• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/time/tick-sched.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  No idle tick implementation for low and high resolution timers
9  *
10  *  Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  Distribute under GPLv2.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/tick.h>
23 #include <linux/module.h>
24 
25 #include <asm/irq_regs.h>
26 
27 #include "tick-internal.h"
28 
29 /*
30  * Per cpu nohz control structure
31  */
32 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 
34 /*
35  * The time, when the last jiffy update happened. Protected by xtime_lock.
36  */
37 static ktime_t last_jiffies_update;
38 
tick_get_tick_sched(int cpu)39 struct tick_sched *tick_get_tick_sched(int cpu)
40 {
41 	return &per_cpu(tick_cpu_sched, cpu);
42 }
43 
44 /*
45  * Must be called with interrupts disabled !
46  */
tick_do_update_jiffies64(ktime_t now)47 static void tick_do_update_jiffies64(ktime_t now)
48 {
49 	unsigned long ticks = 0;
50 	ktime_t delta;
51 
52 	/*
53 	 * Do a quick check without holding xtime_lock:
54 	 */
55 	delta = ktime_sub(now, last_jiffies_update);
56 	if (delta.tv64 < tick_period.tv64)
57 		return;
58 
59 	/* Reevalute with xtime_lock held */
60 	write_seqlock(&xtime_lock);
61 
62 	delta = ktime_sub(now, last_jiffies_update);
63 	if (delta.tv64 >= tick_period.tv64) {
64 
65 		delta = ktime_sub(delta, tick_period);
66 		last_jiffies_update = ktime_add(last_jiffies_update,
67 						tick_period);
68 
69 		/* Slow path for long timeouts */
70 		if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 			s64 incr = ktime_to_ns(tick_period);
72 
73 			ticks = ktime_divns(delta, incr);
74 
75 			last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 							   incr * ticks);
77 		}
78 		do_timer(++ticks);
79 
80 		/* Keep the tick_next_period variable up to date */
81 		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82 	}
83 	write_sequnlock(&xtime_lock);
84 }
85 
86 /*
87  * Initialize and return retrieve the jiffies update.
88  */
tick_init_jiffy_update(void)89 static ktime_t tick_init_jiffy_update(void)
90 {
91 	ktime_t period;
92 
93 	write_seqlock(&xtime_lock);
94 	/* Did we start the jiffies update yet ? */
95 	if (last_jiffies_update.tv64 == 0)
96 		last_jiffies_update = tick_next_period;
97 	period = last_jiffies_update;
98 	write_sequnlock(&xtime_lock);
99 	return period;
100 }
101 
102 /*
103  * NOHZ - aka dynamic tick functionality
104  */
105 #ifdef CONFIG_NO_HZ
106 /*
107  * NO HZ enabled ?
108  */
109 static int tick_nohz_enabled __read_mostly  = 1;
110 
111 /*
112  * Enable / Disable tickless mode
113  */
setup_tick_nohz(char * str)114 static int __init setup_tick_nohz(char *str)
115 {
116 	if (!strcmp(str, "off"))
117 		tick_nohz_enabled = 0;
118 	else if (!strcmp(str, "on"))
119 		tick_nohz_enabled = 1;
120 	else
121 		return 0;
122 	return 1;
123 }
124 
125 __setup("nohz=", setup_tick_nohz);
126 
127 /**
128  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129  *
130  * Called from interrupt entry when the CPU was idle
131  *
132  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
133  * must be updated. Otherwise an interrupt handler could use a stale jiffy
134  * value. We do this unconditionally on any cpu, as we don't know whether the
135  * cpu, which has the update task assigned is in a long sleep.
