• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	Stephane Eranian <eranian@hpl.hp.com>
6  *	David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/time.h>
19 #include <linux/interrupt.h>
20 #include <linux/efi.h>
21 #include <linux/timex.h>
22 #include <linux/clocksource.h>
23 
24 #include <asm/machvec.h>
25 #include <asm/delay.h>
26 #include <asm/hw_irq.h>
27 #include <asm/paravirt.h>
28 #include <asm/ptrace.h>
29 #include <asm/sal.h>
30 #include <asm/sections.h>
31 #include <asm/system.h>
32 
33 #include "fsyscall_gtod_data.h"
34 
35 static cycle_t itc_get_cycles(void);
36 
37 struct fsyscall_gtod_data_t fsyscall_gtod_data = {
38 	.lock = SEQLOCK_UNLOCKED,
39 };
40 
41 struct itc_jitter_data_t itc_jitter_data;
42 
43 volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
44 
45 #ifdef CONFIG_IA64_DEBUG_IRQ
46 
47 unsigned long last_cli_ip;
48 EXPORT_SYMBOL(last_cli_ip);
49 
50 #endif
51 
52 #ifdef CONFIG_PARAVIRT
53 static void
paravirt_clocksource_resume(void)54 paravirt_clocksource_resume(void)
55 {
56 	if (pv_time_ops.clocksource_resume)
57 		pv_time_ops.clocksource_resume();
58 }
59 #endif
60 
61 static struct clocksource clocksource_itc = {
62 	.name           = "itc",
63 	.rating         = 350,
64 	.read           = itc_get_cycles,
65 	.mask           = CLOCKSOURCE_MASK(64),
66 	.mult           = 0, /*to be calculated*/
67 	.shift          = 16,
68 	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
69 #ifdef CONFIG_PARAVIRT
70 	.resume		= paravirt_clocksource_resume,
71 #endif
72 };
73 static struct clocksource *itc_clocksource;
74 
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
76 
77 #include <linux/kernel_stat.h>
78 
79 extern cputime_t cycle_to_cputime(u64 cyc);
80 
81 /*
82  * Called from the context switch with interrupts disabled, to charge all
83  * accumulated times to the current process, and to prepare accounting on
84  * the next process.
85  */
ia64_account_on_switch(struct task_struct * prev,struct task_struct * next)86 void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
87 {
88 	struct thread_info *pi = task_thread_info(prev);
89 	struct thread_info *ni = task_thread_info(next);
90 	cputime_t delta_stime, delta_utime;
91 	__u64 now;
92 
93 	now = ia64_get_itc();
94 
95 	delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
96 	if (idle_task(smp_processor_id()) != prev)
97 		account_system_time(prev, 0, delta_stime, delta_stime);
98 	else
99 		account_idle_time(delta_stime);
100 
101 	if (pi->ac_utime) {
102 		delta_utime = cycle_to_cputime(pi->ac_utime);
103 		account_user_time(prev, delta_utime, delta_utime);
104 	}
105 
106 	pi->ac_stamp = ni->ac_stamp = now;
107 	ni->ac_stime = ni->ac_utime = 0;
108 }
109 
110 /*
111  * Account time for a transition between system, hard irq or soft irq state.
112  * Note that this function is called with interrupts enabled.
113  */
account_system_vtime(struct task_struct * tsk)114 void account_system_vtime(struct task_struct *tsk)
115 {
116 	struct thread_info *ti = task_thread_info(tsk);
117 	unsigned long flags;
118 	cputime_t delta_stime;
119 	__u64 now;
120 
121 	local_irq_save(flags);
122 
123 	now = ia64_get_itc();
124 
125 	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
126 	if (irq_count() || idle_task(smp_processor_id()) != tsk)
127 		account_system_time(tsk, 0, delta_stime, delta_stime);
128 	else
129 		account_idle_time(delta_stime);
130 	ti->ac_stime = 0;
131 
132 	ti->ac_stamp = now;
133 
134 	local_irq_restore(flags);
135 }
136 EXPORT_SYMBOL_GPL(account_system_vtime);
137 
138 /*
139  * Called from the timer interrupt handler to charge accumulated user time
140  * to the current process.  Must be called with interrupts disabled.
