• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/sysctl.h>
24 #include <linux/workqueue.h>
25 #include <net/tcp.h>
26 #include <net/inet_common.h>
27 #include <net/xfrm.h>
28 
29 #ifdef CONFIG_SYSCTL
30 #define SYNC_INIT 0 /* let the user enable it */
31 #else
32 #define SYNC_INIT 1
33 #endif
34 
35 int sysctl_tcp_syncookies __read_mostly = SYNC_INIT;
36 EXPORT_SYMBOL(sysctl_tcp_syncookies);
37 
38 int sysctl_tcp_abort_on_overflow __read_mostly;
39 
40 struct inet_timewait_death_row tcp_death_row = {
41 	.sysctl_max_tw_buckets = NR_FILE * 2,
42 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
43 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
44 	.hashinfo	= &tcp_hashinfo,
45 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
46 					    (unsigned long)&tcp_death_row),
47 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
48 					     inet_twdr_twkill_work),
49 /* Short-time timewait calendar */
50 
51 	.twcal_hand	= -1,
52 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
53 					    (unsigned long)&tcp_death_row),
54 };
55 
56 EXPORT_SYMBOL_GPL(tcp_death_row);
57 
tcp_in_window(u32 seq,u32 end_seq,u32 s_win,u32 e_win)58 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
59 {
60 	if (seq == s_win)
61 		return 1;
62 	if (after(end_seq, s_win) && before(seq, e_win))
63 		return 1;
64 	return (seq == e_win && seq == end_seq);
65 }
66 
67 /*
68  * * Main purpose of TIME-WAIT state is to close connection gracefully,
69  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
70  *   (and, probably, tail of data) and one or more our ACKs are lost.
71  * * What is TIME-WAIT timeout? It is associated with maximal packet
72  *   lifetime in the internet, which results in wrong conclusion, that
73  *   it is set to catch "old duplicate segments" wandering out of their path.
74  *   It is not quite correct. This timeout is calculated so that it exceeds
75  *   maximal retransmission timeout enough to allow to lose one (or more)
76  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
77  * * When TIME-WAIT socket receives RST, it means that another end
78  *   finally closed and we are allowed to kill TIME-WAIT too.
79  * * Second purpose of TIME-WAIT is catching old duplicate segments.
80  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
81  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
82  * * If we invented some more clever way to catch duplicates
83  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
84  *
85  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
86  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
87  * from the very beginning.
88  *
89  * NOTE. With recycling (and later with fin-wait-2) TW bucket
90  * is _not_ stateless. It means, that strictly speaking we must
91  * spinlock it. I do not want! Well, probability of misbehaviour
92  * is ridiculously low and, seems, we could use some mb() tricks
93  * to avoid misread sequence numbers, states etc.  --ANK
94  */
95 enum tcp_tw_status
tcp_timewait_state_process(struct inet_timewait_sock * tw,struct sk_buff * skb,const struct tcphdr * th)96 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
97 			   const struct tcphdr *th)
98 {
99 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
100 	struct tcp_options_received tmp_opt;
101 	int paws_reject = 0;
102 
103 	tmp_opt.saw_tstamp = 0;
104 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
105 		tcp_parse_options(skb, &tmp_opt, 0);
106 
107 		if (tmp_opt.saw_tstamp) {
108 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
109 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
110 			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
111 		}
112 	}
113 
114 	if (tw->tw_substate == TCP_FIN_WAIT2) {
115 		/* Just repeat all the checks of tcp_rcv_state_process() */
116 
117 		/* Out of window, send ACK */
118 		if (paws_reject ||
119 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
120 				   tcptw->tw_rcv_nxt,
121 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
122 			return TCP_TW_ACK;
123 
124 		if (th->rst)
125 			goto kill;
126 
127 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
128 			goto kill_with_rst;
129 
130 		/* Dup ACK? */
131 		if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133 			inet_twsk_put(tw);
134 			return TCP_TW_SUCCESS;
135 		}
136 
137 		/* New data or FIN. If new data arrive after half-duplex close,
138 		 * reset.