136  */
tick_nohz_update_jiffies(void)137 static void tick_nohz_update_jiffies(void)
138 {
139 	int cpu = smp_processor_id();
140 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
141 	unsigned long flags;
142 	ktime_t now;
143 
144 	if (!ts->tick_stopped)
145 		return;
146 
147 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
148 	now = ktime_get();
149 	ts->idle_waketime = now;
150 
151 	local_irq_save(flags);
152 	tick_do_update_jiffies64(now);
153 	local_irq_restore(flags);
154 
155 	touch_softlockup_watchdog();
156 }
157 
tick_nohz_stop_idle(int cpu)158 static void tick_nohz_stop_idle(int cpu)
159 {
160 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
161 
162 	if (ts->idle_active) {
163 		ktime_t now, delta;
164 		now = ktime_get();
165 		delta = ktime_sub(now, ts->idle_entrytime);
166 		ts->idle_lastupdate = now;
167 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
168 		ts->idle_active = 0;
169 
170 		sched_clock_idle_wakeup_event(0);
171 	}
172 }
173 
tick_nohz_start_idle(struct tick_sched * ts)174 static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
175 {
176 	ktime_t now, delta;
177 
178 	now = ktime_get();
179 	if (ts->idle_active) {
180 		delta = ktime_sub(now, ts->idle_entrytime);
181 		ts->idle_lastupdate = now;
182 		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
183 	}
184 	ts->idle_entrytime = now;
185 	ts->idle_active = 1;
186 	sched_clock_idle_sleep_event();
187 	return now;
188 }
189 
get_cpu_idle_time_us(int cpu,u64 * last_update_time)190 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
191 {
192 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
193 
194 	if (!tick_nohz_enabled)
195 		return -1;
196 
197 	if (ts->idle_active)
198 		*last_update_time = ktime_to_us(ts->idle_lastupdate);
199 	else
200 		*last_update_time = ktime_to_us(ktime_get());
201 
202 	return ktime_to_us(ts->idle_sleeptime);
203 }
204 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
205 
206 /**
207  * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
208  *
209  * When the next event is more than a tick into the future, stop the idle tick
210  * Called either from the idle loop or from irq_exit() when an idle period was
211  * just interrupted by an interrupt which did not cause a reschedule.
212  */
tick_nohz_stop_sched_tick(int inidle)213 void tick_nohz_stop_sched_tick(int inidle)
214 {
215 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
216 	struct tick_sched *ts;
217 	ktime_t last_update, expires, now;
218 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
219 	int cpu;
220 
221 	local_irq_save(flags);
222 
223 	cpu = smp_processor_id();
224 	ts = &per_cpu(tick_cpu_sched, cpu);
225 
226 	/*
227 	 * If this cpu is offline and it is the one which updates
228 	 * jiffies, then give up the assignment and let it be taken by
229 	 * the cpu which runs the tick timer next. If we don't drop
230 	 * this here the jiffies might be stale and do_timer() never
231 	 * invoked.
232 	 */
233 	if (unlikely(!cpu_online(cpu))) {
234 		if (cpu == tick_do_timer_cpu)
235 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
236 	}
237 
238 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
239 		goto end;
240 
241 	if (!inidle && !ts->inidle)
242 		goto end;
243 
244 	now = tick_nohz_start_idle(ts);
245 	ts->inidle = 1;
246 
247 	if (need_resched())
248 		goto end;
249 
250 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
251 		static int ratelimit;
252 
253 		if (ratelimit < 10) {
254 			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
255 			       local_softirq_pending());
256 			ratelimit++;
257 		}
258 		goto end;
259 	}
260 
261 	ts->idle_calls++;
262 	/* Read jiffies and the time when jiffies were updated last */
263 	do {
264 		seq = read_seqbegin(&xtime_lock);
265 		last_update = last_jiffies_update;
266 		last_jiffies = jiffies;
267 	} while (read_seqretry(&xtime_lock, seq));
268 
269 	/* Get the next timer wheel timer */
270 	next_jiffies = get_next_timer_interrupt(last_jiffies);
271 	delta_jiffies = next_jiffies - last_jiffies;
272 
273 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu))
274 		delta_jiffies = 1;
275 	/*
276 	 * Do not stop the tick, if we are only one off
277 	 * or if the cpu is required for rcu
278 	 */
279 	if (!ts->tick_stopped && delta_jiffies == 1)
280 		goto out;
281 
282 	/* Schedule the tick, if we are at least one jiffie off */
283 	if ((long)delta_jiffies >= 1) {
284 
285 		/*
286 		* calculate the expiry time for the next timer wheel
287 		* timer
288 		*/
289 		expires = ktime_add_ns(last_update, tick_period.tv64 *
290 				   delta_jiffies);
291 
292 		/*
293 		 * If this cpu is the one which updates jiffies, then
294 		 * give up the assignment and let it be taken by the
295 		 * cpu which runs the tick timer next, which might be
296 		 * this cpu as well. If we don't drop this here the
297 		 * jiffies might be stale and do_timer() never
298 		 * invoked.
