• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Authors: Artem Bityutskiy (Битюцкий Артём)
21  *          Adrian Hunter
22  *          Zoltan Sogor
23  */
24 
25 /*
26  * This file implements UBIFS I/O subsystem which provides various I/O-related
27  * helper functions (reading/writing/checking/validating nodes) and implements
28  * write-buffering support. Write buffers help to save space which otherwise
29  * would have been wasted for padding to the nearest minimal I/O unit boundary.
30  * Instead, data first goes to the write-buffer and is flushed when the
31  * buffer is full or when it is not used for some time (by timer). This is
32  * similar to the mechanism is used by JFFS2.
33  *
34  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35  * mutexes defined inside these objects. Since sometimes upper-level code
36  * has to lock the write-buffer (e.g. journal space reservation code), many
37  * functions related to write-buffers have "nolock" suffix which means that the
38  * caller has to lock the write-buffer before calling this function.
39  *
40  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41  * aligned, UBIFS starts the next node from the aligned address, and the padded
42  * bytes may contain any rubbish. In other words, UBIFS does not put padding
43  * bytes in those small gaps. Common headers of nodes store real node lengths,
44  * not aligned lengths. Indexing nodes also store real lengths in branches.
45  *
46  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47  * uses padding nodes or padding bytes, if the padding node does not fit.
48  *
49  * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50  * every time they are read from the flash media.
51  */
52 
53 #include <linux/crc32.h>
54 #include "ubifs.h"
55 
56 /**
57  * ubifs_ro_mode - switch UBIFS to read read-only mode.
58  * @c: UBIFS file-system description object
59  * @err: error code which is the reason of switching to R/O mode
60  */
ubifs_ro_mode(struct ubifs_info * c,int err)61 void ubifs_ro_mode(struct ubifs_info *c, int err)
62 {
63 	if (!c->ro_media) {
64 		c->ro_media = 1;
65 		c->no_chk_data_crc = 0;
66 		ubifs_warn("switched to read-only mode, error %d", err);
67 		dbg_dump_stack();
68 	}
69 }
70 
71 /**
72  * ubifs_check_node - check node.
73  * @c: UBIFS file-system description object
74  * @buf: node to check
75  * @lnum: logical eraseblock number
76  * @offs: offset within the logical eraseblock
77  * @quiet: print no messages
78  * @must_chk_crc: indicates whether to always check the CRC
79  *
80  * This function checks node magic number and CRC checksum. This function also
81  * validates node length to prevent UBIFS from becoming crazy when an attacker
82  * feeds it a file-system image with incorrect nodes. For example, too large
83  * node length in the common header could cause UBIFS to read memory outside of
84  * allocated buffer when checking the CRC checksum.
85  *
86  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
87  * true, which is controlled by corresponding UBIFS mount option. However, if
88  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
89  * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
90  * ignored and CRC is checked.
91  *
92  * This function returns zero in case of success and %-EUCLEAN in case of bad
93  * CRC or magic.
94  */
ubifs_check_node(const struct ubifs_info * c,const void * buf,int lnum,int offs,int quiet,int must_chk_crc)95 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
96 		     int offs, int quiet, int must_chk_crc)
97 {
98 	int err = -EINVAL, type, node_len;
99 	uint32_t crc, node_crc, magic;
100 	const struct ubifs_ch *ch = buf;
101 
102 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
103 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
104 
105 	magic = le32_to_cpu(ch->magic);
106 	if (magic != UBIFS_NODE_MAGIC) {
107 		if (!quiet)
108 			ubifs_err("bad magic %#08x, expected %#08x",
109 				  magic, UBIFS_NODE_MAGIC);
110 		err = -EUCLEAN;
111 		goto out;
112 	}
113 
114 	type = ch->node_type;
115 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
116 		if (!quiet)
117 			ubifs_err("bad node type %d", type);
118 		goto out;
119 	}
120 
121 	node_len = le32_to_cpu(ch->len);
122 	if (node_len + offs > c->leb_size)
123 		goto out_len;
124 
125 	if (c->ranges[type].max_len == 0) {
126 		if (node_len != c->ranges[type].len)
127 			goto out_len;
128 	} else if (node_len < c->ranges[type].min_len ||
129 		   node_len > c->ranges[type].max_len)
130 		goto out_len;
131 
132 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
133 	     c->no_chk_data_crc)
134 		return 0;
135 
136 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
137 	node_crc = le32_to_cpu(ch->crc);
138 	if (crc != node_crc) {
139 		if (!quiet)
140 			ubifs_err("bad CRC: calculated %#08x, read %#08x",
141 				  crc, node_crc);
142 		err = -EUCLEAN;
143 		goto out;
144 	}
145 
146 	return 0;
147 
148 out_len:
149 	if (!quiet)
150 		ubifs_err("bad node length %d", node_len);
151 out:
152 	if (!quiet) {
153 		ubifs_err("bad node at LEB %d:%d", lnum, offs);
154 		dbg_dump_node(c, buf);
155 		dbg_dump_stack();
156 	}
157 	return err;
158 }
159 
160 /**
161  * ubifs_pad - pad flash space.
