1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file implements the functions that access LEB properties and their
25 * categories. LEBs are categorized based on the needs of UBIFS, and the
26 * categories are stored as either heaps or lists to provide a fast way of
27 * finding a LEB in a particular category. For example, UBIFS may need to find
28 * an empty LEB for the journal, or a very dirty LEB for garbage collection.
29 */
30
31 #include "ubifs.h"
32
33 /**
34 * get_heap_comp_val - get the LEB properties value for heap comparisons.
35 * @lprops: LEB properties
36 * @cat: LEB category
37 */
get_heap_comp_val(struct ubifs_lprops * lprops,int cat)38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
39 {
40 switch (cat) {
41 case LPROPS_FREE:
42 return lprops->free;
43 case LPROPS_DIRTY_IDX:
44 return lprops->free + lprops->dirty;
45 default:
46 return lprops->dirty;
47 }
48 }
49
50 /**
51 * move_up_lpt_heap - move a new heap entry up as far as possible.
52 * @c: UBIFS file-system description object
53 * @heap: LEB category heap
54 * @lprops: LEB properties to move
55 * @cat: LEB category
56 *
57 * New entries to a heap are added at the bottom and then moved up until the
58 * parent's value is greater. In the case of LPT's category heaps, the value
59 * is either the amount of free space or the amount of dirty space, depending
60 * on the category.
61 */
move_up_lpt_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,struct ubifs_lprops * lprops,int cat)62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
63 struct ubifs_lprops *lprops, int cat)
64 {
65 int val1, val2, hpos;
66
67 hpos = lprops->hpos;
68 if (!hpos)
69 return; /* Already top of the heap */
70 val1 = get_heap_comp_val(lprops, cat);
71 /* Compare to parent and, if greater, move up the heap */
72 do {
73 int ppos = (hpos - 1) / 2;
74
75 val2 = get_heap_comp_val(heap->arr[ppos], cat);
76 if (val2 >= val1)
77 return;
78 /* Greater than parent so move up */
79 heap->arr[ppos]->hpos = hpos;
80 heap->arr[hpos] = heap->arr[ppos];
81 heap->arr[ppos] = lprops;
82 lprops->hpos = ppos;
83 hpos = ppos;
84 } while (hpos);
85 }
86
87 /**
88 * adjust_lpt_heap - move a changed heap entry up or down the heap.
89 * @c: UBIFS file-system description object
90 * @heap: LEB category heap
91 * @lprops: LEB properties to move
92 * @hpos: heap position of @lprops
93 * @cat: LEB category
94 *
95 * Changed entries in a heap are moved up or down until the parent's value is
96 * greater. In the case of LPT's category heaps, the value is either the amount
97 * of free space or the amount of dirty space, depending on the category.
98 */
adjust_lpt_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,struct ubifs_lprops * lprops,int hpos,int cat)99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
100 struct ubifs_lprops *lprops, int hpos, int cat)
101 {
102 int val1, val2, val3, cpos;
103
104 val1 = get_heap_comp_val(lprops, cat);
105 /* Compare to parent and, if greater than parent, move up the heap */
106 if (hpos) {
107 int ppos = (hpos - 1) / 2;
108
109 val2 = get_heap_comp_val(heap->arr[ppos], cat);
110 if (val1 > val2) {
111 /* Greater than parent so move up */
112 while (1) {
113 heap->arr[ppos]->hpos = hpos;
114 heap->arr[hpos] = heap->arr[ppos];
115 heap->arr[ppos] = lprops;
116 lprops->hpos = ppos;
117 hpos = ppos;
118 if (!hpos)
119 return;
120 ppos = (hpos - 1) / 2;
121 val2 = get_heap_comp_val(heap->arr[ppos], cat);
122 if (val1 <= val2)
123 return;
124 /* Still greater than parent so keep going */
125 }
126 }
127 }
128
129 /* Not greater than parent, so compare to children */
130 while (1) {
131 /* Compare to left child */
132 cpos = hpos * 2 + 1;
133 if (cpos >= heap->cnt)
134 return;
135 val2 = get_heap_comp_val(heap->arr[cpos], cat);
136 if (val1 < val2) {
137 /* Less than left child, so promote biggest child */
138 if (cpos + 1 < heap->cnt) {
139 val3 = get_heap_comp_val(heap->arr[cpos + 1],
140 cat);
141 if (val3 > val2)
142 cpos += 1; /* Right child is bigger */
143 }
144 heap->arr[cpos]->hpos = hpos;
145 heap->arr[hpos] = heap->arr[cpos];
146 heap->arr[cpos] = lprops;
147 lprops->hpos = cpos;
148 hpos = cpos;
149 continue;
150 }
151 /* Compare to right child */
152 cpos += 1;
153 if (cpos >= heap->cnt)
154 return;
155 val3 = get_heap_comp_val(heap->arr[cpos], cat);
156 if (val1 < val3) {
157 /* Less than right child, so promote right child */
158 heap->arr[cpos]->hpos = hpos;
159 heap->arr[hpos] = heap->arr[cpos];
160 heap->arr[cpos] = lprops;
161 lprops->hpos = cpos;
162 hpos = cpos;
163 continue;
164 }
165 return;
166 }
167 }
168
169 /**
170 * add_to_lpt_heap - add LEB properties to a LEB category heap.
171 * @c: UBIFS file-system description object
172 * @lprops: LEB properties to add
173 * @cat: LEB category
174 *
175 * This function returns %1 if @lprops is added to the heap for LEB category
176 * @cat, otherwise %0 is returned because the heap is full.
