• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *	This file is distributed under the terms of the GNU General Public
9  *	License (GPL). Copies of the GPL can be obtained from:
10  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *	Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21 
22 #include "udfdecl.h"
23 
24 #include <linux/quotaops.h>
25 #include <linux/buffer_head.h>
26 #include <linux/bitops.h>
27 
28 #include "udf_i.h"
29 #include "udf_sb.h"
30 
31 #define udf_clear_bit(nr, addr) ext2_clear_bit(nr, addr)
32 #define udf_set_bit(nr, addr) ext2_set_bit(nr, addr)
33 #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr)
34 #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size)
35 #define udf_find_next_one_bit(addr, size, offset) \
36 		find_next_one_bit(addr, size, offset)
37 
38 #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x)
39 #define leNUM_to_cpup(x, y) xleNUM_to_cpup(x, y)
40 #define xleNUM_to_cpup(x, y) (le ## x ## _to_cpup(y))
41 #define uintBPL_t uint(BITS_PER_LONG)
42 #define uint(x) xuint(x)
43 #define xuint(x) __le ## x
44 
find_next_one_bit(void * addr,int size,int offset)45 static inline int find_next_one_bit(void *addr, int size, int offset)
46 {
47 	uintBPL_t *p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG);
48 	int result = offset & ~(BITS_PER_LONG - 1);
49 	unsigned long tmp;
50 
51 	if (offset >= size)
52 		return size;
53 	size -= result;
54 	offset &= (BITS_PER_LONG - 1);
55 	if (offset) {
56 		tmp = leBPL_to_cpup(p++);
57 		tmp &= ~0UL << offset;
58 		if (size < BITS_PER_LONG)
59 			goto found_first;
60 		if (tmp)
61 			goto found_middle;
62 		size -= BITS_PER_LONG;
63 		result += BITS_PER_LONG;
64 	}
65 	while (size & ~(BITS_PER_LONG - 1)) {
66 		tmp = leBPL_to_cpup(p++);
67 		if (tmp)
68 			goto found_middle;
69 		result += BITS_PER_LONG;
70 		size -= BITS_PER_LONG;
71 	}
72 	if (!size)
73 		return result;
74 	tmp = leBPL_to_cpup(p);
75 found_first:
76 	tmp &= ~0UL >> (BITS_PER_LONG - size);
77 found_middle:
78 	return result + ffz(~tmp);
79 }
80 
81 #define find_first_one_bit(addr, size)\
82 	find_next_one_bit((addr), (size), 0)
83 
read_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block,unsigned long bitmap_nr)84 static int read_block_bitmap(struct super_block *sb,
85 			     struct udf_bitmap *bitmap, unsigned int block,
86 			     unsigned long bitmap_nr)
87 {
88 	struct buffer_head *bh = NULL;
89 	int retval = 0;
90 	kernel_lb_addr loc;
91 
92 	loc.logicalBlockNum = bitmap->s_extPosition;
93 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
94 
95 	bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block));
96 	if (!bh)
97 		retval = -EIO;
98 
99 	bitmap->s_block_bitmap[bitmap_nr] = bh;
100 	return retval;
101 }
102 
__load_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block_group)103 static int __load_block_bitmap(struct super_block *sb,
104 			       struct udf_bitmap *bitmap,
105 			       unsigned int block_group)
106 {
107 	int retval = 0;
108 	int nr_groups = bitmap->s_nr_groups;
109 
110 	if (block_group >= nr_groups) {
111 		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group,
112 			  nr_groups);
113 	}
114 
115 	if (bitmap->s_block_bitmap[block_group]) {
116 		return block_group;
117 	} else {
118 		retval = read_block_bitmap(sb, bitmap, block_group,
119 					   block_group);
120 		if (retval < 0)
121 			return retval;
122 		return block_group;