162  * @c: UBIFS file-system description object
163  * @buf: buffer to put padding to
164  * @pad: how many bytes to pad
165  *
166  * The flash media obliges us to write only in chunks of %c->min_io_size and
167  * when we have to write less data we add padding node to the write-buffer and
168  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
169  * media is being scanned. If the amount of wasted space is not enough to fit a
170  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
171  * pattern (%UBIFS_PADDING_BYTE).
172  *
173  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
174  * used.
175  */
ubifs_pad(const struct ubifs_info * c,void * buf,int pad)176 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
177 {
178 	uint32_t crc;
179 
180 	ubifs_assert(pad >= 0 && !(pad & 7));
181 
182 	if (pad >= UBIFS_PAD_NODE_SZ) {
183 		struct ubifs_ch *ch = buf;
184 		struct ubifs_pad_node *pad_node = buf;
185 
186 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
187 		ch->node_type = UBIFS_PAD_NODE;
188 		ch->group_type = UBIFS_NO_NODE_GROUP;
189 		ch->padding[0] = ch->padding[1] = 0;
190 		ch->sqnum = 0;
191 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
192 		pad -= UBIFS_PAD_NODE_SZ;
193 		pad_node->pad_len = cpu_to_le32(pad);
194 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
195 		ch->crc = cpu_to_le32(crc);
196 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
197 	} else if (pad > 0)
198 		/* Too little space, padding node won't fit */
199 		memset(buf, UBIFS_PADDING_BYTE, pad);
200 }
201 
202 /**
203  * next_sqnum - get next sequence number.
204  * @c: UBIFS file-system description object
205  */
next_sqnum(struct ubifs_info * c)206 static unsigned long long next_sqnum(struct ubifs_info *c)
207 {
208 	unsigned long long sqnum;
209 
210 	spin_lock(&c->cnt_lock);
211 	sqnum = ++c->max_sqnum;
212 	spin_unlock(&c->cnt_lock);
213 
214 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
215 		if (sqnum >= SQNUM_WATERMARK) {
216 			ubifs_err("sequence number overflow %llu, end of life",
217 				  sqnum);
218 			ubifs_ro_mode(c, -EINVAL);
219 		}
220 		ubifs_warn("running out of sequence numbers, end of life soon");
221 	}
222 
223 	return sqnum;
224 }
225 
226 /**
227  * ubifs_prepare_node - prepare node to be written to flash.
228  * @c: UBIFS file-system description object
229  * @node: the node to pad
230  * @len: node length
231  * @pad: if the buffer has to be padded
232  *
233  * This function prepares node at @node to be written to the media - it
234  * calculates node CRC, fills the common header, and adds proper padding up to
235  * the next minimum I/O unit if @pad is not zero.
236  */
ubifs_prepare_node(struct ubifs_info * c,void * node,int len,int pad)237 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
238 {
239 	uint32_t crc;
240 	struct ubifs_ch *ch = node;
241 	unsigned long long sqnum = next_sqnum(c);
242 
243 	ubifs_assert(len >= UBIFS_CH_SZ);
244 
245 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
246 	ch->len = cpu_to_le32(len);
247 	ch->group_type = UBIFS_NO_NODE_GROUP;
248 	ch->sqnum = cpu_to_le64(sqnum);
249 	ch->padding[0] = ch->padding[1] = 0;
250 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
251 	ch->crc = cpu_to_le32(crc);
252 
253 	if (pad) {
254 		len = ALIGN(len, 8);
255 		pad = ALIGN(len, c->min_io_size) - len;
256 		ubifs_pad(c, node + len, pad);
257 	}
258 }
259 
260 /**
261  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
262  * @c: UBIFS file-system description object
263  * @node: the node to pad
264  * @len: node length
265  * @last: indicates the last node of the group
266  *
267  * This function prepares node at @node to be written to the media - it
268  * calculates node CRC and fills the common header.
