1 /*
2 * balloc.c
3 *
4 * PURPOSE
5 * Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1999-2001 Ben Fennema
14 * (C) 1999 Stelias Computing Inc
15 *
16 * HISTORY
17 *
18 * 02/24/99 blf Created.
19 *
20 */
21
22 #include "udfdecl.h"
23
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
27
28 #include "udf_i.h"
29 #include "udf_sb.h"
30
31 #define udf_clear_bit(nr, addr) ext2_clear_bit(nr, addr)
32 #define udf_set_bit(nr, addr) ext2_set_bit(nr, addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) \
36 find_next_one_bit(addr, size, offset)
37
38 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
39 #define leNUM_to_cpup(x, y) xleNUM_to_cpup(x, y)
40 #define xleNUM_to_cpup(x, y) (le ## x ## _to_cpup(y))
41 #define uintBPL_t uint(BITS_PER_LONG)
42 #define uint(x) xuint(x)
43 #define xuint(x) __le ## x
44
find_next_one_bit(void * addr,int size,int offset)45 static inline int find_next_one_bit(void *addr, int size, int offset)
46 {
47 uintBPL_t *p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
48 int result = offset & ~(BITS_PER_LONG - 1);
49 unsigned long tmp;
50
51 if (offset >= size)
52 return size;
53 size -= result;
54 offset &= (BITS_PER_LONG - 1);
55 if (offset) {
56 tmp = leBPL_to_cpup(p++);
57 tmp &= ~0UL << offset;
58 if (size < BITS_PER_LONG)
59 goto found_first;
60 if (tmp)
61 goto found_middle;
62 size -= BITS_PER_LONG;
63 result += BITS_PER_LONG;
64 }
65 while (size & ~(BITS_PER_LONG - 1)) {
66 tmp = leBPL_to_cpup(p++);
67 if (tmp)
68 goto found_middle;
69 result += BITS_PER_LONG;
70 size -= BITS_PER_LONG;
71 }
72 if (!size)
73 return result;
74 tmp = leBPL_to_cpup(p);
75 found_first:
76 tmp &= ~0UL >> (BITS_PER_LONG - size);
77 found_middle:
78 return result + ffz(~tmp);
79 }
80
81 #define find_first_one_bit(addr, size)\
82 find_next_one_bit((addr), (size), 0)
83
read_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block,unsigned long bitmap_nr)84 static int read_block_bitmap(struct super_block *sb,
85 struct udf_bitmap *bitmap, unsigned int block,
86 unsigned long bitmap_nr)
87 {
88 struct buffer_head *bh = NULL;
89 int retval = 0;
90 kernel_lb_addr loc;
91
92 loc.logicalBlockNum = bitmap->s_extPosition;
93 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
94
95 bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
96 if (!bh)
97 retval = -EIO;
98
99 bitmap->s_block_bitmap[bitmap_nr] = bh;
100 return retval;
101 }
102
__load_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block_group)103 static int __load_block_bitmap(struct super_block *sb,
104 struct udf_bitmap *bitmap,
105 unsigned int block_group)
106 {
107 int retval = 0;
108 int nr_groups = bitmap->s_nr_groups;
109
110 if (block_group >= nr_groups) {
111 udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
112 nr_groups);
113 }
114
115 if (bitmap->s_block_bitmap[block_group]) {
116 return block_group;
117 } else {
118 retval = read_block_bitmap(sb, bitmap, block_group,
119 block_group);
120 if (retval < 0)
121 return retval;
122 return block_group;
123 }
124 }
125
load_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block_group)126 static inline int load_block_bitmap(struct super_block *sb,
127 struct udf_bitmap *bitmap,
128 unsigned int block_group)
129 {
130 int slot;
131
132 slot = __load_block_bitmap(sb, bitmap, block_group);
133
134 if (slot < 0)
135 return slot;
136
137 if (!bitmap->s_block_bitmap[slot])
138 return -EIO;
139
140 return slot;
141 }
142
udf_add_free_space(struct udf_sb_info * sbi,u16 partition,u32 cnt)143 static bool udf_add_free_space(struct udf_sb_info *sbi,
144 u16 partition, u32 cnt)
145 {
146 struct logicalVolIntegrityDesc *lvid;
147
148 if (sbi->s_lvid_bh == NULL)
