpu)))
6223 		return ret;
6224 
6225 	rq_src = cpu_rq(src_cpu);
6226 	rq_dest = cpu_rq(dest_cpu);
6227 
6228 	double_rq_lock(rq_src, rq_dest);
6229 	/* Already moved. */
6230 	if (task_cpu(p) != src_cpu)
6231 		goto done;
6232 	/* Affinity changed (again). */
6233 	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6234 		goto fail;
6235 
6236 	on_rq = p->se.on_rq;
6237 	if (on_rq)
6238 		deactivate_task(rq_src, p, 0);
6239 
6240 	set_task_cpu(p, dest_cpu);
6241 	if (on_rq) {
6242 		activate_task(rq_dest, p, 0);
6243 		check_preempt_curr(rq_dest, p, 0);
6244 	}
6245 done:
6246 	ret = 1;
6247 fail:
6248 	double_rq_unlock(rq_src, rq_dest);
6249 	return ret;
6250 }
6251 
6252 /*
6253  * migration_thread - this is a highprio system thread that performs
6254  * thread migration by bumping thread off CPU then 'pushing' onto
6255  * another runqueue.
6256  */
migration_thread(void * data)6257 static int migration_thread(void *data)
6258 {
6259 	int cpu = (long)data;
6260 	struct rq *rq;
6261 
6262 	rq = cpu_rq(cpu);
6263 	BUG_ON(rq->migration_thread != current);
6264 
6265 	set_current_state(TASK_INTERRUPTIBLE);
6266 	while (!kthread_should_stop()) {
6267 		struct migration_req *req;
6268 		struct list_head *head;
6269 
6270 		spin_lock_irq(&rq->lock);
6271 
6272 		if (cpu_is_offline(cpu)) {
6273 			spin_unlock_irq(&rq->lock);
6274 			goto wait_to_die;
6275 		}
6276 
6277 		if (rq->active_balance) {
6278 			active_load_balance(rq, cpu);
6279 			rq->active_balance = 0;
6280 		}
6281 
6282 		head = &rq->migration_queue;
6283 
6284 		if (list_empty(head)) {
6285 			spin_unlock_irq(&rq->lock);
6286 			schedule();
6287 			set_current_state(TASK_INTERRUPTIBLE);
6288 			continue;
6289 		}
6290 		req = list_entry(head->next, struct migration_req, list);
6291 		list_del_init(head->next);
6292 
6293 		spin_unlock(&rq->lock);
6294 		__migrate_task(req->task, cpu, req->dest_cpu);
6295 		local_irq_enable();
6296 
6297 		complete(&req->done);
6298 	}
6299 	__set_current_state(TASK_RUNNING);
6300 	return 0;
6301 
6302 wait_to_die:
6303 	/* Wait for kthread_stop */
6304 	set_current_state(TASK_INTERRUPTIBLE);
6305 	while (!kthread_should_stop()) {
6306 		schedule();
6307 		set_current_state(TASK_INTERRUPTIBLE);
6308 	}
6309 	__set_current_state(TASK_RUNNING);
6310 	return 0;
6311 }
6312 
6313 #ifdef CONFIG_HOTPLUG_CPU
6314 
__migrate_task_irq(struct task_struct * p,int src_cpu,int dest_cpu)6315 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6316 {
6317 	int ret;
6318 
6319 	local_irq_disable();
6320 	ret = __migrate_task(p, src_cpu, dest_cpu);
6321 	local_irq_enable();
6322 	return ret;
6323 }
6324 
6325 /*
6326  * Figure out where task on dead CPU should go, use force if necessary.
6327  */
move_task_off_dead_cpu(int dead_cpu,struct task_struct * p)6328 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6329 {
6330 	int dest_cpu;
6331 	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6332 
6333 again:
6334 	/* Look for allowed, online CPU in same node. */
6335 	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6336 		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6337 			goto move;
6338 
6339 	/* Any allowed, online CPU? */
6340 	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6341 	if (dest_cpu < nr_cpu_ids)
6342 		goto move;
6343 
6344 	/* No more Mr. Nice Guy. */
6345 	if (dest_cpu >= nr_cpu_ids) {
6346 		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6347 		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6348 
6349 		/*
6350 		 * Don't tell them about moving exiting tasks or
6351 		 * kernel threads (both mm NULL), since they never
6352 		 * leave kernel.
6353 		 */
6354 		if (p->mm && printk_ratelimit()) {
6355 			printk(KERN_INFO "process %d (%s) no "
6356 			       "longer affine to cpu%d\n",
6357 			       task_pid_nr(p), p->comm, dead_cpu);
6358 		}
6359 	}
6360 
6361 move:
6362 	/* It can have affinity changed while we were choosing. */
6363 	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6364 		goto again;
6365 }
6366 
6367 /*
6368  * While a dead CPU has no uninterruptible tasks queued at this point,
6369  * it might still have a nonzero ->nr_uninterruptible counter, because
6370  * for performance reasons the counter is not stricly tracking tasks to
6371  * their home CPUs. So we just add the counter to another CPU's counter,
6372  * to keep the global sum constant after CPU-down:
6373  */
migrate_nr_uninterruptible(struct rq * rq_src)6374 static void migrate_nr_uninterruptible(struct rq *rq_src)
6375 {
6376 	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6377 	unsigned long flags;
6378 
6379 	local_irq_save(flags);
6380 	double_rq_lock(rq_src, rq_dest);
6381 	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6382 	rq_src->nr_uninterruptible = 0;
6383 	double_rq_unlock(rq_src, rq_dest);
6384 	local_irq_restore(flags);
6385 }
6386 
6387 /* Run through task list and migrate tasks from the dead cpu. */
migrate_live_tasks(int src_cpu)6388 static void migrate_live_tasks(int src_cpu)
6389 {
6390 	struct task_struct *p, *t;
6391 
6392 	read_lock(&tasklist_lock);
6393 
6394 	do_each_thread(t, p) {
6395 		if (p == current)
6396 			continue;
6397 
6398 		if (task_cpu(p) == src_cpu)
6399 			move_task_off_dead_cpu(src_cpu, p);
6400 	} while_each_thread(t, p);
6401 
6402 	read_unlock(&tasklist_lock);
6403 }
6404 
6405 /*
6406  * Schedules idle task to be the next runnable task on current CPU.
6407  * It does so by boosting its priority to highest possible.
6408  * Used by CPU offline code.
6409  */
sched_idle_next(void)6410 void sched_idle_next(void)
6411 {
6412 	int this_cpu = smp_processor_id();
6413 	struct rq *rq = cpu_rq(this_cpu);
6414 	struct task_struct *p = rq->idle;
6415 	unsigned long flags;
6416 
6417 	/* cpu has to be offline */
6418 	BUG_ON(cpu_online(this_cpu));
6419 
6420 	/*
6421 	 * Strictly not necessary since rest of the CPUs are stopped by now
6422 	 * and interrupts disabled on the current cpu.
6423 	 */
6424 	spin_lock_irqsave(&rq->lock, flags);
6425 
6426 	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6427 
6428 	update_rq_clock(rq);
6429 	activate_task(rq, p, 0);
6430 
6431 	spin_unlock_irqrestore(&rq->lock, flags);
6432 }
6433 
6434 /*
6435  * Ensures that the idle task is using init_mm right before its cpu goes
6436  * offline.
6437  */
idle_task_exit(void)6438 void idle_task_exit(void)
6439 {
6440 	struct mm_struct *mm = current->active_mm;
6441 
6442 	BUG_ON(cpu_online(smp_processor_id()));
6443 
6444 	if (mm != &init_mm)
6445 		switch_mm(mm, &init_mm, current);
6446 	mmdrop(mm);
6447 }
6448 
6449 /* called under rq->lock with disabled interrupts */
migrate_dead(unsigned int dead_cpu,struct task_struct * p)6450 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6451 {
6452 	struct rq *rq = cpu_rq(dead_cpu);
6453 
6454 	/* Must be exiting, otherwise would be on tasklist. */
6455 	BUG_ON(!p->exit_state);
6456 
6457 	/* Cannot have done final schedule yet: would have vanished. */
6458 	BUG_ON(p->state == TASK_DEAD);
6459 
6460 	get_task_struct(p);
6461 
6462 	/*
6463 	 * Drop lock around migration; if someone else moves it,
6464 	 * that's OK. No task can be added to this CPU, so iteration is
6465 	 * fine.
6466 	 */
6467 	spin_unlock_irq(&rq->lock);
6468 	move_task_off_dead_cpu(dead_cpu, p);
6469 	spin_lock_irq(&rq->lock);
6470 
6471 	put_task_struct(p);
6472 }
6473 
6474 /* release_task() removes task from tasklist, so we won't find dead tasks. */
migrate_dead_tasks(unsigned int dead_cpu)6475 static void migrate_dead_tasks(unsigned int dead_cpu)
6476 {
6477 	struct rq *rq = cpu_rq(dead_cpu);
6478 	struct task_struct *next;
6479 
6480 	for ( ; ; ) {
6481 		if (!rq->nr_running)
6482 			break;
6483 		update_rq_clock(rq);
6484 		next = pick_next_task(rq, rq->curr);
6485 		if (!next)
6486 			break;
6487 		next->sched_class->put_prev_task(rq, next);
6488 		migrate_dead(dead_cpu, next);
6489 
6490 	}
6491 }
6492 #endif /* CONFIG_HOTPLUG_CPU */
6493 
6494 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6495 
6496 static struct ctl_table sd_ctl_dir[] = {
6497 	{
6498 		.procname	= "sched_domain",
6499 		.mode		= 0555,
6500 	},
6501 	{0, },
6502 };
6503 
6504 static struct ctl_table sd_ctl_root[] = {
6505 	{
6506 		.ctl_name	= CTL_KERN,
6507 		.procname	= "kernel",
6508 		.mode		= 0555,
6509 		.child		= sd_ctl_dir,
6510 	},
6511 	{0, },
6512 };
6513 
sd_alloc_ctl_entry(int n)6514 static struct ctl_table *sd_alloc_ctl_entry(int n)
6515 {
6516 	struct ctl_table *entry =
6517 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6518 
6519 	return entry;
6520 }
6521 
sd_free_ctl_entry(struct ctl_table ** tablep)6522 static void sd_free_ctl_entry(struct ctl_table **tablep)
6523 {
6524 	struct ctl_table *entry;
6525 
6526 	/*
6527 	 * In the intermediate directories, both the child directory and
6528 	 * procname are dynamically allocated and could fail but the mode
6529 	 * will always be set. In the lowest directory the names are
6530 	 * static strings and all have proc handlers.
6531 	 */
6532 	for (entry = *tablep; entry->mode; entry++) {
6533 		if (entry->child)
6534 			sd_free_ctl_entry(&entry->child);
6535 		if (entry->proc_handler == NULL)
6536 			kfree(entry->procname);
6537 	}
6538 
6539 	kfree(*tablep);
6540 	*tablep = NULL;
6541 }
6542 
6543 static void
set_table_entry(struct ctl_table * entry,const char * procname,void * data,int maxlen,mode_t mode,proc_handler * proc_handler)6544 set_table_entry(struct ctl_table *entry,
6545 		const char *procname, void *data, int maxlen,
6546 		mode_t mode, proc_handler *proc_handler)
6547 {
6548 	entry->procname = procname;
6549 	entry->data = data;
6550 	entry->maxlen = maxlen;
6551 	entry->mode = mode;
6552 	entry->proc_handler = proc_handler;
6553 }
6554 
6555 static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain * sd)6556 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6557 {
6558 	struct ctl_table *table = sd_alloc_ctl_entry(13);
6559 
6560 	if (table == NULL)
6561 		return NULL;
6562 
6563 	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6564 		sizeof(long), 0644, proc_doulongvec_minmax);
6565 	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6566 		sizeof(long), 0644, proc_doulongvec_minmax);
6567 	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6568 		sizeof(int), 0644, proc_dointvec_minmax);
6569 	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6570 		sizeof(int), 0644, proc_dointvec_minmax);
6571 	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6572 		sizeof(int), 0644, proc_dointvec_minmax);
6573 	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6574 		sizeof(int), 0644, proc_dointvec_minmax);
6575 	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6576 		sizeof(int), 0644, proc_dointvec_minmax);
6577 	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6578 		sizeof(int), 0644, proc_dointvec_minmax);
6579 	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6580 		sizeof(int), 0644, proc_dointvec_minmax);
6581 	set_table_entry(&table[9], "cache_nice_tries",
6582 		&sd->cache_nice_tries,
6583 		sizeof(int), 0644, proc_dointvec_minmax);
6584 	set_table_entry(&table[10], "flags", &sd->flags,
6585 		sizeof(int), 0644, proc_dointvec_minmax);
6586 	set_table_entry(&table[11], "name", sd->name,
6587 		CORENAME_MAX_SIZE, 0444, proc_dostring);
6588 	/* &table[12] is terminator */
6589 
6590 	return table;
6591 }
6592 
sd_alloc_ctl_cpu_table(int cpu)6593 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6594 {
6595 	struct ctl_table *entry, *table;
6596 	struct sched_domain *sd;
6597 	int domain_num = 0, i;
6598 	char buf[32];
6599 
6600 	for_each_domain(cpu, sd)
6601 		domain_num++;
6602 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6603 	if (table == NULL)
6604 		return NULL;
6605 
6606 	i = 0;
6607 	for_each_domain(cpu, sd) {
6608 		snprintf(buf, 32, "domain%d", i);
6609 		entry->procname = kstrdup(buf, GFP_KERNEL);
6610 		entry->mode = 0555;
6611 		entry->child = sd_alloc_ctl_domain_table(sd);
6612 		entry++;
6613 		i++;
6614 	}
6615 	return table;
6616 }
6617 
6618 static struct ctl_table_header *sd_sysctl_header;
register_sched_domain_sysctl(void)6619 static void register_sched_domain_sysctl(void)
6620 {
6621 	int i, cpu_num = num_online_cpus();
6622 	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6623 	char buf[32];
6624 
6625 	WARN_ON(sd_ctl_dir[0].child);
6626 	sd_ctl_dir[0].child = entry;
6627 
6628 	if (entry == NULL)
6629 		return;
6630 
6631 	for_each_online_cpu(i) {
6632 		snprintf(buf, 32, "cpu%d", i);
6633 		entry->procname = kstrdup(buf, GFP_KERNEL);
6634 		entry->mode = 0555;
6635 		entry->child = sd_alloc_ctl_cpu_table(i);
6636 		entry++;
6637 	}
6638 
6639 	WARN_ON(sd_sysctl_header);
6640 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6641 }
6642 
6643 /* may be called multiple times per register */
unregister_sched_domain_sysctl(void)6644 static void unregister_sched_domain_sysctl(void)
6645 {
6646 	if (sd_sysctl_header)
6647 		unregister_sysctl_table(sd_sysctl_header);
6648 	sd_sysctl_header = NULL;
6649 	if (sd_ctl_dir[0].child)
6650 		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6651 }
6652 #else
register_sched_domain_sysctl(void)6653 static void register_sched_domain_sysctl(void)
6654 {
6655 }
unregister_sched_domain_sysctl(void)6656 static void unregister_sched_domain_sysctl(void)
6657 {
6658 }
6659 #endif
6660 
set_rq_online(struct rq * rq)6661 static void set_rq_online(struct rq *rq)
6662 {
6663 	if (!rq->online) {
6664 		const struct sched_class *class;
6665 
6666 		cpumask_set_cpu(rq->cpu, rq->rd->online);
6667 		rq->online = 1;
6668 
6669 		for_each_class(class) {
6670 			if (class->rq_online)
6671 				class->rq_online(rq);
6672 		}
6673 	}
6674 }
6675 
set_rq_offline(struct rq * rq)6676 static void set_rq_offline(struct rq *rq)
6677 {
6678 	if (rq->online) {
6679 		const struct sched_class *class;
6680 
6681 		for_each_class(class) {
6682 			if (class->rq_offline)
6683 				class->rq_offline(rq);
6684 		}
6685 
6686 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6687 		rq->online = 0;
6688 	}
6689 }
6690 
6691 /*
6692  * migration_call - callback that gets triggered when a CPU is added.