299 		 */
300 		if (cpu == tick_do_timer_cpu)
301 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
302 
303 		if (delta_jiffies > 1)
304 			cpumask_set_cpu(cpu, nohz_cpu_mask);
305 
306 		/* Skip reprogram of event if its not changed */
307 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
308 			goto out;
309 
310 		/*
311 		 * nohz_stop_sched_tick can be called several times before
312 		 * the nohz_restart_sched_tick is called. This happens when
313 		 * interrupts arrive which do not cause a reschedule. In the
314 		 * first call we save the current tick time, so we can restart
315 		 * the scheduler tick in nohz_restart_sched_tick.
316 		 */
317 		if (!ts->tick_stopped) {
318 			if (select_nohz_load_balancer(1)) {
319 				/*
320 				 * sched tick not stopped!
321 				 */
322 				cpumask_clear_cpu(cpu, nohz_cpu_mask);
323 				goto out;
324 			}
325 
326 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
327 			ts->tick_stopped = 1;
328 			ts->idle_jiffies = last_jiffies;
329 			rcu_enter_nohz();
330 		}
331 
332 		ts->idle_sleeps++;
333 
334 		/*
335 		 * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that
336 		 * there is no timer pending or at least extremly far
337 		 * into the future (12 days for HZ=1000). In this case
338 		 * we simply stop the tick timer:
339 		 */
340 		if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) {
341 			ts->idle_expires.tv64 = KTIME_MAX;
342 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
343 				hrtimer_cancel(&ts->sched_timer);
344 			goto out;
345 		}
346 
347 		/* Mark expiries */
348 		ts->idle_expires = expires;
349 
350 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
351 			hrtimer_start(&ts->sched_timer, expires,
352 				      HRTIMER_MODE_ABS);
353 			/* Check, if the timer was already in the past */
354 			if (hrtimer_active(&ts->sched_timer))
355 				goto out;
356 		} else if (!tick_program_event(expires, 0))
357 				goto out;
358 		/*
359 		 * We are past the event already. So we crossed a
360 		 * jiffie boundary. Update jiffies and raise the
361 		 * softirq.
362 		 */
363 		tick_do_update_jiffies64(ktime_get());
364 		cpumask_clear_cpu(cpu, nohz_cpu_mask);
365 	}
366 	raise_softirq_irqoff(TIMER_SOFTIRQ);
367 out:
368 	ts->next_jiffies = next_jiffies;
369 	ts->last_jiffies = last_jiffies;
370 	ts->sleep_length = ktime_sub(dev->next_event, now);
371 end:
372 	local_irq_restore(flags);
373 }
374 
375 /**
376  * tick_nohz_get_sleep_length - return the length of the current sleep
377  *
378  * Called from power state control code with interrupts disabled
379  */
tick_nohz_get_sleep_length(void)380 ktime_t tick_nohz_get_sleep_length(void)
381 {
382 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
383 
384 	return ts->sleep_length;
385 }
386 
tick_nohz_restart(struct tick_sched * ts,ktime_t now)387 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
388 {
389 	hrtimer_cancel(&ts->sched_timer);
390 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
391 
392 	while (1) {
393 		/* Forward the time to expire in the future */
394 		hrtimer_forward(&ts->sched_timer, now, tick_period);
395 
396 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
397 			hrtimer_start_expires(&ts->sched_timer,
398 				      HRTIMER_MODE_ABS);
399 			/* Check, if the timer was already in the past */
400 			if (hrtimer_active(&ts->sched_timer))
401 				break;