149 return false;
150
151 lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
152 le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
153 return true;
154 }
155
udf_bitmap_free_blocks(struct super_block * sb,struct inode * inode,struct udf_bitmap * bitmap,kernel_lb_addr bloc,uint32_t offset,uint32_t count)156 static void udf_bitmap_free_blocks(struct super_block *sb,
157 struct inode *inode,
158 struct udf_bitmap *bitmap,
159 kernel_lb_addr bloc, uint32_t offset,
160 uint32_t count)
161 {
162 struct udf_sb_info *sbi = UDF_SB(sb);
163 struct buffer_head *bh = NULL;
164 unsigned long block;
165 unsigned long block_group;
166 unsigned long bit;
167 unsigned long i;
168 int bitmap_nr;
169 unsigned long overflow;
170
171 mutex_lock(&sbi->s_alloc_mutex);
172 if (bloc.logicalBlockNum < 0 ||
173 (bloc.logicalBlockNum + count) >
174 sbi->s_partmaps[bloc.partitionReferenceNum].s_partition_len) {
175 udf_debug("%d < %d || %d + %d > %d\n",
176 bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
177 sbi->s_partmaps[bloc.partitionReferenceNum].
178 s_partition_len);
179 goto error_return;
180 }
181
182 block = bloc.logicalBlockNum + offset +
183 (sizeof(struct spaceBitmapDesc) << 3);
184
185 do {
186 overflow = 0;
187 block_group = block >> (sb->s_blocksize_bits + 3);
188 bit = block % (sb->s_blocksize << 3);
189
190 /*
191 * Check to see if we are freeing blocks across a group boundary.
192 */
193 if (bit + count > (sb->s_blocksize << 3)) {
194 overflow = bit + count - (sb->s_blocksize << 3);
195 count -= overflow;
196 }
197 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
198 if (bitmap_nr < 0)
199 goto error_return;
200
201 bh = bitmap->s_block_bitmap[bitmap_nr];
202 for (i = 0; i < count; i++) {
203 if (udf_set_bit(bit + i, bh->b_data)) {
204 udf_debug("bit %ld already set\n", bit + i);
205 udf_debug("byte=%2x\n",
206 ((char *)bh->b_data)[(bit + i) >> 3]);
207 } else {
208 if (inode)
209 DQUOT_FREE_BLOCK(inode, 1);
210 udf_add_free_space(sbi, sbi->s_partition, 1);
211 }
212 }
213 mark_buffer_dirty(bh);
214 if (overflow) {
215 block += count;
216 count = overflow;
217 }
218 } while (overflow);
219
220 error_return:
221 sb->s_dirt = 1;
222 if (sbi->s_lvid_bh)
223 mark_buffer_dirty(sbi->s_lvid_bh);
224 mutex_unlock(&sbi->s_alloc_mutex);
225 }
226
udf_bitmap_prealloc_blocks(struct super_block * sb,struct inode * inode,struct udf_bitmap * bitmap,uint16_t partition,uint32_t first_block,uint32_t block_count)227 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
228 struct inode *inode,
229 struct udf_bitmap *bitmap,
230 uint16_t partition, uint32_t first_block,
231 uint32_t block_count)
232 {
233 struct udf_sb_info *sbi = UDF_SB(sb);
234 int alloc_count = 0;
235 int bit, block, block_group, group_start;
236 int nr_groups, bitmap_nr;
237 struct buffer_head *bh;
238 __u32 part_len;
239
240 mutex_lock(&sbi->s_alloc_mutex);
241 part_len = sbi->s_partmaps[partition].s_partition_len;
242 if (first_block < 0 || first_block >= part_len)
243 goto out;
244
245 if (first_block + block_count > part_len)
246 block_count = part_len - first_block;
247
248 do {
249 nr_groups = udf_compute_nr_groups(sb, partition);
250 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
251 block_group = block >> (sb->s_blocksize_bits + 3);
252 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
253
254 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
255 if (bitmap_nr < 0)
256 goto out;
257 bh = bitmap->s_block_bitmap[bitmap_nr];
258
259 bit = block % (sb->s_blocksize << 3);
260
261 while (bit < (sb->s_blocksize << 3) && block_count > 0) {
262 if (!udf_test_bit(bit, bh->b_data))
263 goto out;
264 else if (DQUOT_PREALLOC_BLOCK(inode, 1))