6693  * Here we can start up the necessary migration thread for the new CPU.
6694  */
6695 static int __cpuinit
migration_call(struct notifier_block * nfb,unsigned long action,void * hcpu)6696 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6697 {
6698 	struct task_struct *p;
6699 	int cpu = (long)hcpu;
6700 	unsigned long flags;
6701 	struct rq *rq;
6702 
6703 	switch (action) {
6704 
6705 	case CPU_UP_PREPARE:
6706 	case CPU_UP_PREPARE_FROZEN:
6707 		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6708 		if (IS_ERR(p))
6709 			return NOTIFY_BAD;
6710 		kthread_bind(p, cpu);
6711 		/* Must be high prio: stop_machine expects to yield to it. */
6712 		rq = task_rq_lock(p, &flags);
6713 		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6714 		task_rq_unlock(rq, &flags);
6715 		cpu_rq(cpu)->migration_thread = p;
6716 		break;
6717 
6718 	case CPU_ONLINE:
6719 	case CPU_ONLINE_FROZEN:
6720 		/* Strictly unnecessary, as first user will wake it. */
6721 		wake_up_process(cpu_rq(cpu)->migration_thread);
6722 
6723 		/* Update our root-domain */
6724 		rq = cpu_rq(cpu);
6725 		spin_lock_irqsave(&rq->lock, flags);
6726 		if (rq->rd) {
6727 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6728 
6729 			set_rq_online(rq);
6730 		}
6731 		spin_unlock_irqrestore(&rq->lock, flags);
6732 		break;
6733 
6734 #ifdef CONFIG_HOTPLUG_CPU
6735 	case CPU_UP_CANCELED:
6736 	case CPU_UP_CANCELED_FROZEN:
6737 		if (!cpu_rq(cpu)->migration_thread)
6738 			break;
6739 		/* Unbind it from offline cpu so it can run. Fall thru. */
6740 		kthread_bind(cpu_rq(cpu)->migration_thread,
6741 			     cpumask_any(cpu_online_mask));
6742 		kthread_stop(cpu_rq(cpu)->migration_thread);
6743 		cpu_rq(cpu)->migration_thread = NULL;
6744 		break;
6745 
6746 	case CPU_DEAD:
6747 	case CPU_DEAD_FROZEN:
6748 		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6749 		migrate_live_tasks(cpu);
6750 		rq = cpu_rq(cpu);
6751 		kthread_stop(rq->migration_thread);
6752 		rq->migration_thread = NULL;
6753 		/* Idle task back to normal (off runqueue, low prio) */
6754 		spin_lock_irq(&rq->lock);
6755 		update_rq_clock(rq);
6756 		deactivate_task(rq, rq->idle, 0);
6757 		rq->idle->static_prio = MAX_PRIO;
6758 		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6759 		rq->idle->sched_class = &idle_sched_class;
6760 		migrate_dead_tasks(cpu);
6761 		spin_unlock_irq(&rq->lock);
6762 		cpuset_unlock();
6763 		migrate_nr_uninterruptible(rq);
6764 		BUG_ON(rq->nr_running != 0);
6765 
6766 		/*
6767 		 * No need to migrate the tasks: it was best-effort if
6768 		 * they didn't take sched_hotcpu_mutex. Just wake up
6769 		 * the requestors.
6770 		 */
6771 		spin_lock_irq(&rq->lock);
6772 		while (!list_empty(&rq->migration_queue)) {
6773 			struct migration_req *req;
6774 
6775 			req = list_entry(rq->migration_queue.next,
6776 					 struct migration_req, list);
6777 			list_del_init(&req->list);
6778 			spin_unlock_irq(&rq->lock);
6779 			complete(&req->done);
6780 			spin_lock_irq(&rq->lock);
6781 		}
6782 		spin_unlock_irq(&rq->lock);
6783 		break;
6784 
6785 	case CPU_DYING:
6786 	case CPU_DYING_FROZEN:
6787 		/* Update our root-domain */
6788 		rq = cpu_rq(cpu);
6789 		spin_lock_irqsave(&rq->lock, flags);
6790 		if (rq->rd) {
6791 			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6792 			set_rq_offline(rq);
6793 		}
6794 		spin_unlock_irqrestore(&rq->lock, flags);
6795 		break;
6796 #endif
6797 	}
6798 	return NOTIFY_OK;
6799 }
6800 
6801 /* Register at highest priority so that task migration (migrate_all_tasks)
6802  * happens before everything else.
6803  */
6804 static struct notifier_block __cpuinitdata migration_notifier = {
6805 	.notifier_call = migration_call,
6806 	.priority = 10
6807 };
6808 
migration_init(void)6809 static int __init migration_init(void)
6810 {
6811 	void *cpu = (void *)(long)smp_processor_id();
6812 	int err;
6813 
6814 	/* Start one for the boot CPU: */
6815 	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6816 	BUG_ON(err == NOTIFY_BAD);
6817 	migration_call(&migration_notifier, CPU_ONLINE, cpu);
6818 	register_cpu_notifier(&migration_notifier);
6819 
6820 	return err;
6821 }
6822 early_initcall(migration_init);
6823 #endif
6824 
6825 #ifdef CONFIG_SMP
6826 
6827 #ifdef CONFIG_SCHED_DEBUG
6828 
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)6829 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6830 				  struct cpumask *groupmask)
6831 {
6832 	struct sched_group *group = sd->groups;
6833 	char str[256];
6834 
6835 	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6836 	cpumask_clear(groupmask);
6837 
6838 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6839 
6840 	if (!(sd->flags & SD_LOAD_BALANCE)) {
6841 		printk("does not load-balance\n");
6842 		if (sd->parent)
6843 			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6844 					" has parent");
6845 		return -1;
6846 	}
6847 
6848 	printk(KERN_CONT "span %s level %s\n", str, sd->name);
6849 
6850 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6851 		printk(KERN_ERR "ERROR: domain->span does not contain "
6852 				"CPU%d\n", cpu);
6853 	}
6854 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6855 		printk(KERN_ERR "ERROR: domain->groups does not contain"
6856 				" CPU%d\n", cpu);
6857 	}
6858 
6859 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
6860 	do {
6861 		if (!group) {
6862 			printk("\n");
6863 			printk(KERN_ERR "ERROR: group is NULL\n");
6864 			break;
6865 		}
6866 
6867 		if (!group->__cpu_power) {
6868 			printk(KERN_CONT "\n");
6869 			printk(KERN_ERR "ERROR: domain->cpu_power not "
6870 					"set\n");
6871 			break;
6872 		}
6873 
6874 		if (!cpumask_weight(sched_group_cpus(group))) {
6875 			printk(KERN_CONT "\n");
6876 			printk(KERN_ERR "ERROR: empty group\n");
6877 			break;
6878 		}
6879 
6880 		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6881 			printk(KERN_CONT "\n");
6882 			printk(KERN_ERR "ERROR: repeated CPUs\n");
6883 			break;
6884 		}
6885 
6886 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6887 
6888 		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6889 		printk(KERN_CONT " %s", str);
6890 
6891 		group = group->next;
6892 	} while (group != sd->groups);
6893 	printk(KERN_CONT "\n");
6894 
6895 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
6896 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6897 
6898 	if (sd->parent &&
6899 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6900 		printk(KERN_ERR "ERROR: parent span is not a superset "
6901 			"of domain->span\n");
6902 	return 0;
6903 }
6904 
sched_domain_debug(struct sched_domain * sd,int cpu)6905 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6906 {
6907 	cpumask_var_t groupmask;
6908 	int level = 0;
6909 
6910 	if (!sd) {
6911 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6912 		return;
6913 	}
6914 
6915 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6916 
6917 	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6918 		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6919 		return;
6920 	}
6921 
6922 	for (;;) {
6923 		if (sched_domain_debug_one(sd, cpu, level, groupmask))
6924 			break;
6925 		level++;
6926 		sd = sd->parent;
6927 		if (!sd)
6928 			break;
6929 	}
6930 	free_cpumask_var(groupmask);
6931 }
6932 #else /* !CONFIG_SCHED_DEBUG */
6933 # define sched_domain_debug(sd, cpu) do { } while (0)
6934 #endif /* CONFIG_SCHED_DEBUG */
6935 
sd_degenerate(struct sched_domain * sd)6936 static int sd_degenerate(struct sched_domain *sd)
6937 {
6938 	if (cpumask_weight(sched_domain_span(sd)) == 1)
6939 		return 1;
6940 
6941 	/* Following flags need at least 2 groups */
6942 	if (sd->flags & (SD_LOAD_BALANCE |
6943 			 SD_BALANCE_NEWIDLE |
6944 			 SD_BALANCE_FORK |
6945 			 SD_BALANCE_EXEC |
6946 			 SD_SHARE_CPUPOWER |
6947 			 SD_SHARE_PKG_RESOURCES)) {
6948 		if (sd->groups != sd->groups->next)
6949 			return 0;
6950 	}
6951 
6952 	/* Following flags don't use groups */
6953 	if (sd->flags & (SD_WAKE_IDLE |
6954 			 SD_WAKE_AFFINE |
6955 			 SD_WAKE_BALANCE))
6956 		return 0;
6957 
6958 	return 1;
6959 }
6960 
6961 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)6962 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6963 {
6964 	unsigned long cflags = sd->flags, pflags = parent->flags;
6965 
6966 	if (sd_degenerate(parent))
6967 		return 1;
6968 
6969 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6970 		return 0;
6971 
6972 	/* Does parent contain flags not in child? */
6973 	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
6974 	if (cflags & SD_WAKE_AFFINE)
6975 		pflags &= ~SD_WAKE_BALANCE;
6976 	/* Flags needing groups don't count if only 1 group in parent */
6977 	if (parent->groups == parent->groups->next) {
6978 		pflags &= ~(SD_LOAD_BALANCE |
6979 				SD_BALANCE_NEWIDLE |
6980 				SD_BALANCE_FORK |
6981 				SD_BALANCE_EXEC |
6982 				SD_SHARE_CPUPOWER |
6983 				SD_SHARE_PKG_RESOURCES);
6984 		if (nr_node_ids == 1)
6985 			pflags &= ~SD_SERIALIZE;
6986 	}
6987 	if (~cflags & pflags)
6988 		return 0;
6989 
6990 	return 1;
6991 }
6992 
free_rootdomain(struct root_domain * rd)6993 static void free_rootdomain(struct root_domain *rd)
6994 {
6995 	cpupri_cleanup(&rd->cpupri);
6996 
6997 	free_cpumask_var(rd->rto_mask);
6998 	free_cpumask_var(rd->online);
6999 	free_cpumask_var(rd->span);
7000 	kfree(rd);
7001 }
7002 
rq_attach_root(struct rq * rq,struct root_domain * rd)7003 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7004 {
7005 	struct root_domain *old_rd = NULL;
7006 	unsigned long flags;
7007 
7008 	spin_lock_irqsave(&rq->lock, flags);
7009 
7010 	if (rq->rd) {
7011 		old_rd = rq->rd;
7012 
7013 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7014 			set_rq_offline(rq);
7015 
7016 		cpumask_clear_cpu(rq->cpu, old_rd->span);
7017 
7018 		/*
7019 		 * If we dont want to free the old_rt yet then
7020 		 * set old_rd to NULL to skip the freeing later
7021 		 * in this function:
7022 		 */
7023 		if (!atomic_dec_and_test(&old_rd->refcount))
7024 			old_rd = NULL;
7025 	}
7026 
7027 	atomic_inc(&rd->refcount);
7028 	rq->rd = rd;
7029 
7030 	cpumask_set_cpu(rq->cpu, rd->span);
7031 	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7032 		set_rq_online(rq);
7033 
7034 	spin_unlock_irqrestore(&rq->lock, flags);
7035 
7036 	if (old_rd)
7037 		free_rootdomain(old_rd);
7038 }
7039 
init_rootdomain(struct root_domain * rd,bool bootmem)7040 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7041 {
7042 	memset(rd, 0, sizeof(*rd));
7043 
7044 	if (bootmem) {
7045 		alloc_bootmem_cpumask_var(&def_root_domain.span);
7046 		alloc_bootmem_cpumask_var(&def_root_domain.online);
7047 		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7048 		cpupri_init(&rd->cpupri, true);
7049 		return 0;
7050 	}
7051 
7052 	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7053 		goto out;
7054 	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7055 		goto free_span;
7056 	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7057 		goto free_online;
7058 
7059 	if (cpupri_init(&rd->cpupri, false) != 0)
7060 		goto free_rto_mask;
7061 	return 0;
7062 
7063 free_rto_mask:
7064 	free_cpumask_var(rd->rto_mask);
7065 free_online:
7066 	free_cpumask_var(rd->online);
7067 free_span:
7068 	free_cpumask_var(rd->span);
7069 out:
7070 	return -ENOMEM;
7071 }
7072 
init_defrootdomain(void)7073 static void init_defrootdomain(void)
7074 {
7075 	init_rootdomain(&def_root_domain, true);
7076 
7077 	atomic_set(&def_root_domain.refcount, 1);
7078 }
7079 
alloc_rootdomain(void)7080 static struct root_domain *alloc_rootdomain(void)
7081 {
7082 	struct root_domain *rd;
7083 
7084 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7085 	if (!rd)
7086 		return NULL;
7087 
7088 	if (init_rootdomain(rd, false) != 0) {
7089 		kfree(rd);
7090 		return NULL;
7091 	}
7092 
7093 	return rd;
7094 }
7095 
7096 /*
7097  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7098  * hold the hotplug lock.