269  */
ubifs_prep_grp_node(struct ubifs_info * c,void * node,int len,int last)270 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
271 {
272 	uint32_t crc;
273 	struct ubifs_ch *ch = node;
274 	unsigned long long sqnum = next_sqnum(c);
275 
276 	ubifs_assert(len >= UBIFS_CH_SZ);
277 
278 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
279 	ch->len = cpu_to_le32(len);
280 	if (last)
281 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
282 	else
283 		ch->group_type = UBIFS_IN_NODE_GROUP;
284 	ch->sqnum = cpu_to_le64(sqnum);
285 	ch->padding[0] = ch->padding[1] = 0;
286 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
287 	ch->crc = cpu_to_le32(crc);
288 }
289 
290 /**
291  * wbuf_timer_callback - write-buffer timer callback function.
292  * @data: timer data (write-buffer descriptor)
293  *
294  * This function is called when the write-buffer timer expires.
295  */
wbuf_timer_callback_nolock(unsigned long data)296 static void wbuf_timer_callback_nolock(unsigned long data)
297 {
298 	struct ubifs_wbuf *wbuf = (struct ubifs_wbuf *)data;
299 
300 	wbuf->need_sync = 1;
301 	wbuf->c->need_wbuf_sync = 1;
302 	ubifs_wake_up_bgt(wbuf->c);
303 }
304 
305 /**
306  * new_wbuf_timer - start new write-buffer timer.
307  * @wbuf: write-buffer descriptor
308  */
new_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)309 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
310 {
311 	ubifs_assert(!timer_pending(&wbuf->timer));
312 
313 	if (!wbuf->timeout)
314 		return;
315 
316 	wbuf->timer.expires = jiffies + wbuf->timeout;
317 	add_timer(&wbuf->timer);
318 }
319 
320 /**
321  * cancel_wbuf_timer - cancel write-buffer timer.
322  * @wbuf: write-buffer descriptor
323  */
cancel_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)324 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
325 {
326 	/*
327 	 * If the syncer is waiting for the lock (from the background thread's
328 	 * context) and another task is changing write-buffer then the syncing
329 	 * should be canceled.
330 	 */
331 	wbuf->need_sync = 0;
332 	del_timer(&wbuf->timer);
333 }
334 
335 /**
336  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
337  * @wbuf: write-buffer to synchronize
338  *
339  * This function synchronizes write-buffer @buf and returns zero in case of
340  * success or a negative error code in case of failure.
341  */
ubifs_wbuf_sync_nolock(struct ubifs_wbuf * wbuf)342 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
343 {
344 	struct ubifs_info *c = wbuf->c;
345 	int err, dirt;
346 
347 	cancel_wbuf_timer_nolock(wbuf);
348 	if (!wbuf->used || wbuf->lnum == -1)
349 		/* Write-buffer is empty or not seeked */
350 		return 0;
351 
352 	dbg_io("LEB %d:%d, %d bytes",
353 	       wbuf->lnum, wbuf->offs, wbuf->used);
354 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
355 	ubifs_assert(!(wbuf->avail & 7));
356 	ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
357 
358 	if (c->ro_media)
359 		return -EROFS;
360 
361 	ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
362 	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
363 			    c->min_io_size, wbuf->dtype);
364 	if (err) {
365 		ubifs_err("cannot write %d bytes to LEB %d:%d",
366 			  c->min_io_size, wbuf->lnum, wbuf->offs);
367 		dbg_dump_stack();
368 		return err;
369 	}
370 
371 	dirt = wbuf->avail;
372 
373 	spin_lock(&wbuf->lock);
374 	wbuf->offs += c->min_io_size;
375 	wbuf->avail = c->min_io_size;
376 	wbuf->used = 0;
377 	wbuf->next_ino = 0;
378 	spin_unlock(&wbuf->lock);
379 
380 	if (wbuf->sync_callback)
381 		err = wbuf->sync_callback(c, wbuf->lnum,
382 					  c->leb_size - wbuf->offs, dirt);
383 	return err;
384 }
385 
386 /**
387  * ubifs_wbuf_seek_nolock - seek write-buffer.