123 	}
124 }
125 
load_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block_group)126 static inline int load_block_bitmap(struct super_block *sb,
127 				    struct udf_bitmap *bitmap,
128 				    unsigned int block_group)
129 {
130 	int slot;
131 
132 	slot = __load_block_bitmap(sb, bitmap, block_group);
133 
134 	if (slot < 0)
135 		return slot;
136 
137 	if (!bitmap->s_block_bitmap[slot])
138 		return -EIO;
139 
140 	return slot;
141 }
142 
udf_add_free_space(struct udf_sb_info * sbi,u16 partition,u32 cnt)143 static bool udf_add_free_space(struct udf_sb_info *sbi,
144 				u16 partition, u32 cnt)
145 {
146 	struct logicalVolIntegrityDesc *lvid;
147 
148 	if (sbi->s_lvid_bh == NULL)
149 		return false;
150 
151 	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
152 	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
153 	return true;
154 }
155 
udf_bitmap_free_blocks(struct super_block * sb,struct inode * inode,struct udf_bitmap * bitmap,kernel_lb_addr bloc,uint32_t offset,uint32_t count)156 static void udf_bitmap_free_blocks(struct super_block *sb,
157 				   struct inode *inode,
158 				   struct udf_bitmap *bitmap,
159 				   kernel_lb_addr bloc, uint32_t offset,
160 				   uint32_t count)
161 {
162 	struct udf_sb_info *sbi = UDF_SB(sb);
163 	struct buffer_head *bh = NULL;
164 	unsigned long block;
165 	unsigned long block_group;
166 	unsigned long bit;
167 	unsigned long i;
168 	int bitmap_nr;
169 	unsigned long overflow;
170 
171 	mutex_lock(&sbi->s_alloc_mutex);
172 	if (bloc.logicalBlockNum < 0 ||
173 	    (bloc.logicalBlockNum + count) >
174 		sbi->s_partmaps[bloc.partitionReferenceNum].s_partition_len) {
175 		udf_debug("%d < %d || %d + %d > %d\n",
176 			  bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
177 			  sbi->s_partmaps[bloc.partitionReferenceNum].
178 							s_partition_len);
179 		goto error_return;
180 	}
181 
182 	block = bloc.logicalBlockNum + offset +
183 		(sizeof(struct spaceBitmapDesc) << 3);
184 
185 	do {
186 		overflow = 0;
187 		block_group = block >> (sb->s_blocksize_bits + 3);
188 		bit = block % (sb->s_blocksize << 3);
189 
190 		/*
191 		* Check to see if we are freeing blocks across a group boundary.
192 		*/
193 		if (bit + count > (sb->s_blocksize << 3)) {
194 			overflow = bit + count - (sb->s_blocksize << 3);
195 			count -= overflow;
196 		}
197 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
198 		if (bitmap_nr < 0)
199 			goto error_return;
200 
201 		bh = bitmap->s_block_bitmap[bitmap_nr];
202 		for (i = 0; i < count; i++) {
203 			if (udf_set_bit(bit + i, bh->b_data)) {
204 				udf_debug("bit %ld already set\n", bit + i);
205 				udf_debug("byte=%2x\n",
206 					((char *)bh->b_data)[(bit + i) >> 3]);
207 			} else {
208 				if (inode)
209 					DQUOT_FREE_BLOCK(inode, 1);
210 				udf_add_free_space(sbi, sbi->s_partition, 1);
211 			}
212 		}
213 		mark_buffer_dirty(bh);
214 		if (overflow) {
215 			block += count;
216 			count = overflow;
217 		}
218 	} while (overflow);
219 
220 error_return:
221 	sb->s_dirt = 1;
222 	if (sbi->s_lvid_bh)
223 		mark_buffer_dirty(sbi->s_lvid_bh);
224 	mutex_unlock(&sbi->s_alloc_mutex);
225 }
226 
udf_bitmap_prealloc_blocks(struct super_block * sb,struct inode * inode,struct udf_bitmap * bitmap,uint16_t partition,uint32_t first_block,uint32_t block_count)227 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
228 				      struct inode *inode,