7099  */
7100 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)7101 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7102 {
7103 	struct rq *rq = cpu_rq(cpu);
7104 	struct sched_domain *tmp;
7105 
7106 	/* Remove the sched domains which do not contribute to scheduling. */
7107 	for (tmp = sd; tmp; ) {
7108 		struct sched_domain *parent = tmp->parent;
7109 		if (!parent)
7110 			break;
7111 
7112 		if (sd_parent_degenerate(tmp, parent)) {
7113 			tmp->parent = parent->parent;
7114 			if (parent->parent)
7115 				parent->parent->child = tmp;
7116 		} else
7117 			tmp = tmp->parent;
7118 	}
7119 
7120 	if (sd && sd_degenerate(sd)) {
7121 		sd = sd->parent;
7122 		if (sd)
7123 			sd->child = NULL;
7124 	}
7125 
7126 	sched_domain_debug(sd, cpu);
7127 
7128 	rq_attach_root(rq, rd);
7129 	rcu_assign_pointer(rq->sd, sd);
7130 }
7131 
7132 /* cpus with isolated domains */
7133 static cpumask_var_t cpu_isolated_map;
7134 
7135 /* Setup the mask of cpus configured for isolated domains */
isolated_cpu_setup(char * str)7136 static int __init isolated_cpu_setup(char *str)
7137 {
7138 	cpulist_parse(str, cpu_isolated_map);
7139 	return 1;
7140 }
7141 
7142 __setup("isolcpus=", isolated_cpu_setup);
7143 
7144 /*
7145  * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7146  * to a function which identifies what group(along with sched group) a CPU
7147  * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7148  * (due to the fact that we keep track of groups covered with a struct cpumask).
7149  *
7150  * init_sched_build_groups will build a circular linked list of the groups
7151  * covered by the given span, and will set each group's ->cpumask correctly,
7152  * and ->cpu_power to 0.
7153  */
7154 static void
init_sched_build_groups(const struct cpumask * span,const struct cpumask * cpu_map,int (* group_fn)(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * tmpmask),struct cpumask * covered,struct cpumask * tmpmask)7155 init_sched_build_groups(const struct cpumask *span,
7156 			const struct cpumask *cpu_map,
7157 			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7158 					struct sched_group **sg,
7159 					struct cpumask *tmpmask),
7160 			struct cpumask *covered, struct cpumask *tmpmask)
7161 {
7162 	struct sched_group *first = NULL, *last = NULL;
7163 	int i;
7164 
7165 	cpumask_clear(covered);
7166 
7167 	for_each_cpu(i, span) {
7168 		struct sched_group *sg;
7169 		int group = group_fn(i, cpu_map, &sg, tmpmask);
7170 		int j;
7171 
7172 		if (cpumask_test_cpu(i, covered))
7173 			continue;
7174 
7175 		cpumask_clear(sched_group_cpus(sg));
7176 		sg->__cpu_power = 0;
7177 
7178 		for_each_cpu(j, span) {
7179 			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7180 				continue;
7181 
7182 			cpumask_set_cpu(j, covered);
7183 			cpumask_set_cpu(j, sched_group_cpus(sg));
7184 		}
7185 		if (!first)
7186 			first = sg;
7187 		if (last)
7188 			last->next = sg;
7189 		last = sg;
7190 	}
7191 	last->next = first;
7192 }
7193 
7194 #define SD_NODES_PER_DOMAIN 16
7195 
7196 #ifdef CONFIG_NUMA
7197 
7198 /**
7199  * find_next_best_node - find the next node to include in a sched_domain
7200  * @node: node whose sched_domain we're building
7201  * @used_nodes: nodes already in the sched_domain
7202  *
7203  * Find the next node to include in a given scheduling domain. Simply
7204  * finds the closest node not already in the @used_nodes map.
7205  *
7206  * Should use nodemask_t.
7207  */
find_next_best_node(int node,nodemask_t * used_nodes)7208 static int find_next_best_node(int node, nodemask_t *used_nodes)
7209 {
7210 	int i, n, val, min_val, best_node = 0;
7211 
7212 	min_val = INT_MAX;
7213 
7214 	for (i = 0; i < nr_node_ids; i++) {
7215 		/* Start at @node */
7216 		n = (node + i) % nr_node_ids;
7217 
7218 		if (!nr_cpus_node(n))
7219 			continue;
7220 
7221 		/* Skip already used nodes */
7222 		if (node_isset(n, *used_nodes))
7223 			continue;
7224 
7225 		/* Simple min distance search */
7226 		val = node_distance(node, n);
7227 
7228 		if (val < min_val) {
7229 			min_val = val;
7230 			best_node = n;
7231 		}
7232 	}
7233 
7234 	node_set(best_node, *used_nodes);
7235 	return best_node;
7236 }
7237 
7238 /**
7239  * sched_domain_node_span - get a cpumask for a node's sched_domain
7240  * @node: node whose cpumask we're constructing
7241  * @span: resulting cpumask
7242  *
7243  * Given a node, construct a good cpumask for its sched_domain to span. It
7244  * should be one that prevents unnecessary balancing, but also spreads tasks
7245  * out optimally.
7246  */
sched_domain_node_span(int node,struct cpumask * span)7247 static void sched_domain_node_span(int node, struct cpumask *span)
7248 {
7249 	nodemask_t used_nodes;
7250 	int i;
7251 
7252 	cpumask_clear(span);
7253 	nodes_clear(used_nodes);
7254 
7255 	cpumask_or(span, span, cpumask_of_node(node));
7256 	node_set(node, used_nodes);
7257 
7258 	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7259 		int next_node = find_next_best_node(node, &used_nodes);
7260 
7261 		cpumask_or(span, span, cpumask_of_node(next_node));
7262 	}
7263 }
7264 #endif /* CONFIG_NUMA */
7265 
7266 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7267 
7268 /*
7269  * The cpus mask in sched_group and sched_domain hangs off the end.
7270  * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7271  * for nr_cpu_ids < CONFIG_NR_CPUS.
7272  */
7273 struct static_sched_group {
7274 	struct sched_group sg;
7275 	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7276 };
7277 
7278 struct static_sched_domain {
7279 	struct sched_domain sd;
7280 	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7281 };
7282 
7283 /*
7284  * SMT sched-domains:
7285  */
7286 #ifdef CONFIG_SCHED_SMT
7287 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7288 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7289 
7290 static int
cpu_to_cpu_group(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * unused)7291 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7292 		 struct sched_group **sg, struct cpumask *unused)
7293 {
7294 	if (sg)
7295 		*sg = &per_cpu(sched_group_cpus, cpu).sg;
7296 	return cpu;
7297 }
7298 #endif /* CONFIG_SCHED_SMT */
7299 
7300 /*
7301  * multi-core sched-domains:
7302  */
7303 #ifdef CONFIG_SCHED_MC
7304 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7305 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7306 #endif /* CONFIG_SCHED_MC */
7307 
7308 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7309 static int
cpu_to_core_group(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * mask)7310 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7311 		  struct sched_group **sg, struct cpumask *mask)
7312 {
7313 	int group;
7314 
7315 	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7316 	group = cpumask_first(mask);
7317 	if (sg)
7318 		*sg = &per_cpu(sched_group_core, group).sg;
7319 	return group;
7320 }
7321 #elif defined(CONFIG_SCHED_MC)
7322 static int
cpu_to_core_group(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * unused)7323 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7324 		  struct sched_group **sg, struct cpumask *unused)
7325 {
7326 	if (sg)
7327 		*sg = &per_cpu(sched_group_core, cpu).sg;
7328 	return cpu;
7329 }
7330 #endif
7331 
7332 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7333 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7334 
7335 static int
cpu_to_phys_group(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * mask)7336 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7337 		  struct sched_group **sg, struct cpumask *mask)
7338 {
7339 	int group;
7340 #ifdef CONFIG_SCHED_MC
7341 	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7342 	group = cpumask_first(mask);
7343 #elif defined(CONFIG_SCHED_SMT)
7344 	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7345 	group = cpumask_first(mask);
7346 #else
7347 	group = cpu;
7348 #endif
7349 	if (sg)
7350 		*sg = &per_cpu(sched_group_phys, group).sg;
7351 	return group;
7352 }
7353 
7354 #ifdef CONFIG_NUMA
7355 /*
7356  * The init_sched_build_groups can't handle what we want to do with node
7357  * groups, so roll our own. Now each node has its own list of groups which
7358  * gets dynamically allocated.
7359  */
7360 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7361 static struct sched_group ***sched_group_nodes_bycpu;
7362 
7363 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7364 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7365 
cpu_to_allnodes_group(int cpu,const struct cpumask * cpu_map,struct sched_group ** sg,struct cpumask * nodemask)7366 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7367 				 struct sched_group **sg,
7368 				 struct cpumask *nodemask)
7369 {
7370 	int group;
7371 
7372 	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7373 	group = cpumask_first(nodemask);
7374 
7375 	if (sg)
7376 		*sg = &per_cpu(sched_group_allnodes, group).sg;
7377 	return group;
7378 }
7379 
init_numa_sched_groups_power(struct sched_group * group_head)7380 static void init_numa_sched_groups_power(struct sched_group *group_head)
7381 {
7382 	struct sched_group *sg = group_head;
7383 	int j;
7384 
7385 	if (!sg)
7386 		return;
7387 	do {
7388 		for_each_cpu(j, sched_group_cpus(sg)) {
7389 			struct sched_domain *sd;
7390 
7391 			sd = &per_cpu(phys_domains, j).sd;
7392 			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7393 				/*
7394 				 * Only add "power" once for each
7395 				 * physical package.
7396 				 */
7397 				continue;
7398 			}
7399 
7400 			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7401 		}
7402 		sg = sg->next;
7403 	} while (sg != group_head);
7404 }
7405 #endif /* CONFIG_NUMA */
7406 
7407 #ifdef CONFIG_NUMA
7408 /* Free memory allocated for various sched_group structures */
free_sched_groups(const struct cpumask * cpu_map,struct cpumask * nodemask)7409 static void free_sched_groups(const struct cpumask *cpu_map,
7410 			      struct cpumask *nodemask)
7411 {
7412 	int cpu, i;
7413 
7414 	for_each_cpu(cpu, cpu_map) {
7415 		struct sched_group **sched_group_nodes
7416 			= sched_group_nodes_bycpu[cpu];
7417 
7418 		if (!sched_group_nodes)
7419 			continue;
7420 
7421 		for (i = 0; i < nr_node_ids; i++) {
7422 			struct sched_group *oldsg, *sg = sched_group_nodes[i];
7423 
7424 			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7425 			if (cpumask_empty(nodemask))
7426 				continue;
7427 
7428 			if (sg == NULL)
7429 				continue;
7430 			sg = sg->next;
7431 next_sg:
7432 			oldsg = sg;
7433 			sg = sg->next;
7434 			kfree(oldsg);
7435 			if (oldsg != sched_group_nodes[i])
7436 				goto next_sg;
7437 		}
7438 		kfree(sched_group_nodes);
7439 		sched_group_nodes_bycpu[cpu] = NULL;
7440 	}
7441 }
7442 #else /* !CONFIG_NUMA */
free_sched_groups(const struct cpumask * cpu_map,struct cpumask * nodemask)7443 static void free_sched_groups(const struct cpumask *cpu_map,
7444 			      struct cpumask *nodemask)
7445 {
7446 }
7447 #endif /* CONFIG_NUMA */
7448 
7449 /*
7450  * Initialize sched groups cpu_power.
7451  *
7452  * cpu_power indicates the capacity of sched group, which is used while
7453  * distributing the load between different sched groups in a sched domain.
7454  * Typically cpu_power for all the groups in a sched domain will be same unless
7455  * there are asymmetries in the topology. If there are asymmetries, group
7456  * having more cpu_power will pickup more load compared to the group having
7457  * less cpu_power.
7458  *
7459  * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7460  * the maximum number of tasks a group can handle in the presence of other idle
7461  * or lightly loaded groups in the same sched domain.
7462  */
init_sched_groups_power(int cpu,struct sched_domain * sd)7463 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7464 {
7465 	struct sched_domain *child;
7466 	struct sched_group *group;
7467 
7468 	WARN_ON(!sd || !sd->groups);
7469 
7470 	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7471 		return;
7472 
7473 	child = sd->child;
7474 
7475 	sd->groups->__cpu_power = 0;
7476 
7477 	/*
7478 	 * For perf policy, if the groups in child domain share resources
7479 	 * (for example cores sharing some portions of the cache hierarchy
7480 	 * or SMT), then set this domain groups cpu_power such that each group
7481 	 * can handle only one task, when there are other idle groups in the
7482 	 * same sched domain.