265 goto out;
266 else if (!udf_clear_bit(bit, bh->b_data)) {
267 udf_debug("bit already cleared for block %d\n", bit);
268 DQUOT_FREE_BLOCK(inode, 1);
269 goto out;
270 }
271 block_count--;
272 alloc_count++;
273 bit++;
274 block++;
275 }
276 mark_buffer_dirty(bh);
277 } while (block_count > 0);
278
279 out:
280 if (udf_add_free_space(sbi, partition, -alloc_count))
281 mark_buffer_dirty(sbi->s_lvid_bh);
282 sb->s_dirt = 1;
283 mutex_unlock(&sbi->s_alloc_mutex);
284 return alloc_count;
285 }
286
udf_bitmap_new_block(struct super_block * sb,struct inode * inode,struct udf_bitmap * bitmap,uint16_t partition,uint32_t goal,int * err)287 static int udf_bitmap_new_block(struct super_block *sb,
288 struct inode *inode,
289 struct udf_bitmap *bitmap, uint16_t partition,
290 uint32_t goal, int *err)
291 {
292 struct udf_sb_info *sbi = UDF_SB(sb);
293 int newbit, bit = 0, block, block_group, group_start;
294 int end_goal, nr_groups, bitmap_nr, i;
295 struct buffer_head *bh = NULL;
296 char *ptr;
297 int newblock = 0;
298
299 *err = -ENOSPC;
300 mutex_lock(&sbi->s_alloc_mutex);
301
302 repeat:
303 if (goal < 0 || goal >= sbi->s_partmaps[partition].s_partition_len)
304 goal = 0;
305
306 nr_groups = bitmap->s_nr_groups;
307 block = goal + (sizeof(struct spaceBitmapDesc) << 3);
308 block_group = block >> (sb->s_blocksize_bits + 3);
309 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
310
311 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
312 if (bitmap_nr < 0)
313 goto error_return;
314 bh = bitmap->s_block_bitmap[bitmap_nr];
315 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
316 sb->s_blocksize - group_start);
317
318 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
319 bit = block % (sb->s_blocksize << 3);
320 if (udf_test_bit(bit, bh->b_data))
321 goto got_block;
322
323 end_goal = (bit + 63) & ~63;
324 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
325 if (bit < end_goal)
326 goto got_block;
327
328 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
329 sb->s_blocksize - ((bit + 7) >> 3));
330 newbit = (ptr - ((char *)bh->b_data)) << 3;
331 if (newbit < sb->s_blocksize << 3) {
332 bit = newbit;
333 goto search_back;
334 }
335
336 newbit = udf_find_next_one_bit(bh->b_data,
337 sb->s_blocksize << 3, bit);
338 if (newbit < sb->s_blocksize << 3) {
339 bit = newbit;
340 goto got_block;
341 }
342 }
343
344 for (i = 0; i < (nr_groups * 2); i++) {
345 block_group++;
346 if (block_group >= nr_groups)
347 block_group = 0;
348 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
349
350 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
351 if (bitmap_nr < 0)
352 goto error_return;
353 bh = bitmap->s_block_bitmap[bitmap_nr];
354 if (i < nr_groups) {
355 ptr = memscan((char *)bh->b_data + group_start, 0xFF,
356 sb->s_blocksize - group_start);
357 if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
358 bit = (ptr - ((char *)bh->b_data)) << 3;
359 break;
360 }
361 } else {
362 bit = udf_find_next_one_bit((char *)bh->b_data,
363 sb->s_blocksize << 3,
364 group_start << 3);
365 if (bit < sb->s_blocksize << 3)
366 break;
367 }
368 }
369 if (i >= (nr_groups * 2)) {
370 mutex_unlock(&sbi->s_alloc_mutex);
371 return newblock;
372 }
373 if (bit < sb->s_blocksize << 3)
374 goto search_back;
375 else
376 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
377 group_start << 3);
378 if (bit >= sb->s_blocksize << 3) {
379 mutex_unlock(&sbi->s_alloc_mutex);
380 return 0;
381 }
382
383 search_back:
384 i = 0;
385 while (i < 7 && bit > (group_start << 3) &&
386 udf_test_bit(bit - 1, bh->b_data)) {
387 ++i;
388 --bit;
389 }
390
391 got_block:
392
393 /*
394 * Check quota for allocation of this block.