177 */
add_to_lpt_heap(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
179 int cat)
180 {
181 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
182
183 if (heap->cnt >= heap->max_cnt) {
184 const int b = LPT_HEAP_SZ / 2 - 1;
185 int cpos, val1, val2;
186
187 /* Compare to some other LEB on the bottom of heap */
188 /* Pick a position kind of randomly */
189 cpos = (((size_t)lprops >> 4) & b) + b;
190 ubifs_assert(cpos >= b);
191 ubifs_assert(cpos < LPT_HEAP_SZ);
192 ubifs_assert(cpos < heap->cnt);
193
194 val1 = get_heap_comp_val(lprops, cat);
195 val2 = get_heap_comp_val(heap->arr[cpos], cat);
196 if (val1 > val2) {
197 struct ubifs_lprops *lp;
198
199 lp = heap->arr[cpos];
200 lp->flags &= ~LPROPS_CAT_MASK;
201 lp->flags |= LPROPS_UNCAT;
202 list_add(&lp->list, &c->uncat_list);
203 lprops->hpos = cpos;
204 heap->arr[cpos] = lprops;
205 move_up_lpt_heap(c, heap, lprops, cat);
206 dbg_check_heap(c, heap, cat, lprops->hpos);
207 return 1; /* Added to heap */
208 }
209 dbg_check_heap(c, heap, cat, -1);
210 return 0; /* Not added to heap */
211 } else {
212 lprops->hpos = heap->cnt++;
213 heap->arr[lprops->hpos] = lprops;
214 move_up_lpt_heap(c, heap, lprops, cat);
215 dbg_check_heap(c, heap, cat, lprops->hpos);
216 return 1; /* Added to heap */
217 }
218 }
219
220 /**
221 * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
222 * @c: UBIFS file-system description object
223 * @lprops: LEB properties to remove
224 * @cat: LEB category
225 */
remove_from_lpt_heap(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)226 static void remove_from_lpt_heap(struct ubifs_info *c,
227 struct ubifs_lprops *lprops, int cat)
228 {
229 struct ubifs_lpt_heap *heap;
230 int hpos = lprops->hpos;
231
232 heap = &c->lpt_heap[cat - 1];
233 ubifs_assert(hpos >= 0 && hpos < heap->cnt);
234 ubifs_assert(heap->arr[hpos] == lprops);
235 heap->cnt -= 1;
236 if (hpos < heap->cnt) {
237 heap->arr[hpos] = heap->arr[heap->cnt];
238 heap->arr[hpos]->hpos = hpos;
239 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
240 }
241 dbg_check_heap(c, heap, cat, -1);
242 }
243
244 /**
245 * lpt_heap_replace - replace lprops in a category heap.
246 * @c: UBIFS file-system description object
247 * @old_lprops: LEB properties to replace
248 * @new_lprops: LEB properties with which to replace
249 * @cat: LEB category
250 *
251 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
252 * and the lprops that the pnode contains. When that happens, references in
253 * the category heaps to those lprops must be updated to point to the new
254 * lprops. This function does that.
255 */
lpt_heap_replace(struct ubifs_info * c,struct ubifs_lprops * old_lprops,struct ubifs_lprops * new_lprops,int cat)256 static void lpt_heap_replace(struct ubifs_info *c,
257 struct ubifs_lprops *old_lprops,
258 struct ubifs_lprops *new_lprops, int cat)
259 {
260 struct ubifs_lpt_heap *heap;
261 int hpos = new_lprops->hpos;
262
263 heap = &c->lpt_heap[cat - 1];
264 heap->arr[hpos] = new_lprops;
265 }
266
267 /**
268 * ubifs_add_to_cat - add LEB properties to a category list or heap.
269 * @c: UBIFS file-system description object
270 * @lprops: LEB properties to add
271 * @cat: LEB category to which to add
272 *
273 * LEB properties are categorized to enable fast find operations.
274 */
ubifs_add_to_cat(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)275 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
276 int cat)
277 {
278 switch (cat) {
279 case LPROPS_DIRTY:
280 case LPROPS_DIRTY_IDX:
281 case LPROPS_FREE:
282 if (add_to_lpt_heap(c, lprops, cat))
283 break;
284 /* No more room on heap so make it uncategorized */
285 cat = LPROPS_UNCAT;
286 /* Fall through */
287 case LPROPS_UNCAT:
288 list_add(&lprops->list, &c->uncat_list);
289 break;
290 case LPROPS_EMPTY:
291 list_add(&lprops->list, &c->empty_list);
292 break;
293 case LPROPS_FREEABLE:
294 list_add(&lprops->list, &c->freeable_list);
295 c->freeable_cnt += 1;
296 break;
297 case LPROPS_FRDI_IDX:
298 list_add(&lprops->list, &c->frdi_idx_list);
299 break;
300 default:
301 ubifs_assert(0);
302 }
303 lprops->flags &= ~LPROPS_CAT_MASK;
304 lprops->flags |= cat;
305 }
306
307 /**
308 * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
309 * @c: UBIFS file-system description object
310 * @lprops: LEB properties to remove
311 * @cat: LEB category from which to remove
312 *
313 * LEB properties are categorized to enable fast find operations.
314 */
ubifs_remove_from_cat(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)315 static void ubifs_remove_from_cat(struct ubifs_info *c,
316 struct ubifs_lprops *lprops, int cat)
317 {
318 switch (cat) {
319 case LPROPS_DIRTY:
320 case LPROPS_DIRTY_IDX:
321 case LPROPS_FREE:
322 remove_from_lpt_heap(c, lprops, cat);
323 break;
324 case LPROPS_FREEABLE:
325 c->freeable_cnt -= 1;
326 ubifs_assert(c->freeable_cnt >= 0);
327 /* Fall through */
328 case LPROPS_UNCAT:
329 case LPROPS_EMPTY:
330 case LPROPS_FRDI_IDX:
331 ubifs_assert(!list_empty(&lprops->list));
332 list_del(&lprops->list);
333 break;
334 default:
335 ubifs_assert(0);
336 }
337 }
338
339 /**
340 * ubifs_replace_cat - replace lprops in a category list or heap.