7483 	 */
7484 	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7485 		       (child->flags &
7486 			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7487 		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7488 		return;
7489 	}
7490 
7491 	/*
7492 	 * add cpu_power of each child group to this groups cpu_power
7493 	 */
7494 	group = child->groups;
7495 	do {
7496 		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7497 		group = group->next;
7498 	} while (group != child->groups);
7499 }
7500 
7501 /*
7502  * Initializers for schedule domains
7503  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7504  */
7505 
7506 #ifdef CONFIG_SCHED_DEBUG
7507 # define SD_INIT_NAME(sd, type)		sd->name = #type
7508 #else
7509 # define SD_INIT_NAME(sd, type)		do { } while (0)
7510 #endif
7511 
7512 #define	SD_INIT(sd, type)	sd_init_##type(sd)
7513 
7514 #define SD_INIT_FUNC(type)	\
7515 static noinline void sd_init_##type(struct sched_domain *sd)	\
7516 {								\
7517 	memset(sd, 0, sizeof(*sd));				\
7518 	*sd = SD_##type##_INIT;					\
7519 	sd->level = SD_LV_##type;				\
7520 	SD_INIT_NAME(sd, type);					\
7521 }
7522 
7523 SD_INIT_FUNC(CPU)
7524 #ifdef CONFIG_NUMA
7525  SD_INIT_FUNC(ALLNODES)
7526  SD_INIT_FUNC(NODE)
7527 #endif
7528 #ifdef CONFIG_SCHED_SMT
7529  SD_INIT_FUNC(SIBLING)
7530 #endif
7531 #ifdef CONFIG_SCHED_MC
7532  SD_INIT_FUNC(MC)
7533 #endif
7534 
7535 static int default_relax_domain_level = -1;
7536 
setup_relax_domain_level(char * str)7537 static int __init setup_relax_domain_level(char *str)
7538 {
7539 	unsigned long val;
7540 
7541 	val = simple_strtoul(str, NULL, 0);
7542 	if (val < SD_LV_MAX)
7543 		default_relax_domain_level = val;
7544 
7545 	return 1;
7546 }
7547 __setup("relax_domain_level=", setup_relax_domain_level);
7548 
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)7549 static void set_domain_attribute(struct sched_domain *sd,
7550 				 struct sched_domain_attr *attr)
7551 {
7552 	int request;
7553 
7554 	if (!attr || attr->relax_domain_level < 0) {
7555 		if (default_relax_domain_level < 0)
7556 			return;
7557 		else
7558 			request = default_relax_domain_level;
7559 	} else
7560 		request = attr->relax_domain_level;
7561 	if (request < sd->level) {
7562 		/* turn off idle balance on this domain */
7563 		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7564 	} else {
7565 		/* turn on idle balance on this domain */
7566 		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7567 	}
7568 }
7569 
7570 /*
7571  * Build sched domains for a given set of cpus and attach the sched domains
7572  * to the individual cpus
7573  */
__build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)7574 static int __build_sched_domains(const struct cpumask *cpu_map,
7575 				 struct sched_domain_attr *attr)
7576 {
7577 	int i, err = -ENOMEM;
7578 	struct root_domain *rd;
7579 	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7580 		tmpmask;
7581 #ifdef CONFIG_NUMA
7582 	cpumask_var_t domainspan, covered, notcovered;
7583 	struct sched_group **sched_group_nodes = NULL;
7584 	int sd_allnodes = 0;
7585 
7586 	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7587 		goto out;
7588 	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7589 		goto free_domainspan;
7590 	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7591 		goto free_covered;
7592 #endif
7593 
7594 	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7595 		goto free_notcovered;
7596 	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7597 		goto free_nodemask;
7598 	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7599 		goto free_this_sibling_map;
7600 	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7601 		goto free_this_core_map;
7602 	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7603 		goto free_send_covered;
7604 
7605 #ifdef CONFIG_NUMA
7606 	/*
7607 	 * Allocate the per-node list of sched groups
7608 	 */
7609 	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7610 				    GFP_KERNEL);
7611 	if (!sched_group_nodes) {
7612 		printk(KERN_WARNING "Can not alloc sched group node list\n");
7613 		goto free_tmpmask;
7614 	}
7615 #endif
7616 
7617 	rd = alloc_rootdomain();
7618 	if (!rd) {
7619 		printk(KERN_WARNING "Cannot alloc root domain\n");
7620 		goto free_sched_groups;
7621 	}
7622 
7623 #ifdef CONFIG_NUMA
7624 	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7625 #endif
7626 
7627 	/*
7628 	 * Set up domains for cpus specified by the cpu_map.
7629 	 */
7630 	for_each_cpu(i, cpu_map) {
7631 		struct sched_domain *sd = NULL, *p;
7632 
7633 		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7634 
7635 #ifdef CONFIG_NUMA
7636 		if (cpumask_weight(cpu_map) >
7637 				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7638 			sd = &per_cpu(allnodes_domains, i).sd;
7639 			SD_INIT(sd, ALLNODES);
7640 			set_domain_attribute(sd, attr);
7641 			cpumask_copy(sched_domain_span(sd), cpu_map);
7642 			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7643 			p = sd;
7644 			sd_allnodes = 1;
7645 		} else
7646 			p = NULL;
7647 
7648 		sd = &per_cpu(node_domains, i).sd;
7649 		SD_INIT(sd, NODE);
7650 		set_domain_attribute(sd, attr);
7651 		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7652 		sd->parent = p;
7653 		if (p)
7654 			p->child = sd;
7655 		cpumask_and(sched_domain_span(sd),
7656 			    sched_domain_span(sd), cpu_map);
7657 #endif
7658 
7659 		p = sd;
7660 		sd = &per_cpu(phys_domains, i).sd;
7661 		SD_INIT(sd, CPU);
7662 		set_domain_attribute(sd, attr);
7663 		cpumask_copy(sched_domain_span(sd), nodemask);
7664 		sd->parent = p;
7665 		if (p)
7666 			p->child = sd;
7667 		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7668 
7669 #ifdef CONFIG_SCHED_MC
7670 		p = sd;
7671 		sd = &per_cpu(core_domains, i).sd;
7672 		SD_INIT(sd, MC);
7673 		set_domain_attribute(sd, attr);
7674 		cpumask_and(sched_domain_span(sd), cpu_map,
7675 						   cpu_coregroup_mask(i));
7676 		sd->parent = p;
7677 		p->child = sd;
7678 		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7679 #endif
7680 
7681 #ifdef CONFIG_SCHED_SMT
7682 		p = sd;
7683 		sd = &per_cpu(cpu_domains, i).sd;
7684 		SD_INIT(sd, SIBLING);
7685 		set_domain_attribute(sd, attr);
7686 		cpumask_and(sched_domain_span(sd),
7687 			    &per_cpu(cpu_sibling_map, i), cpu_map);
7688 		sd->parent = p;
7689 		p->child = sd;
7690 		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7691 #endif
7692 	}
7693 
7694 #ifdef CONFIG_SCHED_SMT
7695 	/* Set up CPU (sibling) groups */
7696 	for_each_cpu(i, cpu_map) {
7697 		cpumask_and(this_sibling_map,
7698 			    &per_cpu(cpu_sibling_map, i), cpu_map);
7699 		if (i != cpumask_first(this_sibling_map))
7700 			continue;
7701 
7702 		init_sched_build_groups(this_sibling_map, cpu_map,
7703 					&cpu_to_cpu_group,
7704 					send_covered, tmpmask);
7705 	}
7706 #endif
7707 
7708 #ifdef CONFIG_SCHED_MC
7709 	/* Set up multi-core groups */
7710 	for_each_cpu(i, cpu_map) {
7711 		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7712 		if (i != cpumask_first(this_core_map))
7713 			continue;
7714 
7715 		init_sched_build_groups(this_core_map, cpu_map,
7716 					&cpu_to_core_group,
7717 					send_covered, tmpmask);
7718 	}
7719 #endif
7720 
7721 	/* Set up physical groups */
7722 	for (i = 0; i < nr_node_ids; i++) {
7723 		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7724 		if (cpumask_empty(nodemask))
7725 			continue;
7726 
7727 		init_sched_build_groups(nodemask, cpu_map,
7728 					&cpu_to_phys_group,
7729 					send_covered, tmpmask);
7730 	}
7731 
7732 #ifdef CONFIG_NUMA
7733 	/* Set up node groups */
7734 	if (sd_allnodes) {
7735 		init_sched_build_groups(cpu_map, cpu_map,
7736 					&cpu_to_allnodes_group,
7737 					send_covered, tmpmask);
7738 	}
7739 
7740 	for (i = 0; i < nr_node_ids; i++) {
7741 		/* Set up node groups */
7742 		struct sched_group *sg, *prev;
7743 		int j;
7744 
7745 		cpumask_clear(covered);
7746 		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7747 		if (cpumask_empty(nodemask)) {
7748 			sched_group_nodes[i] = NULL;
7749 			continue;
7750 		}
7751 
7752 		sched_domain_node_span(i, domainspan);
7753 		cpumask_and(domainspan, domainspan, cpu_map);
7754 
7755 		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7756 				  GFP_KERNEL, i);
7757 		if (!sg) {
7758 			printk(KERN_WARNING "Can not alloc domain group for "
7759 				"node %d\n", i);
7760 			goto error;
7761 		}
7762 		sched_group_nodes[i] = sg;
7763 		for_each_cpu(j, nodemask) {
7764 			struct sched_domain *sd;
7765 
7766 			sd = &per_cpu(node_domains, j).sd;
7767 			sd->groups = sg;
7768 		}
7769 		sg->__cpu_power = 0;
7770 		cpumask_copy(sched_group_cpus(sg), nodemask);
7771 		sg->next = sg;
7772 		cpumask_or(covered, covered, nodemask);
7773 		prev = sg;
7774 
7775 		for (j = 0; j < nr_node_ids; j++) {
7776 			int n = (i + j) % nr_node_ids;
7777 
7778 			cpumask_complement(notcovered, covered);
7779 			cpumask_and(tmpmask, notcovered, cpu_map);
7780 			cpumask_and(tmpmask, tmpmask, domainspan);
7781 			if (cpumask_empty(tmpmask))
7782 				break;
7783 
7784 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7785 			if (cpumask_empty(tmpmask))
7786 				continue;
7787 
7788 			sg = kmalloc_node(sizeof(struct sched_group) +
7789 					  cpumask_size(),
7790 					  GFP_KERNEL, i);
7791 			if (!sg) {
7792 				printk(KERN_WARNING
7793 				"Can not alloc domain group for node %d\n", j);
7794 				goto error;
7795 			}
7796 			sg->__cpu_power = 0;
7797 			cpumask_copy(sched_group_cpus(sg), tmpmask);
7798 			sg->next = prev->next;
7799 			cpumask_or(covered, covered, tmpmask);
7800 			prev->next = sg;
7801 			prev = sg;
7802 		}
7803 	}
7804 #endif
7805 
7806 	/* Calculate CPU power for physical packages and nodes */
7807 #ifdef CONFIG_SCHED_SMT
7808 	for_each_cpu(i, cpu_map) {
7809 		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7810 
7811 		init_sched_groups_power(i, sd);
7812 	}
7813 #endif
7814 #ifdef CONFIG_SCHED_MC
7815 	for_each_cpu(i, cpu_map) {
7816 		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7817 
7818 		init_sched_groups_power(i, sd);
7819 	}
7820 #endif
7821 
7822 	for_each_cpu(i, cpu_map) {
7823 		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7824 
7825 		init_sched_groups_power(i, sd);
7826 	}
7827 
7828 #ifdef CONFIG_NUMA
7829 	for (i = 0; i < nr_node_ids; i++)
7830 		init_numa_sched_groups_power(sched_group_nodes[i]);
7831 
7832 	if (sd_allnodes) {
7833 		struct sched_group *sg;
7834 
7835 		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7836 								tmpmask);
7837 		init_numa_sched_groups_power(sg);
7838 	}
7839 #endif
7840 
7841 	/* Attach the domains */
7842 	for_each_cpu(i, cpu_map) {
7843 		struct sched_domain *sd;
7844 #ifdef CONFIG_SCHED_SMT
7845 		sd = &per_cpu(cpu_domains, i).sd;
7846 #elif defined(CONFIG_SCHED_MC)
7847 		sd = &per_cpu(core_domains, i).sd;
7848 #else
7849 		sd = &per_cpu(phys_domains, i).sd;
7850 #endif
7851 		cpu_attach_domain(sd, rd, i);
7852 	}
7853 
7854 	err = 0;
7855 
7856 free_tmpmask:
7857 	free_cpumask_var(tmpmask);
7858 free_send_covered:
7859 	free_cpumask_var(send_covered);
7860 free_this_core_map:
7861 	free_cpumask_var(this_core_map);
7862 free_this_sibling_map:
7863 	free_cpumask_var(this_sibling_map);
7864 free_nodemask:
7865 	free_cpumask_var(nodemask);
7866 free_notcovered:
7867 #ifdef CONFIG_NUMA
7868 	free_cpumask_var(notcovered);
7869 free_covered:
7870 	free_cpumask_var(covered);
7871 free_domainspan:
7872 	free_cpumask_var(domainspan);
7873 out:
7874 #endif
7875 	return err;
7876 
7877 free_sched_groups:
7878 #ifdef CONFIG_NUMA
7879 	kfree(sched_group_nodes);
7880 #endif
7881 	goto free_tmpmask;
7882 
7883 #ifdef CONFIG_NUMA
7884 error:
7885 	free_sched_groups(cpu_map, tmpmask);
7886 	free_rootdomain(rd);
7887 	goto free_tmpmask;
7888 #endif
7889 }
7890 
build_sched_domains(const struct cpumask * cpu_map)7891 static int build_sched_domains(const struct cpumask *cpu_map)
7892 {
7893 	return __build_sched_domains(cpu_map, NULL);
7894 }
7895 
7896 static struct cpumask *doms_cur;	/* current sched domains */
7897 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7898 static struct sched_domain_attr *dattr_cur;
7899 				/* attribues of custom domains in 'doms_cur' */
7900 
7901 /*
7902  * Special case: If a kmalloc of a doms_cur partition (array of
7903  * cpumask) fails, then fallback to a single sched domain,
7904  * as determined by the single cpumask fallback_doms.
7905  */
7906 static cpumask_var_t fallback_doms;
7907 
7908 /*
7909  * arch_update_cpu_topology lets virtualized architectures update the
7910  * cpu core maps. It is supposed to return 1 if the topology changed
7911  * or 0 if it stayed the same.
7912  */
arch_update_cpu_topology(void)7913 int __attribute__((weak)) arch_update_cpu_topology(void)
7914 {
7915 	return 0;
7916 }
7917 
7918 /*
7919  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7920  * For now this just excludes isolated cpus, but could be used to
7921  * exclude other special cases in the future.
7922  */
arch_init_sched_domains(const struct cpumask * cpu_map)7923 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7924 {
7925 	int err;
7926 
7927 	arch_update_cpu_topology();
7928 	ndoms_cur = 1;
7929 	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7930 	if (!doms_cur)
7931 		doms_cur = fallback_doms;
7932 	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7933 	dattr_cur = NULL;
7934 	err = build_sched_domains(doms_cur);
7935 	register_sched_domain_sysctl();
7936 
7937 	return err;
7938 }
7939 
arch_destroy_sched_domains(const struct cpumask * cpu_map,struct cpumask * tmpmask)7940 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7941 				       struct cpumask *tmpmask)
7942 {
7943 	free_sched_groups(cpu_map, tmpmask);
7944 }
7945 
7946 /*
7947  * Detach sched domains from a group of cpus specified in cpu_map
7948  * These cpus will now be attached to the NULL domain
7949  */
detach_destroy_domains(const struct cpumask * cpu_map)7950 static void detach_destroy_domains(const struct cpumask *cpu_map)
7951 {
7952 	/* Save because hotplug lock held. */
7953 	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7954 	int i;
7955 
7956 	for_each_cpu(i, cpu_map)
7957 		cpu_attach_domain(NULL, &def_root_domain, i);
7958 	synchronize_sched();
7959 	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7960 }
7961 
7962 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)7963 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7964 			struct sched_domain_attr *new, int idx_new)
7965 {
7966 	struct sched_domain_attr tmp;
7967 
7968 	/* fast path */
7969 	if (!new && !cur)
7970 		return 1;
7971 
7972 	tmp = SD_ATTR_INIT;
7973 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7974 			new ? (new + idx_new) : &tmp,
7975 			sizeof(struct sched_domain_attr));
7976 }
7977 
7978 /*
7979  * Partition sched domains as specified by the 'ndoms_new'
7980  * cpumasks in the array doms_new[] of cpumasks. This compares
7981  * doms_new[] to the current sched domain partitioning, doms_cur[].