395 */
396 if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) {
397 mutex_unlock(&sbi->s_alloc_mutex);
398 *err = -EDQUOT;
399 return 0;
400 }
401
402 newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
403 (sizeof(struct spaceBitmapDesc) << 3);
404
405 if (!udf_clear_bit(bit, bh->b_data)) {
406 udf_debug("bit already cleared for block %d\n", bit);
407 goto repeat;
408 }
409
410 mark_buffer_dirty(bh);
411
412 if (udf_add_free_space(sbi, partition, -1))
413 mark_buffer_dirty(sbi->s_lvid_bh);
414 sb->s_dirt = 1;
415 mutex_unlock(&sbi->s_alloc_mutex);
416 *err = 0;
417 return newblock;
418
419 error_return:
420 *err = -EIO;
421 mutex_unlock(&sbi->s_alloc_mutex);
422 return 0;
423 }
424
udf_table_free_blocks(struct super_block * sb,struct inode * inode,struct inode * table,kernel_lb_addr bloc,uint32_t offset,uint32_t count)425 static void udf_table_free_blocks(struct super_block *sb,
426 struct inode *inode,
427 struct inode *table,
428 kernel_lb_addr bloc, uint32_t offset,
429 uint32_t count)
430 {
431 struct udf_sb_info *sbi = UDF_SB(sb);
432 uint32_t start, end;
433 uint32_t elen;
434 kernel_lb_addr eloc;
435 struct extent_position oepos, epos;
436 int8_t etype;
437 int i;
438 struct udf_inode_info *iinfo;
439
440 mutex_lock(&sbi->s_alloc_mutex);
441 if (bloc.logicalBlockNum < 0 ||
442 (bloc.logicalBlockNum + count) >
443 sbi->s_partmaps[bloc.partitionReferenceNum].s_partition_len) {
444 udf_debug("%d < %d || %d + %d > %d\n",
445 bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
446 sbi->s_partmaps[bloc.partitionReferenceNum].
