• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions needed to recover from unclean un-mounts.
25  * When UBIFS is mounted, it checks a flag on the master node to determine if
26  * an un-mount was completed sucessfully. If not, the process of mounting
27  * incorparates additional checking and fixing of on-flash data structures.
28  * UBIFS always cleans away all remnants of an unclean un-mount, so that
29  * errors do not accumulate. However UBIFS defers recovery if it is mounted
30  * read-only, and the flash is not modified in that case.
31  */
32 
33 #include <linux/crc32.h>
34 #include "ubifs.h"
35 
36 /**
37  * is_empty - determine whether a buffer is empty (contains all 0xff).
38  * @buf: buffer to clean
39  * @len: length of buffer
40  *
41  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
42  * %0 is returned.
43  */
is_empty(void * buf,int len)44 static int is_empty(void *buf, int len)
45 {
46 	uint8_t *p = buf;
47 	int i;
48 
49 	for (i = 0; i < len; i++)
50 		if (*p++ != 0xff)
51 			return 0;
52 	return 1;
53 }
54 
55 /**
56  * get_master_node - get the last valid master node allowing for corruption.
57  * @c: UBIFS file-system description object
58  * @lnum: LEB number
59  * @pbuf: buffer containing the LEB read, is returned here
60  * @mst: master node, if found, is returned here
61  * @cor: corruption, if found, is returned here
62  *
63  * This function allocates a buffer, reads the LEB into it, and finds and
64  * returns the last valid master node allowing for one area of corruption.
65  * The corrupt area, if there is one, must be consistent with the assumption
66  * that it is the result of an unclean unmount while the master node was being
67  * written. Under those circumstances, it is valid to use the previously written
68  * master node.
69  *
70  * This function returns %0 on success and a negative error code on failure.
71  */
get_master_node(const struct ubifs_info * c,int lnum,void ** pbuf,struct ubifs_mst_node ** mst,void ** cor)72 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
73 			   struct ubifs_mst_node **mst, void **cor)
74 {
75 	const int sz = c->mst_node_alsz;
76 	int err, offs, len;
77 	void *sbuf, *buf;
78 
79 	sbuf = vmalloc(c->leb_size);
80 	if (!sbuf)
81 		return -ENOMEM;
82 
83 	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
84 	if (err && err != -EBADMSG)
85 		goto out_free;
86 
87 	/* Find the first position that is definitely not a node */
88 	offs = 0;
89 	buf = sbuf;
90 	len = c->leb_size;
91 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
92 		struct ubifs_ch *ch = buf;
93 
94 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
95 			break;
96 		offs += sz;
97 		buf  += sz;
98 		len  -= sz;
99 	}
100 	/* See if there was a valid master node before that */
101 	if (offs) {
102 		int ret;
103 
104 		offs -= sz;
105 		buf  -= sz;
106 		len  += sz;
107 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
108 		if (ret != SCANNED_A_NODE && offs) {
109 			/* Could have been corruption so check one place back */
110 			offs -= sz;
111 			buf  -= sz;
112 			len  += sz;
113 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
114 			if (ret != SCANNED_A_NODE)
115 				/*
116 				 * We accept only one area of corruption because
117 				 * we are assuming that it was caused while
118 				 * trying to write a master node.
119 				 */
120 				goto out_err;
121 		}
122 		if (ret == SCANNED_A_NODE) {
123 			struct ubifs_ch *ch = buf;
124 
125 			if (ch->node_type != UBIFS_MST_NODE)
126 				goto out_err;
127 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
128 			*mst = buf;
129 			offs += sz;
130 			buf  += sz;
131 			len  -= sz;
132 		}
133 	}
134 	/* Check for corruption */
135 	if (offs < c->leb_size) {
136 		if (!is_empty(buf, min_t(int, len, sz))) {
137 			*cor = buf;
138 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
139 		}
140 		offs += sz;
141 		buf  += sz;
142 		len  -= sz;
143 	}
144 	/* Check remaining empty space */
145 	if (offs < c->leb_size)
146 		if (!is_empty(buf, len))
147 			goto out_err;
148 	*pbuf = sbuf;
149 	return 0;
150 
151 out_err:
152 	err = -EINVAL;
153 out_free:
154 	vfree(sbuf);
155 	*mst = NULL;
156 	*cor = NULL;
157 	return err;
158 }
159 
160 /**
161  * write_rcvrd_mst_node - write recovered master node.
162  * @c: UBIFS file-system description object
163  * @mst: master node
164  *
165  * This function returns %0 on success and a negative error code on failure.
166  */
write_rcvrd_mst_node(struct ubifs_info * c,struct ubifs_mst_node * mst)167 static int write_rcvrd_mst_node(struct ubifs_info *c,
168 				struct ubifs_mst_node *mst)
169 {
170 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
171 	__le32 save_flags;
172 
173 	dbg_rcvry("recovery");
174 
175 	save_flags = mst->flags;
176 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
177 
178 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
179 	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
180 	if (err)
181 		goto out;
182 	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
183 	if (err)
184 		goto out;
185 out:
186 	mst->flags = save_flags;
187 	return err;
188 }
189 
190 /**
191  * ubifs_recover_master_node - recover the master node.
192  * @c: UBIFS file-system description object
193  *
194  * This function recovers the master node from corruption that may occur due to
195  * an unclean unmount.
196  *
197  * This function returns %0 on success and a negative error code on failure.
198  */
ubifs_recover_master_node(struct ubifs_info * c)199 int ubifs_recover_master_node(struct ubifs_info *c)
200 {
201 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
202 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
203 	const int sz = c->mst_node_alsz;
204 	int err, offs1, offs2;
205 
206 	dbg_rcvry("recovery");
207 
208 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
209 	if (err)
210 		goto out_free;
211 
212 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
213 	if (err)
214 		goto out_free;
215 
216 	if (mst1) {
217 		offs1 = (void *)mst1 - buf1;
218 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
219 		    (offs1 == 0 && !cor1)) {
220 			/*
221 			 * mst1 was written by recovery at offset 0 with no
222 			 * corruption.