341 * @c: UBIFS file-system description object
342 * @old_lprops: LEB properties to replace
343 * @new_lprops: LEB properties with which to replace
344 *
345 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
346 * and the lprops that the pnode contains. When that happens, references in
347 * category lists and heaps must be replaced. This function does that.
348 */
ubifs_replace_cat(struct ubifs_info * c,struct ubifs_lprops * old_lprops,struct ubifs_lprops * new_lprops)349 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
350 struct ubifs_lprops *new_lprops)
351 {
352 int cat;
353
354 cat = new_lprops->flags & LPROPS_CAT_MASK;
355 switch (cat) {
356 case LPROPS_DIRTY:
357 case LPROPS_DIRTY_IDX:
358 case LPROPS_FREE:
359 lpt_heap_replace(c, old_lprops, new_lprops, cat);
360 break;
361 case LPROPS_UNCAT:
362 case LPROPS_EMPTY:
363 case LPROPS_FREEABLE:
364 case LPROPS_FRDI_IDX:
365 list_replace(&old_lprops->list, &new_lprops->list);
366 break;
367 default:
368 ubifs_assert(0);
369 }
370 }
371
372 /**
373 * ubifs_ensure_cat - ensure LEB properties are categorized.
374 * @c: UBIFS file-system description object
375 * @lprops: LEB properties
376 *
377 * A LEB may have fallen off of the bottom of a heap, and ended up as
378 * uncategorized even though it has enough space for us now. If that is the case
379 * this function will put the LEB back onto a heap.
380 */
ubifs_ensure_cat(struct ubifs_info * c,struct ubifs_lprops * lprops)381 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
382 {
383 int cat = lprops->flags & LPROPS_CAT_MASK;
384
385 if (cat != LPROPS_UNCAT)
386 return;
387 cat = ubifs_categorize_lprops(c, lprops);
388 if (cat == LPROPS_UNCAT)
389 return;
390 ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
391 ubifs_add_to_cat(c, lprops, cat);
392 }
393
394 /**
395 * ubifs_categorize_lprops - categorize LEB properties.
396 * @c: UBIFS file-system description object
397 * @lprops: LEB properties to categorize
398 *
399 * LEB properties are categorized to enable fast find operations. This function
400 * returns the LEB category to which the LEB properties belong. Note however
401 * that if the LEB category is stored as a heap and the heap is full, the
402 * LEB properties may have their category changed to %LPROPS_UNCAT.
403 */
ubifs_categorize_lprops(const struct ubifs_info * c,const struct ubifs_lprops * lprops)404 int ubifs_categorize_lprops(const struct ubifs_info *c,
405 const struct ubifs_lprops *lprops)
406 {
407 if (lprops->flags & LPROPS_TAKEN)
408 return LPROPS_UNCAT;
409
410 if (lprops->free == c->leb_size) {
411 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
412 return LPROPS_EMPTY;
413 }
414
415 if (lprops->free + lprops->dirty == c->leb_size) {
416 if (lprops->flags & LPROPS_INDEX)
417 return LPROPS_FRDI_IDX;
418 else
419 return LPROPS_FREEABLE;
420 }
421
422 if (lprops->flags & LPROPS_INDEX) {
423 if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
424 return LPROPS_DIRTY_IDX;
425 } else {
426 if (lprops->dirty >= c->dead_wm &&
427 lprops->dirty > lprops->free)
428 return LPROPS_DIRTY;
429 if (lprops->free > 0)
430 return LPROPS_FREE;
431 }
432
433 return LPROPS_UNCAT;
434 }
435
436 /**
437 * change_category - change LEB properties category.
438 * @c: UBIFS file-system description object
439 * @lprops: LEB properties to recategorize
440 *
441 * LEB properties are categorized to enable fast find operations. When the LEB
442 * properties change they must be recategorized.
443 */
change_category(struct ubifs_info * c,struct ubifs_lprops * lprops)444 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
445 {
446 int old_cat = lprops->flags & LPROPS_CAT_MASK;
447 int new_cat = ubifs_categorize_lprops(c, lprops);
448
449 if (old_cat == new_cat) {
450 struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1];
451
452 /* lprops on a heap now must be moved up or down */
453 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
454 return; /* Not on a heap */
455 heap = &c->lpt_heap[new_cat - 1];
456 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
457 } else {
458 ubifs_remove_from_cat(c, lprops, old_cat);
459 ubifs_add_to_cat(c, lprops, new_cat);
460 }
461 }
462
463 /**
464 * calc_dark - calculate LEB dark space size.
465 * @c: the UBIFS file-system description object
466 * @spc: amount of free and dirty space in the LEB
467 *
468 * This function calculates amount of dark space in an LEB which has @spc bytes
469 * of free and dirty space. Returns the calculations result.
470 *
471 * Dark space is the space which is not always usable - it depends on which
472 * nodes are written in which order. E.g., if an LEB has only 512 free bytes,
473 * it is dark space, because it cannot fit a large data node. So UBIFS cannot
474 * count on this LEB and treat these 512 bytes as usable because it is not true
475 * if, for example, only big chunks of uncompressible data will be written to
476 * the FS.
477 */
calc_dark(struct ubifs_info * c,int spc)478 static int calc_dark(struct ubifs_info *c, int spc)
479 {
480 ubifs_assert(!(spc & 7));
481
482 if (spc < c->dark_wm)
483 return spc;
484
485 /*
486 * If we have slightly more space then the dark space watermark, we can
487 * anyway safely assume it we'll be able to write a node of the
488 * smallest size there.