388  * @wbuf: write-buffer
389  * @lnum: logical eraseblock number to seek to
390  * @offs: logical eraseblock offset to seek to
391  * @dtype: data type
392  *
393  * This function targets the write buffer to logical eraseblock @lnum:@offs.
394  * The write-buffer is synchronized if it is not empty. Returns zero in case of
395  * success and a negative error code in case of failure.
396  */
ubifs_wbuf_seek_nolock(struct ubifs_wbuf * wbuf,int lnum,int offs,int dtype)397 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
398 			   int dtype)
399 {
400 	const struct ubifs_info *c = wbuf->c;
401 
402 	dbg_io("LEB %d:%d", lnum, offs);
403 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
404 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
405 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
406 	ubifs_assert(lnum != wbuf->lnum);
407 
408 	if (wbuf->used > 0) {
409 		int err = ubifs_wbuf_sync_nolock(wbuf);
410 
411 		if (err)
412 			return err;
413 	}
414 
415 	spin_lock(&wbuf->lock);
416 	wbuf->lnum = lnum;
417 	wbuf->offs = offs;
418 	wbuf->avail = c->min_io_size;
419 	wbuf->used = 0;
420 	spin_unlock(&wbuf->lock);
421 	wbuf->dtype = dtype;
422 
423 	return 0;
424 }
425 
426 /**
427  * ubifs_bg_wbufs_sync - synchronize write-buffers.
428  * @c: UBIFS file-system description object
429  *
430  * This function is called by background thread to synchronize write-buffers.
431  * Returns zero in case of success and a negative error code in case of
432  * failure.
433  */
ubifs_bg_wbufs_sync(struct ubifs_info * c)434 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
435 {
436 	int err, i;
437 
438 	if (!c->need_wbuf_sync)
439 		return 0;
440 	c->need_wbuf_sync = 0;
441 
442 	if (c->ro_media) {
443 		err = -EROFS;
444 		goto out_timers;
445 	}
446 
447 	dbg_io("synchronize");
448 	for (i = 0; i < c->jhead_cnt; i++) {
449 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
450 
451 		cond_resched();
452 
453 		/*
454 		 * If the mutex is locked then wbuf is being changed, so
455 		 * synchronization is not necessary.
456 		 */
457 		if (mutex_is_locked(&wbuf->io_mutex))
458 			continue;
459 
460 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
461 		if (!wbuf->need_sync) {
462 			mutex_unlock(&wbuf->io_mutex);
463 			continue;
464 		}
465 
466 		err = ubifs_wbuf_sync_nolock(wbuf);
467 		mutex_unlock(&wbuf->io_mutex);
468 		if (err) {
469 			ubifs_err("cannot sync write-buffer, error %d", err);
470 			ubifs_ro_mode(c, err);
471 			goto out_timers;
472 		}
473 	}
474 
475 	return 0;
476 
477 out_timers:
478 	/* Cancel all timers to prevent repeated errors */
479 	for (i = 0; i < c->jhead_cnt; i++) {
480 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
481 
482 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
483 		cancel_wbuf_timer_nolock(wbuf);
484 		mutex_unlock(&wbuf->io_mutex);
485 	}
486 	return err;
487 }
488 
489 /**
490  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
491  * @wbuf: write-buffer
492  * @buf: node to write
493  * @len: node length
494  *
495  * This function writes data to flash via write-buffer @wbuf. This means that
496  * the last piece of the node won't reach the flash media immediately if it
497  * does not take whole minimal I/O unit. Instead, the node will sit in RAM
498  * until the write-buffer is synchronized (e.g., by timer).
499  *
500  * This function returns zero in case of success and a negative error code in
501  * case of failure. If the node cannot be written because there is no more
502  * space in this logical eraseblock, %-ENOSPC is returned.
503  */
ubifs_wbuf_write_nolock(struct ubifs_wbuf * wbuf,void * buf,int len)504 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
505 {
506 	struct ubifs_info *c = wbuf->c;
507 	int err, written, n, aligned_len = ALIGN(len, 8), offs;
508 
509 	dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len,
510 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type), wbuf->lnum,
511 	       wbuf->offs + wbuf->used);
512 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
513 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
514 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
515 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
516 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
517 
518 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
519 		err = -ENOSPC;
520 		goto out;
521 	}
522 
523 	cancel_wbuf_timer_nolock(wbuf);
524 
525 	if (c->ro_media)
526 		return -EROFS;
527 
528 	if (aligned_len <= wbuf->avail) {
529 		/*
530 		 * The node is not very large and fits entirely within
531 		 * write-buffer.