139 		 */
140 		if (!th->fin ||
141 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
142 kill_with_rst:
143 			inet_twsk_deschedule(tw, &tcp_death_row);
144 			inet_twsk_put(tw);
145 			return TCP_TW_RST;
146 		}
147 
148 		/* FIN arrived, enter true time-wait state. */
149 		tw->tw_substate	  = TCP_TIME_WAIT;
150 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151 		if (tmp_opt.saw_tstamp) {
152 			tcptw->tw_ts_recent_stamp = get_seconds();
153 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154 		}
155 
156 		/* I am shamed, but failed to make it more elegant.
157 		 * Yes, it is direct reference to IP, which is impossible
158 		 * to generalize to IPv6. Taking into account that IPv6
159 		 * do not understand recycling in any case, it not
160 		 * a big problem in practice. --ANK */
161 		if (tw->tw_family == AF_INET &&
162 		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
163 		    tcp_v4_tw_remember_stamp(tw))
164 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
165 					   TCP_TIMEWAIT_LEN);
166 		else
167 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
168 					   TCP_TIMEWAIT_LEN);
169 		return TCP_TW_ACK;
170 	}
171 
172 	/*
173 	 *	Now real TIME-WAIT state.
174 	 *
175 	 *	RFC 1122:
176 	 *	"When a connection is [...] on TIME-WAIT state [...]
177 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
178 	 *	reopen the connection directly, if it:
179 	 *
180 	 *	(1)  assigns its initial sequence number for the new
181 	 *	connection to be larger than the largest sequence
182 	 *	number it used on the previous connection incarnation,
183 	 *	and
184 	 *
185 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
186 	 *	to be an old duplicate".
187 	 */
188 
189 	if (!paws_reject &&
190 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
191 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
192 		/* In window segment, it may be only reset or bare ack. */
193 
194 		if (th->rst) {
195 			/* This is TIME_WAIT assassination, in two flavors.
196 			 * Oh well... nobody has a sufficient solution to this
197 			 * protocol bug yet.
198 			 */
199 			if (sysctl_tcp_rfc1337 == 0) {
200 kill:
201 				inet_twsk_deschedule(tw, &tcp_death_row);
202 				inet_twsk_put(tw);
203 				return TCP_TW_SUCCESS;
204 			}
205 		}
206 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
207 				   TCP_TIMEWAIT_LEN);
208 
209 		if (tmp_opt.saw_tstamp) {
210 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
211 			tcptw->tw_ts_recent_stamp = get_seconds();
212 		}
213 
214 		inet_twsk_put(tw);
215 		return TCP_TW_SUCCESS;
216 	}
217 
218 	/* Out of window segment.
219 
220 	   All the segments are ACKed immediately.
221 
222 	   The only exception is new SYN. We accept it, if it is
223 	   not old duplicate and we are not in danger to be killed
224 	   by delayed old duplicates. RFC check is that it has
225 	   newer sequence number works at rates <40Mbit/sec.
226 	   However, if paws works, it is reliable AND even more,
227 	   we even may relax silly seq space cutoff.
228 
229 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
230 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
231 	   we must return socket to time-wait state. It is not good,
232 	   but not fatal yet.
233 	 */
234 
235 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
236 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
237 	     (tmp_opt.saw_tstamp &&
238 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
239 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
240 		if (isn == 0)
241 			isn++;
242 		TCP_SKB_CB(skb)->when = isn;
243 		return TCP_TW_SYN;
244 	}
245 
246 	if (paws_reject)
247 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
248 
249 	if (!th->rst) {
250 		/* In this case we must reset the TIMEWAIT timer.
251 		 *
252 		 * If it is ACKless SYN it may be both old duplicate
253 		 * and new good SYN with random sequence number <rcv_nxt.
254 		 * Do not reschedule in the last case.
255 		 */
256 		if (paws_reject || th->ack)
257 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
258 					   TCP_TIMEWAIT_LEN);
259 
260 		/* Send ACK. Note, we do not put the bucket,
261 		 * it will be released by caller.
262 		 */
263 		return TCP_TW_ACK;
264 	}
265 	inet_twsk_put(tw);
266 	return TCP_TW_SUCCESS;
267 }
268 
269 /*
270  * Move a socket to time-wait or dead fin-wait-2 state.