489 */
490 if (spc - c->dark_wm < MIN_WRITE_SZ)
491 return spc - MIN_WRITE_SZ;
492
493 return c->dark_wm;
494 }
495
496 /**
497 * is_lprops_dirty - determine if LEB properties are dirty.
498 * @c: the UBIFS file-system description object
499 * @lprops: LEB properties to test
500 */
is_lprops_dirty(struct ubifs_info * c,struct ubifs_lprops * lprops)501 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
502 {
503 struct ubifs_pnode *pnode;
504 int pos;
505
506 pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
507 pnode = (struct ubifs_pnode *)container_of(lprops - pos,
508 struct ubifs_pnode,
509 lprops[0]);
510 return !test_bit(COW_ZNODE, &pnode->flags) &&
511 test_bit(DIRTY_CNODE, &pnode->flags);
512 }
513
514 /**
515 * ubifs_change_lp - change LEB properties.
516 * @c: the UBIFS file-system description object
517 * @lp: LEB properties to change
518 * @free: new free space amount
519 * @dirty: new dirty space amount
520 * @flags: new flags
521 * @idx_gc_cnt: change to the count of idx_gc list
522 *
523 * This function changes LEB properties (@free, @dirty or @flag). However, the
524 * property which has the %LPROPS_NC value is not changed. Returns a pointer to
525 * the updated LEB properties on success and a negative error code on failure.
526 *
527 * Note, the LEB properties may have had to be copied (due to COW) and
528 * consequently the pointer returned may not be the same as the pointer
529 * passed.
530 */
ubifs_change_lp(struct ubifs_info * c,const struct ubifs_lprops * lp,int free,int dirty,int flags,int idx_gc_cnt)531 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
532 const struct ubifs_lprops *lp,
533 int free, int dirty, int flags,
534 int idx_gc_cnt)
535 {
536 /*
537 * This is the only function that is allowed to change lprops, so we
538 * discard the const qualifier.
539 */
540 struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
541
542 dbg_lp("LEB %d, free %d, dirty %d, flags %d",
543 lprops->lnum, free, dirty, flags);
544
545 ubifs_assert(mutex_is_locked(&c->lp_mutex));
546 ubifs_assert(c->lst.empty_lebs >= 0 &&
547 c->lst.empty_lebs <= c->main_lebs);
548 ubifs_assert(c->freeable_cnt >= 0);
549 ubifs_assert(c->freeable_cnt <= c->main_lebs);
550 ubifs_assert(c->lst.taken_empty_lebs >= 0);
551 ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
552 ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
553 ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
554 ubifs_assert(!(c->lst.total_used & 7));
555 ubifs_assert(free == LPROPS_NC || free >= 0);
556 ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
557
558 if (!is_lprops_dirty(c, lprops)) {
559 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
560 if (IS_ERR(lprops))
561 return lprops;
562 } else
563 ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
564
565 ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
566
567 spin_lock(&c->space_lock);
568 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
569 c->lst.taken_empty_lebs -= 1;
570
571 if (!(lprops->flags & LPROPS_INDEX)) {
572 int old_spc;
573
574 old_spc = lprops->free + lprops->dirty;
575 if (old_spc < c->dead_wm)
576 c->lst.total_dead -= old_spc;
577 else
578 c->lst.total_dark -= calc_dark(c, old_spc);
579
580 c->lst.total_used -= c->leb_size - old_spc;
581 }
582
583 if (free != LPROPS_NC) {
584 free = ALIGN(free, 8);
585 c->lst.total_free += free - lprops->free;
586
587 /* Increase or decrease empty LEBs counter if needed */
588 if (free == c->leb_size) {
589 if (lprops->free != c->leb_size)
590 c->lst.empty_lebs += 1;
591 } else if (lprops->free == c->leb_size)
592 c->lst.empty_lebs -= 1;
593 lprops->free = free;
594 }
595
596 if (dirty != LPROPS_NC) {
597 dirty = ALIGN(dirty, 8);
598 c->lst.total_dirty += dirty - lprops->dirty;
599 lprops->dirty = dirty;
600 }
601
602 if (flags != LPROPS_NC) {
603 /* Take care about indexing LEBs counter if needed */
604 if ((lprops->flags & LPROPS_INDEX)) {
605 if (!(flags & LPROPS_INDEX))
606 c->lst.idx_lebs -= 1;
607 } else if (flags & LPROPS_INDEX)
608 c->lst.idx_lebs += 1;
609 lprops->flags = flags;
610 }
611
612 if (!(lprops->flags & LPROPS_INDEX)) {
613 int new_spc;
614
615 new_spc = lprops->free + lprops->dirty;
616 if (new_spc < c->dead_wm)
617 c->lst.total_dead += new_spc;
618 else
619 c->lst.total_dark += calc_dark(c, new_spc);
620
621 c->lst.total_used += c->leb_size - new_spc;
622 }
623
624 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
625 c->lst.taken_empty_lebs += 1;
626
627 change_category(c, lprops);
628 c->idx_gc_cnt += idx_gc_cnt;
629 spin_unlock(&c->space_lock);
630 return lprops;
631 }
632
633 /**
634 * ubifs_get_lp_stats - get lprops statistics.
635 * @c: UBIFS file-system description object
636 * @st: return statistics
637 */
ubifs_get_lp_stats(struct ubifs_info * c,struct ubifs_lp_stats * lst)638 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
639 {
640 spin_lock(&c->space_lock);
641 memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
642 spin_unlock(&c->space_lock);
643 }
644
645 /**
646 * ubifs_change_one_lp - change LEB properties.