447 s_partition_len);
448 goto error_return;
449 }
450
451 iinfo = UDF_I(table);
452 /* We do this up front - There are some error conditions that
453 could occure, but.. oh well */
454 if (inode)
455 DQUOT_FREE_BLOCK(inode, count);
456 if (udf_add_free_space(sbi, sbi->s_partition, count))
457 mark_buffer_dirty(sbi->s_lvid_bh);
458
459 start = bloc.logicalBlockNum + offset;
460 end = bloc.logicalBlockNum + offset + count - 1;
461
462 epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
463 elen = 0;
464 epos.block = oepos.block = iinfo->i_location;
465 epos.bh = oepos.bh = NULL;
466
467 while (count &&
468 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
469 if (((eloc.logicalBlockNum +
470 (elen >> sb->s_blocksize_bits)) == start)) {
471 if ((0x3FFFFFFF - elen) <
472 (count << sb->s_blocksize_bits)) {
473 uint32_t tmp = ((0x3FFFFFFF - elen) >>
474 sb->s_blocksize_bits);
475 count -= tmp;
476 start += tmp;
477 elen = (etype << 30) |
478 (0x40000000 - sb->s_blocksize);
479 } else {
480 elen = (etype << 30) |
481 (elen +
482 (count << sb->s_blocksize_bits));
483 start += count;
484 count = 0;
485 }
486 udf_write_aext(table, &oepos, eloc, elen, 1);
487 } else if (eloc.logicalBlockNum == (end + 1)) {
488 if ((0x3FFFFFFF - elen) <
489 (count << sb->s_blocksize_bits)) {
490 uint32_t tmp = ((0x3FFFFFFF - elen) >>
491 sb->s_blocksize_bits);
492 count -= tmp;
493 end -= tmp;
494 eloc.logicalBlockNum -= tmp;
495 elen = (etype << 30) |
496 (0x40000000 - sb->s_blocksize);
497 } else {
498 eloc.logicalBlockNum = start;
499 elen = (etype << 30) |
500 (elen +
501 (count << sb->s_blocksize_bits));
502 end -= count;
503 count = 0;
504 }
505 udf_write_aext(table, &oepos, eloc, elen, 1);
506 }
507
508 if (epos.bh != oepos.bh) {
509 i = -1;
510 oepos.block = epos.block;
511 brelse(oepos.bh);
512 get_bh(epos.bh);
513 oepos.bh = epos.bh;
514 oepos.offset = 0;
515 } else {
516 oepos.offset = epos.offset;
517 }
518 }
519
520 if (count) {
521 /*
522 * NOTE: we CANNOT use udf_add_aext here, as it can try to
523 * allocate a new block, and since we hold the super block
524 * lock already very bad things would happen :)
525 *
526 * We copy the behavior of udf_add_aext, but instead of
527 * trying to allocate a new block close to the existing one,
528 * we just steal a block from the extent we are trying to add.
529 *
530 * It would be nice if the blocks were close together, but it
531 * isn't required.
532 */
533
534 int adsize;
535 short_ad *sad = NULL;
536 long_ad *lad = NULL;
537 struct allocExtDesc *aed;
538
539 eloc.logicalBlockNum = start;
540 elen = EXT_RECORDED_ALLOCATED |
541 (count << sb->s_blocksize_bits);
542
543 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
544 adsize = sizeof(short_ad);
545 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
546 adsize = sizeof(long_ad);
547 else {
548 brelse(oepos.bh);
549 brelse(epos.bh);
550 goto error_return;
551 }
552
553 if (epos.offset + (2 * adsize) > sb->s_blocksize) {
554 char *sptr, *dptr;
555 int loffset;
556
557 brelse(oepos.bh);
558 oepos = epos;
559
560 /* Steal a block from the extent being free'd */
561 epos.block.logicalBlockNum = eloc.logicalBlockNum;
562 eloc.logicalBlockNum++;
563 elen -= sb->s_blocksize;
564
565 epos.bh = udf_tread(sb,
566 udf_get_lb_pblock(sb, epos.block, 0));
567 if (!epos.bh) {
568 brelse(oepos.bh);
569 goto error_return;
570 }
571 aed = (struct allocExtDesc *)(epos.bh->b_data);