402 		} else {
403 			if (!tick_program_event(
404 				hrtimer_get_expires(&ts->sched_timer), 0))
405 				break;
406 		}
407 		/* Update jiffies and reread time */
408 		tick_do_update_jiffies64(now);
409 		now = ktime_get();
410 	}
411 }
412 
413 /**
414  * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
415  *
416  * Restart the idle tick when the CPU is woken up from idle
417  */
tick_nohz_restart_sched_tick(void)418 void tick_nohz_restart_sched_tick(void)
419 {
420 	int cpu = smp_processor_id();
421 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
422 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
423 	unsigned long ticks;
424 #endif
425 	ktime_t now;
426 
427 	local_irq_disable();
428 	tick_nohz_stop_idle(cpu);
429 
430 	if (!ts->inidle || !ts->tick_stopped) {
431 		ts->inidle = 0;
432 		local_irq_enable();
433 		return;
434 	}
435 
436 	ts->inidle = 0;
437 
438 	rcu_exit_nohz();
439 
440 	/* Update jiffies first */
441 	select_nohz_load_balancer(0);
442 	now = ktime_get();
443 	tick_do_update_jiffies64(now);
444 	cpumask_clear_cpu(cpu, nohz_cpu_mask);
445 
446 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
447 	/*
448 	 * We stopped the tick in idle. Update process times would miss the
449 	 * time we slept as update_process_times does only a 1 tick
450 	 * accounting. Enforce that this is accounted to idle !
451 	 */
452 	ticks = jiffies - ts->idle_jiffies;
453 	/*
454 	 * We might be one off. Do not randomly account a huge number of ticks!
455 	 */
456 	if (ticks && ticks < LONG_MAX)
457 		account_idle_ticks(ticks);
458 #endif
459 
460 	touch_softlockup_watchdog();
461 	/*
462 	 * Cancel the scheduled timer and restore the tick
463 	 */
464 	ts->tick_stopped  = 0;
465 	ts->idle_exittime = now;
466 
467 	tick_nohz_restart(ts, now);
468 
469 	local_irq_enable();
470 }
471 
tick_nohz_reprogram(struct tick_sched * ts,ktime_t now)472 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
473 {
474 	hrtimer_forward(&ts->sched_timer, now, tick_period);
475 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
476 }
477 
478 /*
479  * The nohz low res interrupt handler
480  */
tick_nohz_handler(struct clock_event_device * dev)481 static void tick_nohz_handler(struct clock_event_device *dev)
482 {
483 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
484 	struct pt_regs *regs = get_irq_regs();
485 	int cpu = smp_processor_id();
486 	ktime_t now = ktime_get();
487 
488 	dev->next_event.tv64 = KTIME_MAX;
489 
490 	/*
491 	 * Check if the do_timer duty was dropped. We don't care about
492 	 * concurrency: This happens only when the cpu in charge went
493 	 * into a long sleep. If two cpus happen to assign themself to
494 	 * this duty, then the jiffies update is still serialized by
495 	 * xtime_lock.
496 	 */
497 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
498 		tick_do_timer_cpu = cpu;
499 
500 	/* Check, if the jiffies need an update */
501 	if (tick_do_timer_cpu == cpu)
502 		tick_do_update_jiffies64(now);
503 
504 	/*
505 	 * When we are idle and the tick is stopped, we have to touch
506 	 * the watchdog as we might not schedule for a really long
507 	 * time. This happens on complete idle SMP systems while
508 	 * waiting on the login prompt. We also increment the "start
509 	 * of idle" jiffy stamp so the idle accounting adjustment we
510 	 * do when we go busy again does not account too much ticks.