7982  * It destroys each deleted domain and builds each new domain.
7983  *
7984  * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7985  * The masks don't intersect (don't overlap.) We should setup one
7986  * sched domain for each mask. CPUs not in any of the cpumasks will
7987  * not be load balanced. If the same cpumask appears both in the
7988  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7989  * it as it is.
7990  *
7991  * The passed in 'doms_new' should be kmalloc'd. This routine takes
7992  * ownership of it and will kfree it when done with it. If the caller
7993  * failed the kmalloc call, then it can pass in doms_new == NULL &&
7994  * ndoms_new == 1, and partition_sched_domains() will fallback to
7995  * the single partition 'fallback_doms', it also forces the domains
7996  * to be rebuilt.
7997  *
7998  * If doms_new == NULL it will be replaced with cpu_online_mask.
7999  * ndoms_new == 0 is a special case for destroying existing domains,
8000  * and it will not create the default domain.
8001  *
8002  * Call with hotplug lock held
8003  */
8004 /* FIXME: Change to struct cpumask *doms_new[] */
partition_sched_domains(int ndoms_new,struct cpumask * doms_new,struct sched_domain_attr * dattr_new)8005 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8006 			     struct sched_domain_attr *dattr_new)
8007 {
8008 	int i, j, n;
8009 	int new_topology;
8010 
8011 	mutex_lock(&sched_domains_mutex);
8012 
8013 	/* always unregister in case we don't destroy any domains */
8014 	unregister_sched_domain_sysctl();
8015 
8016 	/* Let architecture update cpu core mappings. */
8017 	new_topology = arch_update_cpu_topology();
8018 
8019 	n = doms_new ? ndoms_new : 0;
8020 
8021 	/* Destroy deleted domains */
8022 	for (i = 0; i < ndoms_cur; i++) {
8023 		for (j = 0; j < n && !new_topology; j++) {
8024 			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8025 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
8026 				goto match1;
8027 		}
8028 		/* no match - a current sched domain not in new doms_new[] */
8029 		detach_destroy_domains(doms_cur + i);
8030 match1:
8031 		;
8032 	}
8033 
8034 	if (doms_new == NULL) {
8035 		ndoms_cur = 0;
8036 		doms_new = fallback_doms;
8037 		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8038 		WARN_ON_ONCE(dattr_new);
8039 	}
8040 
8041 	/* Build new domains */
8042 	for (i = 0; i < ndoms_new; i++) {
8043 		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8044 			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8045 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
8046 				goto match2;
8047 		}
8048 		/* no match - add a new doms_new */
8049 		__build_sched_domains(doms_new + i,
8050 					dattr_new ? dattr_new + i : NULL);
8051 match2:
8052 		;
8053 	}
8054 
8055 	/* Remember the new sched domains */
8056 	if (doms_cur != fallback_doms)
8057 		kfree(doms_cur);
8058 	kfree(dattr_cur);	/* kfree(NULL) is safe */
8059 	doms_cur = doms_new;
8060 	dattr_cur = dattr_new;
8061 	ndoms_cur = ndoms_new;
8062 
8063 	register_sched_domain_sysctl();
8064 
8065 	mutex_unlock(&sched_domains_mutex);
8066 }
8067 
8068 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
arch_reinit_sched_domains(void)8069 static void arch_reinit_sched_domains(void)
8070 {
8071 	get_online_cpus();
8072 
8073 	/* Destroy domains first to force the rebuild */
8074 	partition_sched_domains(0, NULL, NULL);
8075 
8076 	rebuild_sched_domains();
8077 	put_online_cpus();
8078 }
8079 
sched_power_savings_store(const char * buf,size_t count,int smt)8080 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8081 {
8082 	unsigned int level = 0;
8083 
8084 	if (sscanf(buf, "%u", &level) != 1)
8085 		return -EINVAL;
8086 
8087 	/*
8088 	 * level is always be positive so don't check for
8089 	 * level < POWERSAVINGS_BALANCE_NONE which is 0
8090 	 * What happens on 0 or 1 byte write,
8091 	 * need to check for count as well?
8092 	 */
8093 
8094 	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8095 		return -EINVAL;
8096 
8097 	if (smt)
8098 		sched_smt_power_savings = level;
8099 	else
8100 		sched_mc_power_savings = level;
8101 
8102 	arch_reinit_sched_domains();
8103 
8104 	return count;
8105 }
8106 
8107 #ifdef CONFIG_SCHED_MC
sched_mc_power_savings_show(struct sysdev_class * class,char * page)8108 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8109 					   char *page)
8110 {
8111 	return sprintf(page, "%u\n", sched_mc_power_savings);
8112 }
sched_mc_power_savings_store(struct sysdev_class * class,const char * buf,size_t count)8113 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8114 					    const char *buf, size_t count)
8115 {
8116 	return sched_power_savings_store(buf, count, 0);
8117 }
8118 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8119 			 sched_mc_power_savings_show,
8120 			 sched_mc_power_savings_store);
8121 #endif
8122 
8123 #ifdef CONFIG_SCHED_SMT
sched_smt_power_savings_show(struct sysdev_class * dev,char * page)8124 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8125 					    char *page)
8126 {
8127 	return sprintf(page, "%u\n", sched_smt_power_savings);
8128 }
sched_smt_power_savings_store(struct sysdev_class * dev,const char * buf,size_t count)8129 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8130 					     const char *buf, size_t count)
8131 {
8132 	return sched_power_savings_store(buf, count, 1);
8133 }
8134 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8135 		   sched_smt_power_savings_show,
8136 		   sched_smt_power_savings_store);
8137 #endif
8138 
sched_create_sysfs_power_savings_entries(struct sysdev_class * cls)8139 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8140 {
8141 	int err = 0;
8142 
8143 #ifdef CONFIG_SCHED_SMT
8144 	if (smt_capable())
8145 		err = sysfs_create_file(&cls->kset.kobj,
8146 					&attr_sched_smt_power_savings.attr);
8147 #endif
8148 #ifdef CONFIG_SCHED_MC
8149 	if (!err && mc_capable())
8150 		err = sysfs_create_file(&cls->kset.kobj,
8151 					&attr_sched_mc_power_savings.attr);
8152 #endif
8153 	return err;
8154 }
8155 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8156 
8157 #ifndef CONFIG_CPUSETS
8158 /*
8159  * Add online and remove offline CPUs from the scheduler domains.
8160  * When cpusets are enabled they take over this function.
8161  */
update_sched_domains(struct notifier_block * nfb,unsigned long action,void * hcpu)8162 static int update_sched_domains(struct notifier_block *nfb,
8163 				unsigned long action, void *hcpu)
8164 {
8165 	switch (action) {
8166 	case CPU_ONLINE:
8167 	case CPU_ONLINE_FROZEN:
8168 	case CPU_DEAD:
8169 	case CPU_DEAD_FROZEN:
8170 		partition_sched_domains(1, NULL, NULL);
8171 		return NOTIFY_OK;
8172 
8173 	default:
8174 		return NOTIFY_DONE;
8175 	}
8176 }
8177 #endif
8178 
update_runtime(struct notifier_block * nfb,unsigned long action,void * hcpu)8179 static int update_runtime(struct notifier_block *nfb,
8180 				unsigned long action, void *hcpu)
8181 {
8182 	int cpu = (int)(long)hcpu;
8183 
8184 	switch (action) {
8185 	case CPU_DOWN_PREPARE:
8186 	case CPU_DOWN_PREPARE_FROZEN:
8187 		disable_runtime(cpu_rq(cpu));
8188 		return NOTIFY_OK;
8189 
8190 	case CPU_DOWN_FAILED:
8191 	case CPU_DOWN_FAILED_FROZEN:
8192 	case CPU_ONLINE:
8193 	case CPU_ONLINE_FROZEN:
8194 		enable_runtime(cpu_rq(cpu));
8195 		return NOTIFY_OK;
8196 
8197 	default:
8198 		return NOTIFY_DONE;
8199 	}
8200 }
8201 
sched_init_smp(void)8202 void __init sched_init_smp(void)
8203 {
8204 	cpumask_var_t non_isolated_cpus;
8205 
8206 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8207 
8208 #if defined(CONFIG_NUMA)
8209 	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8210 								GFP_KERNEL);
8211 	BUG_ON(sched_group_nodes_bycpu == NULL);
8212 #endif
8213 	get_online_cpus();
8214 	mutex_lock(&sched_domains_mutex);
8215 	arch_init_sched_domains(cpu_online_mask);
8216 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8217 	if (cpumask_empty(non_isolated_cpus))
8218 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8219 	mutex_unlock(&sched_domains_mutex);
8220 	put_online_cpus();
8221 
8222 #ifndef CONFIG_CPUSETS
8223 	/* XXX: Theoretical race here - CPU may be hotplugged now */
8224 	hotcpu_notifier(update_sched_domains, 0);
8225 #endif
8226 
8227 	/* RT runtime code needs to handle some hotplug events */
8228 	hotcpu_notifier(update_runtime, 0);
8229 
8230 	init_hrtick();
8231 
8232 	/* Move init over to a non-isolated CPU */
8233 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8234 		BUG();
8235 	sched_init_granularity();
8236 	free_cpumask_var(non_isolated_cpus);
8237 
8238 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8239 	init_sched_rt_class();
8240 }
8241 #else
sched_init_smp(void)8242 void __init sched_init_smp(void)
8243 {
8244 	sched_init_granularity();
8245 }
8246 #endif /* CONFIG_SMP */
8247 
in_sched_functions(unsigned long addr)8248 int in_sched_functions(unsigned long addr)
8249 {
8250 	return in_lock_functions(addr) ||
8251 		(addr >= (unsigned long)__sched_text_start
8252 		&& addr < (unsigned long)__sched_text_end);
8253 }
8254 
init_cfs_rq(struct cfs_rq * cfs_rq,struct rq * rq)8255 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8256 {
8257 	cfs_rq->tasks_timeline = RB_ROOT;
8258 	INIT_LIST_HEAD(&cfs_rq->tasks);
8259 #ifdef CONFIG_FAIR_GROUP_SCHED
8260 	cfs_rq->rq = rq;
8261 #endif
8262 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8263 }
8264 
init_rt_rq(struct rt_rq * rt_rq,struct rq * rq)8265 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8266 {
8267 	struct rt_prio_array *array;
8268 	int i;
8269 
8270 	array = &rt_rq->active;
8271 	for (i = 0; i < MAX_RT_PRIO; i++) {
8272 		INIT_LIST_HEAD(array->queue + i);
8273 		__clear_bit(i, array->bitmap);
8274 	}
8275 	/* delimiter for bitsearch: */
8276 	__set_bit(MAX_RT_PRIO, array->bitmap);
8277 
8278 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8279 	rt_rq->highest_prio = MAX_RT_PRIO;
8280 #endif
8281 #ifdef CONFIG_SMP
8282 	rt_rq->rt_nr_migratory = 0;
8283 	rt_rq->overloaded = 0;
8284 #endif
8285 
8286 	rt_rq->rt_time = 0;
8287 	rt_rq->rt_throttled = 0;
8288 	rt_rq->rt_runtime = 0;
8289 	spin_lock_init(&rt_rq->rt_runtime_lock);
8290 
8291 #ifdef CONFIG_RT_GROUP_SCHED
8292 	rt_rq->rt_nr_boosted = 0;
8293 	rt_rq->rq = rq;
8294 #endif
8295 }
8296 
8297 #ifdef CONFIG_FAIR_GROUP_SCHED
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,int add,struct sched_entity * parent)8298 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8299 				struct sched_entity *se, int cpu, int add,
8300 				struct sched_entity *parent)
8301 {
8302 	struct rq *rq = cpu_rq(cpu);
8303 	tg->cfs_rq[cpu] = cfs_rq;
8304 	init_cfs_rq(cfs_rq, rq);
8305 	cfs_rq->tg = tg;
8306 	if (add)
8307 		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8308 
8309 	tg->se[cpu] = se;
8310 	/* se could be NULL for init_task_group */
8311 	if (!se)
8312 		return;
8313 
8314 	if (!parent)
8315 		se->cfs_rq = &rq->cfs;
8316 	else
8317 		se->cfs_rq = parent->my_q;
8318 
8319 	se->my_q = cfs_rq;
8320 	se->load.weight = tg->shares;
8321 	se->load.inv_weight = 0;
8322 	se->parent = parent;
8323 }
8324 #endif
8325 
8326 #ifdef CONFIG_RT_GROUP_SCHED
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,int add,struct sched_rt_entity * parent)8327 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8328 		struct sched_rt_entity *rt_se, int cpu, int add,
8329 		struct sched_rt_entity *parent)
8330 {
8331 	struct rq *rq = cpu_rq(cpu);
8332 
8333 	tg->rt_rq[cpu] = rt_rq;
8334 	init_rt_rq(rt_rq, rq);
8335 	rt_rq->tg = tg;
8336 	rt_rq->rt_se = rt_se;
8337 	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8338 	if (add)
8339 		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8340 
8341 	tg->rt_se[cpu] = rt_se;
8342 	if (!rt_se)
8343 		return;
8344 
8345 	if (!parent)
8346 		rt_se->rt_rq = &rq->rt;
8347 	else
8348 		rt_se->rt_rq = parent->my_q;
8349 
8350 	rt_se->my_q = rt_rq;
8351 	rt_se->parent = parent;
8352 	INIT_LIST_HEAD(&rt_se->run_list);
8353 }
8354 #endif
8355 
sched_init(void)8356 void __init sched_init(void)
8357 {
8358 	int i, j;
8359 	unsigned long alloc_size = 0, ptr;
8360 
8361 #ifdef CONFIG_FAIR_GROUP_SCHED
8362 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8363 #endif
8364 #ifdef CONFIG_RT_GROUP_SCHED
8365 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8366 #endif
8367 #ifdef CONFIG_USER_SCHED
8368 	alloc_size *= 2;
8369 #endif
8370 	/*
8371 	 * As sched_init() is called before page_alloc is setup,
8372 	 * we use alloc_bootmem().