223 			 */
224 			dbg_rcvry("recovery recovery");
225 			mst = mst1;
226 		} else if (mst2) {
227 			offs2 = (void *)mst2 - buf2;
228 			if (offs1 == offs2) {
229 				/* Same offset, so must be the same */
230 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
231 					   (void *)mst2 + UBIFS_CH_SZ,
232 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
233 					goto out_err;
234 				mst = mst1;
235 			} else if (offs2 + sz == offs1) {
236 				/* 1st LEB was written, 2nd was not */
237 				if (cor1)
238 					goto out_err;
239 				mst = mst1;
240 			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
241 				/* 1st LEB was unmapped and written, 2nd not */
242 				if (cor1)
243 					goto out_err;
244 				mst = mst1;
245 			} else
246 				goto out_err;
247 		} else {
248 			/*
249 			 * 2nd LEB was unmapped and about to be written, so
250 			 * there must be only one master node in the first LEB
251 			 * and no corruption.
252 			 */
253 			if (offs1 != 0 || cor1)
254 				goto out_err;
255 			mst = mst1;
256 		}
257 	} else {
258 		if (!mst2)
259 			goto out_err;
260 		/*
261 		 * 1st LEB was unmapped and about to be written, so there must
262 		 * be no room left in 2nd LEB.
263 		 */
264 		offs2 = (void *)mst2 - buf2;
265 		if (offs2 + sz + sz <= c->leb_size)
266 			goto out_err;
267 		mst = mst2;
268 	}
269 
270 	dbg_rcvry("recovered master node from LEB %d",
271 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
272 
273 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
274 
275 	if ((c->vfs_sb->s_flags & MS_RDONLY)) {
276 		/* Read-only mode. Keep a copy for switching to rw mode */
277 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
278 		if (!c->rcvrd_mst_node) {
279 			err = -ENOMEM;
280 			goto out_free;
281 		}
282 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
283 	} else {
284 		/* Write the recovered master node */
285 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
286 		err = write_rcvrd_mst_node(c, c->mst_node);
287 		if (err)
288 			goto out_free;
289 	}
290 
291 	vfree(buf2);
292 	vfree(buf1);
293 
294 	return 0;
295 
296 out_err:
297 	err = -EINVAL;
298 out_free:
299 	ubifs_err("failed to recover master node");
300 	if (mst1) {
301 		dbg_err("dumping first master node");
302 		dbg_dump_node(c, mst1);
303 	}
304 	if (mst2) {
305 		dbg_err("dumping second master node");
306 		dbg_dump_node(c, mst2);
307 	}
308 	vfree(buf2);
309 	vfree(buf1);
310 	return err;
311 }
312 
313 /**
314  * ubifs_write_rcvrd_mst_node - write the recovered master node.
315  * @c: UBIFS file-system description object
316  *
317  * This function writes the master node that was recovered during mounting in
318  * read-only mode and must now be written because we are remounting rw.
319  *
320  * This function returns %0 on success and a negative error code on failure.
321  */
ubifs_write_rcvrd_mst_node(struct ubifs_info * c)322 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
323 {
324 	int err;
325 
326 	if (!c->rcvrd_mst_node)
327 		return 0;
328 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
329 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
330 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
331 	if (err)
332 		return err;
333 	kfree(c->rcvrd_mst_node);
334 	c->rcvrd_mst_node = NULL;
335 	return 0;
336 }
337 
338 /**
339  * is_last_write - determine if an offset was in the last write to a LEB.
340  * @c: UBIFS file-system description object
341  * @buf: buffer to check
342  * @offs: offset to check
343  *
344  * This function returns %1 if @offs was in the last write to the LEB whose data
345  * is in @buf, otherwise %0 is returned.  The determination is made by checking
346  * for subsequent empty space starting from the next min_io_size boundary (or a
347  * bit less than the common header size if min_io_size is one).
348  */
is_last_write(const struct ubifs_info * c,void * buf,int offs)349 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
350 {
351 	int empty_offs;
352 	int check_len;
353 	uint8_t *p;
354 
355 	if (c->min_io_size == 1) {
356 		check_len = c->leb_size - offs;
357 		p = buf + check_len;
358 		for (; check_len > 0; check_len--)
359 			if (*--p != 0xff)
360 				break;
361 		/*
362 		 * 'check_len' is the size of the corruption which cannot be
363 		 * more than the size of 1 node if it was caused by an unclean
364 		 * unmount.
365 		 */
366 		if (check_len > UBIFS_MAX_NODE_SZ)
367 			return 0;
368 		return 1;
369 	}
370 
371 	/*
372 	 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
373 	 * last wbuf written. After that should be empty space.
374 	 */
375 	empty_offs = ALIGN(offs + 1, c->min_io_size);
376 	check_len = c->leb_size - empty_offs;
377 	p = buf + empty_offs - offs;
378 
379 	for (; check_len > 0; check_len--)
380 		if (*p++ != 0xff)
381 			return 0;
382 	return 1;
383 }
384 
385 /**
386  * clean_buf - clean the data from an LEB sitting in a buffer.
387  * @c: UBIFS file-system description object
388  * @buf: buffer to clean
389  * @lnum: LEB number to clean
390  * @offs: offset from which to clean
391  * @len: length of buffer
392  *
393  * This function pads up to the next min_io_size boundary (if there is one) and
394  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
395  * min_io_size boundary (if there is one).
396  */
clean_buf(const struct ubifs_info * c,void ** buf,int lnum,int * offs,int * len)397 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
398 		      int *offs, int *len)
399 {
400 	int empty_offs, pad_len;
401 
402 	lnum = lnum;
403 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
404 
405 	if (c->min_io_size == 1) {
406 		memset(*buf, 0xff, c->leb_size - *offs);
407 		return;
408 	}
409 
410 	ubifs_assert(!(*offs & 7));
411 	empty_offs = ALIGN(*offs, c->min_io_size);
412 	pad_len = empty_offs - *offs;
413 	ubifs_pad(c, *buf, pad_len);
414 	*offs += pad_len;
415 	*buf += pad_len;
416 	*len -= pad_len;
417 	memset(*buf, 0xff, c->leb_size - empty_offs);
418 }
419 
420 /**
421  * no_more_nodes - determine if there are no more nodes in a buffer.