271  */
tcp_time_wait(struct sock * sk,int state,int timeo)272 void tcp_time_wait(struct sock *sk, int state, int timeo)
273 {
274 	struct inet_timewait_sock *tw = NULL;
275 	const struct inet_connection_sock *icsk = inet_csk(sk);
276 	const struct tcp_sock *tp = tcp_sk(sk);
277 	int recycle_ok = 0;
278 
279 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
280 		recycle_ok = icsk->icsk_af_ops->remember_stamp(sk);
281 
282 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
283 		tw = inet_twsk_alloc(sk, state);
284 
285 	if (tw != NULL) {
286 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
287 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
288 
289 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
290 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
291 		tcptw->tw_snd_nxt	= tp->snd_nxt;
292 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
293 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
294 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
295 
296 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
297 		if (tw->tw_family == PF_INET6) {
298 			struct ipv6_pinfo *np = inet6_sk(sk);
299 			struct inet6_timewait_sock *tw6;
300 
301 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
302 			tw6 = inet6_twsk((struct sock *)tw);
303 			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
304 			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
305 			tw->tw_ipv6only = np->ipv6only;
306 		}
307 #endif
308 
309 #ifdef CONFIG_TCP_MD5SIG
310 		/*
311 		 * The timewait bucket does not have the key DB from the
312 		 * sock structure. We just make a quick copy of the
313 		 * md5 key being used (if indeed we are using one)
314 		 * so the timewait ack generating code has the key.
315 		 */
316 		do {
317 			struct tcp_md5sig_key *key;
318 			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
319 			tcptw->tw_md5_keylen = 0;
320 			key = tp->af_specific->md5_lookup(sk, sk);
321 			if (key != NULL) {
322 				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
323 				tcptw->tw_md5_keylen = key->keylen;
324 				if (tcp_alloc_md5sig_pool() == NULL)
325 					BUG();
326 			}
327 		} while (0);
328 #endif
329 
330 		/* Linkage updates. */
331 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
332 
333 		/* Get the TIME_WAIT timeout firing. */
334 		if (timeo < rto)
335 			timeo = rto;
336 
337 		if (recycle_ok) {
338 			tw->tw_timeout = rto;
339 		} else {
340 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
341 			if (state == TCP_TIME_WAIT)
342 				timeo = TCP_TIMEWAIT_LEN;
343 		}
344 
345 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
346 				   TCP_TIMEWAIT_LEN);
347 		inet_twsk_put(tw);
348 	} else {
349 		/* Sorry, if we're out of memory, just CLOSE this
350 		 * socket up.  We've got bigger problems than
351 		 * non-graceful socket closings.
352 		 */
353 		LIMIT_NETDEBUG(KERN_INFO "TCP: time wait bucket table overflow\n");
354 	}
355 
356 	tcp_update_metrics(sk);
357 	tcp_done(sk);
358 }
359 
tcp_twsk_destructor(struct sock * sk)360 void tcp_twsk_destructor(struct sock *sk)
361 {
362 #ifdef CONFIG_TCP_MD5SIG
363 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
364 	if (twsk->tw_md5_keylen)
365 		tcp_put_md5sig_pool();
366 #endif
367 }
368 
369 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
370 
TCP_ECN_openreq_child(struct tcp_sock * tp,struct request_sock * req)371 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
372 					 struct request_sock *req)
373 {
374 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
375 }
376 
377 /* This is not only more efficient than what we used to do, it eliminates
378  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
379  *
380  * Actually, we could lots of memory writes here. tp of listening
381  * socket contains all necessary default parameters.