229 				      struct udf_bitmap *bitmap,
230 				      uint16_t partition, uint32_t first_block,
231 				      uint32_t block_count)
232 {
233 	struct udf_sb_info *sbi = UDF_SB(sb);
234 	int alloc_count = 0;
235 	int bit, block, block_group, group_start;
236 	int nr_groups, bitmap_nr;
237 	struct buffer_head *bh;
238 	__u32 part_len;
239 
240 	mutex_lock(&sbi->s_alloc_mutex);
241 	part_len = sbi->s_partmaps[partition].s_partition_len;
242 	if (first_block < 0 || first_block >= part_len)
243 		goto out;
244 
245 	if (first_block + block_count > part_len)
246 		block_count = part_len - first_block;
247 
248 	do {
249 		nr_groups = udf_compute_nr_groups(sb, partition);
250 		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
251 		block_group = block >> (sb->s_blocksize_bits + 3);
252 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
253 
254 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
255 		if (bitmap_nr < 0)
256 			goto out;
257 		bh = bitmap->s_block_bitmap[bitmap_nr];
258 
259 		bit = block % (sb->s_blocksize << 3);
260 
261 		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
262 			if (!udf_test_bit(bit, bh->b_data))
263 				goto out;
264 			else if (DQUOT_PREALLOC_BLOCK(inode, 1))
265 				goto out;
266 			else if (!udf_clear_bit(bit, bh->b_data)) {
267 				udf_debug("bit already cleared for block %d\n", bit);
268 				DQUOT_FREE_BLOCK(inode, 1);
269 				goto out;
270 			}
271 			block_count--;
272 			alloc_count++;
273 			bit++;
274 			block++;
275 		}
276 		mark_buffer_dirty(bh);
277 	} while (block_count > 0);
278 
279 out:
280 	if (udf_add_free_space(sbi, partition, -alloc_count))
281 		mark_buffer_dirty(sbi->s_lvid_bh);
282 	sb->s_dirt = 1;
283 	mutex_unlock(&sbi->s_alloc_mutex);
284 	return alloc_count;
285 }
286 
udf_bitmap_new_block(struct super_block * sb,struct inode * inode,struct udf_bitmap * bitmap,uint16_t partition,uint32_t goal,int * err)287 static int udf_bitmap_new_block(struct super_block *sb,
288 				struct inode *inode,
289 				struct udf_bitmap *bitmap, uint16_t partition,
290 				uint32_t goal, int *err)
291 {
292 	struct udf_sb_info *sbi = UDF_SB(sb);
293 	int newbit, bit = 0, block, block_group, group_start;
294 	int end_goal, nr_groups, bitmap_nr, i;
295 	struct buffer_head *bh = NULL;
296 	char *ptr;
297 	int newblock = 0;
298 
299 	*err = -ENOSPC;
300 	mutex_lock(&sbi->s_alloc_mutex);
301 
302 repeat:
303 	if (goal < 0 || goal >= sbi->s_partmaps[partition].s_partition_len)
304 		goal = 0;
305 
306 	nr_groups = bitmap->s_nr_groups;
307 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
308 	block_group = block >> (sb->s_blocksize_bits + 3);
309 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
310 
311 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
312 	if (bitmap_nr < 0)
313 		goto error_return;
314 	bh = bitmap->s_block_bitmap[bitmap_nr];
315 	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
316 		      sb->s_blocksize - group_start);
317 
318 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
319 		bit = block % (sb->s_blocksize << 3);
320 		if (udf_test_bit(bit, bh->b_data))
321 			goto got_block;
322 
323 		end_goal = (bit + 63) & ~63;
324 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
325 		if (bit < end_goal)
326 			goto got_block;
327 
328 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
329 			      sb->s_blocksize - ((bit + 7) >> 3));
330 		newbit = (ptr - ((char *)bh->b_data)) << 3;