422  * @c: UBIFS file-system description object
423  * @buf: buffer to check
424  * @len: length of buffer
425  * @lnum: LEB number of the LEB from which @buf was read
426  * @offs: offset from which @buf was read
427  *
428  * This function scans @buf for more nodes and returns %0 is a node is found and
429  * %1 if no more nodes are found.
430  */
no_more_nodes(const struct ubifs_info * c,void * buf,int len,int lnum,int offs)431 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
432 			int lnum, int offs)
433 {
434 	int skip, next_offs = 0;
435 
436 	if (len > UBIFS_DATA_NODE_SZ) {
437 		struct ubifs_ch *ch = buf;
438 		int dlen = le32_to_cpu(ch->len);
439 
440 		if (ch->node_type == UBIFS_DATA_NODE && dlen >= UBIFS_CH_SZ &&
441 		    dlen <= UBIFS_MAX_DATA_NODE_SZ)
442 			/* The corrupt node looks like a data node */
443 			next_offs = ALIGN(offs + dlen, 8);
444 	}
445 
446 	if (c->min_io_size == 1)
447 		skip = 8;
448 	else
449 		skip = ALIGN(offs + 1, c->min_io_size) - offs;
450 
451 	offs += skip;
452 	buf += skip;
453 	len -= skip;
454 	while (len > 8) {
455 		struct ubifs_ch *ch = buf;
456 		uint32_t magic = le32_to_cpu(ch->magic);
457 		int ret;
458 
459 		if (magic == UBIFS_NODE_MAGIC) {
460 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
461 			if (ret == SCANNED_A_NODE || ret > 0) {
462 				/*
463 				 * There is a small chance this is just data in
464 				 * a data node, so check that possibility. e.g.
465 				 * this is part of a file that itself contains
466 				 * a UBIFS image.
467 				 */
468 				if (next_offs && offs + le32_to_cpu(ch->len) <=
469 				    next_offs)
470 					continue;
471 				dbg_rcvry("unexpected node at %d:%d", lnum,
472 					  offs);
473 				return 0;
474 			}
475 		}
476 		offs += 8;
477 		buf += 8;
478 		len -= 8;
479 	}
480 	return 1;
481 }
482 
483 /**
484  * fix_unclean_leb - fix an unclean LEB.
485  * @c: UBIFS file-system description object
486  * @sleb: scanned LEB information
487  * @start: offset where scan started
488  */
fix_unclean_leb(struct ubifs_info * c,struct ubifs_scan_leb * sleb,int start)489 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
490 			   int start)
491 {
492 	int lnum = sleb->lnum, endpt = start;
493 
494 	/* Get the end offset of the last node we are keeping */
495 	if (!list_empty(&sleb->nodes)) {
496 		struct ubifs_scan_node *snod;
497 
498 		snod = list_entry(sleb->nodes.prev,
499 				  struct ubifs_scan_node, list);
500 		endpt = snod->offs + snod->len;
501 	}
502 
503 	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
504 		/* Add to recovery list */
505 		struct ubifs_unclean_leb *ucleb;
506 
507 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
508 			  lnum, start, sleb->endpt);
509 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
510 		if (!ucleb)
511 			return -ENOMEM;
512 		ucleb->lnum = lnum;
513 		ucleb->endpt = endpt;
514 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
515 	} else {
516 		/* Write the fixed LEB back to flash */
517 		int err;
518 
519 		dbg_rcvry("fixing LEB %d start %d endpt %d",
520 			  lnum, start, sleb->endpt);
521 		if (endpt == 0) {
522 			err = ubifs_leb_unmap(c, lnum);
523 			if (err)
524 				return err;
525 		} else {
526 			int len = ALIGN(endpt, c->min_io_size);
527 
528 			if (start) {
529 				err = ubi_read(c->ubi, lnum, sleb->buf, 0,
530 					       start);
531 				if (err)
532 					return err;
533 			}
534 			/* Pad to min_io_size */
535 			if (len > endpt) {
536 				int pad_len = len - ALIGN(endpt, 8);
537 
538 				if (pad_len > 0) {
539 					void *buf = sleb->buf + len - pad_len;
540 
541 					ubifs_pad(c, buf, pad_len);
542 				}
543 			}
544 			err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
545 					     UBI_UNKNOWN);
546 			if (err)
547 				return err;
548 		}
549 	}
550 	return 0;
551 }
552 
553 /**
554  * drop_incomplete_group - drop nodes from an incomplete group.
555  * @sleb: scanned LEB information
556  * @offs: offset of dropped nodes is returned here
557  *
558  * This function returns %1 if nodes are dropped and %0 otherwise.
559  */
drop_incomplete_group(struct ubifs_scan_leb * sleb,int * offs)560 static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
561 {
562 	int dropped = 0;
563 
564 	while (!list_empty(&sleb->nodes)) {
565 		struct ubifs_scan_node *snod;
566 		struct ubifs_ch *ch;
567 
568 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
569 				  list);
570 		ch = snod->node;
571 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
572 			return dropped;
573 		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
574 		*offs = snod->offs;
575 		list_del(&snod->list);
576 		kfree(snod);
577 		sleb->nodes_cnt -= 1;
578 		dropped = 1;
579 	}
580 	return dropped;
581 }
582 
583 /**
584  * ubifs_recover_leb - scan and recover a LEB.
585  * @c: UBIFS file-system description object
586  * @lnum: LEB number
587  * @offs: offset
588  * @sbuf: LEB-sized buffer to use
589  * @grouped: nodes may be grouped for recovery
590  *
591  * This function does a scan of a LEB, but caters for errors that might have
592  * been caused by the unclean unmount from which we are attempting to recover.
593  *
594  * This function returns %0 on success and a negative error code on failure.
