• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #include <linux/kernel.h>
249 #include <linux/module.h>
250 #include <linux/types.h>
251 #include <linux/fcntl.h>
252 #include <linux/poll.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/bootmem.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/crypto.h>
267 
268 #include <net/icmp.h>
269 #include <net/tcp.h>
270 #include <net/xfrm.h>
271 #include <net/ip.h>
272 #include <net/netdma.h>
273 #include <net/sock.h>
274 
275 #include <asm/uaccess.h>
276 #include <asm/ioctls.h>
277 
278 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
279 
280 struct percpu_counter tcp_orphan_count;
281 EXPORT_SYMBOL_GPL(tcp_orphan_count);
282 
283 int sysctl_tcp_mem[3] __read_mostly;
284 int sysctl_tcp_wmem[3] __read_mostly;
285 int sysctl_tcp_rmem[3] __read_mostly;
286 
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288 EXPORT_SYMBOL(sysctl_tcp_rmem);
289 EXPORT_SYMBOL(sysctl_tcp_wmem);
290 
291 atomic_t tcp_memory_allocated;	/* Current allocated memory. */
292 EXPORT_SYMBOL(tcp_memory_allocated);
293 
294 /*
295  * Current number of TCP sockets.
296  */
297 struct percpu_counter tcp_sockets_allocated;
298 EXPORT_SYMBOL(tcp_sockets_allocated);
299 
300 /*
301  * TCP splice context
302  */
303 struct tcp_splice_state {
304 	struct pipe_inode_info *pipe;
305 	size_t len;
306 	unsigned int flags;
307 };
308 
309 /*
310  * Pressure flag: try to collapse.
311  * Technical note: it is used by multiple contexts non atomically.
312  * All the __sk_mem_schedule() is of this nature: accounting
313  * is strict, actions are advisory and have some latency.
314  */
315 int tcp_memory_pressure __read_mostly;
316 
317 EXPORT_SYMBOL(tcp_memory_pressure);
318 
tcp_enter_memory_pressure(struct sock * sk)319 void tcp_enter_memory_pressure(struct sock *sk)
320 {
321 	if (!tcp_memory_pressure) {
322 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
323 		tcp_memory_pressure = 1;
324 	}
325 }
326 
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /*
330  *	Wait for a TCP event.
331  *
332  *	Note that we don't need to lock the socket, as the upper poll layers
333  *	take care of normal races (between the test and the event) and we don't
334  *	go look at any of the socket buffers directly.
335  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)336 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
337 {
338 	unsigned int mask;
339 	struct sock *sk = sock->sk;
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	poll_wait(file, sk->sk_sleep, wait);
343 	if (sk->sk_state == TCP_LISTEN)
344 		return inet_csk_listen_poll(sk);
345 
346 	/* Socket is not locked. We are protected from async events
347 	 * by poll logic and correct handling of state changes
348 	 * made by other threads is impossible in any case.
349 	 */
350 
351 	mask = 0;
352 	if (sk->sk_err)
353 		mask = POLLERR;
354 
355 	/*
356 	 * POLLHUP is certainly not done right. But poll() doesn't
357 	 * have a notion of HUP in just one direction, and for a
358 	 * socket the read side is more interesting.
359 	 *
360 	 * Some poll() documentation says that POLLHUP is incompatible
361 	 * with the POLLOUT/POLLWR flags, so somebody should check this
362 	 * all. But careful, it tends to be safer to return too many
363 	 * bits than too few, and you can easily break real applications
364 	 * if you don't tell them that something has hung up!
365 	 *
366 	 * Check-me.
367 	 *
368 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
369 	 * our fs/select.c). It means that after we received EOF,
370 	 * poll always returns immediately, making impossible poll() on write()
371 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
372 	 * if and only if shutdown has been made in both directions.
373 	 * Actually, it is interesting to look how Solaris and DUX
374 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
375 	 * then we could set it on SND_SHUTDOWN. BTW examples given
376 	 * in Stevens' books assume exactly this behaviour, it explains
377 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
378 	 *
379 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
380 	 * blocking on fresh not-connected or disconnected socket. --ANK
381 	 */
382 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
383 		mask |= POLLHUP;
384 	if (sk->sk_shutdown & RCV_SHUTDOWN)
385 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
386 
387 	/* Connected? */
388 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
389 		int target = sock_rcvlowat(sk, 0, INT_MAX);
390 
391 		if (tp->urg_seq == tp->copied_seq &&
392 		    !sock_flag(sk, SOCK_URGINLINE) &&
393 		    tp->urg_data)
394 			target--;
395 
396 		/* Potential race condition. If read of tp below will
397 		 * escape above sk->sk_state, we can be illegally awaken
398 		 * in SYN_* states. */
399 		if (tp->rcv_nxt - tp->copied_seq >= target)
400 			mask |= POLLIN | POLLRDNORM;
401 
402 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
403 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
404 				mask |= POLLOUT | POLLWRNORM;
405 			} else {  /* send SIGIO later */
406 				set_bit(SOCK_ASYNC_NOSPACE,
407 					&sk->sk_socket->flags);
408 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
409 
410 				/* Race breaker. If space is freed after
411 				 * wspace test but before the flags are set,
412 				 * IO signal will be lost.
413 				 */
414 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
415 					mask |= POLLOUT | POLLWRNORM;
416 			}
417 		}
418 
419 		if (tp->urg_data & TCP_URG_VALID)
420 			mask |= POLLPRI;
421 	}
422 	return mask;
423 }
424 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)425 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
426 {
427 	struct tcp_sock *tp = tcp_sk(sk);
428 	int answ;
429 
430 	switch (cmd) {
431 	case SIOCINQ:
432 		if (sk->sk_state == TCP_LISTEN)
433 			return -EINVAL;
434 
435 		lock_sock(sk);
436 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
437 			answ = 0;
438 		else if (sock_flag(sk, SOCK_URGINLINE) ||
439 			 !tp->urg_data ||
440 			 before(tp->urg_seq, tp->copied_seq) ||
441 			 !before(tp->urg_seq, tp->rcv_nxt)) {
442 			answ = tp->rcv_nxt - tp->copied_seq;
443 
444 			/* Subtract 1, if FIN is in queue. */
445 			if (answ && !skb_queue_empty(&sk->sk_receive_queue))
446 				answ -=
447 		       tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
448 		} else
449 			answ = tp->urg_seq - tp->copied_seq;
450 		release_sock(sk);
451 		break;
452 	case SIOCATMARK:
453 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
454 		break;
455 	case SIOCOUTQ:
456 		if (sk->sk_state == TCP_LISTEN)
457 			return -EINVAL;
458 
459 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
460 			answ = 0;
461 		else
462 			answ = tp->write_seq - tp->snd_una;
463 		break;
464 	default:
465 		return -ENOIOCTLCMD;
466 	}
467 
468 	return put_user(answ, (int __user *)arg);
469 }
470 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)471 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
472 {
473 	TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
474 	tp->pushed_seq = tp->write_seq;
475 }
476 
forced_push(struct tcp_sock * tp)477 static inline int forced_push(struct tcp_sock *tp)
478 {
479 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
480 }
481 
skb_entail(struct sock * sk,struct sk_buff * skb)482 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
483 {
484 	struct tcp_sock *tp = tcp_sk(sk);
485 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
486 
487 	skb->csum    = 0;
488 	tcb->seq     = tcb->end_seq = tp->write_seq;
489 	tcb->flags   = TCPCB_FLAG_ACK;
490 	tcb->sacked  = 0;
491 	skb_header_release(skb);
492 	tcp_add_write_queue_tail(sk, skb);
493 	sk->sk_wmem_queued += skb->truesize;
494 	sk_mem_charge(sk, skb->truesize);
495 	if (tp->nonagle & TCP_NAGLE_PUSH)
496 		tp->nonagle &= ~TCP_NAGLE_PUSH;
497 }
498 
tcp_mark_urg(struct tcp_sock * tp,int flags,struct sk_buff * skb)499 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
500 				struct sk_buff *skb)
501 {
502 	if (flags & MSG_OOB)
503 		tp->snd_up = tp->write_seq;
504 }
505 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle)506 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
507 			    int nonagle)
508 {
509 	struct tcp_sock *tp = tcp_sk(sk);
510 
511 	if (tcp_send_head(sk)) {
512 		struct sk_buff *skb = tcp_write_queue_tail(sk);
513 		if (!(flags & MSG_MORE) || forced_push(tp))
514 			tcp_mark_push(tp, skb);
515 		tcp_mark_urg(tp, flags, skb);
516 		__tcp_push_pending_frames(sk, mss_now,
517 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
518 	}
519 }
520 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)521 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
522 				unsigned int offset, size_t len)
523 {
524 	struct tcp_splice_state *tss = rd_desc->arg.data;
525 	int ret;
526 
527 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
528 			      tss->flags);
529 	if (ret > 0)
530 		rd_desc->count -= ret;
531 	return ret;
532 }
533 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)534 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
535 {
536 	/* Store TCP splice context information in read_descriptor_t. */
537 	read_descriptor_t rd_desc = {
538 		.arg.data = tss,
539 		.count	  = tss->len,
540 	};
541 
542 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
543 }
544 
545 /**
546  *  tcp_splice_read - splice data from TCP socket to a pipe
547  * @sock:	socket to splice from
548  * @ppos:	position (not valid)
549  * @pipe:	pipe to splice to
550  * @len:	number of bytes to splice
551  * @flags:	splice modifier flags
552  *
553  * Description:
554  *    Will read pages from given socket and fill them into a pipe.
555  *
556  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)557 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
558 			struct pipe_inode_info *pipe, size_t len,
559 			unsigned int flags)
560 {
561 	struct sock *sk = sock->sk;
562 	struct tcp_splice_state tss = {
563 		.pipe = pipe,
564 		.len = len,
565 		.flags = flags,
566 	};
567 	long timeo;
568 	ssize_t spliced;
569 	int ret;
570 
571 	/*
572 	 * We can't seek on a socket input
573 	 */
574 	if (unlikely(*ppos))
575 		return -ESPIPE;
576 
577 	ret = spliced = 0;
578 
579 	lock_sock(sk);
580 
581 	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
582 	while (tss.len) {
583 		ret = __tcp_splice_read(sk, &tss);
584 		if (ret < 0)
585 			break;
586 		else if (!ret) {
587 			if (spliced)
588 				break;
589 			if (sock_flag(sk, SOCK_DONE))
590 				break;
591 			if (sk->sk_err) {
592 				ret = sock_error(sk);
593 				break;
594 			}
595 			if (sk->sk_shutdown & RCV_SHUTDOWN)
596 				break;
597 			if (sk->sk_state == TCP_CLOSE) {
598 				/*
599 				 * This occurs when user tries to read
600 				 * from never connected socket.