647 * @c: the UBIFS file-system description object
648 * @lnum: LEB to change properties for
649 * @free: amount of free space
650 * @dirty: amount of dirty space
651 * @flags_set: flags to set
652 * @flags_clean: flags to clean
653 * @idx_gc_cnt: change to the count of idx_gc list
654 *
655 * This function changes properties of LEB @lnum. It is a helper wrapper over
656 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
657 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
658 * a negative error code in case of failure.
659 */
ubifs_change_one_lp(struct ubifs_info * c,int lnum,int free,int dirty,int flags_set,int flags_clean,int idx_gc_cnt)660 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
661 int flags_set, int flags_clean, int idx_gc_cnt)
662 {
663 int err = 0, flags;
664 const struct ubifs_lprops *lp;
665
666 ubifs_get_lprops(c);
667
668 lp = ubifs_lpt_lookup_dirty(c, lnum);
669 if (IS_ERR(lp)) {
670 err = PTR_ERR(lp);
671 goto out;
672 }
673
674 flags = (lp->flags | flags_set) & ~flags_clean;
675 lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
676 if (IS_ERR(lp))
677 err = PTR_ERR(lp);
678
679 out:
680 ubifs_release_lprops(c);
681 if (err)
682 ubifs_err("cannot change properties of LEB %d, error %d",
683 lnum, err);
684 return err;
685 }
686
687 /**
688 * ubifs_update_one_lp - update LEB properties.
689 * @c: the UBIFS file-system description object
690 * @lnum: LEB to change properties for
691 * @free: amount of free space
692 * @dirty: amount of dirty space to add
693 * @flags_set: flags to set
694 * @flags_clean: flags to clean
695 *
696 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
697 * current dirty space, not substitutes it.
698 */
ubifs_update_one_lp(struct ubifs_info * c,int lnum,int free,int dirty,int flags_set,int flags_clean)699 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
700 int flags_set, int flags_clean)
701 {
702 int err = 0, flags;
703 const struct ubifs_lprops *lp;
704
705 ubifs_get_lprops(c);
706
707 lp = ubifs_lpt_lookup_dirty(c, lnum);
708 if (IS_ERR(lp)) {
709 err = PTR_ERR(lp);
710 goto out;
711 }
712
713 flags = (lp->flags | flags_set) & ~flags_clean;
714 lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
715 if (IS_ERR(lp))
716 err = PTR_ERR(lp);
717
718 out:
719 ubifs_release_lprops(c);
720 if (err)
721 ubifs_err("cannot update properties of LEB %d, error %d",
722 lnum, err);
723 return err;
724 }
725
726 /**
727 * ubifs_read_one_lp - read LEB properties.
728 * @c: the UBIFS file-system description object
729 * @lnum: LEB to read properties for
730 * @lp: where to store read properties
731 *
732 * This helper function reads properties of a LEB @lnum and stores them in @lp.
733 * Returns zero in case of success and a negative error code in case of
734 * failure.
735 */
ubifs_read_one_lp(struct ubifs_info * c,int lnum,struct ubifs_lprops * lp)736 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
737 {
738 int err = 0;
739 const struct ubifs_lprops *lpp;
740
741 ubifs_get_lprops(c);
742
743 lpp = ubifs_lpt_lookup(c, lnum);
744 if (IS_ERR(lpp)) {
745 err = PTR_ERR(lpp);
746 ubifs_err("cannot read properties of LEB %d, error %d",
747 lnum, err);
748 goto out;
749 }
750
751 memcpy(lp, lpp, sizeof(struct ubifs_lprops));
752
753 out:
754 ubifs_release_lprops(c);
755 return err;
756 }
757
758 /**
759 * ubifs_fast_find_free - try to find a LEB with free space quickly.
760 * @c: the UBIFS file-system description object
761 *
762 * This function returns LEB properties for a LEB with free space or %NULL if
763 * the function is unable to find a LEB quickly.
764 */
ubifs_fast_find_free(struct ubifs_info * c)765 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
766 {
767 struct ubifs_lprops *lprops;
768 struct ubifs_lpt_heap *heap;
769
770 ubifs_assert(mutex_is_locked(&c->lp_mutex));
771
772 heap = &c->lpt_heap[LPROPS_FREE - 1];
773 if (heap->cnt == 0)
774 return NULL;
775
776 lprops = heap->arr[0];
777 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
778 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
779 return lprops;
780 }
781
782 /**
783 * ubifs_fast_find_empty - try to find an empty LEB quickly.
784 * @c: the UBIFS file-system description object
785 *
786 * This function returns LEB properties for an empty LEB or %NULL if the
787 * function is unable to find an empty LEB quickly.
788 */
ubifs_fast_find_empty(struct ubifs_info * c)789 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
790 {
791 struct ubifs_lprops *lprops;
792
793 ubifs_assert(mutex_is_locked(&c->lp_mutex));
794
795 if (list_empty(&c->empty_list))
796 return NULL;
797
798 lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
799 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
800 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
801 ubifs_assert(lprops->free == c->leb_size);
802 return lprops;
803 }
804
805 /**
806 * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
807 * @c: the UBIFS file-system description object
808 *
809 * This function returns LEB properties for a freeable LEB or %NULL if the
810 * function is unable to find a freeable LEB quickly.
811 */
ubifs_fast_find_freeable(struct ubifs_info * c)812 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
813 {
814 struct ubifs_lprops *lprops;
815
816 ubifs_assert(mutex_is_locked(&c->lp_mutex));
817
818 if (list_empty(&c->freeable_list))
819 return NULL;
820
821 lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
822 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
823 ubifs_assert(!(lprops->flags & LPROPS_INDEX));
824 ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
825 ubifs_assert(c->freeable_cnt > 0);
826 return lprops;
827 }
828
829 /**
830 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
831 * @c: the UBIFS file-system description object
832 *
833 * This function returns LEB properties for a freeable index LEB or %NULL if the
834 * function is unable to find a freeable index LEB quickly.