595  */
ubifs_recover_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf,int grouped)596 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
597 					 int offs, void *sbuf, int grouped)
598 {
599 	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
600 	int empty_chkd = 0, start = offs;
601 	struct ubifs_scan_leb *sleb;
602 	void *buf = sbuf + offs;
603 
604 	dbg_rcvry("%d:%d", lnum, offs);
605 
606 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
607 	if (IS_ERR(sleb))
608 		return sleb;
609 
610 	if (sleb->ecc)
611 		need_clean = 1;
612 
613 	while (len >= 8) {
614 		int ret;
615 
616 		dbg_scan("look at LEB %d:%d (%d bytes left)",
617 			 lnum, offs, len);
618 
619 		cond_resched();
620 
621 		/*
622 		 * Scan quietly until there is an error from which we cannot
623 		 * recover
624 		 */
625 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
626 
627 		if (ret == SCANNED_A_NODE) {
628 			/* A valid node, and not a padding node */
629 			struct ubifs_ch *ch = buf;
630 			int node_len;
631 
632 			err = ubifs_add_snod(c, sleb, buf, offs);
633 			if (err)
634 				goto error;
635 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
636 			offs += node_len;
637 			buf += node_len;
638 			len -= node_len;
639 			continue;
640 		}
641 
642 		if (ret > 0) {
643 			/* Padding bytes or a valid padding node */
644 			offs += ret;
645 			buf += ret;
646 			len -= ret;
647 			continue;
648 		}
649 
650 		if (ret == SCANNED_EMPTY_SPACE) {
651 			if (!is_empty(buf, len)) {
652 				if (!is_last_write(c, buf, offs))
653 					break;
654 				clean_buf(c, &buf, lnum, &offs, &len);
655 				need_clean = 1;
656 			}
657 			empty_chkd = 1;
658 			break;
659 		}
660 
661 		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
662 			if (is_last_write(c, buf, offs)) {
663 				clean_buf(c, &buf, lnum, &offs, &len);
664 				need_clean = 1;
665 				empty_chkd = 1;
666 				break;
667 			}
668 
669 		if (ret == SCANNED_A_CORRUPT_NODE)
670 			if (no_more_nodes(c, buf, len, lnum, offs)) {
671 				clean_buf(c, &buf, lnum, &offs, &len);
672 				need_clean = 1;
673 				empty_chkd = 1;
674 				break;
675 			}
676 
677 		if (quiet) {
678 			/* Redo the last scan but noisily */
679 			quiet = 0;
680 			continue;
681 		}
682 
683 		switch (ret) {
684 		case SCANNED_GARBAGE:
685 			dbg_err("garbage");
686 			goto corrupted;
687 		case SCANNED_A_CORRUPT_NODE:
688 		case SCANNED_A_BAD_PAD_NODE:
689 			dbg_err("bad node");
690 			goto corrupted;
691 		default:
692 			dbg_err("unknown");
693 			goto corrupted;
694 		}
695 	}
696 
697 	if (!empty_chkd && !is_empty(buf, len)) {
698 		if (is_last_write(c, buf, offs)) {
699 			clean_buf(c, &buf, lnum, &offs, &len);
700 			need_clean = 1;
701 		} else {
702 			ubifs_err("corrupt empty space at LEB %d:%d",
703 				  lnum, offs);
704 			goto corrupted;
705 		}
706 	}
707 
708 	/* Drop nodes from incomplete group */
709 	if (grouped && drop_incomplete_group(sleb, &offs)) {
710 		buf = sbuf + offs;
711 		len = c->leb_size - offs;
712 		clean_buf(c, &buf, lnum, &offs, &len);
713 		need_clean = 1;
714 	}
715 
716 	if (offs % c->min_io_size) {
717 		clean_buf(c, &buf, lnum, &offs, &len);
718 		need_clean = 1;
719 	}
720 
721 	ubifs_end_scan(c, sleb, lnum, offs);
722 
723 	if (need_clean) {
724 		err = fix_unclean_leb(c, sleb, start);
725 		if (err)
726 			goto error;
727 	}
728 
729 	return sleb;
730 
731 corrupted:
732 	ubifs_scanned_corruption(c, lnum, offs, buf);
733 	err = -EUCLEAN;
734 error:
735 	ubifs_err("LEB %d scanning failed", lnum);
736 	ubifs_scan_destroy(sleb);
737 	return ERR_PTR(err);
738 }
739 
740 /**
741  * get_cs_sqnum - get commit start sequence number.
742  * @c: UBIFS file-system description object
743  * @lnum: LEB number of commit start node
744  * @offs: offset of commit start node
745  * @cs_sqnum: commit start sequence number is returned here
746  *
747  * This function returns %0 on success and a negative error code on failure.
748  */
get_cs_sqnum(struct ubifs_info * c,int lnum,int offs,unsigned long long * cs_sqnum)749 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
750 			unsigned long long *cs_sqnum)
751 {
752 	struct ubifs_cs_node *cs_node = NULL;
753 	int err, ret;
754 
755 	dbg_rcvry("at %d:%d", lnum, offs);
756 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
757 	if (!cs_node)
758 		return -ENOMEM;
759 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
760 		goto out_err;
761 	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
762 	if (err && err != -EBADMSG)
763 		goto out_free;
764 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
765 	if (ret != SCANNED_A_NODE) {
766 		dbg_err("Not a valid node");
767 		goto out_err;
768 	}
769 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
770 		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
771 		goto out_err;
772 	}
773 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
774 		dbg_err("CS node cmt_no %llu != current cmt_no %llu",
775 			(unsigned long long)le64_to_cpu(cs_node->cmt_no),
776 			c->cmt_no);
777 		goto out_err;
778 	}
779 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
780 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
781 	kfree(cs_node);
782 	return 0;
783 
784 out_err:
785 	err = -EINVAL;
786 out_free:
787 	ubifs_err("failed to get CS sqnum");
788 	kfree(cs_node);
789 	return err;
790 }
791 
792 /**
793  * ubifs_recover_log_leb - scan and recover a log LEB.
794  * @c: UBIFS file-system description object
795  * @lnum: LEB number
796  * @offs: offset
797  * @sbuf: LEB-sized buffer to use
798  *
799  * This function does a scan of a LEB, but caters for errors that might have
800  * been caused by the unclean unmount from which we are attempting to recover.
801  *
802  * This function returns %0 on success and a negative error code on failure.