601 				 */
602 				if (!sock_flag(sk, SOCK_DONE))
603 					ret = -ENOTCONN;
604 				break;
605 			}
606 			if (!timeo) {
607 				ret = -EAGAIN;
608 				break;
609 			}
610 			sk_wait_data(sk, &timeo);
611 			if (signal_pending(current)) {
612 				ret = sock_intr_errno(timeo);
613 				break;
614 			}
615 			continue;
616 		}
617 		tss.len -= ret;
618 		spliced += ret;
619 
620 		if (!timeo)
621 			break;
622 		release_sock(sk);
623 		lock_sock(sk);
624 
625 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
626 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
627 		    signal_pending(current))
628 			break;
629 	}
630 
631 	release_sock(sk);
632 
633 	if (spliced)
634 		return spliced;
635 
636 	return ret;
637 }
638 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp)639 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
640 {
641 	struct sk_buff *skb;
642 
643 	/* The TCP header must be at least 32-bit aligned.  */
644 	size = ALIGN(size, 4);
645 
646 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
647 	if (skb) {
648 		if (sk_wmem_schedule(sk, skb->truesize)) {
649 			/*
650 			 * Make sure that we have exactly size bytes
651 			 * available to the caller, no more, no less.
652 			 */
653 			skb_reserve(skb, skb_tailroom(skb) - size);
654 			return skb;
655 		}
656 		__kfree_skb(skb);
657 	} else {
658 		sk->sk_prot->enter_memory_pressure(sk);
659 		sk_stream_moderate_sndbuf(sk);
660 	}
661 	return NULL;
662 }
663 
do_tcp_sendpages(struct sock * sk,struct page ** pages,int poffset,size_t psize,int flags)664 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
665 			 size_t psize, int flags)
666 {
667 	struct tcp_sock *tp = tcp_sk(sk);
668 	int mss_now, size_goal;
669 	int err;
670 	ssize_t copied;
671 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
672 
673 	/* Wait for a connection to finish. */
674 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
675 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
676 			goto out_err;
677 
678 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
679 
680 	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
681 	size_goal = tp->xmit_size_goal;
682 	copied = 0;
683 
684 	err = -EPIPE;
685 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
686 		goto do_error;
687 
688 	while (psize > 0) {
689 		struct sk_buff *skb = tcp_write_queue_tail(sk);
690 		struct page *page = pages[poffset / PAGE_SIZE];
691 		int copy, i, can_coalesce;
692 		int offset = poffset % PAGE_SIZE;
693 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
694 
695 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
696 new_segment:
697 			if (!sk_stream_memory_free(sk))
698 				goto wait_for_sndbuf;
699 
700 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
701 			if (!skb)
702 				goto wait_for_memory;
703 
704 			skb_entail(sk, skb);
705 			copy = size_goal;
706 		}
707 
708 		if (copy > size)
709 			copy = size;
710 
711 		i = skb_shinfo(skb)->nr_frags;
712 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
713 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
714 			tcp_mark_push(tp, skb);
715 			goto new_segment;
716 		}
717 		if (!sk_wmem_schedule(sk, copy))
718 			goto wait_for_memory;
719 
720 		if (can_coalesce) {
721 			skb_shinfo(skb)->frags[i - 1].size += copy;
722 		} else {
723 			get_page(page);
724 			skb_fill_page_desc(skb, i, page, offset, copy);
725 		}
726 
727 		skb->len += copy;
728 		skb->data_len += copy;
729 		skb->truesize += copy;
730 		sk->sk_wmem_queued += copy;
731 		sk_mem_charge(sk, copy);
732 		skb->ip_summed = CHECKSUM_PARTIAL;
733 		tp->write_seq += copy;
734 		TCP_SKB_CB(skb)->end_seq += copy;
735 		skb_shinfo(skb)->gso_segs = 0;
736 
737 		if (!copied)
738 			TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
739 
740 		copied += copy;
741 		poffset += copy;
742 		if (!(psize -= copy))
743 			goto out;
744 
745 		if (skb->len < size_goal || (flags & MSG_OOB))
746 			continue;
747 
748 		if (forced_push(tp)) {
749 			tcp_mark_push(tp, skb);
750 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
751 		} else if (skb == tcp_send_head(sk))
752 			tcp_push_one(sk, mss_now);
753 		continue;
754 
755 wait_for_sndbuf:
756 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
757 wait_for_memory:
758 		if (copied)
759 			tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
760 
761 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
762 			goto do_error;
763 
764 		mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
765 		size_goal = tp->xmit_size_goal;
766 	}
767 
768 out:
769 	if (copied)
770 		tcp_push(sk, flags, mss_now, tp->nonagle);
771 	return copied;
772 
773 do_error:
774 	if (copied)
775 		goto out;
776 out_err:
777 	return sk_stream_error(sk, flags, err);
778 }
779 
tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)780 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
781 		     size_t size, int flags)
782 {
783 	ssize_t res;
784 	struct sock *sk = sock->sk;
785 
786 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
787 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
788 		return sock_no_sendpage(sock, page, offset, size, flags);
789 
790 	lock_sock(sk);
791 	TCP_CHECK_TIMER(sk);
792 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
793 	TCP_CHECK_TIMER(sk);
794 	release_sock(sk);
795 	return res;
796 }
797 
798 #define TCP_PAGE(sk)	(sk->sk_sndmsg_page)
799 #define TCP_OFF(sk)	(sk->sk_sndmsg_off)
800 
select_size(struct sock * sk)801 static inline int select_size(struct sock *sk)
802 {
803 	struct tcp_sock *tp = tcp_sk(sk);
804 	int tmp = tp->mss_cache;
805 
806 	if (sk->sk_route_caps & NETIF_F_SG) {
807 		if (sk_can_gso(sk))
808 			tmp = 0;
809 		else {
810 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
811 
812 			if (tmp >= pgbreak &&
813 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
814 				tmp = pgbreak;
815 		}
816 	}
817 
818 	return tmp;
819 }
820 
tcp_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size)821 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
822 		size_t size)
823 {
824 	struct sock *sk = sock->sk;
825 	struct iovec *iov;
826 	struct tcp_sock *tp = tcp_sk(sk);
827 	struct sk_buff *skb;
828 	int iovlen, flags;
829 	int mss_now, size_goal;
830 	int err, copied;
831 	long timeo;
832 
833 	lock_sock(sk);
834 	TCP_CHECK_TIMER(sk);
835 
836 	flags = msg->msg_flags;
837 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
838 
839 	/* Wait for a connection to finish. */
840 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
841 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
842 			goto out_err;
843 
844 	/* This should be in poll */
845 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
846 
847 	mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
848 	size_goal = tp->xmit_size_goal;
849 
850 	/* Ok commence sending. */
851 	iovlen = msg->msg_iovlen;
852 	iov = msg->msg_iov;
853 	copied = 0;
854 
855 	err = -EPIPE;
856 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
857 		goto do_error;
858 
859 	while (--iovlen >= 0) {
860 		int seglen = iov->iov_len;
861 		unsigned char __user *from = iov->iov_base;
862 
863 		iov++;
864 
865 		while (seglen > 0) {
866 			int copy;
867 
868 			skb = tcp_write_queue_tail(sk);
869 
870 			if (!tcp_send_head(sk) ||
871 			    (copy = size_goal - skb->len) <= 0) {
872 
873 new_segment:
874 				/* Allocate new segment. If the interface is SG,
875 				 * allocate skb fitting to single page.
876 				 */
877 				if (!sk_stream_memory_free(sk))
878 					goto wait_for_sndbuf;
879 
880 				skb = sk_stream_alloc_skb(sk, select_size(sk),
881 						sk->sk_allocation);
882 				if (!skb)
883 					goto wait_for_memory;
884 
885 				/*
886 				 * Check whether we can use HW checksum.
887 				 */
888 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
889 					skb->ip_summed = CHECKSUM_PARTIAL;
890 
891 				skb_entail(sk, skb);
892 				copy = size_goal;
893 			}
894 
895 			/* Try to append data to the end of skb. */
896 			if (copy > seglen)
897 				copy = seglen;
898 
899 			/* Where to copy to? */
900 			if (skb_tailroom(skb) > 0) {
901 				/* We have some space in skb head. Superb! */
902 				if (copy > skb_tailroom(skb))
903 					copy = skb_tailroom(skb);
904 				if ((err = skb_add_data(skb, from, copy)) != 0)
905 					goto do_fault;
906 			} else {
907 				int merge = 0;
908 				int i = skb_shinfo(skb)->nr_frags;
909 				struct page *page = TCP_PAGE(sk);
910 				int off = TCP_OFF(sk);
911 
912 				if (skb_can_coalesce(skb, i, page, off) &&
913 				    off != PAGE_SIZE) {
914 					/* We can extend the last page
915 					 * fragment. */
916 					merge = 1;
917 				} else if (i == MAX_SKB_FRAGS ||
918 					   (!i &&
919 					   !(sk->sk_route_caps & NETIF_F_SG))) {
920 					/* Need to add new fragment and cannot
921 					 * do this because interface is non-SG,
922 					 * or because all the page slots are
923 					 * busy. */
924 					tcp_mark_push(tp, skb);
925 					goto new_segment;
926 				} else if (page) {
927 					if (off == PAGE_SIZE) {
928 						put_page(page);
929 						TCP_PAGE(sk) = page = NULL;
930 						off = 0;
931 					}
932 				} else
933 					off = 0;
934 
935 				if (copy > PAGE_SIZE - off)
936 					copy = PAGE_SIZE - off;
937 
938 				if (!sk_wmem_schedule(sk, copy))
939 					goto wait_for_memory;
940 
941 				if (!page) {
942 					/* Allocate new cache page. */
943 					if (!(page = sk_stream_alloc_page(sk)))
944 						goto wait_for_memory;
945 				}
946 
947 				/* Time to copy data. We are close to
948 				 * the end! */
949 				err = skb_copy_to_page(sk, from, skb, page,
950 						       off, copy);
951 				if (err) {
952 					/* If this page was new, give it to the
953 					 * socket so it does not get leaked.