382  */
tcp_create_openreq_child(struct sock * sk,struct request_sock * req,struct sk_buff * skb)383 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
384 {
385 	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
386 
387 	if (newsk != NULL) {
388 		const struct inet_request_sock *ireq = inet_rsk(req);
389 		struct tcp_request_sock *treq = tcp_rsk(req);
390 		struct inet_connection_sock *newicsk = inet_csk(newsk);
391 		struct tcp_sock *newtp;
392 
393 		/* Now setup tcp_sock */
394 		newtp = tcp_sk(newsk);
395 		newtp->pred_flags = 0;
396 		newtp->rcv_wup = newtp->copied_seq = newtp->rcv_nxt = treq->rcv_isn + 1;
397 		newtp->snd_sml = newtp->snd_una = newtp->snd_nxt = treq->snt_isn + 1;
398 		newtp->snd_up = treq->snt_isn + 1;
399 
400 		tcp_prequeue_init(newtp);
401 
402 		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
403 
404 		newtp->srtt = 0;
405 		newtp->mdev = TCP_TIMEOUT_INIT;
406 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
407 
408 		newtp->packets_out = 0;
409 		newtp->retrans_out = 0;
410 		newtp->sacked_out = 0;
411 		newtp->fackets_out = 0;
412 		newtp->snd_ssthresh = 0x7fffffff;
413 
414 		/* So many TCP implementations out there (incorrectly) count the
415 		 * initial SYN frame in their delayed-ACK and congestion control
416 		 * algorithms that we must have the following bandaid to talk
417 		 * efficiently to them.  -DaveM
418 		 */
419 		newtp->snd_cwnd = 2;
420 		newtp->snd_cwnd_cnt = 0;
421 		newtp->bytes_acked = 0;
422 
423 		newtp->frto_counter = 0;
424 		newtp->frto_highmark = 0;
425 
426 		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
427 
428 		tcp_set_ca_state(newsk, TCP_CA_Open);
429 		tcp_init_xmit_timers(newsk);
430 		skb_queue_head_init(&newtp->out_of_order_queue);
431 		newtp->write_seq = treq->snt_isn + 1;
432 		newtp->pushed_seq = newtp->write_seq;
433 
434 		newtp->rx_opt.saw_tstamp = 0;
435 
436 		newtp->rx_opt.dsack = 0;
437 		newtp->rx_opt.eff_sacks = 0;
438 
439 		newtp->rx_opt.num_sacks = 0;
440 		newtp->urg_data = 0;
441 
442 		if (sock_flag(newsk, SOCK_KEEPOPEN))
443 			inet_csk_reset_keepalive_timer(newsk,
444 						       keepalive_time_when(newtp));
445 
446 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
447 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
448 			if (sysctl_tcp_fack)
449 				tcp_enable_fack(newtp);
450 		}
451 		newtp->window_clamp = req->window_clamp;
452 		newtp->rcv_ssthresh = req->rcv_wnd;
453 		newtp->rcv_wnd = req->rcv_wnd;
454 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
455 		if (newtp->rx_opt.wscale_ok) {
456 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
457 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
458 		} else {
459 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
460 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
461 		}
462 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
463 				  newtp->rx_opt.snd_wscale);
464 		newtp->max_window = newtp->snd_wnd;
465 
466 		if (newtp->rx_opt.tstamp_ok) {
467 			newtp->rx_opt.ts_recent = req->ts_recent;
468 			newtp->rx_opt.ts_recent_stamp = get_seconds();
469 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
470 		} else {
471 			newtp->rx_opt.ts_recent_stamp = 0;
472 			newtp->tcp_header_len = sizeof(struct tcphdr);
473 		}
474 #ifdef CONFIG_TCP_MD5SIG
475 		newtp->md5sig_info = NULL;	/*XXX*/
476 		if (newtp->af_specific->md5_lookup(sk, newsk))
477 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
478 #endif
479 		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
480 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
481 		newtp->rx_opt.mss_clamp = req->mss;
482 		TCP_ECN_openreq_child(newtp, req);
483 
484 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
485 	}
486 	return newsk;
487 }
488 
489 /*
490  *	Process an incoming packet for SYN_RECV sockets represented
491  *	as a request_sock.
492  */
493 
tcp_check_req(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct request_sock ** prev)494 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
495 			   struct request_sock *req,
496 			   struct request_sock **prev)
497 {
498 	const struct tcphdr *th = tcp_hdr(skb);
499 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
500 	int paws_reject = 0;
501 	struct tcp_options_received tmp_opt;
502 	struct sock *child;
503 
504 	tmp_opt.saw_tstamp = 0;
505 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
506 		tcp_parse_options(skb, &tmp_opt, 0);
507 
508 		if (tmp_opt.saw_tstamp) {
509 			tmp_opt.ts_recent = req->ts_recent;
510 			/* We do not store true stamp, but it is not required,
511 			 * it can be estimated (approximately)
512 			 * from another data.