532 		 */
533 		memcpy(wbuf->buf + wbuf->used, buf, len);
534 
535 		if (aligned_len == wbuf->avail) {
536 			dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum,
537 				wbuf->offs);
538 			err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
539 					    wbuf->offs, c->min_io_size,
540 					    wbuf->dtype);
541 			if (err)
542 				goto out;
543 
544 			spin_lock(&wbuf->lock);
545 			wbuf->offs += c->min_io_size;
546 			wbuf->avail = c->min_io_size;
547 			wbuf->used = 0;
548 			wbuf->next_ino = 0;
549 			spin_unlock(&wbuf->lock);
550 		} else {
551 			spin_lock(&wbuf->lock);
552 			wbuf->avail -= aligned_len;
553 			wbuf->used += aligned_len;
554 			spin_unlock(&wbuf->lock);
555 		}
556 
557 		goto exit;
558 	}
559 
560 	/*
561 	 * The node is large enough and does not fit entirely within current
562 	 * minimal I/O unit. We have to fill and flush write-buffer and switch
563 	 * to the next min. I/O unit.
564 	 */
565 	dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, wbuf->offs);
566 	memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
567 	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
568 			    c->min_io_size, wbuf->dtype);
569 	if (err)
570 		goto out;
571 
572 	offs = wbuf->offs + c->min_io_size;
573 	len -= wbuf->avail;
574 	aligned_len -= wbuf->avail;
575 	written = wbuf->avail;
576 
577 	/*
578 	 * The remaining data may take more whole min. I/O units, so write the
579 	 * remains multiple to min. I/O unit size directly to the flash media.
580 	 * We align node length to 8-byte boundary because we anyway flash wbuf
581 	 * if the remaining space is less than 8 bytes.
582 	 */
583 	n = aligned_len >> c->min_io_shift;
584 	if (n) {
585 		n <<= c->min_io_shift;
586 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
587 		err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
588 				    wbuf->dtype);
589 		if (err)
590 			goto out;
591 		offs += n;
592 		aligned_len -= n;
593 		len -= n;
594 		written += n;
595 	}
596 
597 	spin_lock(&wbuf->lock);
598 	if (aligned_len)
599 		/*
600 		 * And now we have what's left and what does not take whole
601 		 * min. I/O unit, so write it to the write-buffer and we are
602 		 * done.
603 		 */
604 		memcpy(wbuf->buf, buf + written, len);
605 
606 	wbuf->offs = offs;
607 	wbuf->used = aligned_len;
608 	wbuf->avail = c->min_io_size - aligned_len;
609 	wbuf->next_ino = 0;
610 	spin_unlock(&wbuf->lock);
611 
612 exit:
613 	if (wbuf->sync_callback) {
614 		int free = c->leb_size - wbuf->offs - wbuf->used;
615 
616 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
617 		if (err)
618 			goto out;
619 	}
620 
621 	if (wbuf->used)
622 		new_wbuf_timer_nolock(wbuf);
623 
624 	return 0;
625 
626 out:
627 	ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
628 		  len, wbuf->lnum, wbuf->offs, err);
629 	dbg_dump_node(c, buf);
630 	dbg_dump_stack();
631 	dbg_dump_leb(c, wbuf->lnum);
632 	return err;
633 }
634 
635 /**
636  * ubifs_write_node - write node to the media.
637  * @c: UBIFS file-system description object
638  * @buf: the node to write
639  * @len: node length
640  * @lnum: logical eraseblock number
641  * @offs: offset within the logical eraseblock
642  * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
643  *
644  * This function automatically fills node magic number, assigns sequence
645  * number, and calculates node CRC checksum. The length of the @buf buffer has
646  * to be aligned to the minimal I/O unit size. This function automatically
647  * appends padding node and padding bytes if needed. Returns zero in case of
648  * success and a negative error code in case of failure.