572 aed->previousAllocExtLocation =
573 cpu_to_le32(oepos.block.logicalBlockNum);
574 if (epos.offset + adsize > sb->s_blocksize) {
575 loffset = epos.offset;
576 aed->lengthAllocDescs = cpu_to_le32(adsize);
577 sptr = iinfo->i_ext.i_data + epos.offset
578 - adsize;
579 dptr = epos.bh->b_data +
580 sizeof(struct allocExtDesc);
581 memcpy(dptr, sptr, adsize);
582 epos.offset = sizeof(struct allocExtDesc) +
583 adsize;
584 } else {
585 loffset = epos.offset + adsize;
586 aed->lengthAllocDescs = cpu_to_le32(0);
587 if (oepos.bh) {
588 sptr = oepos.bh->b_data + epos.offset;
589 aed = (struct allocExtDesc *)
590 oepos.bh->b_data;
591 le32_add_cpu(&aed->lengthAllocDescs,
592 adsize);
593 } else {
594 sptr = iinfo->i_ext.i_data +
595 epos.offset;
596 iinfo->i_lenAlloc += adsize;
597 mark_inode_dirty(table);
598 }
599 epos.offset = sizeof(struct allocExtDesc);
600 }
601 if (sbi->s_udfrev >= 0x0200)
602 udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
603 3, 1, epos.block.logicalBlockNum,
604 sizeof(tag));
605 else
606 udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
607 2, 1, epos.block.logicalBlockNum,
608 sizeof(tag));
609
610 switch (iinfo->i_alloc_type) {
611 case ICBTAG_FLAG_AD_SHORT:
612 sad = (short_ad *)sptr;
613 sad->extLength = cpu_to_le32(
614 EXT_NEXT_EXTENT_ALLOCDECS |
615 sb->s_blocksize);
616 sad->extPosition =
617 cpu_to_le32(epos.block.logicalBlockNum);
618 break;
619 case ICBTAG_FLAG_AD_LONG:
620 lad = (long_ad *)sptr;
621 lad->extLength = cpu_to_le32(
622 EXT_NEXT_EXTENT_ALLOCDECS |
623 sb->s_blocksize);
624 lad->extLocation =
625 cpu_to_lelb(epos.block);
626 break;
627 }
628 if (oepos.bh) {
629 udf_update_tag(oepos.bh->b_data, loffset);
630 mark_buffer_dirty(oepos.bh);
631 } else {
632 mark_inode_dirty(table);
633 }
634 }
635
636 /* It's possible that stealing the block emptied the extent */
637 if (elen) {
638 udf_write_aext(table, &epos, eloc, elen, 1);
639
640 if (!epos.bh) {
641 iinfo->i_lenAlloc += adsize;
642 mark_inode_dirty(table);
643 } else {
644 aed = (struct allocExtDesc *)epos.bh->b_data;
645 le32_add_cpu(&aed->lengthAllocDescs, adsize);
646 udf_update_tag(epos.bh->b_data, epos.offset);
647 mark_buffer_dirty(epos.bh);
648 }
649 }
650 }
651
652 brelse(epos.bh);
653 brelse(oepos.bh);
654
655 error_return:
656 sb->s_dirt = 1;
657 mutex_unlock(&sbi->s_alloc_mutex);
658 return;
659 }
660
udf_table_prealloc_blocks(struct super_block * sb,struct inode * inode,struct inode * table,uint16_t partition,uint32_t first_block,uint32_t block_count)661 static int udf_table_prealloc_blocks(struct super_block *sb,
662 struct inode *inode,
663 struct inode *table, uint16_t partition,
664 uint32_t first_block, uint32_t block_count)
665 {
666 struct udf_sb_info *sbi = UDF_SB(sb);
667 int alloc_count = 0;
668 uint32_t elen, adsize;
669 kernel_lb_addr eloc;
670 struct extent_position epos;
671 int8_t etype = -1;
672 struct udf_inode_info *iinfo;
673
674 if (first_block < 0 ||
675 first_block >= sbi->s_partmaps[partition].s_partition_len)
676 return 0;
677
678 iinfo = UDF_I(table);
679 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
680 adsize = sizeof(short_ad);
681 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
682 adsize = sizeof(long_ad);
683 else
684 return 0;
685
686 mutex_lock(&sbi->s_alloc_mutex);
687 epos.offset = sizeof(struct unallocSpaceEntry);
688 epos.block = iinfo->i_location;
689 epos.bh = NULL;