8373 	 */
8374 	if (alloc_size) {
8375 		ptr = (unsigned long)alloc_bootmem(alloc_size);
8376 
8377 #ifdef CONFIG_FAIR_GROUP_SCHED
8378 		init_task_group.se = (struct sched_entity **)ptr;
8379 		ptr += nr_cpu_ids * sizeof(void **);
8380 
8381 		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8382 		ptr += nr_cpu_ids * sizeof(void **);
8383 
8384 #ifdef CONFIG_USER_SCHED
8385 		root_task_group.se = (struct sched_entity **)ptr;
8386 		ptr += nr_cpu_ids * sizeof(void **);
8387 
8388 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8389 		ptr += nr_cpu_ids * sizeof(void **);
8390 #endif /* CONFIG_USER_SCHED */
8391 #endif /* CONFIG_FAIR_GROUP_SCHED */
8392 #ifdef CONFIG_RT_GROUP_SCHED
8393 		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8394 		ptr += nr_cpu_ids * sizeof(void **);
8395 
8396 		init_task_group.rt_rq = (struct rt_rq **)ptr;
8397 		ptr += nr_cpu_ids * sizeof(void **);
8398 
8399 #ifdef CONFIG_USER_SCHED
8400 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8401 		ptr += nr_cpu_ids * sizeof(void **);
8402 
8403 		root_task_group.rt_rq = (struct rt_rq **)ptr;
8404 		ptr += nr_cpu_ids * sizeof(void **);
8405 #endif /* CONFIG_USER_SCHED */
8406 #endif /* CONFIG_RT_GROUP_SCHED */
8407 	}
8408 
8409 #ifdef CONFIG_SMP
8410 	init_defrootdomain();
8411 #endif
8412 
8413 	init_rt_bandwidth(&def_rt_bandwidth,
8414 			global_rt_period(), global_rt_runtime());
8415 
8416 #ifdef CONFIG_RT_GROUP_SCHED
8417 	init_rt_bandwidth(&init_task_group.rt_bandwidth,
8418 			global_rt_period(), global_rt_runtime());
8419 #ifdef CONFIG_USER_SCHED
8420 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
8421 			global_rt_period(), RUNTIME_INF);
8422 #endif /* CONFIG_USER_SCHED */
8423 #endif /* CONFIG_RT_GROUP_SCHED */
8424 
8425 #ifdef CONFIG_GROUP_SCHED
8426 	list_add(&init_task_group.list, &task_groups);
8427 	INIT_LIST_HEAD(&init_task_group.children);
8428 
8429 #ifdef CONFIG_USER_SCHED
8430 	INIT_LIST_HEAD(&root_task_group.children);
8431 	init_task_group.parent = &root_task_group;
8432 	list_add(&init_task_group.siblings, &root_task_group.children);
8433 #endif /* CONFIG_USER_SCHED */
8434 #endif /* CONFIG_GROUP_SCHED */
8435 
8436 	for_each_possible_cpu(i) {
8437 		struct rq *rq;
8438 
8439 		rq = cpu_rq(i);
8440 		spin_lock_init(&rq->lock);
8441 		rq->nr_running = 0;
8442 		init_cfs_rq(&rq->cfs, rq);
8443 		init_rt_rq(&rq->rt, rq);
8444 #ifdef CONFIG_FAIR_GROUP_SCHED
8445 		init_task_group.shares = init_task_group_load;
8446 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8447 #ifdef CONFIG_CGROUP_SCHED
8448 		/*
8449 		 * How much cpu bandwidth does init_task_group get?
8450 		 *
8451 		 * In case of task-groups formed thr' the cgroup filesystem, it
8452 		 * gets 100% of the cpu resources in the system. This overall
8453 		 * system cpu resource is divided among the tasks of
8454 		 * init_task_group and its child task-groups in a fair manner,
8455 		 * based on each entity's (task or task-group's) weight
8456 		 * (se->load.weight).
8457 		 *
8458 		 * In other words, if init_task_group has 10 tasks of weight
8459 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8460 		 * then A0's share of the cpu resource is:
8461 		 *
8462 		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8463 		 *
8464 		 * We achieve this by letting init_task_group's tasks sit
8465 		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8466 		 */
8467 		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8468 #elif defined CONFIG_USER_SCHED
8469 		root_task_group.shares = NICE_0_LOAD;
8470 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8471 		/*
8472 		 * In case of task-groups formed thr' the user id of tasks,
8473 		 * init_task_group represents tasks belonging to root user.
8474 		 * Hence it forms a sibling of all subsequent groups formed.
8475 		 * In this case, init_task_group gets only a fraction of overall
8476 		 * system cpu resource, based on the weight assigned to root
8477 		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8478 		 * by letting tasks of init_task_group sit in a separate cfs_rq
8479 		 * (init_cfs_rq) and having one entity represent this group of
8480 		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8481 		 */
8482 		init_tg_cfs_entry(&init_task_group,
8483 				&per_cpu(init_cfs_rq, i),
8484 				&per_cpu(init_sched_entity, i), i, 1,
8485 				root_task_group.se[i]);
8486 
8487 #endif
8488 #endif /* CONFIG_FAIR_GROUP_SCHED */
8489 
8490 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8491 #ifdef CONFIG_RT_GROUP_SCHED
8492 		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8493 #ifdef CONFIG_CGROUP_SCHED
8494 		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8495 #elif defined CONFIG_USER_SCHED
8496 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8497 		init_tg_rt_entry(&init_task_group,
8498 				&per_cpu(init_rt_rq, i),
8499 				&per_cpu(init_sched_rt_entity, i), i, 1,
8500 				root_task_group.rt_se[i]);
8501 #endif
8502 #endif
8503 
8504 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8505 			rq->cpu_load[j] = 0;
8506 #ifdef CONFIG_SMP
8507 		rq->sd = NULL;
8508 		rq->rd = NULL;
8509 		rq->active_balance = 0;
8510 		rq->next_balance = jiffies;
8511 		rq->push_cpu = 0;
8512 		rq->cpu = i;
8513 		rq->online = 0;
8514 		rq->migration_thread = NULL;
8515 		INIT_LIST_HEAD(&rq->migration_queue);
8516 		rq_attach_root(rq, &def_root_domain);
8517 #endif
8518 		init_rq_hrtick(rq);
8519 		atomic_set(&rq->nr_iowait, 0);
8520 	}
8521 
8522 	set_load_weight(&init_task);
8523 
8524 #ifdef CONFIG_PREEMPT_NOTIFIERS
8525 	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8526 #endif
8527 
8528 #ifdef CONFIG_SMP
8529 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8530 #endif
8531 
8532 #ifdef CONFIG_RT_MUTEXES
8533 	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8534 #endif
8535 
8536 	/*
8537 	 * The boot idle thread does lazy MMU switching as well:
8538 	 */
8539 	atomic_inc(&init_mm.mm_count);
8540 	enter_lazy_tlb(&init_mm, current);
8541 
8542 	/*
8543 	 * Make us the idle thread. Technically, schedule() should not be
8544 	 * called from this thread, however somewhere below it might be,
8545 	 * but because we are the idle thread, we just pick up running again
8546 	 * when this runqueue becomes "idle".
8547 	 */
8548 	init_idle(current, smp_processor_id());
8549 	/*
8550 	 * During early bootup we pretend to be a normal task:
8551 	 */
8552 	current->sched_class = &fair_sched_class;
8553 
8554 	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8555 	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8556 #ifdef CONFIG_SMP
8557 #ifdef CONFIG_NO_HZ
8558 	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8559 #endif
8560 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8561 #endif /* SMP */
8562 
8563 	scheduler_running = 1;
8564 }
8565 
8566 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8567 static int __might_sleep_init_called;
__might_sleep_init(void)8568 int __init __might_sleep_init(void)
8569 {
8570 	__might_sleep_init_called = 1;
8571 	return 0;
8572 }
8573 early_initcall(__might_sleep_init);
8574 
__might_sleep(char * file,int line)8575 void __might_sleep(char *file, int line)
8576 {
8577 #ifdef in_atomic
8578 	static unsigned long prev_jiffy;	/* ratelimiting */
8579 
8580 	if ((!in_atomic() && !irqs_disabled()) || oops_in_progress)
8581 		return;
8582 	if (system_state != SYSTEM_RUNNING &&
8583 	    (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
8584 		return;
8585 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8586 		return;
8587 	prev_jiffy = jiffies;
8588 
8589 	printk(KERN_ERR
8590 		"BUG: sleeping function called from invalid context at %s:%d\n",
8591 			file, line);
8592 	printk(KERN_ERR
8593 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8594 			in_atomic(), irqs_disabled(),
8595 			current->pid, current->comm);
8596 
8597 	debug_show_held_locks(current);
8598 	if (irqs_disabled())
8599 		print_irqtrace_events(current);
8600 	dump_stack();
8601 #endif
8602 }
8603 EXPORT_SYMBOL(__might_sleep);
8604 #endif
8605 
8606 #ifdef CONFIG_MAGIC_SYSRQ
normalize_task(struct rq * rq,struct task_struct * p)8607 static void normalize_task(struct rq *rq, struct task_struct *p)
8608 {
8609 	int on_rq;
8610 
8611 	update_rq_clock(rq);
8612 	on_rq = p->se.on_rq;
8613 	if (on_rq)
8614 		deactivate_task(rq, p, 0);
8615 	__setscheduler(rq, p, SCHED_NORMAL, 0);
8616 	if (on_rq) {
8617 		activate_task(rq, p, 0);
8618 		resched_task(rq->curr);
8619 	}
8620 }
8621 
normalize_rt_tasks(void)8622 void normalize_rt_tasks(void)
8623 {
8624 	struct task_struct *g, *p;
8625 	unsigned long flags;
8626 	struct rq *rq;
8627 
8628 	read_lock_irqsave(&tasklist_lock, flags);
8629 	do_each_thread(g, p) {
8630 		/*
8631 		 * Only normalize user tasks:
8632 		 */
8633 		if (!p->mm)
8634 			continue;
8635 
8636 		p->se.exec_start		= 0;
8637 #ifdef CONFIG_SCHEDSTATS
8638 		p->se.wait_start		= 0;
8639 		p->se.sleep_start		= 0;
8640 		p->se.block_start		= 0;
8641 #endif
8642 
8643 		if (!rt_task(p)) {
8644 			/*
8645 			 * Renice negative nice level userspace
8646 			 * tasks back to 0:
8647 			 */
8648 			if (TASK_NICE(p) < 0 && p->mm)
8649 				set_user_nice(p, 0);
8650 			continue;
8651 		}
8652 
8653 		spin_lock(&p->pi_lock);
8654 		rq = __task_rq_lock(p);
8655 
8656 		normalize_task(rq, p);
8657 
8658 		__task_rq_unlock(rq);
8659 		spin_unlock(&p->pi_lock);
8660 	} while_each_thread(g, p);
8661 
8662 	read_unlock_irqrestore(&tasklist_lock, flags);
8663 }
8664 
8665 #endif /* CONFIG_MAGIC_SYSRQ */
8666 
8667 #ifdef CONFIG_IA64
8668 /*
8669  * These functions are only useful for the IA64 MCA handling.
8670  *
8671  * They can only be called when the whole system has been
8672  * stopped - every CPU needs to be quiescent, and no scheduling
8673  * activity can take place. Using them for anything else would
8674  * be a serious bug, and as a result, they aren't even visible
8675  * under any other configuration.
8676  */
8677 
8678 /**
8679  * curr_task - return the current task for a given cpu.
8680  * @cpu: the processor in question.
8681  *
8682  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8683  */
curr_task(int cpu)8684 struct task_struct *curr_task(int cpu)
8685 {
8686 	return cpu_curr(cpu);
8687 }
8688 
8689 /**
8690  * set_curr_task - set the current task for a given cpu.
8691  * @cpu: the processor in question.
8692  * @p: the task pointer to set.
8693  *
8694  * Description: This function must only be used when non-maskable interrupts
8695  * are serviced on a separate stack. It allows the architecture to switch the
8696  * notion of the current task on a cpu in a non-blocking manner. This function
8697  * must be called with all CPU's synchronized, and interrupts disabled, the
8698  * and caller must save the original value of the current task (see
8699  * curr_task() above) and restore that value before reenabling interrupts and
8700  * re-starting the system.