141  */
account_process_tick(struct task_struct * p,int user_tick)142 void account_process_tick(struct task_struct *p, int user_tick)
143 {
144 	struct thread_info *ti = task_thread_info(p);
145 	cputime_t delta_utime;
146 
147 	if (ti->ac_utime) {
148 		delta_utime = cycle_to_cputime(ti->ac_utime);
149 		account_user_time(p, delta_utime, delta_utime);
150 		ti->ac_utime = 0;
151 	}
152 }
153 
154 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
155 
156 static irqreturn_t
timer_interrupt(int irq,void * dev_id)157 timer_interrupt (int irq, void *dev_id)
158 {
159 	unsigned long new_itm;
160 
161 	if (unlikely(cpu_is_offline(smp_processor_id()))) {
162 		return IRQ_HANDLED;
163 	}
164 
165 	platform_timer_interrupt(irq, dev_id);
166 
167 	new_itm = local_cpu_data->itm_next;
168 
169 	if (!time_after(ia64_get_itc(), new_itm))
170 		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
171 		       ia64_get_itc(), new_itm);
172 
173 	profile_tick(CPU_PROFILING);
174 
175 	if (paravirt_do_steal_accounting(&new_itm))
176 		goto skip_process_time_accounting;
177 
178 	while (1) {
179 		update_process_times(user_mode(get_irq_regs()));
180 
181 		new_itm += local_cpu_data->itm_delta;
182 
183 		if (smp_processor_id() == time_keeper_id) {
184 			/*
185 			 * Here we are in the timer irq handler. We have irqs locally
186 			 * disabled, but we don't know if the timer_bh is running on
187 			 * another CPU. We need to avoid to SMP race by acquiring the
188 			 * xtime_lock.
189 			 */
190 			write_seqlock(&xtime_lock);
191 			do_timer(1);
192 			local_cpu_data->itm_next = new_itm;
193 			write_sequnlock(&xtime_lock);
194 		} else
195 			local_cpu_data->itm_next = new_itm;
196 
197 		if (time_after(new_itm, ia64_get_itc()))
198 			break;
199 
200 		/*
201 		 * Allow IPIs to interrupt the timer loop.
202 		 */
203 		local_irq_enable();
204 		local_irq_disable();
205 	}
206 
207 skip_process_time_accounting:
208 
209 	do {
210 		/*
211 		 * If we're too close to the next clock tick for
212 		 * comfort, we increase the safety margin by
213 		 * intentionally dropping the next tick(s).  We do NOT
214 		 * update itm.next because that would force us to call
215 		 * do_timer() which in turn would let our clock run
216 		 * too fast (with the potentially devastating effect
217 		 * of losing monotony of time).
218 		 */
219 		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
220 			new_itm += local_cpu_data->itm_delta;
221 		ia64_set_itm(new_itm);
222 		/* double check, in case we got hit by a (slow) PMI: */
223 	} while (time_after_eq(ia64_get_itc(), new_itm));
224 	return IRQ_HANDLED;
225 }
226 
227 /*
228  * Encapsulate access to the itm structure for SMP.
229  */
230 void
ia64_cpu_local_tick(void)231 ia64_cpu_local_tick (void)
232 {
233 	int cpu = smp_processor_id();
234 	unsigned long shift = 0, delta;
235 
236 	/* arrange for the cycle counter to generate a timer interrupt: */
237 	ia64_set_itv(IA64_TIMER_VECTOR);
238 
239 	delta = local_cpu_data->itm_delta;
240 	/*
241 	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
242 	 * same time:
243 	 */
244 	if (cpu) {
245 		unsigned long hi = 1UL << ia64_fls(cpu);
246 		shift = (2*(cpu - hi) + 1) * delta/hi/2;
247 	}
248 	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
249 	ia64_set_itm(local_cpu_data->itm_next);
250 }
251 
252 static int nojitter;
253 
nojitter_setup(char * str)254 static int __init nojitter_setup(char *str)
255 {
256 	nojitter = 1;
257 	printk("Jitter checking for ITC timers disabled\n");
258 	return 1;
259 }
260 
261 __setup("nojitter", nojitter_setup);
262 
263 
264 void __devinit
ia64_init_itm(void)265 ia64_init_itm (void)
266 {
267 	unsigned long platform_base_freq, itc_freq;
268 	struct pal_freq_ratio itc_ratio, proc_ratio;
269 	long status, platform_base_drift, itc_drift;
270 
271 	/*
272 	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
273 	 * frequency and then a PAL call to determine the frequency ratio between the ITC
274 	 * and the base frequency.
275 	 */
276 	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
277 				    &platform_base_freq, &platform_base_drift);
278 	if (status != 0) {
279 		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
280 	} else {
281 		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
282 		if (status != 0)
283 			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
284 	}
285 	if (status != 0) {
286 		/* invent "random" values */
287 		printk(KERN_ERR
288 		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
289 		platform_base_freq = 100000000;
290 		platform_base_drift = -1;	/* no drift info */
291 		itc_ratio.num = 3;
292 		itc_ratio.den = 1;
293 	}
294 	if (platform_base_freq < 40000000) {
295 		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
296 		       platform_base_freq);
297 		platform_base_freq = 75000000;
298 		platform_base_drift = -1;
299 	}
300 	if (!proc_ratio.den)
301 		proc_ratio.den = 1;	/* avoid division by zero */
302 	if (!itc_ratio.den)
303 		itc_ratio.den = 1;	/* avoid division by zero */
304 
305 	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
306 
307 	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
308 	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
309 	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
310 	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
311 	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
312 
313 	if (platform_base_drift != -1) {
314 		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
315 		printk("+/-%ldppm\n", itc_drift);
316 	} else {
317 		itc_drift = -1;
318 		printk("\n");
319 	}
320 
321 	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
322 	local_cpu_data->itc_freq = itc_freq;
323 	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
324 	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
325 					+ itc_freq/2)/itc_freq;
326 
327 	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
328 #ifdef CONFIG_SMP
329 		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
330 		 * Jitter compensation requires a cmpxchg which may limit
331 		 * the scalability of the syscalls for retrieving time.