690 eloc.logicalBlockNum = 0xFFFFFFFF;
691
692 while (first_block != eloc.logicalBlockNum &&
693 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
694 udf_debug("eloc=%d, elen=%d, first_block=%d\n",
695 eloc.logicalBlockNum, elen, first_block);
696 ; /* empty loop body */
697 }
698
699 if (first_block == eloc.logicalBlockNum) {
700 epos.offset -= adsize;
701
702 alloc_count = (elen >> sb->s_blocksize_bits);
703 if (inode && DQUOT_PREALLOC_BLOCK(inode,
704 alloc_count > block_count ? block_count : alloc_count))
705 alloc_count = 0;
706 else if (alloc_count > block_count) {
707 alloc_count = block_count;
708 eloc.logicalBlockNum += alloc_count;
709 elen -= (alloc_count << sb->s_blocksize_bits);
710 udf_write_aext(table, &epos, eloc,
711 (etype << 30) | elen, 1);
712 } else
713 udf_delete_aext(table, epos, eloc,
714 (etype << 30) | elen);
715 } else {
716 alloc_count = 0;
717 }
718
719 brelse(epos.bh);
720
721 if (alloc_count && udf_add_free_space(sbi, partition, -alloc_count)) {
722 mark_buffer_dirty(sbi->s_lvid_bh);
723 sb->s_dirt = 1;
724 }
725 mutex_unlock(&sbi->s_alloc_mutex);
726 return alloc_count;
727 }
728
udf_table_new_block(struct super_block * sb,struct inode * inode,struct inode * table,uint16_t partition,uint32_t goal,int * err)729 static int udf_table_new_block(struct super_block *sb,
730 struct inode *inode,
731 struct inode *table, uint16_t partition,
732 uint32_t goal, int *err)
733 {
734 struct udf_sb_info *sbi = UDF_SB(sb);
735 uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
736 uint32_t newblock = 0, adsize;
737 uint32_t elen, goal_elen = 0;
738 kernel_lb_addr eloc, uninitialized_var(goal_eloc);
739 struct extent_position epos, goal_epos;
740 int8_t etype;
741 struct udf_inode_info *iinfo = UDF_I(table);
742
743 *err = -ENOSPC;
744
745 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
746 adsize = sizeof(short_ad);
747 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
748 adsize = sizeof(long_ad);
749 else
750 return newblock;
751
752 mutex_lock(&sbi->s_alloc_mutex);
753 if (goal < 0 || goal >= sbi->s_partmaps[partition].s_partition_len)
754 goal = 0;
755
756 /* We search for the closest matching block to goal. If we find
757 a exact hit, we stop. Otherwise we keep going till we run out
758 of extents. We store the buffer_head, bloc, and extoffset
759 of the current closest match and use that when we are done.
760 */
761 epos.offset = sizeof(struct unallocSpaceEntry);
762 epos.block = iinfo->i_location;
763 epos.bh = goal_epos.bh = NULL;
764
765 while (spread &&
766 (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
767 if (goal >= eloc.logicalBlockNum) {
768 if (goal < eloc.logicalBlockNum +
769 (elen >> sb->s_blocksize_bits))
770 nspread = 0;
771 else
772 nspread = goal - eloc.logicalBlockNum -
773 (elen >> sb->s_blocksize_bits);
774 } else {
775 nspread = eloc.logicalBlockNum - goal;
776 }
777
778 if (nspread < spread) {
779 spread = nspread;
780 if (goal_epos.bh != epos.bh) {
781 brelse(goal_epos.bh);
782 goal_epos.bh = epos.bh;
783 get_bh(goal_epos.bh);
784 }
785 goal_epos.block = epos.block;
786 goal_epos.offset = epos.offset - adsize;
787 goal_eloc = eloc;
788 goal_elen = (etype << 30) | elen;
789 }
790 }
791
792 brelse(epos.bh);
793
794 if (spread == 0xFFFFFFFF) {
795 brelse(goal_epos.bh);
796 mutex_unlock(&sbi->s_alloc_mutex);
797 return 0;
798 }
799
800 /* Only allocate blocks from the beginning of the extent.