835 */
ubifs_fast_find_frdi_idx(struct ubifs_info * c)836 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
837 {
838 struct ubifs_lprops *lprops;
839
840 ubifs_assert(mutex_is_locked(&c->lp_mutex));
841
842 if (list_empty(&c->frdi_idx_list))
843 return NULL;
844
845 lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
846 ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
847 ubifs_assert((lprops->flags & LPROPS_INDEX));
848 ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
849 return lprops;
850 }
851
852 #ifdef CONFIG_UBIFS_FS_DEBUG
853
854 /**
855 * dbg_check_cats - check category heaps and lists.
856 * @c: UBIFS file-system description object
857 *
858 * This function returns %0 on success and a negative error code on failure.
859 */
dbg_check_cats(struct ubifs_info * c)860 int dbg_check_cats(struct ubifs_info *c)
861 {
862 struct ubifs_lprops *lprops;
863 struct list_head *pos;
864 int i, cat;
865
866 if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS)))
867 return 0;
868
869 list_for_each_entry(lprops, &c->empty_list, list) {
870 if (lprops->free != c->leb_size) {
871 ubifs_err("non-empty LEB %d on empty list "
872 "(free %d dirty %d flags %d)", lprops->lnum,
873 lprops->free, lprops->dirty, lprops->flags);
874 return -EINVAL;
875 }
876 if (lprops->flags & LPROPS_TAKEN) {
877 ubifs_err("taken LEB %d on empty list "
878 "(free %d dirty %d flags %d)", lprops->lnum,
879 lprops->free, lprops->dirty, lprops->flags);
880 return -EINVAL;
881 }
882 }
883
884 i = 0;
885 list_for_each_entry(lprops, &c->freeable_list, list) {
886 if (lprops->free + lprops->dirty != c->leb_size) {
887 ubifs_err("non-freeable LEB %d on freeable list "
888 "(free %d dirty %d flags %d)", lprops->lnum,
889 lprops->free, lprops->dirty, lprops->flags);
890 return -EINVAL;
891 }
892 if (lprops->flags & LPROPS_TAKEN) {
893 ubifs_err("taken LEB %d on freeable list "
894 "(free %d dirty %d flags %d)", lprops->lnum,
895 lprops->free, lprops->dirty, lprops->flags);
896 return -EINVAL;
897 }
898 i += 1;
899 }
900 if (i != c->freeable_cnt) {
901 ubifs_err("freeable list count %d expected %d", i,
902 c->freeable_cnt);
903 return -EINVAL;
904 }
905
906 i = 0;
907 list_for_each(pos, &c->idx_gc)
908 i += 1;
909 if (i != c->idx_gc_cnt) {
910 ubifs_err("idx_gc list count %d expected %d", i,
911 c->idx_gc_cnt);
912 return -EINVAL;
913 }
914
915 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
916 if (lprops->free + lprops->dirty != c->leb_size) {
917 ubifs_err("non-freeable LEB %d on frdi_idx list "
918 "(free %d dirty %d flags %d)", lprops->lnum,
919 lprops->free, lprops->dirty, lprops->flags);
920 return -EINVAL;
921 }
922 if (lprops->flags & LPROPS_TAKEN) {
923 ubifs_err("taken LEB %d on frdi_idx list "
924 "(free %d dirty %d flags %d)", lprops->lnum,
925 lprops->free, lprops->dirty, lprops->flags);
926 return -EINVAL;
927 }
928 if (!(lprops->flags & LPROPS_INDEX)) {
929 ubifs_err("non-index LEB %d on frdi_idx list "
930 "(free %d dirty %d flags %d)", lprops->lnum,
931 lprops->free, lprops->dirty, lprops->flags);
932 return -EINVAL;
933 }
934 }
935
936 for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
937 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
938
939 for (i = 0; i < heap->cnt; i++) {
940 lprops = heap->arr[i];
941 if (!lprops) {
942 ubifs_err("null ptr in LPT heap cat %d", cat);
943 return -EINVAL;
944 }
945 if (lprops->hpos != i) {
946 ubifs_err("bad ptr in LPT heap cat %d", cat);
947 return -EINVAL;
948 }
949 if (lprops->flags & LPROPS_TAKEN) {
950 ubifs_err("taken LEB in LPT heap cat %d", cat);
951 return -EINVAL;
952 }
953 }
954 }
955
956 return 0;
957 }
958
dbg_check_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat,int add_pos)959 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
960 int add_pos)
961 {
962 int i = 0, j, err = 0;
963
964 if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS)))
965 return;
966
967 for (i = 0; i < heap->cnt; i++) {
968 struct ubifs_lprops *lprops = heap->arr[i];
969 struct ubifs_lprops *lp;
970
971 if (i != add_pos)
972 if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
973 err = 1;
974 goto out;
975 }
976 if (lprops->hpos != i) {
977 err = 2;
978 goto out;
979 }
980 lp = ubifs_lpt_lookup(c, lprops->lnum);
981 if (IS_ERR(lp)) {
982 err = 3;
983 goto out;
984 }
985 if (lprops != lp) {
986 dbg_msg("lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
987 (size_t)lprops, (size_t)lp, lprops->lnum,
988 lp->lnum);
989 err = 4;
990 goto out;
991 }
992 for (j = 0; j < i; j++) {
993 lp = heap->arr[j];
994 if (lp == lprops) {
995 err = 5;
996 goto out;
997 }
998 if (lp->lnum == lprops->lnum) {
999 err = 6;
1000 goto out;
1001 }
1002 }
1003 }
1004 out:
1005 if (err) {
1006 dbg_msg("failed cat %d hpos %d err %d", cat, i, err);
1007 dbg_dump_stack();
1008 dbg_dump_heap(c, heap, cat);
1009 }
1010 }
1011
1012 /**
1013 * struct scan_check_data - data provided to scan callback function.