332 		 * The ITC synchronization is usually successful to within a few
333 		 * ITC ticks but this is not a sure thing. If you need to improve
334 		 * timer performance in SMP situations then boot the kernel with the
335 		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
336 		 * even going backward) if the ITC offsets between the individual CPUs
337 		 * are too large.
338 		 */
339 		if (!nojitter)
340 			itc_jitter_data.itc_jitter = 1;
341 #endif
342 	} else
343 		/*
344 		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
345 		 * ITC values may fluctuate significantly between processors.
346 		 * Clock should not be used for hrtimers. Mark itc as only
347 		 * useful for boot and testing.
348 		 *
349 		 * Note that jitter compensation is off! There is no point of
350 		 * synchronizing ITCs since they may be large differentials
351 		 * that change over time.
352 		 *
353 		 * The only way to fix this would be to repeatedly sync the
354 		 * ITCs. Until that time we have to avoid ITC.
355 		 */
356 		clocksource_itc.rating = 50;
357 
358 	paravirt_init_missing_ticks_accounting(smp_processor_id());
359 
360 	/* avoid softlock up message when cpu is unplug and plugged again. */
361 	touch_softlockup_watchdog();
362 
363 	/* Setup the CPU local timer tick */
364 	ia64_cpu_local_tick();
365 
366 	if (!itc_clocksource) {
367 		/* Sort out mult/shift values: */
368 		clocksource_itc.mult =
369 			clocksource_hz2mult(local_cpu_data->itc_freq,
370 						clocksource_itc.shift);
371 		clocksource_register(&clocksource_itc);
372 		itc_clocksource = &clocksource_itc;
373 	}
374 }
375 
itc_get_cycles(void)376 static cycle_t itc_get_cycles(void)
377 {
378 	u64 lcycle, now, ret;
379 
380 	if (!itc_jitter_data.itc_jitter)
381 		return get_cycles();
382 
383 	lcycle = itc_jitter_data.itc_lastcycle;
384 	now = get_cycles();
385 	if (lcycle && time_after(lcycle, now))
386 		return lcycle;
387 
388 	/*
389 	 * Keep track of the last timer value returned.
390 	 * In an SMP environment, you could lose out in contention of
391 	 * cmpxchg. If so, your cmpxchg returns new value which the
392 	 * winner of contention updated to. Use the new value instead.
393 	 */
394 	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
395 	if (unlikely(ret != lcycle))
396 		return ret;
397 
398 	return now;
399 }
400 
401 
402 static struct irqaction timer_irqaction = {
403 	.handler =	timer_interrupt,
404 	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
405 	.name =		"timer"
406 };
407 
408 void __init
time_init(void)409 time_init (void)
410 {
411 	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
412 	efi_gettimeofday(&xtime);
413 	ia64_init_itm();
414 
415 	/*
416 	 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
417 	 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
418 	 */
419 	set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
420 }
421 
422 /*
423  * Generic udelay assumes that if preemption is allowed and the thread
424  * migrates to another CPU, that the ITC values are synchronized across
425  * all CPUs.
426  */
427 static void
ia64_itc_udelay(unsigned long usecs)428 ia64_itc_udelay (unsigned long usecs)
429 {
430 	unsigned long start = ia64_get_itc();
431 	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
432 
433 	while (time_before(ia64_get_itc(), end))
434 		cpu_relax();
435 }
436 
437 void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
438 
439 void
udelay(unsigned long usecs)440 udelay (unsigned long usecs)
441 {
442 	(*ia64_udelay)(usecs);
443 }
444 EXPORT_SYMBOL(udelay);
445 
446 /* IA64 doesn't cache the timezone */
update_vsyscall_tz(void)447 void update_vsyscall_tz(void)
448 {
449 }
450 
update_vsyscall(struct timespec * wall,struct clocksource * c)451 void update_vsyscall(struct timespec *wall, struct clocksource *c)
452 {
453         unsigned long flags;
454 
455         write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
456 
457         /* copy fsyscall clock data */
458         fsyscall_gtod_data.clk_mask = c->mask;
459         fsyscall_gtod_data.clk_mult = c->mult;
460         fsyscall_gtod_data.clk_shift = c->shift;
461         fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
462         fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
463 
464 	/* copy kernel time structures */
465         fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
466         fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
467         fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
468 							+ wall->tv_sec;
469         fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
470 							+ wall->tv_nsec;
471 
472 	/* normalize */
473 	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
474 		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
475 		fsyscall_gtod_data.monotonic_time.tv_sec++;
476 	}
477 
478         write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
479 }
480 
481