954 					 */
955 					if (!TCP_PAGE(sk)) {
956 						TCP_PAGE(sk) = page;
957 						TCP_OFF(sk) = 0;
958 					}
959 					goto do_error;
960 				}
961 
962 				/* Update the skb. */
963 				if (merge) {
964 					skb_shinfo(skb)->frags[i - 1].size +=
965 									copy;
966 				} else {
967 					skb_fill_page_desc(skb, i, page, off, copy);
968 					if (TCP_PAGE(sk)) {
969 						get_page(page);
970 					} else if (off + copy < PAGE_SIZE) {
971 						get_page(page);
972 						TCP_PAGE(sk) = page;
973 					}
974 				}
975 
976 				TCP_OFF(sk) = off + copy;
977 			}
978 
979 			if (!copied)
980 				TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
981 
982 			tp->write_seq += copy;
983 			TCP_SKB_CB(skb)->end_seq += copy;
984 			skb_shinfo(skb)->gso_segs = 0;
985 
986 			from += copy;
987 			copied += copy;
988 			if ((seglen -= copy) == 0 && iovlen == 0)
989 				goto out;
990 
991 			if (skb->len < size_goal || (flags & MSG_OOB))
992 				continue;
993 
994 			if (forced_push(tp)) {
995 				tcp_mark_push(tp, skb);
996 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
997 			} else if (skb == tcp_send_head(sk))
998 				tcp_push_one(sk, mss_now);
999 			continue;
1000 
1001 wait_for_sndbuf:
1002 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1003 wait_for_memory:
1004 			if (copied)
1005 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1006 
1007 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1008 				goto do_error;
1009 
1010 			mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
1011 			size_goal = tp->xmit_size_goal;
1012 		}
1013 	}
1014 
1015 out:
1016 	if (copied)
1017 		tcp_push(sk, flags, mss_now, tp->nonagle);
1018 	TCP_CHECK_TIMER(sk);
1019 	release_sock(sk);
1020 	return copied;
1021 
1022 do_fault:
1023 	if (!skb->len) {
1024 		tcp_unlink_write_queue(skb, sk);
1025 		/* It is the one place in all of TCP, except connection
1026 		 * reset, where we can be unlinking the send_head.
1027 		 */
1028 		tcp_check_send_head(sk, skb);
1029 		sk_wmem_free_skb(sk, skb);
1030 	}
1031 
1032 do_error:
1033 	if (copied)
1034 		goto out;
1035 out_err:
1036 	err = sk_stream_error(sk, flags, err);
1037 	TCP_CHECK_TIMER(sk);
1038 	release_sock(sk);
1039 	return err;
1040 }
1041 
1042 /*
1043  *	Handle reading urgent data. BSD has very simple semantics for
1044  *	this, no blocking and very strange errors 8)
1045  */
1046 
tcp_recv_urg(struct sock * sk,long timeo,struct msghdr * msg,int len,int flags,int * addr_len)1047 static int tcp_recv_urg(struct sock *sk, long timeo,
1048 			struct msghdr *msg, int len, int flags,
1049 			int *addr_len)
1050 {
1051 	struct tcp_sock *tp = tcp_sk(sk);
1052 
1053 	/* No URG data to read. */
1054 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1055 	    tp->urg_data == TCP_URG_READ)
1056 		return -EINVAL;	/* Yes this is right ! */
1057 
1058 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1059 		return -ENOTCONN;
1060 
1061 	if (tp->urg_data & TCP_URG_VALID) {
1062 		int err = 0;
1063 		char c = tp->urg_data;
1064 
1065 		if (!(flags & MSG_PEEK))
1066 			tp->urg_data = TCP_URG_READ;
1067 
1068 		/* Read urgent data. */
1069 		msg->msg_flags |= MSG_OOB;
1070 
1071 		if (len > 0) {
1072 			if (!(flags & MSG_TRUNC))
1073 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1074 			len = 1;
1075 		} else
1076 			msg->msg_flags |= MSG_TRUNC;
1077 
1078 		return err ? -EFAULT : len;
1079 	}
1080 
1081 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1082 		return 0;
1083 
1084 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1085 	 * the available implementations agree in this case:
1086 	 * this call should never block, independent of the
1087 	 * blocking state of the socket.
1088 	 * Mike <pall@rz.uni-karlsruhe.de>
1089 	 */
1090 	return -EAGAIN;
1091 }
1092 
1093 /* Clean up the receive buffer for full frames taken by the user,
1094  * then send an ACK if necessary.  COPIED is the number of bytes
1095  * tcp_recvmsg has given to the user so far, it speeds up the
1096  * calculation of whether or not we must ACK for the sake of
1097  * a window update.
1098  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1099 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1100 {
1101 	struct tcp_sock *tp = tcp_sk(sk);
1102 	int time_to_ack = 0;
1103 
1104 #if TCP_DEBUG
1105 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1106 
1107 	WARN_ON(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
1108 #endif
1109 
1110 	if (inet_csk_ack_scheduled(sk)) {
1111 		const struct inet_connection_sock *icsk = inet_csk(sk);
1112 		   /* Delayed ACKs frequently hit locked sockets during bulk
1113 		    * receive. */
1114 		if (icsk->icsk_ack.blocked ||
1115 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1116 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1117 		    /*
1118 		     * If this read emptied read buffer, we send ACK, if
1119 		     * connection is not bidirectional, user drained
1120 		     * receive buffer and there was a small segment
1121 		     * in queue.
1122 		     */
1123 		    (copied > 0 &&
1124 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1125 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1126 		       !icsk->icsk_ack.pingpong)) &&
1127 		      !atomic_read(&sk->sk_rmem_alloc)))
1128 			time_to_ack = 1;
1129 	}
1130 
1131 	/* We send an ACK if we can now advertise a non-zero window
1132 	 * which has been raised "significantly".
1133 	 *
1134 	 * Even if window raised up to infinity, do not send window open ACK
1135 	 * in states, where we will not receive more. It is useless.
1136 	 */
1137 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1138 		__u32 rcv_window_now = tcp_receive_window(tp);
1139 
1140 		/* Optimize, __tcp_select_window() is not cheap. */
1141 		if (2*rcv_window_now <= tp->window_clamp) {
1142 			__u32 new_window = __tcp_select_window(sk);
1143 
1144 			/* Send ACK now, if this read freed lots of space
1145 			 * in our buffer. Certainly, new_window is new window.
1146 			 * We can advertise it now, if it is not less than current one.
1147 			 * "Lots" means "at least twice" here.
1148 			 */
1149 			if (new_window && new_window >= 2 * rcv_window_now)
1150 				time_to_ack = 1;
1151 		}
1152 	}
1153 	if (time_to_ack)
1154 		tcp_send_ack(sk);
1155 }
1156 
tcp_prequeue_process(struct sock * sk)1157 static void tcp_prequeue_process(struct sock *sk)
1158 {
1159 	struct sk_buff *skb;
1160 	struct tcp_sock *tp = tcp_sk(sk);
1161 
1162 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1163 
1164 	/* RX process wants to run with disabled BHs, though it is not
1165 	 * necessary */
1166 	local_bh_disable();
1167 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1168 		sk_backlog_rcv(sk, skb);
1169 	local_bh_enable();
1170 
1171 	/* Clear memory counter. */
1172 	tp->ucopy.memory = 0;
1173 }
1174 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1175 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1176 {
1177 	struct sk_buff *skb;
1178 	u32 offset;
1179 
1180 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1181 		offset = seq - TCP_SKB_CB(skb)->seq;
1182 		if (tcp_hdr(skb)->syn)
1183 			offset--;
1184 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1185 			*off = offset;
1186 			return skb;
1187 		}
1188 	}
1189 	return NULL;
1190 }
1191 
1192 /*
1193  * This routine provides an alternative to tcp_recvmsg() for routines
1194  * that would like to handle copying from skbuffs directly in 'sendfile'
1195  * fashion.
1196  * Note:
1197  *	- It is assumed that the socket was locked by the caller.
1198  *	- The routine does not block.
1199  *	- At present, there is no support for reading OOB data
1200  *	  or for 'peeking' the socket using this routine
1201  *	  (although both would be easy to implement).
1202  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1203 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1204 		  sk_read_actor_t recv_actor)
1205 {
1206 	struct sk_buff *skb;
1207 	struct tcp_sock *tp = tcp_sk(sk);
1208 	u32 seq = tp->copied_seq;
1209 	u32 offset;
1210 	int copied = 0;
1211 
1212 	if (sk->sk_state == TCP_LISTEN)
1213 		return -ENOTCONN;
1214 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1215 		if (offset < skb->len) {
1216 			int used;
1217 			size_t len;
1218 
1219 			len = skb->len - offset;
1220 			/* Stop reading if we hit a patch of urgent data */
1221 			if (tp->urg_data) {
1222 				u32 urg_offset = tp->urg_seq - seq;
1223 				if (urg_offset < len)
1224 					len = urg_offset;
1225 				if (!len)
1226 					break;
1227 			}
1228 			used = recv_actor(desc, skb, offset, len);
1229 			if (used < 0) {
1230 				if (!copied)
1231 					copied = used;
1232 				break;
1233 			} else if (used <= len) {
1234 				seq += used;
1235 				copied += used;
1236 				offset += used;
1237 			}
1238 			/*
1239 			 * If recv_actor drops the lock (e.g. TCP splice
1240 			 * receive) the skb pointer might be invalid when
1241 			 * getting here: tcp_collapse might have deleted it
1242 			 * while aggregating skbs from the socket queue.
1243 			 */
1244 			skb = tcp_recv_skb(sk, seq-1, &offset);
1245 			if (!skb || (offset+1 != skb->len))
1246 				break;
1247 		}
1248 		if (tcp_hdr(skb)->fin) {
1249 			sk_eat_skb(sk, skb, 0);
1250 			++seq;
1251 			break;
1252 		}
1253 		sk_eat_skb(sk, skb, 0);
1254 		if (!desc->count)
1255 			break;
1256 	}
1257 	tp->copied_seq = seq;
1258 
1259 	tcp_rcv_space_adjust(sk);
1260 
1261 	/* Clean up data we have read: This will do ACK frames. */
1262 	if (copied > 0)
1263 		tcp_cleanup_rbuf(sk, copied);
1264 	return copied;
1265 }
1266 
1267 /*
1268  *	This routine copies from a sock struct into the user buffer.
1269  *
1270  *	Technical note: in 2.3 we work on _locked_ socket, so that
1271  *	tricks with *seq access order and skb->users are not required.
1272  *	Probably, code can be easily improved even more.