1014 * @lst: LEB properties statistics
1015 * @err: error code
1016 */
1017 struct scan_check_data {
1018 struct ubifs_lp_stats lst;
1019 int err;
1020 };
1021
1022 /**
1023 * scan_check_cb - scan callback.
1024 * @c: the UBIFS file-system description object
1025 * @lp: LEB properties to scan
1026 * @in_tree: whether the LEB properties are in main memory
1027 * @data: information passed to and from the caller of the scan
1028 *
1029 * This function returns a code that indicates whether the scan should continue
1030 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1031 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1032 * (%LPT_SCAN_STOP).
1033 */
scan_check_cb(struct ubifs_info * c,const struct ubifs_lprops * lp,int in_tree,struct scan_check_data * data)1034 static int scan_check_cb(struct ubifs_info *c,
1035 const struct ubifs_lprops *lp, int in_tree,
1036 struct scan_check_data *data)
1037 {
1038 struct ubifs_scan_leb *sleb;
1039 struct ubifs_scan_node *snod;
1040 struct ubifs_lp_stats *lst = &data->lst;
1041 int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty;
1042
1043 cat = lp->flags & LPROPS_CAT_MASK;
1044 if (cat != LPROPS_UNCAT) {
1045 cat = ubifs_categorize_lprops(c, lp);
1046 if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1047 ubifs_err("bad LEB category %d expected %d",
1048 (lp->flags & LPROPS_CAT_MASK), cat);
1049 goto out;
1050 }
1051 }
1052
1053 /* Check lp is on its category list (if it has one) */
1054 if (in_tree) {
1055 struct list_head *list = NULL;
1056
1057 switch (cat) {
1058 case LPROPS_EMPTY:
1059 list = &c->empty_list;
1060 break;
1061 case LPROPS_FREEABLE:
1062 list = &c->freeable_list;
1063 break;
1064 case LPROPS_FRDI_IDX:
1065 list = &c->frdi_idx_list;
1066 break;
1067 case LPROPS_UNCAT:
1068 list = &c->uncat_list;
1069 break;
1070 }
1071 if (list) {
1072 struct ubifs_lprops *lprops;
1073 int found = 0;
1074
1075 list_for_each_entry(lprops, list, list) {
1076 if (lprops == lp) {
1077 found = 1;
1078 break;
1079 }
1080 }
1081 if (!found) {
1082 ubifs_err("bad LPT list (category %d)", cat);
1083 goto out;
1084 }
1085 }
1086 }
1087
1088 /* Check lp is on its category heap (if it has one) */
1089 if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1090 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1091
1092 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1093 lp != heap->arr[lp->hpos]) {
1094 ubifs_err("bad LPT heap (category %d)", cat);
1095 goto out;
1096 }
1097 }
1098
1099 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf);
1100 if (IS_ERR(sleb)) {
1101 /*
1102 * After an unclean unmount, empty and freeable LEBs
1103 * may contain garbage.
1104 */
1105 if (lp->free == c->leb_size) {
1106 ubifs_err("scan errors were in empty LEB "
1107 "- continuing checking");
1108 lst->empty_lebs += 1;
1109 lst->total_free += c->leb_size;
1110 lst->total_dark += calc_dark(c, c->leb_size);
1111 return LPT_SCAN_CONTINUE;
1112 }
1113
1114 if (lp->free + lp->dirty == c->leb_size &&
1115 !(lp->flags & LPROPS_INDEX)) {
1116 ubifs_err("scan errors were in freeable LEB "
1117 "- continuing checking");
1118 lst->total_free += lp->free;
1119 lst->total_dirty += lp->dirty;
1120 lst->total_dark += calc_dark(c, c->leb_size);
1121 return LPT_SCAN_CONTINUE;
1122 }
1123 data->err = PTR_ERR(sleb);
1124 return LPT_SCAN_STOP;
1125 }
1126
1127 is_idx = -1;
1128 list_for_each_entry(snod, &sleb->nodes, list) {
1129 int found, level = 0;
1130
1131 cond_resched();
1132
1133 if (is_idx == -1)
1134 is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1135
1136 if (is_idx && snod->type != UBIFS_IDX_NODE) {
1137 ubifs_err("indexing node in data LEB %d:%d",
1138 lnum, snod->offs);
1139 goto out_destroy;
1140 }
1141
1142 if (snod->type == UBIFS_IDX_NODE) {
1143 struct ubifs_idx_node *idx = snod->node;
1144
1145 key_read(c, ubifs_idx_key(c, idx), &snod->key);
1146 level = le16_to_cpu(idx->level);
1147 }
1148
1149 found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1150 snod->offs, is_idx);
1151 if (found) {
1152 if (found < 0)
1153 goto out_destroy;
1154 used += ALIGN(snod->len, 8);
1155 }
1156 }
1157
1158 free = c->leb_size - sleb->endpt;
1159 dirty = sleb->endpt - used;
1160
1161 if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1162 dirty < 0) {
1163 ubifs_err("bad calculated accounting for LEB %d: "
1164 "free %d, dirty %d", lnum, free, dirty);
1165 goto out_destroy;
1166 }
1167
1168 if (lp->free + lp->dirty == c->leb_size &&
1169 free + dirty == c->leb_size)
1170 if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1171 (!is_idx && free == c->leb_size) ||
1172 lp->free == c->leb_size) {
1173 /*
1174 * Empty or freeable LEBs could contain index
1175 * nodes from an uncompleted commit due to an
1176 * unclean unmount. Or they could be empty for
1177 * the same reason. Or it may simply not have been
1178 * unmapped.