513 			 */
514 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
515 			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
516 		}
517 	}
518 
519 	/* Check for pure retransmitted SYN. */
520 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
521 	    flg == TCP_FLAG_SYN &&
522 	    !paws_reject) {
523 		/*
524 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
525 		 * this case on figure 6 and figure 8, but formal
526 		 * protocol description says NOTHING.
527 		 * To be more exact, it says that we should send ACK,
528 		 * because this segment (at least, if it has no data)
529 		 * is out of window.
530 		 *
531 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
532 		 *  describe SYN-RECV state. All the description
533 		 *  is wrong, we cannot believe to it and should
534 		 *  rely only on common sense and implementation
535 		 *  experience.
536 		 *
537 		 * Enforce "SYN-ACK" according to figure 8, figure 6
538 		 * of RFC793, fixed by RFC1122.
539 		 */
540 		req->rsk_ops->rtx_syn_ack(sk, req);
541 		return NULL;
542 	}
543 
544 	/* Further reproduces section "SEGMENT ARRIVES"
545 	   for state SYN-RECEIVED of RFC793.
546 	   It is broken, however, it does not work only
547 	   when SYNs are crossed.
548 
549 	   You would think that SYN crossing is impossible here, since
550 	   we should have a SYN_SENT socket (from connect()) on our end,
551 	   but this is not true if the crossed SYNs were sent to both
552 	   ends by a malicious third party.  We must defend against this,
553 	   and to do that we first verify the ACK (as per RFC793, page
554 	   36) and reset if it is invalid.  Is this a true full defense?
555 	   To convince ourselves, let us consider a way in which the ACK
556 	   test can still pass in this 'malicious crossed SYNs' case.
557 	   Malicious sender sends identical SYNs (and thus identical sequence
558 	   numbers) to both A and B:
559 
560 		A: gets SYN, seq=7
561 		B: gets SYN, seq=7
562 
563 	   By our good fortune, both A and B select the same initial
564 	   send sequence number of seven :-)
565 
566 		A: sends SYN|ACK, seq=7, ack_seq=8
567 		B: sends SYN|ACK, seq=7, ack_seq=8
568 
569 	   So we are now A eating this SYN|ACK, ACK test passes.  So
570 	   does sequence test, SYN is truncated, and thus we consider
571 	   it a bare ACK.
572 
573 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
574 	   bare ACK.  Otherwise, we create an established connection.  Both
575 	   ends (listening sockets) accept the new incoming connection and try
576 	   to talk to each other. 8-)
577 
578 	   Note: This case is both harmless, and rare.  Possibility is about the
579 	   same as us discovering intelligent life on another plant tomorrow.
580 
581 	   But generally, we should (RFC lies!) to accept ACK
582 	   from SYNACK both here and in tcp_rcv_state_process().
583 	   tcp_rcv_state_process() does not, hence, we do not too.
584 
585 	   Note that the case is absolutely generic:
586 	   we cannot optimize anything here without
587 	   violating protocol. All the checks must be made
588 	   before attempt to create socket.
589 	 */
590 
591 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
592 	 *                  and the incoming segment acknowledges something not yet
593 	 *                  sent (the segment carries an unacceptable ACK) ...
594 	 *                  a reset is sent."
595 	 *
596 	 * Invalid ACK: reset will be sent by listening socket
597 	 */
598 	if ((flg & TCP_FLAG_ACK) &&
599 	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
600 		return sk;
601 
602 	/* Also, it would be not so bad idea to check rcv_tsecr, which
603 	 * is essentially ACK extension and too early or too late values
604 	 * should cause reset in unsynchronized states.