1273  */
1274 
tcp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1275 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1276 		size_t len, int nonblock, int flags, int *addr_len)
1277 {
1278 	struct tcp_sock *tp = tcp_sk(sk);
1279 	int copied = 0;
1280 	u32 peek_seq;
1281 	u32 *seq;
1282 	unsigned long used;
1283 	int err;
1284 	int target;		/* Read at least this many bytes */
1285 	long timeo;
1286 	struct task_struct *user_recv = NULL;
1287 	int copied_early = 0;
1288 	struct sk_buff *skb;
1289 
1290 	lock_sock(sk);
1291 
1292 	TCP_CHECK_TIMER(sk);
1293 
1294 	err = -ENOTCONN;
1295 	if (sk->sk_state == TCP_LISTEN)
1296 		goto out;
1297 
1298 	timeo = sock_rcvtimeo(sk, nonblock);
1299 
1300 	/* Urgent data needs to be handled specially. */
1301 	if (flags & MSG_OOB)
1302 		goto recv_urg;
1303 
1304 	seq = &tp->copied_seq;
1305 	if (flags & MSG_PEEK) {
1306 		peek_seq = tp->copied_seq;
1307 		seq = &peek_seq;
1308 	}
1309 
1310 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1311 
1312 #ifdef CONFIG_NET_DMA
1313 	tp->ucopy.dma_chan = NULL;
1314 	preempt_disable();
1315 	skb = skb_peek_tail(&sk->sk_receive_queue);
1316 	{
1317 		int available = 0;
1318 
1319 		if (skb)
1320 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1321 		if ((available < target) &&
1322 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1323 		    !sysctl_tcp_low_latency &&
1324 		    dma_find_channel(DMA_MEMCPY)) {
1325 			preempt_enable_no_resched();
1326 			tp->ucopy.pinned_list =
1327 					dma_pin_iovec_pages(msg->msg_iov, len);
1328 		} else {
1329 			preempt_enable_no_resched();
1330 		}
1331 	}
1332 #endif
1333 
1334 	do {
1335 		u32 offset;
1336 
1337 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1338 		if (tp->urg_data && tp->urg_seq == *seq) {
1339 			if (copied)
1340 				break;
1341 			if (signal_pending(current)) {
1342 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1343 				break;
1344 			}
1345 		}
1346 
1347 		/* Next get a buffer. */
1348 
1349 		skb = skb_peek(&sk->sk_receive_queue);
1350 		do {
1351 			if (!skb)
1352 				break;
1353 
1354 			/* Now that we have two receive queues this
1355 			 * shouldn't happen.
1356 			 */
1357 			if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1358 				printk(KERN_INFO "recvmsg bug: copied %X "
1359 				       "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1360 				break;
1361 			}
1362 			offset = *seq - TCP_SKB_CB(skb)->seq;
1363 			if (tcp_hdr(skb)->syn)
1364 				offset--;
1365 			if (offset < skb->len)
1366 				goto found_ok_skb;
1367 			if (tcp_hdr(skb)->fin)
1368 				goto found_fin_ok;
1369 			WARN_ON(!(flags & MSG_PEEK));
1370 			skb = skb->next;
1371 		} while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1372 
1373 		/* Well, if we have backlog, try to process it now yet. */
1374 
1375 		if (copied >= target && !sk->sk_backlog.tail)
1376 			break;
1377 
1378 		if (copied) {
1379 			if (sk->sk_err ||
1380 			    sk->sk_state == TCP_CLOSE ||
1381 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1382 			    !timeo ||
1383 			    signal_pending(current))
1384 				break;
1385 		} else {
1386 			if (sock_flag(sk, SOCK_DONE))
1387 				break;
1388 
1389 			if (sk->sk_err) {
1390 				copied = sock_error(sk);
1391 				break;
1392 			}
1393 
1394 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1395 				break;
1396 
1397 			if (sk->sk_state == TCP_CLOSE) {
1398 				if (!sock_flag(sk, SOCK_DONE)) {
1399 					/* This occurs when user tries to read
1400 					 * from never connected socket.
1401 					 */
1402 					copied = -ENOTCONN;
1403 					break;
1404 				}
1405 				break;
1406 			}
1407 
1408 			if (!timeo) {
1409 				copied = -EAGAIN;
1410 				break;
1411 			}
1412 
1413 			if (signal_pending(current)) {
1414 				copied = sock_intr_errno(timeo);
1415 				break;
1416 			}
1417 		}
1418 
1419 		tcp_cleanup_rbuf(sk, copied);
1420 
1421 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1422 			/* Install new reader */
1423 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1424 				user_recv = current;
1425 				tp->ucopy.task = user_recv;
1426 				tp->ucopy.iov = msg->msg_iov;
1427 			}
1428 
1429 			tp->ucopy.len = len;
1430 
1431 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1432 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1433 
1434 			/* Ugly... If prequeue is not empty, we have to
1435 			 * process it before releasing socket, otherwise
1436 			 * order will be broken at second iteration.
1437 			 * More elegant solution is required!!!
1438 			 *
1439 			 * Look: we have the following (pseudo)queues:
1440 			 *
1441 			 * 1. packets in flight
1442 			 * 2. backlog
1443 			 * 3. prequeue
1444 			 * 4. receive_queue
1445 			 *
1446 			 * Each queue can be processed only if the next ones
1447 			 * are empty. At this point we have empty receive_queue.
1448 			 * But prequeue _can_ be not empty after 2nd iteration,
1449 			 * when we jumped to start of loop because backlog
1450 			 * processing added something to receive_queue.
1451 			 * We cannot release_sock(), because backlog contains
1452 			 * packets arrived _after_ prequeued ones.
1453 			 *
1454 			 * Shortly, algorithm is clear --- to process all
1455 			 * the queues in order. We could make it more directly,
1456 			 * requeueing packets from backlog to prequeue, if
1457 			 * is not empty. It is more elegant, but eats cycles,
1458 			 * unfortunately.
1459 			 */
1460 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1461 				goto do_prequeue;
1462 
1463 			/* __ Set realtime policy in scheduler __ */
1464 		}
1465 
1466 		if (copied >= target) {
1467 			/* Do not sleep, just process backlog. */
1468 			release_sock(sk);
1469 			lock_sock(sk);
1470 		} else
1471 			sk_wait_data(sk, &timeo);
1472 
1473 #ifdef CONFIG_NET_DMA
1474 		tp->ucopy.wakeup = 0;
1475 #endif
1476 
1477 		if (user_recv) {
1478 			int chunk;
1479 
1480 			/* __ Restore normal policy in scheduler __ */
1481 
1482 			if ((chunk = len - tp->ucopy.len) != 0) {
1483 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1484 				len -= chunk;
1485 				copied += chunk;
1486 			}
1487 
1488 			if (tp->rcv_nxt == tp->copied_seq &&
1489 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1490 do_prequeue:
1491 				tcp_prequeue_process(sk);
1492 
1493 				if ((chunk = len - tp->ucopy.len) != 0) {
1494 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1495 					len -= chunk;
1496 					copied += chunk;
1497 				}
1498 			}
1499 		}
1500 		if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1501 			if (net_ratelimit())
1502 				printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1503 				       current->comm, task_pid_nr(current));
1504 			peek_seq = tp->copied_seq;
1505 		}
1506 		continue;
1507 
1508 	found_ok_skb:
1509 		/* Ok so how much can we use? */
1510 		used = skb->len - offset;
1511 		if (len < used)
1512 			used = len;
1513 
1514 		/* Do we have urgent data here? */
1515 		if (tp->urg_data) {
1516 			u32 urg_offset = tp->urg_seq - *seq;
1517 			if (urg_offset < used) {
1518 				if (!urg_offset) {
1519 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1520 						++*seq;
1521 						offset++;
1522 						used--;
1523 						if (!used)
1524 							goto skip_copy;
1525 					}
1526 				} else
1527 					used = urg_offset;
1528 			}
1529 		}
1530 
1531 		if (!(flags & MSG_TRUNC)) {
1532 #ifdef CONFIG_NET_DMA
1533 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1534 				tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1535 
1536 			if (tp->ucopy.dma_chan) {
1537 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1538 					tp->ucopy.dma_chan, skb, offset,
1539 					msg->msg_iov, used,
1540 					tp->ucopy.pinned_list);
1541 
1542 				if (tp->ucopy.dma_cookie < 0) {
1543 
1544 					printk(KERN_ALERT "dma_cookie < 0\n");
1545 
1546 					/* Exception. Bailout! */
1547 					if (!copied)
1548 						copied = -EFAULT;
1549 					break;
1550 				}
1551 				if ((offset + used) == skb->len)
1552 					copied_early = 1;
1553 
1554 			} else
1555 #endif
1556 			{
1557 				err = skb_copy_datagram_iovec(skb, offset,
1558 						msg->msg_iov, used);
1559 				if (err) {
1560 					/* Exception. Bailout! */
1561 					if (!copied)
1562 						copied = -EFAULT;
1563 					break;
1564 				}
1565 			}
1566 		}
1567 
1568 		*seq += used;
1569 		copied += used;
1570 		len -= used;
1571 
1572 		tcp_rcv_space_adjust(sk);
1573 
1574 skip_copy:
1575 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1576 			tp->urg_data = 0;
1577 			tcp_fast_path_check(sk);
1578 		}
1579 		if (used + offset < skb->len)
1580 			continue;
1581 
1582 		if (tcp_hdr(skb)->fin)
1583 			goto found_fin_ok;
1584 		if (!(flags & MSG_PEEK)) {
1585 			sk_eat_skb(sk, skb, copied_early);
1586 			copied_early = 0;
1587 		}
1588 		continue;
1589 
1590 	found_fin_ok:
1591 		/* Process the FIN. */
1592 		++*seq;
1593 		if (!(flags & MSG_PEEK)) {
1594 			sk_eat_skb(sk, skb, copied_early);
1595 			copied_early = 0;
1596 		}
1597 		break;
1598 	} while (len > 0);
1599 
1600 	if (user_recv) {
1601 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1602 			int chunk;
1603 
1604 			tp->ucopy.len = copied > 0 ? len : 0;
1605 
1606 			tcp_prequeue_process(sk);
1607 
1608 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1609 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1610 				len -= chunk;
1611 				copied += chunk;
1612 			}
1613 		}
1614 
1615 		tp->ucopy.task = NULL;
1616 		tp->ucopy.len = 0;
1617 	}
1618 
1619 #ifdef CONFIG_NET_DMA
1620 	if (tp->ucopy.dma_chan) {
1621 		dma_cookie_t done, used;
1622 
1623 		dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1624 
1625 		while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1626 						 tp->ucopy.dma_cookie, &done,
1627 						 &used) == DMA_IN_PROGRESS) {
1628 			/* do partial cleanup of sk_async_wait_queue */
1629 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1630 			       (dma_async_is_complete(skb->dma_cookie, done,
1631 						      used) == DMA_SUCCESS)) {
1632 				__skb_dequeue(&sk->sk_async_wait_queue);
1633 				kfree_skb(skb);
1634 			}
1635 		}
1636 
1637 		/* Safe to free early-copied skbs now */
1638 		__skb_queue_purge(&sk->sk_async_wait_queue);
1639 		tp->ucopy.dma_chan = NULL;
1640 	}
1641 	if (tp->ucopy.pinned_list) {
1642 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1643 		tp->ucopy.pinned_list = NULL;
1644 	}
1645 #endif
1646 
1647 	/* According to UNIX98, msg_name/msg_namelen are ignored
1648 	 * on connected socket. I was just happy when found this 8) --ANK
1649 	 */
1650 
1651 	/* Clean up data we have read: This will do ACK frames. */
1652 	tcp_cleanup_rbuf(sk, copied);
1653 
1654 	TCP_CHECK_TIMER(sk);
1655 	release_sock(sk);
1656 	return copied;
1657 
1658 out:
1659 	TCP_CHECK_TIMER(sk);
1660 	release_sock(sk);
1661 	return err;
1662 
1663 recv_urg:
1664 	err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1665 	goto out;
1666 }
1667 
tcp_set_state(struct sock * sk,int state)1668 void tcp_set_state(struct sock *sk, int state)
1669 {
1670 	int oldstate = sk->sk_state;
1671 
1672 	switch (state) {
1673 	case TCP_ESTABLISHED:
1674 		if (oldstate != TCP_ESTABLISHED)
1675 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1676 		break;
1677 
1678 	case TCP_CLOSE:
1679 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1680 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1681 
1682 		sk->sk_prot->unhash(sk);
1683 		if (inet_csk(sk)->icsk_bind_hash &&
1684 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1685 			inet_put_port(sk);
1686 		/* fall through */
1687 	default:
1688 		if (oldstate == TCP_ESTABLISHED)
1689 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1690 	}
1691 
1692 	/* Change state AFTER socket is unhashed to avoid closed
1693 	 * socket sitting in hash tables.