803  */
ubifs_recover_log_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf)804 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
805 					     int offs, void *sbuf)
806 {
807 	struct ubifs_scan_leb *sleb;
808 	int next_lnum;
809 
810 	dbg_rcvry("LEB %d", lnum);
811 	next_lnum = lnum + 1;
812 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
813 		next_lnum = UBIFS_LOG_LNUM;
814 	if (next_lnum != c->ltail_lnum) {
815 		/*
816 		 * We can only recover at the end of the log, so check that the
817 		 * next log LEB is empty or out of date.
818 		 */
819 		sleb = ubifs_scan(c, next_lnum, 0, sbuf);
820 		if (IS_ERR(sleb))
821 			return sleb;
822 		if (sleb->nodes_cnt) {
823 			struct ubifs_scan_node *snod;
824 			unsigned long long cs_sqnum = c->cs_sqnum;
825 
826 			snod = list_entry(sleb->nodes.next,
827 					  struct ubifs_scan_node, list);
828 			if (cs_sqnum == 0) {
829 				int err;
830 
831 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
832 				if (err) {
833 					ubifs_scan_destroy(sleb);
834 					return ERR_PTR(err);
835 				}
836 			}
837 			if (snod->sqnum > cs_sqnum) {
838 				ubifs_err("unrecoverable log corruption "
839 					  "in LEB %d", lnum);
840 				ubifs_scan_destroy(sleb);
841 				return ERR_PTR(-EUCLEAN);
842 			}
843 		}
844 		ubifs_scan_destroy(sleb);
845 	}
846 	return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
847 }
848 
849 /**
850  * recover_head - recover a head.
851  * @c: UBIFS file-system description object
852  * @lnum: LEB number of head to recover
853  * @offs: offset of head to recover
854  * @sbuf: LEB-sized buffer to use
855  *
856  * This function ensures that there is no data on the flash at a head location.
857  *
858  * This function returns %0 on success and a negative error code on failure.
859  */
recover_head(const struct ubifs_info * c,int lnum,int offs,void * sbuf)860 static int recover_head(const struct ubifs_info *c, int lnum, int offs,
861 			void *sbuf)
862 {
863 	int len, err, need_clean = 0;
864 
865 	if (c->min_io_size > 1)
866 		len = c->min_io_size;
867 	else
868 		len = 512;
869 	if (offs + len > c->leb_size)
870 		len = c->leb_size - offs;
871 
872 	if (!len)
873 		return 0;
874 
875 	/* Read at the head location and check it is empty flash */
876 	err = ubi_read(c->ubi, lnum, sbuf, offs, len);
877 	if (err)
878 		need_clean = 1;
879 	else {
880 		uint8_t *p = sbuf;
881 
882 		while (len--)
883 			if (*p++ != 0xff) {
884 				need_clean = 1;
885 				break;
886 			}
887 	}
888 
889 	if (need_clean) {
890 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
891 		if (offs == 0)
892 			return ubifs_leb_unmap(c, lnum);
893 		err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
894 		if (err)
895 			return err;
896 		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
897 	}
898 
899 	return 0;
900 }
901 
902 /**
903  * ubifs_recover_inl_heads - recover index and LPT heads.
904  * @c: UBIFS file-system description object
905  * @sbuf: LEB-sized buffer to use
906  *
907  * This function ensures that there is no data on the flash at the index and
908  * LPT head locations.
909  *
910  * This deals with the recovery of a half-completed journal commit. UBIFS is
911  * careful never to overwrite the last version of the index or the LPT. Because
912  * the index and LPT are wandering trees, data from a half-completed commit will
913  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
914  * assumed to be empty and will be unmapped anyway before use, or in the index
915  * and LPT heads.
916  *
917  * This function returns %0 on success and a negative error code on failure.
918  */
ubifs_recover_inl_heads(const struct ubifs_info * c,void * sbuf)919 int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
920 {
921 	int err;
922 
923 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
924 
925 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
926 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
927 	if (err)
928 		return err;
929 
930 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
931 	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
932 	if (err)
933 		return err;
934 
935 	return 0;
936 }
937 
938 /**
939  *  clean_an_unclean_leb - read and write a LEB to remove corruption.
940  * @c: UBIFS file-system description object
941  * @ucleb: unclean LEB information
942  * @sbuf: LEB-sized buffer to use
943  *
944  * This function reads a LEB up to a point pre-determined by the mount recovery,
945  * checks the nodes, and writes the result back to the flash, thereby cleaning
946  * off any following corruption, or non-fatal ECC errors.
947  *
948  * This function returns %0 on success and a negative error code on failure.
949  */
clean_an_unclean_leb(const struct ubifs_info * c,struct ubifs_unclean_leb * ucleb,void * sbuf)950 static int clean_an_unclean_leb(const struct ubifs_info *c,
951 				struct ubifs_unclean_leb *ucleb, void *sbuf)
952 {
953 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
954 	void *buf = sbuf;
955 
956 	dbg_rcvry("LEB %d len %d", lnum, len);
957 
958 	if (len == 0) {
959 		/* Nothing to read, just unmap it */
960 		err = ubifs_leb_unmap(c, lnum);
961 		if (err)
962 			return err;
963 		return 0;
964 	}
965 
966 	err = ubi_read(c->ubi, lnum, buf, offs, len);
967 	if (err && err != -EBADMSG)
968 		return err;
969 
970 	while (len >= 8) {
971 		int ret;
972 
973 		cond_resched();
974 
975 		/* Scan quietly until there is an error */
976 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
977 
978 		if (ret == SCANNED_A_NODE) {
979 			/* A valid node, and not a padding node */
980 			struct ubifs_ch *ch = buf;
981 			int node_len;
982 
983 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
984 			offs += node_len;
985 			buf += node_len;
986 			len -= node_len;
987 			continue;
988 		}
989 
990 		if (ret > 0) {
991 			/* Padding bytes or a valid padding node */
992 			offs += ret;
993 			buf += ret;
994 			len -= ret;
995 			continue;
996 		}
997 
998 		if (ret == SCANNED_EMPTY_SPACE) {
999 			ubifs_err("unexpected empty space at %d:%d",
1000 				  lnum, offs);
1001 			return -EUCLEAN;
1002 		}
1003 
1004 		if (quiet) {
1005 			/* Redo the last scan but noisily */
1006 			quiet = 0;
1007 			continue;
1008 		}
1009 
1010 		ubifs_scanned_corruption(c, lnum, offs, buf);
1011 		return -EUCLEAN;
1012 	}
1013 
1014 	/* Pad to min_io_size */
1015 	len = ALIGN(ucleb->endpt, c->min_io_size);
1016 	if (len > ucleb->endpt) {
1017 		int pad_len = len - ALIGN(ucleb->endpt, 8);
1018 
1019 		if (pad_len > 0) {
1020 			buf = c->sbuf + len - pad_len;
1021 			ubifs_pad(c, buf, pad_len);
1022 		}
1023 	}
1024 
1025 	/* Write back the LEB atomically */
1026 	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
1027 	if (err)
1028 		return err;
1029 
1030 	dbg_rcvry("cleaned LEB %d", lnum);
1031 
1032 	return 0;
1033 }
1034 
1035 /**
1036  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1037  * @c: UBIFS file-system description object
1038  * @sbuf: LEB-sized buffer to use
1039  *
1040  * This function cleans a LEB identified during recovery that needs to be
1041  * written but was not because UBIFS was mounted read-only. This happens when
1042  * remounting to read-write mode.