331 		if (newbit < sb->s_blocksize << 3) {
332 			bit = newbit;
333 			goto search_back;
334 		}
335 
336 		newbit = udf_find_next_one_bit(bh->b_data,
337 					       sb->s_blocksize << 3, bit);
338 		if (newbit < sb->s_blocksize << 3) {
339 			bit = newbit;
340 			goto got_block;
341 		}
342 	}
343 
344 	for (i = 0; i < (nr_groups * 2); i++) {
345 		block_group++;
346 		if (block_group >= nr_groups)
347 			block_group = 0;
348 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
349 
350 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
351 		if (bitmap_nr < 0)
352 			goto error_return;
353 		bh = bitmap->s_block_bitmap[bitmap_nr];
354 		if (i < nr_groups) {
355 			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
356 				      sb->s_blocksize - group_start);
357 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
358 				bit = (ptr - ((char *)bh->b_data)) << 3;
359 				break;
360 			}
361 		} else {
362 			bit = udf_find_next_one_bit((char *)bh->b_data,
363 						    sb->s_blocksize << 3,
364 						    group_start << 3);
365 			if (bit < sb->s_blocksize << 3)
366 				break;
367 		}
368 	}
369 	if (i >= (nr_groups * 2)) {
370 		mutex_unlock(&sbi->s_alloc_mutex);
371 		return newblock;
372 	}
373 	if (bit < sb->s_blocksize << 3)
374 		goto search_back;
375 	else
376 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
377 					    group_start << 3);
378 	if (bit >= sb->s_blocksize << 3) {
379 		mutex_unlock(&sbi->s_alloc_mutex);
380 		return 0;
381 	}
382 
383 search_back:
384 	i = 0;
385 	while (i < 7 && bit > (group_start << 3) &&
386 	       udf_test_bit(bit - 1, bh->b_data)) {
387 		++i;
388 		--bit;
389 	}
390 
391 got_block:
392 
393 	/*
394 	 * Check quota for allocation of this block.
395 	 */
396 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) {
397 		mutex_unlock(&sbi->s_alloc_mutex);
398 		*err = -EDQUOT;
399 		return 0;
400 	}
401 
402 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
403 		(sizeof(struct spaceBitmapDesc) << 3);
404 
405 	if (!udf_clear_bit(bit, bh->b_data)) {
406 		udf_debug("bit already cleared for block %d\n", bit);
407 		goto repeat;
408 	}
409 
410 	mark_buffer_dirty(bh);
411 
412 	if (udf_add_free_space(sbi, partition, -1))
413 		mark_buffer_dirty(sbi->s_lvid_bh);
414 	sb->s_dirt = 1;
415 	mutex_unlock(&sbi->s_alloc_mutex);
416 	*err = 0;
417 	return newblock;
418 
419 error_return:
420 	*err = -EIO;
421 	mutex_unlock(&sbi->s_alloc_mutex);
422 	return 0;
423 }
424 
udf_table_free_blocks(struct super_block * sb,struct inode * inode,struct inode * table,kernel_lb_addr bloc,uint32_t offset,uint32_t count)425 static void udf_table_free_blocks(struct super_block *sb,
426 				  struct inode *inode,
427 				  struct inode *table,
428 				  kernel_lb_addr bloc, uint32_t offset,
429 				  uint32_t count)
430 {
431 	struct udf_sb_info *sbi = UDF_SB(sb);
432 	uint32_t start, end;
433 	uint32_t elen;
434 	kernel_lb_addr eloc;
435 	struct extent_position oepos, epos;
436 	int8_t etype;
437 	int i;
438 	struct udf_inode_info *iinfo;
439 
440 	mutex_lock(&sbi->s_alloc_mutex);
441 	if (bloc.logicalBlockNum < 0 ||
442 	    (bloc.logicalBlockNum + count) >
443 		sbi->s_partmaps[bloc.partitionReferenceNum].s_partition_len) {
444 		udf_debug("%d < %d || %d + %d > %d\n",
445 			  bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count,
446 			  sbi->s_partmaps[bloc.partitionReferenceNum].