1694 	 */
1695 	sk->sk_state = state;
1696 
1697 #ifdef STATE_TRACE
1698 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1699 #endif
1700 }
1701 EXPORT_SYMBOL_GPL(tcp_set_state);
1702 
1703 /*
1704  *	State processing on a close. This implements the state shift for
1705  *	sending our FIN frame. Note that we only send a FIN for some
1706  *	states. A shutdown() may have already sent the FIN, or we may be
1707  *	closed.
1708  */
1709 
1710 static const unsigned char new_state[16] = {
1711   /* current state:        new state:      action:	*/
1712   /* (Invalid)		*/ TCP_CLOSE,
1713   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1714   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1715   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1716   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1717   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1718   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1719   /* TCP_CLOSE		*/ TCP_CLOSE,
1720   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1721   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1722   /* TCP_LISTEN		*/ TCP_CLOSE,
1723   /* TCP_CLOSING	*/ TCP_CLOSING,
1724 };
1725 
tcp_close_state(struct sock * sk)1726 static int tcp_close_state(struct sock *sk)
1727 {
1728 	int next = (int)new_state[sk->sk_state];
1729 	int ns = next & TCP_STATE_MASK;
1730 
1731 	tcp_set_state(sk, ns);
1732 
1733 	return next & TCP_ACTION_FIN;
1734 }
1735 
1736 /*
1737  *	Shutdown the sending side of a connection. Much like close except
1738  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1739  */
1740 
tcp_shutdown(struct sock * sk,int how)1741 void tcp_shutdown(struct sock *sk, int how)
1742 {
1743 	/*	We need to grab some memory, and put together a FIN,
1744 	 *	and then put it into the queue to be sent.
1745 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1746 	 */
1747 	if (!(how & SEND_SHUTDOWN))
1748 		return;
1749 
1750 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1751 	if ((1 << sk->sk_state) &
1752 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1753 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1754 		/* Clear out any half completed packets.  FIN if needed. */
1755 		if (tcp_close_state(sk))
1756 			tcp_send_fin(sk);
1757 	}
1758 }
1759 
tcp_close(struct sock * sk,long timeout)1760 void tcp_close(struct sock *sk, long timeout)
1761 {
1762 	struct sk_buff *skb;
1763 	int data_was_unread = 0;
1764 	int state;
1765 
1766 	lock_sock(sk);
1767 	sk->sk_shutdown = SHUTDOWN_MASK;
1768 
1769 	if (sk->sk_state == TCP_LISTEN) {
1770 		tcp_set_state(sk, TCP_CLOSE);
1771 
1772 		/* Special case. */
1773 		inet_csk_listen_stop(sk);
1774 
1775 		goto adjudge_to_death;
1776 	}
1777 
1778 	/*  We need to flush the recv. buffs.  We do this only on the
1779 	 *  descriptor close, not protocol-sourced closes, because the
1780 	 *  reader process may not have drained the data yet!
1781 	 */
1782 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1783 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1784 			  tcp_hdr(skb)->fin;
1785 		data_was_unread += len;
1786 		__kfree_skb(skb);
1787 	}
1788 
1789 	sk_mem_reclaim(sk);
1790 
1791 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
1792 	 * data was lost. To witness the awful effects of the old behavior of
1793 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1794 	 * GET in an FTP client, suspend the process, wait for the client to
1795 	 * advertise a zero window, then kill -9 the FTP client, wheee...
1796 	 * Note: timeout is always zero in such a case.
1797 	 */
1798 	if (data_was_unread) {
1799 		/* Unread data was tossed, zap the connection. */
1800 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
1801 		tcp_set_state(sk, TCP_CLOSE);
1802 		tcp_send_active_reset(sk, GFP_KERNEL);
1803 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1804 		/* Check zero linger _after_ checking for unread data. */
1805 		sk->sk_prot->disconnect(sk, 0);
1806 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
1807 	} else if (tcp_close_state(sk)) {
1808 		/* We FIN if the application ate all the data before
1809 		 * zapping the connection.
1810 		 */
1811 
1812 		/* RED-PEN. Formally speaking, we have broken TCP state
1813 		 * machine. State transitions:
1814 		 *
1815 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1816 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
1817 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1818 		 *
1819 		 * are legal only when FIN has been sent (i.e. in window),
1820 		 * rather than queued out of window. Purists blame.
1821 		 *
1822 		 * F.e. "RFC state" is ESTABLISHED,
1823 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1824 		 *
1825 		 * The visible declinations are that sometimes
1826 		 * we enter time-wait state, when it is not required really
1827 		 * (harmless), do not send active resets, when they are
1828 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1829 		 * they look as CLOSING or LAST_ACK for Linux)
1830 		 * Probably, I missed some more holelets.
1831 		 * 						--ANK
1832 		 */
1833 		tcp_send_fin(sk);
1834 	}
1835 
1836 	sk_stream_wait_close(sk, timeout);
1837 
1838 adjudge_to_death:
1839 	state = sk->sk_state;
1840 	sock_hold(sk);
1841 	sock_orphan(sk);
1842 
1843 	/* It is the last release_sock in its life. It will remove backlog. */
1844 	release_sock(sk);
1845 
1846 
1847 	/* Now socket is owned by kernel and we acquire BH lock
1848 	   to finish close. No need to check for user refs.
1849 	 */
1850 	local_bh_disable();
1851 	bh_lock_sock(sk);
1852 	WARN_ON(sock_owned_by_user(sk));
1853 
1854 	percpu_counter_inc(sk->sk_prot->orphan_count);
1855 
1856 	/* Have we already been destroyed by a softirq or backlog? */
1857 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1858 		goto out;
1859 
1860 	/*	This is a (useful) BSD violating of the RFC. There is a
1861 	 *	problem with TCP as specified in that the other end could
1862 	 *	keep a socket open forever with no application left this end.
1863 	 *	We use a 3 minute timeout (about the same as BSD) then kill
1864 	 *	our end. If they send after that then tough - BUT: long enough
1865 	 *	that we won't make the old 4*rto = almost no time - whoops
1866 	 *	reset mistake.
1867 	 *
1868 	 *	Nope, it was not mistake. It is really desired behaviour
1869 	 *	f.e. on http servers, when such sockets are useless, but
1870 	 *	consume significant resources. Let's do it with special
1871 	 *	linger2	option.					--ANK
1872 	 */
1873 
1874 	if (sk->sk_state == TCP_FIN_WAIT2) {
1875 		struct tcp_sock *tp = tcp_sk(sk);
1876 		if (tp->linger2 < 0) {
1877 			tcp_set_state(sk, TCP_CLOSE);
1878 			tcp_send_active_reset(sk, GFP_ATOMIC);
1879 			NET_INC_STATS_BH(sock_net(sk),
1880 					LINUX_MIB_TCPABORTONLINGER);
1881 		} else {
1882 			const int tmo = tcp_fin_time(sk);
1883 
1884 			if (tmo > TCP_TIMEWAIT_LEN) {
1885 				inet_csk_reset_keepalive_timer(sk,
1886 						tmo - TCP_TIMEWAIT_LEN);
1887 			} else {
1888 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1889 				goto out;
1890 			}
1891 		}
1892 	}
1893 	if (sk->sk_state != TCP_CLOSE) {
1894 		int orphan_count = percpu_counter_read_positive(
1895 						sk->sk_prot->orphan_count);
1896 
1897 		sk_mem_reclaim(sk);
1898 		if (tcp_too_many_orphans(sk, orphan_count)) {
1899 			if (net_ratelimit())
1900 				printk(KERN_INFO "TCP: too many of orphaned "
1901 				       "sockets\n");
1902 			tcp_set_state(sk, TCP_CLOSE);
1903 			tcp_send_active_reset(sk, GFP_ATOMIC);
1904 			NET_INC_STATS_BH(sock_net(sk),
1905 					LINUX_MIB_TCPABORTONMEMORY);
1906 		}
1907 	}
1908 
1909 	if (sk->sk_state == TCP_CLOSE)
1910 		inet_csk_destroy_sock(sk);
1911 	/* Otherwise, socket is reprieved until protocol close. */
1912 
1913 out:
1914 	bh_unlock_sock(sk);
1915 	local_bh_enable();
1916 	sock_put(sk);
1917 }
1918 
1919 /* These states need RST on ABORT according to RFC793 */
1920 
tcp_need_reset(int state)1921 static inline int tcp_need_reset(int state)
1922 {
1923 	return (1 << state) &
1924 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1925 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1926 }
1927 
tcp_disconnect(struct sock * sk,int flags)1928 int tcp_disconnect(struct sock *sk, int flags)
1929 {
1930 	struct inet_sock *inet = inet_sk(sk);
1931 	struct inet_connection_sock *icsk = inet_csk(sk);
1932 	struct tcp_sock *tp = tcp_sk(sk);
1933 	int err = 0;
1934 	int old_state = sk->sk_state;
1935 
1936 	if (old_state != TCP_CLOSE)
1937 		tcp_set_state(sk, TCP_CLOSE);
1938 
1939 	/* ABORT function of RFC793 */
1940 	if (old_state == TCP_LISTEN) {
1941 		inet_csk_listen_stop(sk);
1942 	} else if (tcp_need_reset(old_state) ||
1943 		   (tp->snd_nxt != tp->write_seq &&
1944 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1945 		/* The last check adjusts for discrepancy of Linux wrt. RFC
1946 		 * states
1947 		 */
1948 		tcp_send_active_reset(sk, gfp_any());
1949 		sk->sk_err = ECONNRESET;
1950 	} else if (old_state == TCP_SYN_SENT)
1951 		sk->sk_err = ECONNRESET;
1952 
1953 	tcp_clear_xmit_timers(sk);
1954 	__skb_queue_purge(&sk->sk_receive_queue);
1955 	tcp_write_queue_purge(sk);
1956 	__skb_queue_purge(&tp->out_of_order_queue);
1957 #ifdef CONFIG_NET_DMA
1958 	__skb_queue_purge(&sk->sk_async_wait_queue);
1959 #endif
1960 
1961 	inet->dport = 0;
1962 
1963 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1964 		inet_reset_saddr(sk);
1965 
1966 	sk->sk_shutdown = 0;
1967 	sock_reset_flag(sk, SOCK_DONE);
1968 	tp->srtt = 0;
1969 	if ((tp->write_seq += tp->max_window + 2) == 0)
1970 		tp->write_seq = 1;
1971 	icsk->icsk_backoff = 0;
1972 	tp->snd_cwnd = 2;
1973 	icsk->icsk_probes_out = 0;
1974 	tp->packets_out = 0;
1975 	tp->snd_ssthresh = 0x7fffffff;
1976 	tp->snd_cwnd_cnt = 0;
1977 	tp->bytes_acked = 0;
1978 	tcp_set_ca_state(sk, TCP_CA_Open);
1979 	tcp_clear_retrans(tp);
1980 	inet_csk_delack_init(sk);
1981 	tcp_init_send_head(sk);
1982 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1983 	__sk_dst_reset(sk);
1984 
1985 	WARN_ON(inet->num && !icsk->icsk_bind_hash);
1986 
1987 	sk->sk_error_report(sk);
1988 	return err;
1989 }
1990 
1991 /*
1992  *	Socket option code for TCP.