1043  *
1044  * This function returns %0 on success and a negative error code on failure.
1045  */
ubifs_clean_lebs(const struct ubifs_info * c,void * sbuf)1046 int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
1047 {
1048 	dbg_rcvry("recovery");
1049 	while (!list_empty(&c->unclean_leb_list)) {
1050 		struct ubifs_unclean_leb *ucleb;
1051 		int err;
1052 
1053 		ucleb = list_entry(c->unclean_leb_list.next,
1054 				   struct ubifs_unclean_leb, list);
1055 		err = clean_an_unclean_leb(c, ucleb, sbuf);
1056 		if (err)
1057 			return err;
1058 		list_del(&ucleb->list);
1059 		kfree(ucleb);
1060 	}
1061 	return 0;
1062 }
1063 
1064 /**
1065  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1066  * @c: UBIFS file-system description object
1067  *
1068  * Out-of-place garbage collection requires always one empty LEB with which to
1069  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1070  * written to the master node on unmounting. In the case of an unclean unmount
1071  * the value of gc_lnum recorded in the master node is out of date and cannot
1072  * be used. Instead, recovery must allocate an empty LEB for this purpose.
1073  * However, there may not be enough empty space, in which case it must be
1074  * possible to GC the dirtiest LEB into the GC head LEB.
1075  *
1076  * This function also runs the commit which causes the TNC updates from
1077  * size-recovery and orphans to be written to the flash. That is important to
1078  * ensure correct replay order for subsequent mounts.
1079  *
1080  * This function returns %0 on success and a negative error code on failure.
1081  */
ubifs_rcvry_gc_commit(struct ubifs_info * c)1082 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1083 {
1084 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1085 	struct ubifs_lprops lp;
1086 	int lnum, err;
1087 
1088 	c->gc_lnum = -1;
1089 	if (wbuf->lnum == -1) {
1090 		dbg_rcvry("no GC head LEB");
1091 		goto find_free;
1092 	}
1093 	/*
1094 	 * See whether the used space in the dirtiest LEB fits in the GC head
1095 	 * LEB.
1096 	 */
1097 	if (wbuf->offs == c->leb_size) {
1098 		dbg_rcvry("no room in GC head LEB");
1099 		goto find_free;
1100 	}
1101 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1102 	if (err) {
1103 		if (err == -ENOSPC)
1104 			dbg_err("could not find a dirty LEB");
1105 		return err;
1106 	}
1107 	ubifs_assert(!(lp.flags & LPROPS_INDEX));
1108 	lnum = lp.lnum;
1109 	if (lp.free + lp.dirty == c->leb_size) {
1110 		/* An empty LEB was returned */
1111 		if (lp.free != c->leb_size) {
1112 			err = ubifs_change_one_lp(c, lnum, c->leb_size,
1113 						  0, 0, 0, 0);
1114 			if (err)
1115 				return err;
1116 		}
1117 		err = ubifs_leb_unmap(c, lnum);
1118 		if (err)
1119 			return err;
1120 		c->gc_lnum = lnum;
1121 		dbg_rcvry("allocated LEB %d for GC", lnum);
1122 		/* Run the commit */
1123 		dbg_rcvry("committing");
1124 		return ubifs_run_commit(c);
1125 	}
1126 	/*
1127 	 * There was no empty LEB so the used space in the dirtiest LEB must fit
1128 	 * in the GC head LEB.
1129 	 */
1130 	if (lp.free + lp.dirty < wbuf->offs) {
1131 		dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1132 			  lnum, wbuf->lnum, wbuf->offs);
1133 		err = ubifs_return_leb(c, lnum);
1134 		if (err)
1135 			return err;
1136 		goto find_free;
1137 	}
1138 	/*
1139 	 * We run the commit before garbage collection otherwise subsequent
1140 	 * mounts will see the GC and orphan deletion in a different order.
1141 	 */
1142 	dbg_rcvry("committing");
1143 	err = ubifs_run_commit(c);
1144 	if (err)
1145 		return err;
1146 	/*
1147 	 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1148 	 * - use locking to keep 'ubifs_assert()' happy.
1149 	 */
1150 	dbg_rcvry("GC'ing LEB %d", lnum);
1151 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1152 	err = ubifs_garbage_collect_leb(c, &lp);
1153 	if (err >= 0) {
1154 		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1155 
1156 		if (err2)
1157 			err = err2;
1158 	}
1159 	mutex_unlock(&wbuf->io_mutex);
1160 	if (err < 0) {
1161 		dbg_err("GC failed, error %d", err);
1162 		if (err == -EAGAIN)
1163 			err = -EINVAL;
1164 		return err;
1165 	}
1166 	if (err != LEB_RETAINED) {
1167 		dbg_err("GC returned %d", err);
1168 		return -EINVAL;
1169 	}
1170 	err = ubifs_leb_unmap(c, c->gc_lnum);
1171 	if (err)
1172 		return err;
1173 	dbg_rcvry("allocated LEB %d for GC", lnum);
1174 	return 0;
1175 
1176 find_free:
1177 	/*
1178 	 * There is no GC head LEB or the free space in the GC head LEB is too
1179 	 * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so
1180 	 * GC is not run.