605 	 */
606 
607 	/* RFC793: "first check sequence number". */
608 
609 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
610 					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
611 		/* Out of window: send ACK and drop. */
612 		if (!(flg & TCP_FLAG_RST))
613 			req->rsk_ops->send_ack(sk, skb, req);
614 		if (paws_reject)
615 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
616 		return NULL;
617 	}
618 
619 	/* In sequence, PAWS is OK. */
620 
621 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
622 		req->ts_recent = tmp_opt.rcv_tsval;
623 
624 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
625 		/* Truncate SYN, it is out of window starting
626 		   at tcp_rsk(req)->rcv_isn + 1. */
627 		flg &= ~TCP_FLAG_SYN;
628 	}
629 
630 	/* RFC793: "second check the RST bit" and
631 	 *	   "fourth, check the SYN bit"
632 	 */
633 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
634 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
635 		goto embryonic_reset;
636 	}
637 
638 	/* ACK sequence verified above, just make sure ACK is
639 	 * set.  If ACK not set, just silently drop the packet.
640 	 */
641 	if (!(flg & TCP_FLAG_ACK))
642 		return NULL;
643 
644 	/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
645 	if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
646 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
647 		inet_rsk(req)->acked = 1;
648 		return NULL;
649 	}
650 
651 	/* OK, ACK is valid, create big socket and
652 	 * feed this segment to it. It will repeat all
653 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
654 	 * ESTABLISHED STATE. If it will be dropped after
655 	 * socket is created, wait for troubles.
656 	 */
657 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
658 	if (child == NULL)
659 		goto listen_overflow;
660 #ifdef CONFIG_TCP_MD5SIG
661 	else {
662 		/* Copy over the MD5 key from the original socket */
663 		struct tcp_md5sig_key *key;
664 		struct tcp_sock *tp = tcp_sk(sk);
665 		key = tp->af_specific->md5_lookup(sk, child);
666 		if (key != NULL) {
667 			/*
668 			 * We're using one, so create a matching key on the
669 			 * newsk structure. If we fail to get memory then we
670 			 * end up not copying the key across. Shucks.
671 			 */
672 			char *newkey = kmemdup(key->key, key->keylen,
673 					       GFP_ATOMIC);
674 			if (newkey) {
675 				if (!tcp_alloc_md5sig_pool())
676 					BUG();
677 				tp->af_specific->md5_add(child, child, newkey,
678 							 key->keylen);
679 			}
680 		}
681 	}
682 #endif
683 
684 	inet_csk_reqsk_queue_unlink(sk, req, prev);
685 	inet_csk_reqsk_queue_removed(sk, req);
686 
687 	inet_csk_reqsk_queue_add(sk, req, child);
688 	return child;
689 
690 listen_overflow:
691 	if (!sysctl_tcp_abort_on_overflow) {
692 		inet_rsk(req)->acked = 1;
693 		return NULL;
694 	}
695 
696 embryonic_reset:
697 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
698 	if (!(flg & TCP_FLAG_RST))
699 		req->rsk_ops->send_reset(sk, skb);
700 
701 	inet_csk_reqsk_queue_drop(sk, req, prev);
702 	return NULL;
703 }
704 
705 /*
706  * Queue segment on the new socket if the new socket is active,
707  * otherwise we just shortcircuit this and continue with
708  * the new socket.
709  */
710 
tcp_child_process(struct sock * parent,struct sock * child,struct sk_buff * skb)711 int tcp_child_process(struct sock *parent, struct sock *child,
712 		      struct sk_buff *skb)
713 {
714 	int ret = 0;
715 	int state = child->sk_state;
716 
717 	if (!sock_owned_by_user(child)) {
718 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
719 					    skb->len);
720 		/* Wakeup parent, send SIGIO */
721 		if (state == TCP_SYN_RECV && child->sk_state != state)
722 			parent->sk_data_ready(parent, 0);
723 	} else {
724 		/* Alas, it is possible again, because we do lookup
725 		 * in main socket hash table and lock on listening
726 		 * socket does not protect us more.
727 		 */
728 		sk_add_backlog(child, skb);
729 	}
730 
731 	bh_unlock_sock(child);
732 	sock_put(child);
733 	return ret;
734 }
735 
736 EXPORT_SYMBOL(tcp_check_req);
737 EXPORT_SYMBOL(tcp_child_process);
738 EXPORT_SYMBOL(tcp_create_openreq_child);
739 EXPORT_SYMBOL(tcp_timewait_state_process);
740