1993  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,int optlen)1994 static int do_tcp_setsockopt(struct sock *sk, int level,
1995 		int optname, char __user *optval, int optlen)
1996 {
1997 	struct tcp_sock *tp = tcp_sk(sk);
1998 	struct inet_connection_sock *icsk = inet_csk(sk);
1999 	int val;
2000 	int err = 0;
2001 
2002 	/* This is a string value all the others are int's */
2003 	if (optname == TCP_CONGESTION) {
2004 		char name[TCP_CA_NAME_MAX];
2005 
2006 		if (optlen < 1)
2007 			return -EINVAL;
2008 
2009 		val = strncpy_from_user(name, optval,
2010 					min(TCP_CA_NAME_MAX-1, optlen));
2011 		if (val < 0)
2012 			return -EFAULT;
2013 		name[val] = 0;
2014 
2015 		lock_sock(sk);
2016 		err = tcp_set_congestion_control(sk, name);
2017 		release_sock(sk);
2018 		return err;
2019 	}
2020 
2021 	if (optlen < sizeof(int))
2022 		return -EINVAL;
2023 
2024 	if (get_user(val, (int __user *)optval))
2025 		return -EFAULT;
2026 
2027 	lock_sock(sk);
2028 
2029 	switch (optname) {
2030 	case TCP_MAXSEG:
2031 		/* Values greater than interface MTU won't take effect. However
2032 		 * at the point when this call is done we typically don't yet
2033 		 * know which interface is going to be used */
2034 		if (val < 8 || val > MAX_TCP_WINDOW) {
2035 			err = -EINVAL;
2036 			break;
2037 		}
2038 		tp->rx_opt.user_mss = val;
2039 		break;
2040 
2041 	case TCP_NODELAY:
2042 		if (val) {
2043 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2044 			 * this option on corked socket is remembered, but
2045 			 * it is not activated until cork is cleared.
2046 			 *
2047 			 * However, when TCP_NODELAY is set we make
2048 			 * an explicit push, which overrides even TCP_CORK
2049 			 * for currently queued segments.
2050 			 */
2051 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2052 			tcp_push_pending_frames(sk);
2053 		} else {
2054 			tp->nonagle &= ~TCP_NAGLE_OFF;
2055 		}
2056 		break;
2057 
2058 	case TCP_CORK:
2059 		/* When set indicates to always queue non-full frames.
2060 		 * Later the user clears this option and we transmit
2061 		 * any pending partial frames in the queue.  This is
2062 		 * meant to be used alongside sendfile() to get properly
2063 		 * filled frames when the user (for example) must write
2064 		 * out headers with a write() call first and then use
2065 		 * sendfile to send out the data parts.
2066 		 *
2067 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2068 		 * stronger than TCP_NODELAY.
2069 		 */
2070 		if (val) {
2071 			tp->nonagle |= TCP_NAGLE_CORK;
2072 		} else {
2073 			tp->nonagle &= ~TCP_NAGLE_CORK;
2074 			if (tp->nonagle&TCP_NAGLE_OFF)
2075 				tp->nonagle |= TCP_NAGLE_PUSH;
2076 			tcp_push_pending_frames(sk);
2077 		}
2078 		break;
2079 
2080 	case TCP_KEEPIDLE:
2081 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2082 			err = -EINVAL;
2083 		else {
2084 			tp->keepalive_time = val * HZ;
2085 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2086 			    !((1 << sk->sk_state) &
2087 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2088 				__u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
2089 				if (tp->keepalive_time > elapsed)
2090 					elapsed = tp->keepalive_time - elapsed;
2091 				else
2092 					elapsed = 0;
2093 				inet_csk_reset_keepalive_timer(sk, elapsed);
2094 			}
2095 		}
2096 		break;
2097 	case TCP_KEEPINTVL:
2098 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2099 			err = -EINVAL;
2100 		else
2101 			tp->keepalive_intvl = val * HZ;
2102 		break;
2103 	case TCP_KEEPCNT:
2104 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2105 			err = -EINVAL;
2106 		else
2107 			tp->keepalive_probes = val;
2108 		break;
2109 	case TCP_SYNCNT:
2110 		if (val < 1 || val > MAX_TCP_SYNCNT)
2111 			err = -EINVAL;
2112 		else
2113 			icsk->icsk_syn_retries = val;
2114 		break;
2115 
2116 	case TCP_LINGER2:
2117 		if (val < 0)
2118 			tp->linger2 = -1;
2119 		else if (val > sysctl_tcp_fin_timeout / HZ)
2120 			tp->linger2 = 0;
2121 		else
2122 			tp->linger2 = val * HZ;
2123 		break;
2124 
2125 	case TCP_DEFER_ACCEPT:
2126 		icsk->icsk_accept_queue.rskq_defer_accept = 0;
2127 		if (val > 0) {
2128 			/* Translate value in seconds to number of
2129 			 * retransmits */
2130 			while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
2131 			       val > ((TCP_TIMEOUT_INIT / HZ) <<
2132 				       icsk->icsk_accept_queue.rskq_defer_accept))
2133 				icsk->icsk_accept_queue.rskq_defer_accept++;
2134 			icsk->icsk_accept_queue.rskq_defer_accept++;
2135 		}
2136 		break;
2137 
2138 	case TCP_WINDOW_CLAMP:
2139 		if (!val) {
2140 			if (sk->sk_state != TCP_CLOSE) {
2141 				err = -EINVAL;
2142 				break;
2143 			}
2144 			tp->window_clamp = 0;
2145 		} else
2146 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2147 						SOCK_MIN_RCVBUF / 2 : val;
2148 		break;
2149 
2150 	case TCP_QUICKACK:
2151 		if (!val) {
2152 			icsk->icsk_ack.pingpong = 1;
2153 		} else {
2154 			icsk->icsk_ack.pingpong = 0;
2155 			if ((1 << sk->sk_state) &
2156 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2157 			    inet_csk_ack_scheduled(sk)) {
2158 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2159 				tcp_cleanup_rbuf(sk, 1);
2160 				if (!(val & 1))
2161 					icsk->icsk_ack.pingpong = 1;
2162 			}
2163 		}
2164 		break;
2165 
2166 #ifdef CONFIG_TCP_MD5SIG
2167 	case TCP_MD5SIG:
2168 		/* Read the IP->Key mappings from userspace */
2169 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2170 		break;
2171 #endif
2172 
2173 	default:
2174 		err = -ENOPROTOOPT;
2175 		break;
2176 	}
2177 
2178 	release_sock(sk);
2179 	return err;
2180 }
2181 
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,int optlen)2182 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2183 		   int optlen)
2184 {
2185 	struct inet_connection_sock *icsk = inet_csk(sk);
2186 
2187 	if (level != SOL_TCP)
2188 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2189 						     optval, optlen);
2190 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2191 }
2192 
2193 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,int optlen)2194 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2195 			  char __user *optval, int optlen)
2196 {
2197 	if (level != SOL_TCP)
2198 		return inet_csk_compat_setsockopt(sk, level, optname,
2199 						  optval, optlen);
2200 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2201 }
2202 
2203 EXPORT_SYMBOL(compat_tcp_setsockopt);
2204 #endif
2205 
2206 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)2207 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2208 {
2209 	struct tcp_sock *tp = tcp_sk(sk);
2210 	const struct inet_connection_sock *icsk = inet_csk(sk);
2211 	u32 now = tcp_time_stamp;
2212 
2213 	memset(info, 0, sizeof(*info));
2214 
2215 	info->tcpi_state = sk->sk_state;
2216 	info->tcpi_ca_state = icsk->icsk_ca_state;
2217 	info->tcpi_retransmits = icsk->icsk_retransmits;
2218 	info->tcpi_probes = icsk->icsk_probes_out;
2219 	info->tcpi_backoff = icsk->icsk_backoff;
2220 
2221 	if (tp->rx_opt.tstamp_ok)
2222 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2223 	if (tcp_is_sack(tp))
2224 		info->tcpi_options |= TCPI_OPT_SACK;
2225 	if (tp->rx_opt.wscale_ok) {
2226 		info->tcpi_options |= TCPI_OPT_WSCALE;
2227 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2228 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2229 	}
2230 
2231 	if (tp->ecn_flags&TCP_ECN_OK)
2232 		info->tcpi_options |= TCPI_OPT_ECN;
2233 
2234 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2235 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2236 	info->tcpi_snd_mss = tp->mss_cache;
2237 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2238 
2239 	if (sk->sk_state == TCP_LISTEN) {
2240 		info->tcpi_unacked = sk->sk_ack_backlog;
2241 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2242 	} else {
2243 		info->tcpi_unacked = tp->packets_out;
2244 		info->tcpi_sacked = tp->sacked_out;
2245 	}
2246 	info->tcpi_lost = tp->lost_out;
2247 	info->tcpi_retrans = tp->retrans_out;
2248 	info->tcpi_fackets = tp->fackets_out;
2249 
2250 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2251 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2252 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2253 
2254 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2255 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2256 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2257 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2258 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2259 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2260 	info->tcpi_advmss = tp->advmss;
2261 	info->tcpi_reordering = tp->reordering;
2262 
2263 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2264 	info->tcpi_rcv_space = tp->rcvq_space.space;
2265 
2266 	info->tcpi_total_retrans = tp->total_retrans;
2267 }
2268 
2269 EXPORT_SYMBOL_GPL(tcp_get_info);
2270 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2271 static int do_tcp_getsockopt(struct sock *sk, int level,
2272 		int optname, char __user *optval, int __user *optlen)
2273 {
2274 	struct inet_connection_sock *icsk = inet_csk(sk);
2275 	struct tcp_sock *tp = tcp_sk(sk);
2276 	int val, len;
2277 
2278 	if (get_user(len, optlen))
2279 		return -EFAULT;
2280 
2281 	len = min_t(unsigned int, len, sizeof(int));
2282 