1181 	 */
1182 	lnum = ubifs_find_free_leb_for_idx(c);
1183 	if (lnum < 0) {
1184 		dbg_err("could not find an empty LEB");
1185 		return lnum;
1186 	}
1187 	/* And reset the index flag */
1188 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1189 				  LPROPS_INDEX, 0);
1190 	if (err)
1191 		return err;
1192 	c->gc_lnum = lnum;
1193 	dbg_rcvry("allocated LEB %d for GC", lnum);
1194 	/* Run the commit */
1195 	dbg_rcvry("committing");
1196 	return ubifs_run_commit(c);
1197 }
1198 
1199 /**
1200  * struct size_entry - inode size information for recovery.
1201  * @rb: link in the RB-tree of sizes
1202  * @inum: inode number
1203  * @i_size: size on inode
1204  * @d_size: maximum size based on data nodes
1205  * @exists: indicates whether the inode exists
1206  * @inode: inode if pinned in memory awaiting rw mode to fix it
1207  */
1208 struct size_entry {
1209 	struct rb_node rb;
1210 	ino_t inum;
1211 	loff_t i_size;
1212 	loff_t d_size;
1213 	int exists;
1214 	struct inode *inode;
1215 };
1216 
1217 /**
1218  * add_ino - add an entry to the size tree.
1219  * @c: UBIFS file-system description object
1220  * @inum: inode number
1221  * @i_size: size on inode
1222  * @d_size: maximum size based on data nodes
1223  * @exists: indicates whether the inode exists
1224  */
add_ino(struct ubifs_info * c,ino_t inum,loff_t i_size,loff_t d_size,int exists)1225 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1226 		   loff_t d_size, int exists)
1227 {
1228 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1229 	struct size_entry *e;
1230 
1231 	while (*p) {
1232 		parent = *p;
1233 		e = rb_entry(parent, struct size_entry, rb);
1234 		if (inum < e->inum)
1235 			p = &(*p)->rb_left;
1236 		else
1237 			p = &(*p)->rb_right;
1238 	}
1239 
1240 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1241 	if (!e)
1242 		return -ENOMEM;
1243 
1244 	e->inum = inum;
1245 	e->i_size = i_size;
1246 	e->d_size = d_size;
1247 	e->exists = exists;
1248 
1249 	rb_link_node(&e->rb, parent, p);
1250 	rb_insert_color(&e->rb, &c->size_tree);
1251 
1252 	return 0;
1253 }
1254 
1255 /**
1256  * find_ino - find an entry on the size tree.
1257  * @c: UBIFS file-system description object
1258  * @inum: inode number
1259  */
find_ino(struct ubifs_info * c,ino_t inum)1260 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1261 {
1262 	struct rb_node *p = c->size_tree.rb_node;
1263 	struct size_entry *e;
1264 
1265 	while (p) {
1266 		e = rb_entry(p, struct size_entry, rb);
1267 		if (inum < e->inum)
1268 			p = p->rb_left;
1269 		else if (inum > e->inum)
1270 			p = p->rb_right;
1271 		else
1272 			return e;
1273 	}
1274 	return NULL;
1275 }
1276 
1277 /**
1278  * remove_ino - remove an entry from the size tree.
1279  * @c: UBIFS file-system description object
1280  * @inum: inode number
1281  */
remove_ino(struct ubifs_info * c,ino_t inum)1282 static void remove_ino(struct ubifs_info *c, ino_t inum)
1283 {
1284 	struct size_entry *e = find_ino(c, inum);
1285 
1286 	if (!e)
1287 		return;
1288 	rb_erase(&e->rb, &c->size_tree);
1289 	kfree(e);
1290 }
1291 
1292 /**
1293  * ubifs_destroy_size_tree - free resources related to the size tree.
1294  * @c: UBIFS file-system description object
1295  */
ubifs_destroy_size_tree(struct ubifs_info * c)1296 void ubifs_destroy_size_tree(struct ubifs_info *c)
1297 {
1298 	struct rb_node *this = c->size_tree.rb_node;
1299 	struct size_entry *e;
1300 
1301 	while (this) {
1302 		if (this->rb_left) {
1303 			this = this->rb_left;
1304 			continue;
1305 		} else if (this->rb_right) {
1306 			this = this->rb_right;
1307 			continue;
1308 		}
1309 		e = rb_entry(this, struct size_entry, rb);
1310 		if (e->inode)
1311 			iput(e->inode);
1312 		this = rb_parent(this);
1313 		if (this) {
1314 			if (this->rb_left == &e->rb)
1315 				this->rb_left = NULL;
1316 			else
1317 				this->rb_right = NULL;
1318 		}
1319 		kfree(e);
1320 	}
1321 	c->size_tree = RB_ROOT;
1322 }
1323 
1324 /**
1325  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1326  * @c: UBIFS file-system description object
1327  * @key: node key
1328  * @deletion: node is for a deletion
1329  * @new_size: inode size
1330  *
1331  * This function has two purposes:
1332  *     1) to ensure there are no data nodes that fall outside the inode size
1333  *     2) to ensure there are no data nodes for inodes that do not exist
1334  * To accomplish those purposes, a rb-tree is constructed containing an entry
1335  * for each inode number in the journal that has not been deleted, and recording
1336  * the size from the inode node, the maximum size of any data node (also altered
1337  * by truncations) and a flag indicating a inode number for which no inode node
1338  * was present in the journal.
1339  *
1340  * Note that there is still the possibility that there are data nodes that have
1341  * been committed that are beyond the inode size, however the only way to find
1342  * them would be to scan the entire index. Alternatively, some provision could
1343  * be made to record the size of inodes at the start of commit, which would seem
1344  * very cumbersome for a scenario that is quite unlikely and the only negative
1345  * consequence of which is wasted space.