649  */
ubifs_write_node(struct ubifs_info * c,void * buf,int len,int lnum,int offs,int dtype)650 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
651 		     int offs, int dtype)
652 {
653 	int err, buf_len = ALIGN(len, c->min_io_size);
654 
655 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
656 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
657 	       buf_len);
658 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
659 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
660 
661 	if (c->ro_media)
662 		return -EROFS;
663 
664 	ubifs_prepare_node(c, buf, len, 1);
665 	err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
666 	if (err) {
667 		ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
668 			  buf_len, lnum, offs, err);
669 		dbg_dump_node(c, buf);
670 		dbg_dump_stack();
671 	}
672 
673 	return err;
674 }
675 
676 /**
677  * ubifs_read_node_wbuf - read node from the media or write-buffer.
678  * @wbuf: wbuf to check for un-written data
679  * @buf: buffer to read to
680  * @type: node type
681  * @len: node length
682  * @lnum: logical eraseblock number
683  * @offs: offset within the logical eraseblock
684  *
685  * This function reads a node of known type and length, checks it and stores
686  * in @buf. If the node partially or fully sits in the write-buffer, this
687  * function takes data from the buffer, otherwise it reads the flash media.
688  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
689  * error code in case of failure.
690  */
ubifs_read_node_wbuf(struct ubifs_wbuf * wbuf,void * buf,int type,int len,int lnum,int offs)691 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
692 			 int lnum, int offs)
693 {
694 	const struct ubifs_info *c = wbuf->c;
695 	int err, rlen, overlap;
696 	struct ubifs_ch *ch = buf;
697 
698 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
699 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
700 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
701 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
702 
703 	spin_lock(&wbuf->lock);
704 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
705 	if (!overlap) {
706 		/* We may safely unlock the write-buffer and read the data */
707 		spin_unlock(&wbuf->lock);
708 		return ubifs_read_node(c, buf, type, len, lnum, offs);
709 	}
710 
711 	/* Don't read under wbuf */
712 	rlen = wbuf->offs - offs;
713 	if (rlen < 0)
714 		rlen = 0;
715 
716 	/* Copy the rest from the write-buffer */
717 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
718 	spin_unlock(&wbuf->lock);
719 
720 	if (rlen > 0) {
721 		/* Read everything that goes before write-buffer */
722 		err = ubi_read(c->ubi, lnum, buf, offs, rlen);
723 		if (err && err != -EBADMSG) {
724 			ubifs_err("failed to read node %d from LEB %d:%d, "
725 				  "error %d", type, lnum, offs, err);
726 			dbg_dump_stack();
727 			return err;
728 		}
729 	}
730 
731 	if (type != ch->node_type) {
732 		ubifs_err("bad node type (%d but expected %d)",
733 			  ch->node_type, type);
734 		goto out;
735 	}
736 
737 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
738 	if (err) {
739 		ubifs_err("expected node type %d", type);
740 		return err;
741 	}
742 
743 	rlen = le32_to_cpu(ch->len);
744 	if (rlen != len) {
745 		ubifs_err("bad node length %d, expected %d", rlen, len);
746 		goto out;
747 	}
748 
749 	return 0;
750 
751 out:
752 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
753 	dbg_dump_node(c, buf);
754 	dbg_dump_stack();
755 	return -EINVAL;
756 }
757 
758 /**
759  * ubifs_read_node - read node.
760  * @c: UBIFS file-system description object
761  * @buf: buffer to read to
762  * @type: node type
763  * @len: node length (not aligned)
764  * @lnum: logical eraseblock number
765  * @offs: offset within the logical eraseblock
766  *
767  * This function reads a node of known type and and length, checks it and
768  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
769  * and a negative error code in case of failure.
770  */
ubifs_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)771 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
772 		    int lnum, int offs)
773 {
774 	int err, l;
775 	struct ubifs_ch *ch = buf;
776 
777 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
778 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
779 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
780 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
781 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
782 
783 	err = ubi_read(c->ubi, lnum, buf, offs, len);
784 	if (err && err != -EBADMSG) {
785 		ubifs_err("cannot read node %d from LEB %d:%d, error %d",
786 			  type, lnum, offs, err);
787 		return err;
788 	}
789 
790 	if (type != ch->node_type) {
791 		ubifs_err("bad node type (%d but expected %d)",
792 			  ch->node_type, type);
793 		goto out;
794 	}
795 
796 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
797 	if (err) {
798 		ubifs_err("expected node type %d", type);
799 		return err;
800 	}
801 
802 	l = le32_to_cpu(ch->len);
803 	if (l != len) {
804 		ubifs_err("bad node length %d, expected %d", l, len);
805 		goto out;
806 	}
807 
808 	return 0;
809 
810 out:
811 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
812 	dbg_dump_node(c, buf);
813 	dbg_dump_stack();
814 	return -EINVAL;
815 }
816 
817 /**
818  * ubifs_wbuf_init - initialize write-buffer.