1179 */
1180 free = lp->free;
1181 dirty = lp->dirty;
1182 is_idx = 0;
1183 }
1184
1185 if (is_idx && lp->free + lp->dirty == free + dirty &&
1186 lnum != c->ihead_lnum) {
1187 /*
1188 * After an unclean unmount, an index LEB could have a different
1189 * amount of free space than the value recorded by lprops. That
1190 * is because the in-the-gaps method may use free space or
1191 * create free space (as a side-effect of using ubi_leb_change
1192 * and not writing the whole LEB). The incorrect free space
1193 * value is not a problem because the index is only ever
1194 * allocated empty LEBs, so there will never be an attempt to
1195 * write to the free space at the end of an index LEB - except
1196 * by the in-the-gaps method for which it is not a problem.
1197 */
1198 free = lp->free;
1199 dirty = lp->dirty;
1200 }
1201
1202 if (lp->free != free || lp->dirty != dirty)
1203 goto out_print;
1204
1205 if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1206 if (free == c->leb_size)
1207 /* Free but not unmapped LEB, it's fine */
1208 is_idx = 0;
1209 else {
1210 ubifs_err("indexing node without indexing "
1211 "flag");
1212 goto out_print;
1213 }
1214 }
1215
1216 if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1217 ubifs_err("data node with indexing flag");
1218 goto out_print;
1219 }
1220
1221 if (free == c->leb_size)
1222 lst->empty_lebs += 1;
1223
1224 if (is_idx)
1225 lst->idx_lebs += 1;
1226
1227 if (!(lp->flags & LPROPS_INDEX))
1228 lst->total_used += c->leb_size - free - dirty;
1229 lst->total_free += free;
1230 lst->total_dirty += dirty;
1231
1232 if (!(lp->flags & LPROPS_INDEX)) {
1233 int spc = free + dirty;
1234
1235 if (spc < c->dead_wm)
1236 lst->total_dead += spc;
1237 else
1238 lst->total_dark += calc_dark(c, spc);
1239 }
1240
1241 ubifs_scan_destroy(sleb);
1242 return LPT_SCAN_CONTINUE;
1243
1244 out_print:
1245 ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, "
1246 "should be free %d, dirty %d",
1247 lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1248 dbg_dump_leb(c, lnum);
1249 out_destroy:
1250 ubifs_scan_destroy(sleb);
1251 out:
1252 data->err = -EINVAL;
1253 return LPT_SCAN_STOP;
1254 }
1255
1256 /**
1257 * dbg_check_lprops - check all LEB properties.
1258 * @c: UBIFS file-system description object
1259 *
1260 * This function checks all LEB properties and makes sure they are all correct.
1261 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1262 * and other negative error codes in case of other errors. This function is
1263 * called while the file system is locked (because of commit start), so no
1264 * additional locking is required. Note that locking the LPT mutex would cause
1265 * a circular lock dependency with the TNC mutex.
1266 */
dbg_check_lprops(struct ubifs_info * c)1267 int dbg_check_lprops(struct ubifs_info *c)
1268 {
1269 int i, err;
1270 struct scan_check_data data;
1271 struct ubifs_lp_stats *lst = &data.lst;
1272
1273 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1274 return 0;
1275
1276 /*
1277 * As we are going to scan the media, the write buffers have to be
1278 * synchronized.
1279 */
1280 for (i = 0; i < c->jhead_cnt; i++) {
1281 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1282 if (err)
1283 return err;
1284 }
1285
1286 memset(lst, 0, sizeof(struct ubifs_lp_stats));
1287
1288 data.err = 0;
1289 err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1290 (ubifs_lpt_scan_callback)scan_check_cb,
1291 &data);
1292 if (err && err != -ENOSPC)
1293 goto out;
1294 if (data.err) {
1295 err = data.err;
1296 goto out;
1297 }
1298
1299 if (lst->empty_lebs != c->lst.empty_lebs ||
1300 lst->idx_lebs != c->lst.idx_lebs ||
1301 lst->total_free != c->lst.total_free ||
1302 lst->total_dirty != c->lst.total_dirty ||
1303 lst->total_used != c->lst.total_used) {
1304 ubifs_err("bad overall accounting");
1305 ubifs_err("calculated: empty_lebs %d, idx_lebs %d, "
1306 "total_free %lld, total_dirty %lld, total_used %lld",
1307 lst->empty_lebs, lst->idx_lebs, lst->total_free,
1308 lst->total_dirty, lst->total_used);
1309 ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, "
1310 "total_free %lld, total_dirty %lld, total_used %lld",
1311 c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1312 c->lst.total_dirty, c->lst.total_used);
1313 err = -EINVAL;
1314 goto out;
1315 }
1316
1317 if (lst->total_dead != c->lst.total_dead ||
1318 lst->total_dark != c->lst.total_dark) {
1319 ubifs_err("bad dead/dark space accounting");
1320 ubifs_err("calculated: total_dead %lld, total_dark %lld",
1321 lst->total_dead, lst->total_dark);
1322 ubifs_err("read from lprops: total_dead %lld, total_dark %lld",
1323 c->lst.total_dead, c->lst.total_dark);
1324 err = -EINVAL;
1325 goto out;
1326 }
1327
1328 err = dbg_check_cats(c);
1329 out:
1330 return err;
1331 }
1332
1333 #endif /* CONFIG_UBIFS_FS_DEBUG */
1334