8701  *
8702  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8703  */
set_curr_task(int cpu,struct task_struct * p)8704 void set_curr_task(int cpu, struct task_struct *p)
8705 {
8706 	cpu_curr(cpu) = p;
8707 }
8708 
8709 #endif
8710 
8711 #ifdef CONFIG_FAIR_GROUP_SCHED
free_fair_sched_group(struct task_group * tg)8712 static void free_fair_sched_group(struct task_group *tg)
8713 {
8714 	int i;
8715 
8716 	for_each_possible_cpu(i) {
8717 		if (tg->cfs_rq)
8718 			kfree(tg->cfs_rq[i]);
8719 		if (tg->se)
8720 			kfree(tg->se[i]);
8721 	}
8722 
8723 	kfree(tg->cfs_rq);
8724 	kfree(tg->se);
8725 }
8726 
8727 static
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)8728 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8729 {
8730 	struct cfs_rq *cfs_rq;
8731 	struct sched_entity *se;
8732 	struct rq *rq;
8733 	int i;
8734 
8735 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8736 	if (!tg->cfs_rq)
8737 		goto err;
8738 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8739 	if (!tg->se)
8740 		goto err;
8741 
8742 	tg->shares = NICE_0_LOAD;
8743 
8744 	for_each_possible_cpu(i) {
8745 		rq = cpu_rq(i);
8746 
8747 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8748 				      GFP_KERNEL, cpu_to_node(i));
8749 		if (!cfs_rq)
8750 			goto err;
8751 
8752 		se = kzalloc_node(sizeof(struct sched_entity),
8753 				  GFP_KERNEL, cpu_to_node(i));
8754 		if (!se)
8755 			goto err;
8756 
8757 		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8758 	}
8759 
8760 	return 1;
8761 
8762  err:
8763 	return 0;
8764 }
8765 
register_fair_sched_group(struct task_group * tg,int cpu)8766 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8767 {
8768 	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8769 			&cpu_rq(cpu)->leaf_cfs_rq_list);
8770 }
8771 
unregister_fair_sched_group(struct task_group * tg,int cpu)8772 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8773 {
8774 	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8775 }
8776 #else /* !CONFG_FAIR_GROUP_SCHED */
free_fair_sched_group(struct task_group * tg)8777 static inline void free_fair_sched_group(struct task_group *tg)
8778 {
8779 }
8780 
8781 static inline
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)8782 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8783 {
8784 	return 1;
8785 }
8786 
register_fair_sched_group(struct task_group * tg,int cpu)8787 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8788 {
8789 }
8790 
unregister_fair_sched_group(struct task_group * tg,int cpu)8791 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8792 {
8793 }
8794 #endif /* CONFIG_FAIR_GROUP_SCHED */
8795 
8796 #ifdef CONFIG_RT_GROUP_SCHED
free_rt_sched_group(struct task_group * tg)8797 static void free_rt_sched_group(struct task_group *tg)
8798 {
8799 	int i;
8800 
8801 	destroy_rt_bandwidth(&tg->rt_bandwidth);
8802 
8803 	for_each_possible_cpu(i) {
8804 		if (tg->rt_rq)
8805 			kfree(tg->rt_rq[i]);
8806 		if (tg->rt_se)
8807 			kfree(tg->rt_se[i]);
8808 	}
8809 
8810 	kfree(tg->rt_rq);
8811 	kfree(tg->rt_se);
8812 }
8813 
8814 static
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)8815 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8816 {
8817 	struct rt_rq *rt_rq;
8818 	struct sched_rt_entity *rt_se;
8819 	struct rq *rq;
8820 	int i;
8821 
8822 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8823 	if (!tg->rt_rq)
8824 		goto err;
8825 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8826 	if (!tg->rt_se)
8827 		goto err;
8828 
8829 	init_rt_bandwidth(&tg->rt_bandwidth,
8830 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8831 
8832 	for_each_possible_cpu(i) {
8833 		rq = cpu_rq(i);
8834 
8835 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
8836 				     GFP_KERNEL, cpu_to_node(i));
8837 		if (!rt_rq)
8838 			goto err;
8839 
8840 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8841 				     GFP_KERNEL, cpu_to_node(i));
8842 		if (!rt_se)
8843 			goto err;
8844 
8845 		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8846 	}
8847 
8848 	return 1;
8849 
8850  err:
8851 	return 0;
8852 }
8853 
register_rt_sched_group(struct task_group * tg,int cpu)8854 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8855 {
8856 	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8857 			&cpu_rq(cpu)->leaf_rt_rq_list);
8858 }
8859 
unregister_rt_sched_group(struct task_group * tg,int cpu)8860 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8861 {
8862 	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8863 }
8864 #else /* !CONFIG_RT_GROUP_SCHED */
free_rt_sched_group(struct task_group * tg)8865 static inline void free_rt_sched_group(struct task_group *tg)
8866 {
8867 }
8868 
8869 static inline
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)8870 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8871 {
8872 	return 1;
8873 }
8874 
register_rt_sched_group(struct task_group * tg,int cpu)8875 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8876 {
8877 }
8878 
unregister_rt_sched_group(struct task_group * tg,int cpu)8879 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8880 {
8881 }
8882 #endif /* CONFIG_RT_GROUP_SCHED */
8883 
8884 #ifdef CONFIG_GROUP_SCHED
free_sched_group(struct task_group * tg)8885 static void free_sched_group(struct task_group *tg)
8886 {
8887 	free_fair_sched_group(tg);
8888 	free_rt_sched_group(tg);
8889 	kfree(tg);
8890 }
8891 
8892 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8893 struct task_group *sched_create_group(struct task_group *parent)
8894 {
8895 	struct task_group *tg;
8896 	unsigned long flags;
8897 	int i;
8898 
8899 	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8900 	if (!tg)
8901 		return ERR_PTR(-ENOMEM);
8902 
8903 	if (!alloc_fair_sched_group(tg, parent))
8904 		goto err;
8905 
8906 	if (!alloc_rt_sched_group(tg, parent))
8907 		goto err;
8908 
8909 	spin_lock_irqsave(&task_group_lock, flags);
8910 	for_each_possible_cpu(i) {
8911 		register_fair_sched_group(tg, i);
8912 		register_rt_sched_group(tg, i);
8913 	}
8914 	list_add_rcu(&tg->list, &task_groups);
8915 
8916 	WARN_ON(!parent); /* root should already exist */
8917 
8918 	tg->parent = parent;
8919 	INIT_LIST_HEAD(&tg->children);
8920 	list_add_rcu(&tg->siblings, &parent->children);
8921 	spin_unlock_irqrestore(&task_group_lock, flags);
8922 
8923 	return tg;
8924 
8925 err:
8926 	free_sched_group(tg);
8927 	return ERR_PTR(-ENOMEM);
8928 }
8929 
8930 /* rcu callback to free various structures associated with a task group */
free_sched_group_rcu(struct rcu_head * rhp)8931 static void free_sched_group_rcu(struct rcu_head *rhp)
8932 {
8933 	/* now it should be safe to free those cfs_rqs */
8934 	free_sched_group(container_of(rhp, struct task_group, rcu));
8935 }
8936 
8937 /* Destroy runqueue etc associated with a task group */
sched_destroy_group(struct task_group * tg)8938 void sched_destroy_group(struct task_group *tg)
8939 {
8940 	unsigned long flags;
8941 	int i;
8942 
8943 	spin_lock_irqsave(&task_group_lock, flags);
8944 	for_each_possible_cpu(i) {
8945 		unregister_fair_sched_group(tg, i);
8946 		unregister_rt_sched_group(tg, i);
8947 	}
8948 	list_del_rcu(&tg->list);
8949 	list_del_rcu(&tg->siblings);
8950 	spin_unlock_irqrestore(&task_group_lock, flags);
8951 
8952 	/* wait for possible concurrent references to cfs_rqs complete */
8953 	call_rcu(&tg->rcu, free_sched_group_rcu);
8954 }
8955 
8956 /* change task's runqueue when it moves between groups.
8957  *	The caller of this function should have put the task in its new group
8958  *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8959  *	reflect its new group.
8960  */
sched_move_task(struct task_struct * tsk)8961 void sched_move_task(struct task_struct *tsk)
8962 {
8963 	int on_rq, running;
8964 	unsigned long flags;
8965 	struct rq *rq;
8966 
8967 	rq = task_rq_lock(tsk, &flags);
8968 
8969 	update_rq_clock(rq);
8970 
8971 	running = task_current(rq, tsk);
8972 	on_rq = tsk->se.on_rq;
8973 
8974 	if (on_rq)
8975 		dequeue_task(rq, tsk, 0);
8976 	if (unlikely(running))
8977 		tsk->sched_class->put_prev_task(rq, tsk);
8978 
8979 	set_task_rq(tsk, task_cpu(tsk));
8980 
8981 #ifdef CONFIG_FAIR_GROUP_SCHED
8982 	if (tsk->sched_class->moved_group)
8983 		tsk->sched_class->moved_group(tsk);
8984 #endif
8985 
8986 	if (unlikely(running))
8987 		tsk->sched_class->set_curr_task(rq);
8988 	if (on_rq)
8989 		enqueue_task(rq, tsk, 0);
8990 
8991 	task_rq_unlock(rq, &flags);
8992 }
8993 #endif /* CONFIG_GROUP_SCHED */
8994 
8995 #ifdef CONFIG_FAIR_GROUP_SCHED
__set_se_shares(struct sched_entity * se,unsigned long shares)8996 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8997 {
8998 	struct cfs_rq *cfs_rq = se->cfs_rq;
8999 	int on_rq;
9000 
9001 	on_rq = se->on_rq;
9002 	if (on_rq)
9003 		dequeue_entity(cfs_rq, se, 0);
9004 
9005 	se->load.weight = shares;
9006 	se->load.inv_weight = 0;
9007 
9008 	if (on_rq)
9009 		enqueue_entity(cfs_rq, se, 0);
9010 }
9011 
set_se_shares(struct sched_entity * se,unsigned long shares)9012 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9013 {
9014 	struct cfs_rq *cfs_rq = se->cfs_rq;
9015 	struct rq *rq = cfs_rq->rq;
9016 	unsigned long flags;
9017 
9018 	spin_lock_irqsave(&rq->lock, flags);
9019 	__set_se_shares(se, shares);
9020 	spin_unlock_irqrestore(&rq->lock, flags);
9021 }
9022 
9023 static DEFINE_MUTEX(shares_mutex);
9024 
sched_group_set_shares(struct task_group * tg,unsigned long shares)9025 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9026 {
9027 	int i;
9028 	unsigned long flags;
9029 
9030 	/*
9031 	 * We can't change the weight of the root cgroup.
9032 	 */
9033 	if (!tg->se[0])
9034 		return -EINVAL;
9035 
9036 	if (shares < MIN_SHARES)
9037 		shares = MIN_SHARES;
9038 	else if (shares > MAX_SHARES)
9039 		shares = MAX_SHARES;
9040 
9041 	mutex_lock(&shares_mutex);
9042 	if (tg->shares == shares)
9043 		goto done;
9044 
9045 	spin_lock_irqsave(&task_group_lock, flags);
9046 	for_each_possible_cpu(i)
9047 		unregister_fair_sched_group(tg, i);
9048 	list_del_rcu(&tg->siblings);
9049 	spin_unlock_irqrestore(&task_group_lock, flags);
9050 
9051 	/* wait for any ongoing reference to this group to finish */
9052 	synchronize_sched();
9053 
9054 	/*
9055 	 * Now we are free to modify the group's share on each cpu
9056 	 * w/o tripping rebalance_share or load_balance_fair.
9057 	 */
9058 	tg->shares = shares;
9059 	for_each_possible_cpu(i) {
9060 		/*
9061 		 * force a rebalance
9062 		 */
9063 		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9064 		set_se_shares(tg->se[i], shares);
9065 	}
9066 
9067 	/*
9068 	 * Enable load balance activity on this group, by inserting it back on
9069 	 * each cpu's rq->leaf_cfs_rq_list.
9070 	 */
9071 	spin_lock_irqsave(&task_group_lock, flags);
9072 	for_each_possible_cpu(i)
9073 		register_fair_sched_group(tg, i);
9074 	list_add_rcu(&tg->siblings, &tg->parent->children);
9075 	spin_unlock_irqrestore(&task_group_lock, flags);
9076 done:
9077 	mutex_unlock(&shares_mutex);
9078 	return 0;
9079 }
9080 
sched_group_shares(struct task_group * tg)9081 unsigned long sched_group_shares(struct task_group *tg)
9082 {
9083 	return tg->shares;
9084 }
9085 #endif
9086 
9087 #ifdef CONFIG_RT_GROUP_SCHED
9088 /*
9089  * Ensure that the real time constraints are schedulable.
9090  */
9091 static DEFINE_MUTEX(rt_constraints_mutex);
9092 
to_ratio(u64 period,u64 runtime)9093 static unsigned long to_ratio(u64 period, u64 runtime)
9094 {
9095 	if (runtime == RUNTIME_INF)
9096 		return 1ULL << 20;
9097 
9098 	return div64_u64(runtime << 20, period);
9099 }
9100 
9101 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)9102 static inline int tg_has_rt_tasks(struct task_group *tg)
9103 {
9104 	struct task_struct *g, *p;
9105 
9106 	do_each_thread(g, p) {
9107 		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9108 			return 1;
9109 	} while_each_thread(g, p);
9110 
9111 	return 0;
9112 }
9113 
9114 struct rt_schedulable_data {
9115 	struct task_group *tg;
9116 	u64 rt_period;
9117 	u64 rt_runtime;
9118 };
9119 
tg_schedulable(struct task_group * tg,void * data)9120 static int tg_schedulable(struct task_group *tg, void *data)
9121 {
9122 	struct rt_schedulable_data *d = data;
9123 	struct task_group *child;
9124 	unsigned long total, sum = 0;
9125 	u64 period, runtime;
9126 
9127 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9128 	runtime = tg->rt_bandwidth.rt_runtime;
9129 
9130 	if (tg == d->tg) {
9131 		period = d->rt_period;
9132 		runtime = d->rt_runtime;
9133 	}
9134 
9135 #ifdef CONFIG_USER_SCHED
9136 	if (tg == &root_task_group) {
9137 		period = global_rt_period();
9138 		runtime = global_rt_runtime();
9139 	}
9140 #endif
9141 
9142 	/*
9143 	 * Cannot have more runtime than the period.
9144 	 */
9145 	if (runtime > period && runtime != RUNTIME_INF)
9146 		return -EINVAL;
9147 
9148 	/*
9149 	 * Ensure we don't starve existing RT tasks.
9150 	 */
9151 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9152 		return -EBUSY;
9153 
9154 	total = to_ratio(period, runtime);
9155 
9156 	/*
9157 	 * Nobody can have more than the global setting allows.
9158 	 */
9159 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9160 		return -EINVAL;
9161 
9162 	/*
9163 	 * The sum of our children's runtime should not exceed our own.
9164 	 */
9165 	list_for_each_entry_rcu(child, &tg->children, siblings) {
9166 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
9167 		runtime = child->rt_bandwidth.rt_runtime;
9168 
9169 		if (child == d->tg) {
9170 			period = d->rt_period;
9171 			runtime = d->rt_runtime;
9172 		}
9173 
9174 		sum += to_ratio(period, runtime);
9175 	}
9176 
9177 	if (sum > total)
9178 		return -EINVAL;
9179 
9180 	return 0;
9181 }
9182 
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)9183 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9184 {
9185 	struct rt_schedulable_data data = {
9186 		.tg = tg,
9187 		.rt_period = period,
9188 		.rt_runtime = runtime,
9189 	};
9190 
9191 	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9192 }
9193 
tg_set_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)9194 static int tg_set_bandwidth(struct task_group *tg,
9195 		u64 rt_period, u64 rt_runtime)
9196 {
9197 	int i, err = 0;
9198 
9199 	mutex_lock(&rt_constraints_mutex);
9200 	read_lock(&tasklist_lock);
9201 	err = __rt_schedulable(tg, rt_period, rt_runtime);
9202 	if (err)
9203 		goto unlock;
9204 
9205 	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9206 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9207 	tg->rt_bandwidth.rt_runtime = rt_runtime;
9208 
9209 	for_each_possible_cpu(i) {
9210 		struct rt_rq *rt_rq = tg->rt_rq[i];
9211 
9212 		spin_lock(&rt_rq->rt_runtime_lock);
9213 		rt_rq->rt_runtime = rt_runtime;
9214 		spin_unlock(&rt_rq->rt_runtime_lock);
9215 	}
9216 	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9217  unlock:
9218 	read_unlock(&tasklist_lock);
9219 	mutex_unlock(&rt_constraints_mutex);
9220 
9221 	return err;
9222 }
9223 
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)9224 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9225 {
9226 	u64 rt_runtime, rt_period;
9227 
9228 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9229 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9230 	if (rt_runtime_us < 0)
9231 		rt_runtime = RUNTIME_INF;
9232 
9233 	return tg_set_bandwidth(tg, rt_period, rt_runtime);
9234 }
9235 
sched_group_rt_runtime(struct task_group * tg)9236 long sched_group_rt_runtime(struct task_group *tg)
9237 {
9238 	u64 rt_runtime_us;
9239 
9240 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9241 		return -1;
9242 
9243 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9244 	do_div(rt_runtime_us, NSEC_PER_USEC);
9245 	return rt_runtime_us;
9246 }
9247 
sched_group_set_rt_period(struct task_group * tg,long rt_period_us)9248 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9249 {
9250 	u64 rt_runtime, rt_period;
9251 
9252 	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9253 	rt_runtime = tg->rt_bandwidth.rt_runtime;
9254 
9255 	if (rt_period == 0)
9256 		return -EINVAL;
9257 
9258 	return tg_set_bandwidth(tg, rt_period, rt_runtime);
9259 }
9260 
sched_group_rt_period(struct task_group * tg)9261 long sched_group_rt_period(struct task_group *tg)
9262 {
9263 	u64 rt_period_us;
9264 
9265 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9266 	do_div(rt_period_us, NSEC_PER_USEC);
9267 	return rt_period_us;
9268 }
9269 
sched_rt_global_constraints(void)9270 static int sched_rt_global_constraints(void)
9271 {
9272 	u64 runtime, period;
9273 	int ret = 0;
9274 
9275 	if (sysctl_sched_rt_period <= 0)
9276 		return -EINVAL;
9277 
9278 	runtime = global_rt_runtime();
9279 	period = global_rt_period();
9280 
9281 	/*
9282 	 * Sanity check on the sysctl variables.