1346  *
1347  * This functions returns %0 on success and a negative error code on failure.
1348  */
ubifs_recover_size_accum(struct ubifs_info * c,union ubifs_key * key,int deletion,loff_t new_size)1349 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1350 			     int deletion, loff_t new_size)
1351 {
1352 	ino_t inum = key_inum(c, key);
1353 	struct size_entry *e;
1354 	int err;
1355 
1356 	switch (key_type(c, key)) {
1357 	case UBIFS_INO_KEY:
1358 		if (deletion)
1359 			remove_ino(c, inum);
1360 		else {
1361 			e = find_ino(c, inum);
1362 			if (e) {
1363 				e->i_size = new_size;
1364 				e->exists = 1;
1365 			} else {
1366 				err = add_ino(c, inum, new_size, 0, 1);
1367 				if (err)
1368 					return err;
1369 			}
1370 		}
1371 		break;
1372 	case UBIFS_DATA_KEY:
1373 		e = find_ino(c, inum);
1374 		if (e) {
1375 			if (new_size > e->d_size)
1376 				e->d_size = new_size;
1377 		} else {
1378 			err = add_ino(c, inum, 0, new_size, 0);
1379 			if (err)
1380 				return err;
1381 		}
1382 		break;
1383 	case UBIFS_TRUN_KEY:
1384 		e = find_ino(c, inum);
1385 		if (e)
1386 			e->d_size = new_size;
1387 		break;
1388 	}
1389 	return 0;
1390 }
1391 
1392 /**
1393  * fix_size_in_place - fix inode size in place on flash.
1394  * @c: UBIFS file-system description object
1395  * @e: inode size information for recovery
1396  */
fix_size_in_place(struct ubifs_info * c,struct size_entry * e)1397 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1398 {
1399 	struct ubifs_ino_node *ino = c->sbuf;
1400 	unsigned char *p;
1401 	union ubifs_key key;
1402 	int err, lnum, offs, len;
1403 	loff_t i_size;
1404 	uint32_t crc;
1405 
1406 	/* Locate the inode node LEB number and offset */
1407 	ino_key_init(c, &key, e->inum);
1408 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1409 	if (err)
1410 		goto out;
1411 	/*
1412 	 * If the size recorded on the inode node is greater than the size that
1413 	 * was calculated from nodes in the journal then don't change the inode.
1414 	 */
1415 	i_size = le64_to_cpu(ino->size);
1416 	if (i_size >= e->d_size)
1417 		return 0;
1418 	/* Read the LEB */
1419 	err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
1420 	if (err)
1421 		goto out;
1422 	/* Change the size field and recalculate the CRC */
1423 	ino = c->sbuf + offs;
1424 	ino->size = cpu_to_le64(e->d_size);
1425 	len = le32_to_cpu(ino->ch.len);
1426 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1427 	ino->ch.crc = cpu_to_le32(crc);
1428 	/* Work out where data in the LEB ends and free space begins */
1429 	p = c->sbuf;
1430 	len = c->leb_size - 1;
1431 	while (p[len] == 0xff)
1432 		len -= 1;
1433 	len = ALIGN(len + 1, c->min_io_size);
1434 	/* Atomically write the fixed LEB back again */
1435 	err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
1436 	if (err)
1437 		goto out;
1438 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1439 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1440 	return 0;
1441 
1442 out:
1443 	ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1444 		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1445 	return err;
1446 }
1447 
1448 /**
1449  * ubifs_recover_size - recover inode size.
1450  * @c: UBIFS file-system description object
1451  *
1452  * This function attempts to fix inode size discrepancies identified by the
1453  * 'ubifs_recover_size_accum()' function.
1454  *
1455  * This functions returns %0 on success and a negative error code on failure.
1456  */
ubifs_recover_size(struct ubifs_info * c)1457 int ubifs_recover_size(struct ubifs_info *c)
1458 {
1459 	struct rb_node *this = rb_first(&c->size_tree);
1460 
1461 	while (this) {
1462 		struct size_entry *e;
1463 		int err;
1464 
1465 		e = rb_entry(this, struct size_entry, rb);
1466 		if (!e->exists) {
1467 			union ubifs_key key;
1468 
1469 			ino_key_init(c, &key, e->inum);
1470 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1471 			if (err && err != -ENOENT)
1472 				return err;
1473 			if (err == -ENOENT) {
1474 				/* Remove data nodes that have no inode */
1475 				dbg_rcvry("removing ino %lu",
1476 					  (unsigned long)e->inum);
1477 				err = ubifs_tnc_remove_ino(c, e->inum);
1478 				if (err)
1479 					return err;
1480 			} else {
1481 				struct ubifs_ino_node *ino = c->sbuf;
1482 
1483 				e->exists = 1;
1484 				e->i_size = le64_to_cpu(ino->size);
1485 			}
1486 		}
1487 		if (e->exists && e->i_size < e->d_size) {
1488 			if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
1489 				/* Fix the inode size and pin it in memory */
1490 				struct inode *inode;
1491 
1492 				inode = ubifs_iget(c->vfs_sb, e->inum);
1493 				if (IS_ERR(inode))
1494 					return PTR_ERR(inode);
1495 				if (inode->i_size < e->d_size) {
1496 					dbg_rcvry("ino %lu size %lld -> %lld",
1497 						  (unsigned long)e->inum,
1498 						  e->d_size, inode->i_size);
1499 					inode->i_size = e->d_size;
1500 					ubifs_inode(inode)->ui_size = e->d_size;
1501 					e->inode = inode;
1502 					this = rb_next(this);
1503 					continue;
1504 				}
1505 				iput(inode);
1506 			} else {
1507 				/* Fix the size in place */
1508 				err = fix_size_in_place(c, e);
1509 				if (err)
1510 					return err;
1511 				if (e->inode)
1512 					iput(e->inode);
1513 			}
1514 		}
1515 		this = rb_next(this);
1516 		rb_erase(&e->rb, &c->size_tree);
1517 		kfree(e);
1518 	}
1519 	return 0;
1520 }
1521