819  * @c: UBIFS file-system description object
820  * @wbuf: write-buffer to initialize
821  *
822  * This function initializes write buffer. Returns zero in case of success
823  * %-ENOMEM in case of failure.
824  */
ubifs_wbuf_init(struct ubifs_info * c,struct ubifs_wbuf * wbuf)825 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
826 {
827 	size_t size;
828 
829 	wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
830 	if (!wbuf->buf)
831 		return -ENOMEM;
832 
833 	size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
834 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
835 	if (!wbuf->inodes) {
836 		kfree(wbuf->buf);
837 		wbuf->buf = NULL;
838 		return -ENOMEM;
839 	}
840 
841 	wbuf->used = 0;
842 	wbuf->lnum = wbuf->offs = -1;
843 	wbuf->avail = c->min_io_size;
844 	wbuf->dtype = UBI_UNKNOWN;
845 	wbuf->sync_callback = NULL;
846 	mutex_init(&wbuf->io_mutex);
847 	spin_lock_init(&wbuf->lock);
848 
849 	wbuf->c = c;
850 	init_timer(&wbuf->timer);
851 	wbuf->timer.function = wbuf_timer_callback_nolock;
852 	wbuf->timer.data = (unsigned long)wbuf;
853 	wbuf->timeout = DEFAULT_WBUF_TIMEOUT;
854 	wbuf->next_ino = 0;
855 
856 	return 0;
857 }
858 
859 /**
860  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
861  * @wbuf: the write-buffer whereto add
862  * @inum: the inode number
863  *
864  * This function adds an inode number to the inode array of the write-buffer.
865  */
ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf * wbuf,ino_t inum)866 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
867 {
868 	if (!wbuf->buf)
869 		/* NOR flash or something similar */
870 		return;
871 
872 	spin_lock(&wbuf->lock);
873 	if (wbuf->used)
874 		wbuf->inodes[wbuf->next_ino++] = inum;
875 	spin_unlock(&wbuf->lock);
876 }
877 
878 /**
879  * wbuf_has_ino - returns if the wbuf contains data from the inode.
880  * @wbuf: the write-buffer
881  * @inum: the inode number
882  *
883  * This function returns with %1 if the write-buffer contains some data from the
884  * given inode otherwise it returns with %0.
885  */
wbuf_has_ino(struct ubifs_wbuf * wbuf,ino_t inum)886 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
887 {
888 	int i, ret = 0;
889 
890 	spin_lock(&wbuf->lock);
891 	for (i = 0; i < wbuf->next_ino; i++)
892 		if (inum == wbuf->inodes[i]) {
893 			ret = 1;
894 			break;
895 		}
896 	spin_unlock(&wbuf->lock);
897 
898 	return ret;
899 }
900 
901 /**
902  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
903  * @c: UBIFS file-system description object
904  * @inode: inode to synchronize
905  *
906  * This function synchronizes write-buffers which contain nodes belonging to
907  * @inode. Returns zero in case of success and a negative error code in case of
908  * failure.
909  */
ubifs_sync_wbufs_by_inode(struct ubifs_info * c,struct inode * inode)910 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
911 {
912 	int i, err = 0;
913 
914 	for (i = 0; i < c->jhead_cnt; i++) {
915 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
916 
917 		if (i == GCHD)
918 			/*
919 			 * GC head is special, do not look at it. Even if the
920 			 * head contains something related to this inode, it is
921 			 * a _copy_ of corresponding on-flash node which sits
922 			 * somewhere else.
923 			 */
924 			continue;
925 
926 		if (!wbuf_has_ino(wbuf, inode->i_ino))
927 			continue;
928 
929 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
930 		if (wbuf_has_ino(wbuf, inode->i_ino))
931 			err = ubifs_wbuf_sync_nolock(wbuf);
932 		mutex_unlock(&wbuf->io_mutex);
933 
934 		if (err) {
935 			ubifs_ro_mode(c, err);
936 			return err;
937 		}
938 	}
939 	return 0;
940 }
941