447 							s_partition_len);
448 		goto error_return;
449 	}
450 
451 	iinfo = UDF_I(table);
452 	/* We do this up front - There are some error conditions that
453 	   could occure, but.. oh well */
454 	if (inode)
455 		DQUOT_FREE_BLOCK(inode, count);
456 	if (udf_add_free_space(sbi, sbi->s_partition, count))
457 		mark_buffer_dirty(sbi->s_lvid_bh);
458 
459 	start = bloc.logicalBlockNum + offset;
460 	end = bloc.logicalBlockNum + offset + count - 1;
461 
462 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
463 	elen = 0;
464 	epos.block = oepos.block = iinfo->i_location;
465 	epos.bh = oepos.bh = NULL;
466 
467 	while (count &&
468 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
469 		if (((eloc.logicalBlockNum +
470 			(elen >> sb->s_blocksize_bits)) == start)) {
471 			if ((0x3FFFFFFF - elen) <
472 					(count << sb->s_blocksize_bits)) {
473 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
474 							sb->s_blocksize_bits);
475 				count -= tmp;
476 				start += tmp;
477 				elen = (etype << 30) |
478 					(0x40000000 - sb->s_blocksize);
479 			} else {
480 				elen = (etype << 30) |
481 					(elen +
482 					(count << sb->s_blocksize_bits));
483 				start += count;
484 				count = 0;
485 			}
486 			udf_write_aext(table, &oepos, eloc, elen, 1);
487 		} else if (eloc.logicalBlockNum == (end + 1)) {
488 			if ((0x3FFFFFFF - elen) <
489 					(count << sb->s_blocksize_bits)) {
490 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
491 						sb->s_blocksize_bits);
492 				count -= tmp;
493 				end -= tmp;
494 				eloc.logicalBlockNum -= tmp;
495 				elen = (etype << 30) |
496 					(0x40000000 - sb->s_blocksize);
497 			} else {
498 				eloc.logicalBlockNum = start;
499 				elen = (etype << 30) |
500 					(elen +
501 					(count << sb->s_blocksize_bits));
502 				end -= count;
503 				count = 0;
504 			}
505 			udf_write_aext(table, &oepos, eloc, elen, 1);
506 		}
507 
508 		if (epos.bh != oepos.bh) {
509 			i = -1;
510 			oepos.block = epos.block;
511 			brelse(oepos.bh);
512 			get_bh(epos.bh);
513 			oepos.bh = epos.bh;
514 			oepos.offset = 0;
515 		} else {
516 			oepos.offset = epos.offset;
517 		}
518 	}
519 
520 	if (count) {
521 		/*
522 		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
523 		 * allocate a new block, and since we hold the super block
524 		 * lock already very bad things would happen :)
525 		 *
526 		 * We copy the behavior of udf_add_aext, but instead of
527 		 * trying to allocate a new block close to the existing one,
528 		 * we just steal a block from the extent we are trying to add.
529 		 *
530 		 * It would be nice if the blocks were close together, but it
531 		 * isn't required.
532 		 */
533 
534 		int adsize;
535 		short_ad *sad = NULL;
536 		long_ad *lad = NULL;
537 		struct allocExtDesc *aed;
538 
539 		eloc.logicalBlockNum = start;
540 		elen = EXT_RECORDED_ALLOCATED |
541 			(count << sb->s_blocksize_bits);
542 
543 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
544 			adsize = sizeof(short_ad);
545 		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
546 			adsize = sizeof(long_ad);
547 		else {
548 			brelse(oepos.bh);
549 			brelse(epos.bh);
550 			goto error_return;
551 		}
552 
553 		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
554 			char *sptr, *dptr;
555 			int loffset;
556 
557 			brelse(oepos.bh);
558 			oepos = epos;
559 
560 			/* Steal a block from the extent being free'd */
561 			epos.block.logicalBlockNum = eloc.logicalBlockNum;
562 			eloc.logicalBlockNum++;
563 			elen -= sb->s_blocksize;
564 
565 			epos.bh = udf_tread(sb,
566 					udf_get_lb_pblock(sb, epos.block, 0));
567 			if (!epos.bh) {