9283 	 */
9284 	if (runtime > period && runtime != RUNTIME_INF)
9285 		return -EINVAL;
9286 
9287 	mutex_lock(&rt_constraints_mutex);
9288 	read_lock(&tasklist_lock);
9289 	ret = __rt_schedulable(NULL, 0, 0);
9290 	read_unlock(&tasklist_lock);
9291 	mutex_unlock(&rt_constraints_mutex);
9292 
9293 	return ret;
9294 }
9295 
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)9296 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9297 {
9298 	/* Don't accept realtime tasks when there is no way for them to run */
9299 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9300 		return 0;
9301 
9302 	return 1;
9303 }
9304 
9305 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)9306 static int sched_rt_global_constraints(void)
9307 {
9308 	unsigned long flags;
9309 	int i;
9310 
9311 	if (sysctl_sched_rt_period <= 0)
9312 		return -EINVAL;
9313 
9314 	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9315 	for_each_possible_cpu(i) {
9316 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9317 
9318 		spin_lock(&rt_rq->rt_runtime_lock);
9319 		rt_rq->rt_runtime = global_rt_runtime();
9320 		spin_unlock(&rt_rq->rt_runtime_lock);
9321 	}
9322 	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9323 
9324 	return 0;
9325 }
9326 #endif /* CONFIG_RT_GROUP_SCHED */
9327 
sched_rt_handler(struct ctl_table * table,int write,struct file * filp,void __user * buffer,size_t * lenp,loff_t * ppos)9328 int sched_rt_handler(struct ctl_table *table, int write,
9329 		struct file *filp, void __user *buffer, size_t *lenp,
9330 		loff_t *ppos)
9331 {
9332 	int ret;
9333 	int old_period, old_runtime;
9334 	static DEFINE_MUTEX(mutex);
9335 
9336 	mutex_lock(&mutex);
9337 	old_period = sysctl_sched_rt_period;
9338 	old_runtime = sysctl_sched_rt_runtime;
9339 
9340 	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9341 
9342 	if (!ret && write) {
9343 		ret = sched_rt_global_constraints();
9344 		if (ret) {
9345 			sysctl_sched_rt_period = old_period;
9346 			sysctl_sched_rt_runtime = old_runtime;
9347 		} else {
9348 			def_rt_bandwidth.rt_runtime = global_rt_runtime();
9349 			def_rt_bandwidth.rt_period =
9350 				ns_to_ktime(global_rt_period());
9351 		}
9352 	}
9353 	mutex_unlock(&mutex);
9354 
9355 	return ret;
9356 }
9357 
9358 #ifdef CONFIG_CGROUP_SCHED
9359 
9360 /* return corresponding task_group object of a cgroup */
cgroup_tg(struct cgroup * cgrp)9361 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9362 {
9363 	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9364 			    struct task_group, css);
9365 }
9366 
9367 static struct cgroup_subsys_state *
cpu_cgroup_create(struct cgroup_subsys * ss,struct cgroup * cgrp)9368 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9369 {
9370 	struct task_group *tg, *parent;
9371 
9372 	if (!cgrp->parent) {
9373 		/* This is early initialization for the top cgroup */
9374 		return &init_task_group.css;
9375 	}
9376 
9377 	parent = cgroup_tg(cgrp->parent);
9378 	tg = sched_create_group(parent);
9379 	if (IS_ERR(tg))
9380 		return ERR_PTR(-ENOMEM);
9381 
9382 	return &tg->css;
9383 }
9384 
9385 static void
cpu_cgroup_destroy(struct cgroup_subsys * ss,struct cgroup * cgrp)9386 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9387 {
9388 	struct task_group *tg = cgroup_tg(cgrp);
9389 
9390 	sched_destroy_group(tg);
9391 }
9392 
9393 static int
cpu_cgroup_can_attach(struct cgroup_subsys * ss,struct cgroup * cgrp,struct task_struct * tsk)9394 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9395 		      struct task_struct *tsk)
9396 {
9397 	if ((current != tsk) && (!capable(CAP_SYS_NICE))) {
9398 		const struct cred *cred = current_cred(), *tcred;
9399 
9400 		tcred = __task_cred(tsk);
9401 
9402 		if (cred->euid != tcred->uid && cred->euid != tcred->suid)
9403 			return -EPERM;
9404 	}
9405 
9406 #ifdef CONFIG_RT_GROUP_SCHED
9407 	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9408 		return -EINVAL;
9409 #else
9410 	/* We don't support RT-tasks being in separate groups */
9411 	if (tsk->sched_class != &fair_sched_class)
9412 		return -EINVAL;
9413 #endif
9414 
9415 	return 0;
9416 }
9417 
9418 static void
cpu_cgroup_attach(struct cgroup_subsys * ss,struct cgroup * cgrp,struct cgroup * old_cont,struct task_struct * tsk)9419 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9420 			struct cgroup *old_cont, struct task_struct *tsk)
9421 {
9422 	sched_move_task(tsk);
9423 }
9424 
9425 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup * cgrp,struct cftype * cftype,u64 shareval)9426 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9427 				u64 shareval)
9428 {
9429 	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9430 }
9431 
cpu_shares_read_u64(struct cgroup * cgrp,struct cftype * cft)9432 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9433 {
9434 	struct task_group *tg = cgroup_tg(cgrp);
9435 
9436 	return (u64) tg->shares;
9437 }
9438 #endif /* CONFIG_FAIR_GROUP_SCHED */
9439 
9440 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup * cgrp,struct cftype * cft,s64 val)9441 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9442 				s64 val)
9443 {
9444 	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9445 }
9446 
cpu_rt_runtime_read(struct cgroup * cgrp,struct cftype * cft)9447 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9448 {
9449 	return sched_group_rt_runtime(cgroup_tg(cgrp));
9450 }
9451 
cpu_rt_period_write_uint(struct cgroup * cgrp,struct cftype * cftype,u64 rt_period_us)9452 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9453 		u64 rt_period_us)
9454 {
9455 	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9456 }
9457 
cpu_rt_period_read_uint(struct cgroup * cgrp,struct cftype * cft)9458 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9459 {
9460 	return sched_group_rt_period(cgroup_tg(cgrp));
9461 }
9462 #endif /* CONFIG_RT_GROUP_SCHED */
9463 
9464 static struct cftype cpu_files[] = {
9465 #ifdef CONFIG_FAIR_GROUP_SCHED
9466 	{
9467 		.name = "shares",
9468 		.read_u64 = cpu_shares_read_u64,
9469 		.write_u64 = cpu_shares_write_u64,
9470 	},
9471 #endif
9472 #ifdef CONFIG_RT_GROUP_SCHED
9473 	{
9474 		.name = "rt_runtime_us",
9475 		.read_s64 = cpu_rt_runtime_read,
9476 		.write_s64 = cpu_rt_runtime_write,
9477 	},
9478 	{
9479 		.name = "rt_period_us",
9480 		.read_u64 = cpu_rt_period_read_uint,
9481 		.write_u64 = cpu_rt_period_write_uint,
9482 	},
9483 #endif
9484 };
9485 
cpu_cgroup_populate(struct cgroup_subsys * ss,struct cgroup * cont)9486 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9487 {
9488 	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9489 }
9490 
9491 struct cgroup_subsys cpu_cgroup_subsys = {
9492 	.name		= "cpu",
9493 	.create		= cpu_cgroup_create,
9494 	.destroy	= cpu_cgroup_destroy,
9495 	.can_attach	= cpu_cgroup_can_attach,
9496 	.attach		= cpu_cgroup_attach,
9497 	.populate	= cpu_cgroup_populate,
9498 	.subsys_id	= cpu_cgroup_subsys_id,
9499 	.early_init	= 1,
9500 };
9501 
9502 #endif	/* CONFIG_CGROUP_SCHED */
9503 
9504 #ifdef CONFIG_CGROUP_CPUACCT
9505 
9506 /*
9507  * CPU accounting code for task groups.
9508  *
9509  * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9510  * (balbir@in.ibm.com).
9511  */
9512 
9513 /* track cpu usage of a group of tasks and its child groups */
9514 struct cpuacct {
9515 	struct cgroup_subsys_state css;
9516 	/* cpuusage holds pointer to a u64-type object on every cpu */
9517 	u64 *cpuusage;
9518 	struct cpuacct *parent;
9519 };
9520 
9521 struct cgroup_subsys cpuacct_subsys;
9522 
9523 /* return cpu accounting group corresponding to this container */
cgroup_ca(struct cgroup * cgrp)9524 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9525 {
9526 	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9527 			    struct cpuacct, css);
9528 }
9529 
9530 /* return cpu accounting group to which this task belongs */
task_ca(struct task_struct * tsk)9531 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9532 {
9533 	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9534 			    struct cpuacct, css);
9535 }
9536 
9537 /* create a new cpu accounting group */
cpuacct_create(struct cgroup_subsys * ss,struct cgroup * cgrp)9538 static struct cgroup_subsys_state *cpuacct_create(
9539 	struct cgroup_subsys *ss, struct cgroup *cgrp)
9540 {
9541 	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9542 
9543 	if (!ca)
9544 		return ERR_PTR(-ENOMEM);
9545 
9546 	ca->cpuusage = alloc_percpu(u64);
9547 	if (!ca->cpuusage) {
9548 		kfree(ca);
9549 		return ERR_PTR(-ENOMEM);
9550 	}
9551 
9552 	if (cgrp->parent)
9553 		ca->parent = cgroup_ca(cgrp->parent);
9554 
9555 	return &ca->css;
9556 }
9557 
9558 /* destroy an existing cpu accounting group */
9559 static void
cpuacct_destroy(struct cgroup_subsys * ss,struct cgroup * cgrp)9560 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9561 {
9562 	struct cpuacct *ca = cgroup_ca(cgrp);
9563 
9564 	free_percpu(ca->cpuusage);
9565 	kfree(ca);
9566 }
9567 
cpuacct_cpuusage_read(struct cpuacct * ca,int cpu)9568 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9569 {
9570 	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9571 	u64 data;
9572 
9573 #ifndef CONFIG_64BIT
9574 	/*
9575 	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9576 	 */
9577 	spin_lock_irq(&cpu_rq(cpu)->lock);
9578 	data = *cpuusage;
9579 	spin_unlock_irq(&cpu_rq(cpu)->lock);
9580 #else
9581 	data = *cpuusage;
9582 #endif
9583 
9584 	return data;
9585 }
9586 
cpuacct_cpuusage_write(struct cpuacct * ca,int cpu,u64 val)9587 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9588 {
9589 	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9590 
9591 #ifndef CONFIG_64BIT
9592 	/*
9593 	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9594 	 */
9595 	spin_lock_irq(&cpu_rq(cpu)->lock);
9596 	*cpuusage = val;
9597 	spin_unlock_irq(&cpu_rq(cpu)->lock);
9598 #else
9599 	*cpuusage = val;
9600 #endif
9601 }
9602 
9603 /* return total cpu usage (in nanoseconds) of a group */
cpuusage_read(struct cgroup * cgrp,struct cftype * cft)9604 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9605 {
9606 	struct cpuacct *ca = cgroup_ca(cgrp);
9607 	u64 totalcpuusage = 0;
9608 	int i;
9609 
9610 	for_each_present_cpu(i)
9611 		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9612 
9613 	return totalcpuusage;
9614 }
9615 
cpuusage_write(struct cgroup * cgrp,struct cftype * cftype,u64 reset)9616 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9617 								u64 reset)
9618 {
9619 	struct cpuacct *ca = cgroup_ca(cgrp);
9620 	int err = 0;
9621 	int i;
9622 
9623 	if (reset) {
9624 		err = -EINVAL;
9625 		goto out;
9626 	}
9627 
9628 	for_each_present_cpu(i)
9629 		cpuacct_cpuusage_write(ca, i, 0);
9630 
9631 out:
9632 	return err;
9633 }
9634 
cpuacct_percpu_seq_read(struct cgroup * cgroup,struct cftype * cft,struct seq_file * m)9635 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9636 				   struct seq_file *m)
9637 {
9638 	struct cpuacct *ca = cgroup_ca(cgroup);
9639 	u64 percpu;
9640 	int i;
9641 
9642 	for_each_present_cpu(i) {
9643 		percpu = cpuacct_cpuusage_read(ca, i);
9644 		seq_printf(m, "%llu ", (unsigned long long) percpu);
9645 	}
9646 	seq_printf(m, "\n");
9647 	return 0;
9648 }
9649 
9650 static struct cftype files[] = {
9651 	{
9652 		.name = "usage",
9653 		.read_u64 = cpuusage_read,
9654 		.write_u64 = cpuusage_write,
9655 	},
9656 	{
9657 		.name = "usage_percpu",
9658 		.read_seq_string = cpuacct_percpu_seq_read,
9659 	},
9660 
9661 };
9662 
cpuacct_populate(struct cgroup_subsys * ss,struct cgroup * cgrp)9663 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9664 {
9665 	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9666 }
9667 
9668 /*
9669  * charge this task's execution time to its accounting group.
9670  *
9671  * called with rq->lock held.
9672  */
cpuacct_charge(struct task_struct * tsk,u64 cputime)9673 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9674 {
9675 	struct cpuacct *ca;
9676 	int cpu;
9677 
9678 	if (!cpuacct_subsys.active)
9679 		return;
9680 
9681 	cpu = task_cpu(tsk);
9682 	ca = task_ca(tsk);
9683 
9684 	for (; ca; ca = ca->parent) {
9685 		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9686 		*cpuusage += cputime;
9687 	}
9688 }
9689 
9690 struct cgroup_subsys cpuacct_subsys = {
9691 	.name = "cpuacct",
9692 	.create = cpuacct_create,
9693 	.destroy = cpuacct_destroy,
9694 	.populate = cpuacct_populate,
9695 	.subsys_id = cpuacct_subsys_id,
9696 };
9697 #endif	/* CONFIG_CGROUP_CPUACCT */
9698