2283 	if (len < 0)
2284 		return -EINVAL;
2285 
2286 	switch (optname) {
2287 	case TCP_MAXSEG:
2288 		val = tp->mss_cache;
2289 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2290 			val = tp->rx_opt.user_mss;
2291 		break;
2292 	case TCP_NODELAY:
2293 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2294 		break;
2295 	case TCP_CORK:
2296 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2297 		break;
2298 	case TCP_KEEPIDLE:
2299 		val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2300 		break;
2301 	case TCP_KEEPINTVL:
2302 		val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2303 		break;
2304 	case TCP_KEEPCNT:
2305 		val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2306 		break;
2307 	case TCP_SYNCNT:
2308 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2309 		break;
2310 	case TCP_LINGER2:
2311 		val = tp->linger2;
2312 		if (val >= 0)
2313 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2314 		break;
2315 	case TCP_DEFER_ACCEPT:
2316 		val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2317 			((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2318 		break;
2319 	case TCP_WINDOW_CLAMP:
2320 		val = tp->window_clamp;
2321 		break;
2322 	case TCP_INFO: {
2323 		struct tcp_info info;
2324 
2325 		if (get_user(len, optlen))
2326 			return -EFAULT;
2327 
2328 		tcp_get_info(sk, &info);
2329 
2330 		len = min_t(unsigned int, len, sizeof(info));
2331 		if (put_user(len, optlen))
2332 			return -EFAULT;
2333 		if (copy_to_user(optval, &info, len))
2334 			return -EFAULT;
2335 		return 0;
2336 	}
2337 	case TCP_QUICKACK:
2338 		val = !icsk->icsk_ack.pingpong;
2339 		break;
2340 
2341 	case TCP_CONGESTION:
2342 		if (get_user(len, optlen))
2343 			return -EFAULT;
2344 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2345 		if (put_user(len, optlen))
2346 			return -EFAULT;
2347 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2348 			return -EFAULT;
2349 		return 0;
2350 	default:
2351 		return -ENOPROTOOPT;
2352 	}
2353 
2354 	if (put_user(len, optlen))
2355 		return -EFAULT;
2356 	if (copy_to_user(optval, &val, len))
2357 		return -EFAULT;
2358 	return 0;
2359 }
2360 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2361 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2362 		   int __user *optlen)
2363 {
2364 	struct inet_connection_sock *icsk = inet_csk(sk);
2365 
2366 	if (level != SOL_TCP)
2367 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2368 						     optval, optlen);
2369 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2370 }
2371 
2372 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2373 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2374 			  char __user *optval, int __user *optlen)
2375 {
2376 	if (level != SOL_TCP)
2377 		return inet_csk_compat_getsockopt(sk, level, optname,
2378 						  optval, optlen);
2379 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2380 }
2381 
2382 EXPORT_SYMBOL(compat_tcp_getsockopt);
2383 #endif
2384 
tcp_tso_segment(struct sk_buff * skb,int features)2385 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2386 {
2387 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2388 	struct tcphdr *th;
2389 	unsigned thlen;
2390 	unsigned int seq;
2391 	__be32 delta;
2392 	unsigned int oldlen;
2393 	unsigned int mss;
2394 
2395 	if (!pskb_may_pull(skb, sizeof(*th)))
2396 		goto out;
2397 
2398 	th = tcp_hdr(skb);
2399 	thlen = th->doff * 4;
2400 	if (thlen < sizeof(*th))
2401 		goto out;
2402 
2403 	if (!pskb_may_pull(skb, thlen))
2404 		goto out;
2405 
2406 	oldlen = (u16)~skb->len;
2407 	__skb_pull(skb, thlen);
2408 
2409 	mss = skb_shinfo(skb)->gso_size;
2410 	if (unlikely(skb->len <= mss))
2411 		goto out;
2412 
2413 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2414 		/* Packet is from an untrusted source, reset gso_segs. */
2415 		int type = skb_shinfo(skb)->gso_type;
2416 
2417 		if (unlikely(type &
2418 			     ~(SKB_GSO_TCPV4 |
2419 			       SKB_GSO_DODGY |
2420 			       SKB_GSO_TCP_ECN |
2421 			       SKB_GSO_TCPV6 |
2422 			       0) ||
2423 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2424 			goto out;
2425 
2426 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2427 
2428 		segs = NULL;
2429 		goto out;
2430 	}
2431 
2432 	segs = skb_segment(skb, features);
2433 	if (IS_ERR(segs))
2434 		goto out;
2435 
2436 	delta = htonl(oldlen + (thlen + mss));
2437 
2438 	skb = segs;
2439 	th = tcp_hdr(skb);
2440 	seq = ntohl(th->seq);
2441 
2442 	do {
2443 		th->fin = th->psh = 0;
2444 
2445 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2446 				       (__force u32)delta));
2447 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2448 			th->check =
2449 			     csum_fold(csum_partial(skb_transport_header(skb),
2450 						    thlen, skb->csum));
2451 
2452 		seq += mss;
2453 		skb = skb->next;
2454 		th = tcp_hdr(skb);
2455 
2456 		th->seq = htonl(seq);
2457 		th->cwr = 0;
2458 	} while (skb->next);
2459 
2460 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2461 		      skb->data_len);
2462 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2463 				(__force u32)delta));
2464 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2465 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2466 						   thlen, skb->csum));
2467 
2468 out:
2469 	return segs;
2470 }
2471 EXPORT_SYMBOL(tcp_tso_segment);
2472 
tcp_gro_receive(struct sk_buff ** head,struct sk_buff * skb)2473 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2474 {
2475 	struct sk_buff **pp = NULL;
2476 	struct sk_buff *p;
2477 	struct tcphdr *th;
2478 	struct tcphdr *th2;
2479 	unsigned int thlen;
2480 	unsigned int flags;
2481 	unsigned int total;
2482 	unsigned int mss = 1;
2483 	int flush = 1;
2484 
2485 	if (!pskb_may_pull(skb, sizeof(*th)))
2486 		goto out;
2487 
2488 	th = tcp_hdr(skb);
2489 	thlen = th->doff * 4;
2490 	if (thlen < sizeof(*th))
2491 		goto out;
2492 
2493 	if (!pskb_may_pull(skb, thlen))
2494 		goto out;
2495 
2496 	th = tcp_hdr(skb);
2497 	__skb_pull(skb, thlen);
2498 
2499 	flags = tcp_flag_word(th);
2500 
2501 	for (; (p = *head); head = &p->next) {
2502 		if (!NAPI_GRO_CB(p)->same_flow)
2503 			continue;
2504 
2505 		th2 = tcp_hdr(p);
2506 
2507 		if (th->source != th2->source || th->dest != th2->dest) {
2508 			NAPI_GRO_CB(p)->same_flow = 0;
2509 			continue;
2510 		}
2511 
2512 		goto found;
2513 	}
2514 
2515 	goto out_check_final;
2516 
2517 found:
2518 	flush = NAPI_GRO_CB(p)->flush;
2519 	flush |= flags & TCP_FLAG_CWR;
2520 	flush |= (flags ^ tcp_flag_word(th2)) &
2521 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH);
2522 	flush |= th->ack_seq != th2->ack_seq || th->window != th2->window;
2523 	flush |= memcmp(th + 1, th2 + 1, thlen - sizeof(*th));
2524 
2525 	total = p->len;
2526 	mss = skb_shinfo(p)->gso_size;
2527 
2528 	flush |= skb->len > mss || skb->len <= 0;
2529 	flush |= ntohl(th2->seq) + total != ntohl(th->seq);
2530 
2531 	if (flush || skb_gro_receive(head, skb)) {
2532 		mss = 1;
2533 		goto out_check_final;
2534 	}
2535 
2536 	p = *head;
2537 	th2 = tcp_hdr(p);
2538 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
2539 
2540 out_check_final:
2541 	flush = skb->len < mss;
2542 	flush |= flags & (TCP_FLAG_URG | TCP_FLAG_PSH | TCP_FLAG_RST |
2543 			  TCP_FLAG_SYN | TCP_FLAG_FIN);
2544 
2545 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
2546 		pp = head;
2547 
2548 out:
2549 	NAPI_GRO_CB(skb)->flush |= flush;
2550 
2551 	return pp;
2552 }
2553 EXPORT_SYMBOL(tcp_gro_receive);
2554 
tcp_gro_complete(struct sk_buff * skb)2555 int tcp_gro_complete(struct sk_buff *skb)
2556 {
2557 	struct tcphdr *th = tcp_hdr(skb);
2558 
2559 	skb->csum_start = skb_transport_header(skb) - skb->head;
2560 	skb->csum_offset = offsetof(struct tcphdr, check);
2561 	skb->ip_summed = CHECKSUM_PARTIAL;
2562 
2563 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2564 
2565 	if (th->cwr)
2566 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2567 
2568 	return 0;
2569 }
2570 EXPORT_SYMBOL(tcp_gro_complete);
2571 
2572 #ifdef CONFIG_TCP_MD5SIG
2573 static unsigned long tcp_md5sig_users;
2574 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2575 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2576 
__tcp_free_md5sig_pool(struct tcp_md5sig_pool ** pool)2577 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2578 {
2579 	int cpu;
2580 	for_each_possible_cpu(cpu) {
2581 		struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2582 		if (p) {
2583 			if (p->md5_desc.tfm)
2584 				crypto_free_hash(p->md5_desc.tfm);
2585 			kfree(p);
2586 			p = NULL;
2587 		}
2588 	}
2589 	free_percpu(pool);
2590 }
2591 
tcp_free_md5sig_pool(void)2592 void tcp_free_md5sig_pool(void)
2593 {
2594 	struct tcp_md5sig_pool **pool = NULL;
2595 
2596 	spin_lock_bh(&tcp_md5sig_pool_lock);
2597 	if (--tcp_md5sig_users == 0) {
2598 		pool = tcp_md5sig_pool;
2599 		tcp_md5sig_pool = NULL;
2600 	}
2601 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2602 	if (pool)
2603 		__tcp_free_md5sig_pool(pool);
2604 }
2605 
2606 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2607 
__tcp_alloc_md5sig_pool(void)2608 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2609 {
2610 	int cpu;
2611 	struct tcp_md5sig_pool **pool;
2612 
2613 	pool = alloc_percpu(struct tcp_md5sig_pool *);
2614 	if (!pool)
2615 		return NULL;
2616 