801 That way, we only delete (empty) extents, never have to insert an
802 extent because of splitting */
803 /* This works, but very poorly.... */
804
805 newblock = goal_eloc.logicalBlockNum;
806 goal_eloc.logicalBlockNum++;
807 goal_elen -= sb->s_blocksize;
808
809 if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) {
810 brelse(goal_epos.bh);
811 mutex_unlock(&sbi->s_alloc_mutex);
812 *err = -EDQUOT;
813 return 0;
814 }
815
816 if (goal_elen)
817 udf_write_aext(table, &goal_epos, goal_eloc, goal_elen, 1);
818 else
819 udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
820 brelse(goal_epos.bh);
821
822 if (udf_add_free_space(sbi, partition, -1))
823 mark_buffer_dirty(sbi->s_lvid_bh);
824
825 sb->s_dirt = 1;
826 mutex_unlock(&sbi->s_alloc_mutex);
827 *err = 0;
828 return newblock;
829 }
830
udf_free_blocks(struct super_block * sb,struct inode * inode,kernel_lb_addr bloc,uint32_t offset,uint32_t count)831 inline void udf_free_blocks(struct super_block *sb,
832 struct inode *inode,
833 kernel_lb_addr bloc, uint32_t offset,
834 uint32_t count)
835 {
836 uint16_t partition = bloc.partitionReferenceNum;
837 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
838
839 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
840 return udf_bitmap_free_blocks(sb, inode,
841 map->s_uspace.s_bitmap,
842 bloc, offset, count);
843 } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
844 return udf_table_free_blocks(sb, inode,
845 map->s_uspace.s_table,
846 bloc, offset, count);
847 } else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
848 return udf_bitmap_free_blocks(sb, inode,
849 map->s_fspace.s_bitmap,
850 bloc, offset, count);
851 } else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
852 return udf_table_free_blocks(sb, inode,
853 map->s_fspace.s_table,
854 bloc, offset, count);
855 } else {
856 return;
857 }
858 }
859
udf_prealloc_blocks(struct super_block * sb,struct inode * inode,uint16_t partition,uint32_t first_block,uint32_t block_count)860 inline int udf_prealloc_blocks(struct super_block *sb,
861 struct inode *inode,
862 uint16_t partition, uint32_t first_block,
863 uint32_t block_count)
864 {
865 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
866
867 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
868 return udf_bitmap_prealloc_blocks(sb, inode,
869 map->s_uspace.s_bitmap,
870 partition, first_block,
871 block_count);
872 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
873 return udf_table_prealloc_blocks(sb, inode,
874 map->s_uspace.s_table,
875 partition, first_block,
876 block_count);
877 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
878 return udf_bitmap_prealloc_blocks(sb, inode,
879 map->s_fspace.s_bitmap,
880 partition, first_block,
881 block_count);
882 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
883 return udf_table_prealloc_blocks(sb, inode,
884 map->s_fspace.s_table,
885 partition, first_block,
886 block_count);
887 else
888 return 0;
889 }
890
udf_new_block(struct super_block * sb,struct inode * inode,uint16_t partition,uint32_t goal,int * err)891 inline int udf_new_block(struct super_block *sb,
892 struct inode *inode,
893 uint16_t partition, uint32_t goal, int *err)
894 {
895 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
896
897 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
898 return udf_bitmap_new_block(sb, inode,
899 map->s_uspace.s_bitmap,
900 partition, goal, err);
901 else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
902 return udf_table_new_block(sb, inode,
903 map->s_uspace.s_table,
904 partition, goal, err);
905 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
906 return udf_bitmap_new_block(sb, inode,
907 map->s_fspace.s_bitmap,
908 partition, goal, err);
909 else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
910 return udf_table_new_block(sb, inode,
911 map->s_fspace.s_table,
912 partition, goal, err);
913 else {
914 *err = -EIO;
915 return 0;
916 }
917 }
918