568 				brelse(oepos.bh);
569 				goto error_return;
570 			}
571 			aed = (struct allocExtDesc *)(epos.bh->b_data);
572 			aed->previousAllocExtLocation =
573 				cpu_to_le32(oepos.block.logicalBlockNum);
574 			if (epos.offset + adsize > sb->s_blocksize) {
575 				loffset = epos.offset;
576 				aed->lengthAllocDescs = cpu_to_le32(adsize);
577 				sptr = iinfo->i_ext.i_data + epos.offset
578 								- adsize;
579 				dptr = epos.bh->b_data +
580 					sizeof(struct allocExtDesc);
581 				memcpy(dptr, sptr, adsize);
582 				epos.offset = sizeof(struct allocExtDesc) +
583 						adsize;
584 			} else {
585 				loffset = epos.offset + adsize;
586 				aed->lengthAllocDescs = cpu_to_le32(0);
587 				if (oepos.bh) {
588 					sptr = oepos.bh->b_data + epos.offset;
589 					aed = (struct allocExtDesc *)
590 						oepos.bh->b_data;
591 					le32_add_cpu(&aed->lengthAllocDescs,
592 							adsize);
593 				} else {
594 					sptr = iinfo->i_ext.i_data +
595 								epos.offset;
596 					iinfo->i_lenAlloc += adsize;
597 					mark_inode_dirty(table);
598 				}
599 				epos.offset = sizeof(struct allocExtDesc);
600 			}
601 			if (sbi->s_udfrev >= 0x0200)
602 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
603 					    3, 1, epos.block.logicalBlockNum,
604 					    sizeof(tag));
605 			else
606 				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
607 					    2, 1, epos.block.logicalBlockNum,
608 					    sizeof(tag));
609 
610 			switch (iinfo->i_alloc_type) {
611 			case ICBTAG_FLAG_AD_SHORT:
612 				sad = (short_ad *)sptr;
613 				sad->extLength = cpu_to_le32(
614 					EXT_NEXT_EXTENT_ALLOCDECS |
615 					sb->s_blocksize);
616 				sad->extPosition =
617 					cpu_to_le32(epos.block.logicalBlockNum);
618 				break;
619 			case ICBTAG_FLAG_AD_LONG:
620 				lad = (long_ad *)sptr;
621 				lad->extLength = cpu_to_le32(
622 					EXT_NEXT_EXTENT_ALLOCDECS |
623 					sb->s_blocksize);
624 				lad->extLocation =
625 					cpu_to_lelb(epos.block);
626 				break;
627 			}
628 			if (oepos.bh) {
629 				udf_update_tag(oepos.bh->b_data, loffset);
630 				mark_buffer_dirty(oepos.bh);
631 			} else {
632 				mark_inode_dirty(table);
633 			}
634 		}
635 
636 		/* It's possible that stealing the block emptied the extent */
637 		if (elen) {
638 			udf_write_aext(table, &epos, eloc, elen, 1);
639 
640 			if (!epos.bh) {
641 				iinfo->i_lenAlloc += adsize;
642 				mark_inode_dirty(table);
643 			} else {
644 				aed = (struct allocExtDesc *)epos.bh->b_data;
645 				le32_add_cpu(&aed->lengthAllocDescs, adsize);
646 				udf_update_tag(epos.bh->b_data, epos.offset);
647 				mark_buffer_dirty(epos.bh);
648 			}
649 		}
650 	}
651 
652 	brelse(epos.bh);
653 	brelse(oepos.bh);
654 
655 error_return:
656 	sb->s_dirt = 1;
657 	mutex_unlock(&sbi->s_alloc_mutex);
658 	return;
659 }
660 
udf_table_prealloc_blocks(struct super_block * sb,struct inode * inode,struct inode * table,uint16_t partition,uint32_t first_block,uint32_t block_count)661 static int udf_table_prealloc_blocks(struct super_block *sb,
662 				     struct inode *inode,
663 				     struct inode *table, uint16_t partition,
664 				     uint32_t first_block, uint32_t block_count)
665 {
666 	struct udf_sb_info *sbi = UDF_SB(sb);
667 	int alloc_count = 0;
668 	uint32_t elen, adsize;
669 	kernel_lb_addr eloc;
670 	struct extent_position epos;
671 	int8_t etype = -1;
672 	struct udf_inode_info *iinfo;
673 
674 	if (first_block < 0 ||
675 		first_block >= sbi->s_partmaps[partition].s_partition_len)
676 		return 0;
677 
678 	iinfo = UDF_I(table);
679 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
680 		adsize = sizeof(short_ad);
681 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