511 	 */
512 	if (ts->tick_stopped) {
513 		touch_softlockup_watchdog();
514 		ts->idle_jiffies++;
515 	}
516 
517 	update_process_times(user_mode(regs));
518 	profile_tick(CPU_PROFILING);
519 
520 	while (tick_nohz_reprogram(ts, now)) {
521 		now = ktime_get();
522 		tick_do_update_jiffies64(now);
523 	}
524 }
525 
526 /**
527  * tick_nohz_switch_to_nohz - switch to nohz mode
528  */
tick_nohz_switch_to_nohz(void)529 static void tick_nohz_switch_to_nohz(void)
530 {
531 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
532 	ktime_t next;
533 
534 	if (!tick_nohz_enabled)
535 		return;
536 
537 	local_irq_disable();
538 	if (tick_switch_to_oneshot(tick_nohz_handler)) {
539 		local_irq_enable();
540 		return;
541 	}
542 
543 	ts->nohz_mode = NOHZ_MODE_LOWRES;
544 
545 	/*
546 	 * Recycle the hrtimer in ts, so we can share the
547 	 * hrtimer_forward with the highres code.
548 	 */
549 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
550 	/* Get the next period */
551 	next = tick_init_jiffy_update();
552 
553 	for (;;) {
554 		hrtimer_set_expires(&ts->sched_timer, next);
555 		if (!tick_program_event(next, 0))
556 			break;
557 		next = ktime_add(next, tick_period);
558 	}
559 	local_irq_enable();
560 
561 	printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n",
562 	       smp_processor_id());
563 }
564 
565 /*
566  * When NOHZ is enabled and the tick is stopped, we need to kick the
567  * tick timer from irq_enter() so that the jiffies update is kept
568  * alive during long running softirqs. That's ugly as hell, but
569  * correctness is key even if we need to fix the offending softirq in
570  * the first place.
571  *
572  * Note, this is different to tick_nohz_restart. We just kick the
573  * timer and do not touch the other magic bits which need to be done
574  * when idle is left.
575  */
tick_nohz_kick_tick(int cpu)576 static void tick_nohz_kick_tick(int cpu)
577 {
578 #if 0
579 	/* Switch back to 2.6.27 behaviour */
580 
581 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
582 	ktime_t delta, now;
583 
584 	if (!ts->tick_stopped)
585 		return;
586 
587 	/*
588 	 * Do not touch the tick device, when the next expiry is either
589 	 * already reached or less/equal than the tick period.
590 	 */
591 	now = ktime_get();
592 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
593 	if (delta.tv64 <= tick_period.tv64)
594 		return;
595 
596 	tick_nohz_restart(ts, now);
597 #endif
598 }
599 
600 #else
601 
tick_nohz_switch_to_nohz(void)602 static inline void tick_nohz_switch_to_nohz(void) { }
603 
604 #endif /* NO_HZ */
605 
606 /*
607  * Called from irq_enter to notify about the possible interruption of idle()
608  */
tick_check_idle(int cpu)609 void tick_check_idle(int cpu)
610 {
611 	tick_check_oneshot_broadcast(cpu);
612 #ifdef CONFIG_NO_HZ
613 	tick_nohz_stop_idle(cpu);
614 	tick_nohz_update_jiffies();
615 	tick_nohz_kick_tick(cpu);
616 #endif
617 }
618 
619 /*
620  * High resolution timer specific code
621  */
622 #ifdef CONFIG_HIGH_RES_TIMERS
623 /*
624  * We rearm the timer until we get disabled by the idle code.
625  * Called with interrupts disabled and timer->base->cpu_base->lock held.
626  */
tick_sched_timer(struct hrtimer * timer)627 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
628 {
629 	struct tick_sched *ts =
630 		container_of(timer, struct tick_sched, sched_timer);
631 	struct pt_regs *regs = get_irq_regs();
632 	ktime_t now = ktime_get();
633 	int cpu = smp_processor_id();
634 
635 #ifdef CONFIG_NO_HZ
636 	/*
637 	 * Check if the do_timer duty was dropped. We don't care about
638 	 * concurrency: This happens only when the cpu in charge went
639 	 * into a long sleep. If two cpus happen to assign themself to
640 	 * this duty, then the jiffies update is still serialized by
641 	 * xtime_lock.