2617 	for_each_possible_cpu(cpu) {
2618 		struct tcp_md5sig_pool *p;
2619 		struct crypto_hash *hash;
2620 
2621 		p = kzalloc(sizeof(*p), GFP_KERNEL);
2622 		if (!p)
2623 			goto out_free;
2624 		*per_cpu_ptr(pool, cpu) = p;
2625 
2626 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2627 		if (!hash || IS_ERR(hash))
2628 			goto out_free;
2629 
2630 		p->md5_desc.tfm = hash;
2631 	}
2632 	return pool;
2633 out_free:
2634 	__tcp_free_md5sig_pool(pool);
2635 	return NULL;
2636 }
2637 
tcp_alloc_md5sig_pool(void)2638 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2639 {
2640 	struct tcp_md5sig_pool **pool;
2641 	int alloc = 0;
2642 
2643 retry:
2644 	spin_lock_bh(&tcp_md5sig_pool_lock);
2645 	pool = tcp_md5sig_pool;
2646 	if (tcp_md5sig_users++ == 0) {
2647 		alloc = 1;
2648 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2649 	} else if (!pool) {
2650 		tcp_md5sig_users--;
2651 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2652 		cpu_relax();
2653 		goto retry;
2654 	} else
2655 		spin_unlock_bh(&tcp_md5sig_pool_lock);
2656 
2657 	if (alloc) {
2658 		/* we cannot hold spinlock here because this may sleep. */
2659 		struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2660 		spin_lock_bh(&tcp_md5sig_pool_lock);
2661 		if (!p) {
2662 			tcp_md5sig_users--;
2663 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2664 			return NULL;
2665 		}
2666 		pool = tcp_md5sig_pool;
2667 		if (pool) {
2668 			/* oops, it has already been assigned. */
2669 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2670 			__tcp_free_md5sig_pool(p);
2671 		} else {
2672 			tcp_md5sig_pool = pool = p;
2673 			spin_unlock_bh(&tcp_md5sig_pool_lock);
2674 		}
2675 	}
2676 	return pool;
2677 }
2678 
2679 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2680 
__tcp_get_md5sig_pool(int cpu)2681 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2682 {
2683 	struct tcp_md5sig_pool **p;
2684 	spin_lock_bh(&tcp_md5sig_pool_lock);
2685 	p = tcp_md5sig_pool;
2686 	if (p)
2687 		tcp_md5sig_users++;
2688 	spin_unlock_bh(&tcp_md5sig_pool_lock);
2689 	return (p ? *per_cpu_ptr(p, cpu) : NULL);
2690 }
2691 
2692 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2693 
__tcp_put_md5sig_pool(void)2694 void __tcp_put_md5sig_pool(void)
2695 {
2696 	tcp_free_md5sig_pool();
2697 }
2698 
2699 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2700 
tcp_md5_hash_header(struct tcp_md5sig_pool * hp,struct tcphdr * th)2701 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2702 			struct tcphdr *th)
2703 {
2704 	struct scatterlist sg;
2705 	int err;
2706 
2707 	__sum16 old_checksum = th->check;
2708 	th->check = 0;
2709 	/* options aren't included in the hash */
2710 	sg_init_one(&sg, th, sizeof(struct tcphdr));
2711 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(struct tcphdr));
2712 	th->check = old_checksum;
2713 	return err;
2714 }
2715 
2716 EXPORT_SYMBOL(tcp_md5_hash_header);
2717 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,struct sk_buff * skb,unsigned header_len)2718 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2719 			  struct sk_buff *skb, unsigned header_len)
2720 {
2721 	struct scatterlist sg;
2722 	const struct tcphdr *tp = tcp_hdr(skb);
2723 	struct hash_desc *desc = &hp->md5_desc;
2724 	unsigned i;
2725 	const unsigned head_data_len = skb_headlen(skb) > header_len ?
2726 				       skb_headlen(skb) - header_len : 0;
2727 	const struct skb_shared_info *shi = skb_shinfo(skb);
2728 
2729 	sg_init_table(&sg, 1);
2730 
2731 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2732 	if (crypto_hash_update(desc, &sg, head_data_len))
2733 		return 1;
2734 
2735 	for (i = 0; i < shi->nr_frags; ++i) {
2736 		const struct skb_frag_struct *f = &shi->frags[i];
2737 		sg_set_page(&sg, f->page, f->size, f->page_offset);
2738 		if (crypto_hash_update(desc, &sg, f->size))
2739 			return 1;
2740 	}
2741 
2742 	return 0;
2743 }
2744 
2745 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2746 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,struct tcp_md5sig_key * key)2747 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, struct tcp_md5sig_key *key)
2748 {
2749 	struct scatterlist sg;
2750 
2751 	sg_init_one(&sg, key->key, key->keylen);
2752 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2753 }
2754 
2755 EXPORT_SYMBOL(tcp_md5_hash_key);
2756 
2757 #endif
2758 
tcp_done(struct sock * sk)2759 void tcp_done(struct sock *sk)
2760 {
2761 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2762 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
2763 
2764 	tcp_set_state(sk, TCP_CLOSE);
2765 	tcp_clear_xmit_timers(sk);
2766 
2767 	sk->sk_shutdown = SHUTDOWN_MASK;
2768 
2769 	if (!sock_flag(sk, SOCK_DEAD))
2770 		sk->sk_state_change(sk);
2771 	else
2772 		inet_csk_destroy_sock(sk);
2773 }
2774 EXPORT_SYMBOL_GPL(tcp_done);
2775 
2776 extern struct tcp_congestion_ops tcp_reno;
2777 
2778 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)2779 static int __init set_thash_entries(char *str)
2780 {
2781 	if (!str)
2782 		return 0;
2783 	thash_entries = simple_strtoul(str, &str, 0);
2784 	return 1;
2785 }
2786 __setup("thash_entries=", set_thash_entries);
2787 
tcp_init(void)2788 void __init tcp_init(void)
2789 {
2790 	struct sk_buff *skb = NULL;
2791 	unsigned long nr_pages, limit;
2792 	int order, i, max_share;
2793 
2794 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
2795 
2796 	percpu_counter_init(&tcp_sockets_allocated, 0);
2797 	percpu_counter_init(&tcp_orphan_count, 0);
2798 	tcp_hashinfo.bind_bucket_cachep =
2799 		kmem_cache_create("tcp_bind_bucket",
2800 				  sizeof(struct inet_bind_bucket), 0,
2801 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2802 
2803 	/* Size and allocate the main established and bind bucket
2804 	 * hash tables.
2805 	 *
2806 	 * The methodology is similar to that of the buffer cache.
2807 	 */
2808 	tcp_hashinfo.ehash =
2809 		alloc_large_system_hash("TCP established",
2810 					sizeof(struct inet_ehash_bucket),
2811 					thash_entries,
2812 					(num_physpages >= 128 * 1024) ?
2813 					13 : 15,
2814 					0,
2815 					&tcp_hashinfo.ehash_size,
2816 					NULL,
2817 					thash_entries ? 0 : 512 * 1024);
2818 	tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2819 	for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2820 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
2821 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
2822 	}
2823 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
2824 		panic("TCP: failed to alloc ehash_locks");
2825 	tcp_hashinfo.bhash =
2826 		alloc_large_system_hash("TCP bind",
2827 					sizeof(struct inet_bind_hashbucket),
2828 					tcp_hashinfo.ehash_size,
2829 					(num_physpages >= 128 * 1024) ?
2830 					13 : 15,
2831 					0,
2832 					&tcp_hashinfo.bhash_size,
2833 					NULL,
2834 					64 * 1024);
2835 	tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2836 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2837 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2838 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2839 	}
2840 
2841 	/* Try to be a bit smarter and adjust defaults depending
2842 	 * on available memory.
2843 	 */
2844 	for (order = 0; ((1 << order) << PAGE_SHIFT) <
2845 			(tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2846 			order++)
2847 		;
2848 	if (order >= 4) {
2849 		tcp_death_row.sysctl_max_tw_buckets = 180000;
2850 		sysctl_tcp_max_orphans = 4096 << (order - 4);
2851 		sysctl_max_syn_backlog = 1024;
2852 	} else if (order < 3) {
2853 		tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2854 		sysctl_tcp_max_orphans >>= (3 - order);
2855 		sysctl_max_syn_backlog = 128;
2856 	}
2857 
2858 	/* Set the pressure threshold to be a fraction of global memory that
2859 	 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2860 	 * memory, with a floor of 128 pages.
2861 	 */
2862 	nr_pages = totalram_pages - totalhigh_pages;
2863 	limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2864 	limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2865 	limit = max(limit, 128UL);
2866 	sysctl_tcp_mem[0] = limit / 4 * 3;
2867 	sysctl_tcp_mem[1] = limit;
2868 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2869 
2870 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
2871 	limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2872 	max_share = min(4UL*1024*1024, limit);
2873 
2874 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
2875 	sysctl_tcp_wmem[1] = 16*1024;
2876 	sysctl_tcp_wmem[2] = max(64*1024, max_share);
2877 
2878 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
2879 	sysctl_tcp_rmem[1] = 87380;
2880 	sysctl_tcp_rmem[2] = max(87380, max_share);
2881 
2882 	printk(KERN_INFO "TCP: Hash tables configured "
2883 	       "(established %d bind %d)\n",
2884 	       tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2885 
2886 	tcp_register_congestion_control(&tcp_reno);
2887 }
2888 
2889 EXPORT_SYMBOL(tcp_close);
2890 EXPORT_SYMBOL(tcp_disconnect);
2891 EXPORT_SYMBOL(tcp_getsockopt);
2892 EXPORT_SYMBOL(tcp_ioctl);
2893 EXPORT_SYMBOL(tcp_poll);
2894 EXPORT_SYMBOL(tcp_read_sock);
2895 EXPORT_SYMBOL(tcp_recvmsg);
2896 EXPORT_SYMBOL(tcp_sendmsg);
2897 EXPORT_SYMBOL(tcp_splice_read);
2898 EXPORT_SYMBOL(tcp_sendpage);
2899 EXPORT_SYMBOL(tcp_setsockopt);
2900 EXPORT_SYMBOL(tcp_shutdown);
2901