642 	 */
643 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
644 		tick_do_timer_cpu = cpu;
645 #endif
646 
647 	/* Check, if the jiffies need an update */
648 	if (tick_do_timer_cpu == cpu)
649 		tick_do_update_jiffies64(now);
650 
651 	/*
652 	 * Do not call, when we are not in irq context and have
653 	 * no valid regs pointer
654 	 */
655 	if (regs) {
656 		/*
657 		 * When we are idle and the tick is stopped, we have to touch
658 		 * the watchdog as we might not schedule for a really long
659 		 * time. This happens on complete idle SMP systems while
660 		 * waiting on the login prompt. We also increment the "start of
661 		 * idle" jiffy stamp so the idle accounting adjustment we do
662 		 * when we go busy again does not account too much ticks.
663 		 */
664 		if (ts->tick_stopped) {
665 			touch_softlockup_watchdog();
666 			ts->idle_jiffies++;
667 		}
668 		update_process_times(user_mode(regs));
669 		profile_tick(CPU_PROFILING);
670 	}
671 
672 	hrtimer_forward(timer, now, tick_period);
673 
674 	return HRTIMER_RESTART;
675 }
676 
677 /**
678  * tick_setup_sched_timer - setup the tick emulation timer
679  */
tick_setup_sched_timer(void)680 void tick_setup_sched_timer(void)
681 {
682 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
683 	ktime_t now = ktime_get();
684 	u64 offset;
685 
686 	/*
687 	 * Emulate tick processing via per-CPU hrtimers:
688 	 */
689 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
690 	ts->sched_timer.function = tick_sched_timer;
691 
692 	/* Get the next period (per cpu) */
693 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
694 	offset = ktime_to_ns(tick_period) >> 1;
695 	do_div(offset, num_possible_cpus());
696 	offset *= smp_processor_id();
697 	hrtimer_add_expires_ns(&ts->sched_timer, offset);
698 
699 	for (;;) {
700 		hrtimer_forward(&ts->sched_timer, now, tick_period);
701 		hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS);
702 		/* Check, if the timer was already in the past */
703 		if (hrtimer_active(&ts->sched_timer))
704 			break;
705 		now = ktime_get();
706 	}
707 
708 #ifdef CONFIG_NO_HZ
709 	if (tick_nohz_enabled)
710 		ts->nohz_mode = NOHZ_MODE_HIGHRES;
711 #endif
712 }
713 #endif /* HIGH_RES_TIMERS */
714 
715 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)716 void tick_cancel_sched_timer(int cpu)
717 {
718 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
719 
720 # ifdef CONFIG_HIGH_RES_TIMERS
721 	if (ts->sched_timer.base)
722 		hrtimer_cancel(&ts->sched_timer);
723 # endif
724 
725 	ts->nohz_mode = NOHZ_MODE_INACTIVE;
726 }
727 #endif
728 
729 /**
730  * Async notification about clocksource changes
731  */
tick_clock_notify(void)732 void tick_clock_notify(void)
733 {
734 	int cpu;
735 
736 	for_each_possible_cpu(cpu)
737 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
738 }
739 
740 /*
741  * Async notification about clock event changes
742  */
tick_oneshot_notify(void)743 void tick_oneshot_notify(void)
744 {
745 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
746 
747 	set_bit(0, &ts->check_clocks);
748 }
749 
750 /**
751  * Check, if a change happened, which makes oneshot possible.
752  *
753  * Called cyclic from the hrtimer softirq (driven by the timer
754  * softirq) allow_nohz signals, that we can switch into low-res nohz
755  * mode, because high resolution timers are disabled (either compile
756  * or runtime).
757  */
tick_check_oneshot_change(int allow_nohz)758 int tick_check_oneshot_change(int allow_nohz)
759 {
760 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
761 
762 	if (!test_and_clear_bit(0, &ts->check_clocks))
763 		return 0;
764 
765 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
766 		return 0;
767 
768 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
769 		return 0;
770 
771 	if (!allow_nohz)
772 		return 1;
773 
774 	tick_nohz_switch_to_nohz();
775 	return 0;
776 }
777