682 		adsize = sizeof(long_ad);
683 	else
684 		return 0;
685 
686 	mutex_lock(&sbi->s_alloc_mutex);
687 	epos.offset = sizeof(struct unallocSpaceEntry);
688 	epos.block = iinfo->i_location;
689 	epos.bh = NULL;
690 	eloc.logicalBlockNum = 0xFFFFFFFF;
691 
692 	while (first_block != eloc.logicalBlockNum &&
693 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
694 		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
695 			  eloc.logicalBlockNum, elen, first_block);
696 		; /* empty loop body */
697 	}
698 
699 	if (first_block == eloc.logicalBlockNum) {
700 		epos.offset -= adsize;
701 
702 		alloc_count = (elen >> sb->s_blocksize_bits);
703 		if (inode && DQUOT_PREALLOC_BLOCK(inode,
704 			alloc_count > block_count ? block_count : alloc_count))
705 			alloc_count = 0;
706 		else if (alloc_count > block_count) {
707 			alloc_count = block_count;
708 			eloc.logicalBlockNum += alloc_count;
709 			elen -= (alloc_count << sb->s_blocksize_bits);
710 			udf_write_aext(table, &epos, eloc,
711 					(etype << 30) | elen, 1);
712 		} else
713 			udf_delete_aext(table, epos, eloc,
714 					(etype << 30) | elen);
715 	} else {
716 		alloc_count = 0;
717 	}
718 
719 	brelse(epos.bh);
720 
721 	if (alloc_count && udf_add_free_space(sbi, partition, -alloc_count)) {
722 		mark_buffer_dirty(sbi->s_lvid_bh);
723 		sb->s_dirt = 1;
724 	}
725 	mutex_unlock(&sbi->s_alloc_mutex);
726 	return alloc_count;
727 }
728 
udf_table_new_block(struct super_block * sb,struct inode * inode,struct inode * table,uint16_t partition,uint32_t goal,int * err)729 static int udf_table_new_block(struct super_block *sb,
730 			       struct inode *inode,
731 			       struct inode *table, uint16_t partition,
732 			       uint32_t goal, int *err)
733 {
734 	struct udf_sb_info *sbi = UDF_SB(sb);
735 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
736 	uint32_t newblock = 0, adsize;
737 	uint32_t elen, goal_elen = 0;
738 	kernel_lb_addr eloc, uninitialized_var(goal_eloc);
739 	struct extent_position epos, goal_epos;
740 	int8_t etype;
741 	struct udf_inode_info *iinfo = UDF_I(table);
742 
743 	*err = -ENOSPC;
744 
745 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
746 		adsize = sizeof(short_ad);
747 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
748 		adsize = sizeof(long_ad);
749 	else
750 		return newblock;
751 
752 	mutex_lock(&sbi->s_alloc_mutex);
753 	if (goal < 0 || goal >= sbi->s_partmaps[partition].s_partition_len)
754 		goal = 0;
755 
756 	/* We search for the closest matching block to goal. If we find
757 	   a exact hit, we stop. Otherwise we keep going till we run out
758 	   of extents. We store the buffer_head, bloc, and extoffset
759 	   of the current closest match and use that when we are done.
760 	 */
761 	epos.offset = sizeof(struct unallocSpaceEntry);
762 	epos.block = iinfo->i_location;
763 	epos.bh = goal_epos.bh = NULL;
764 
765 	while (spread &&
766 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
767 		if (goal >= eloc.logicalBlockNum) {
768 			if (goal < eloc.logicalBlockNum +
769 					(elen >> sb->s_blocksize_bits))
770 				nspread = 0;
771 			else
772 				nspread = goal - eloc.logicalBlockNum -
773 					(elen >> sb->s_blocksize_bits);
774 		} else {
775 			nspread = eloc.logicalBlockNum - goal;
776 		}
777 
778 		if (nspread < spread) {
779 			spread = nspread;
780 			if (goal_epos.bh != epos.bh) {
781 				brelse(goal_epos.bh);
782 				goal_epos.bh = epos.bh;
783 				get_bh(goal_epos.bh);
784 			}
785 			goal_epos.block = epos.block;
786 			goal_epos.offset = epos.offset - adsize;
787 			goal_eloc = eloc;
788 			goal_elen = (etype << 30) | elen;
789 		}
790 	}
791 
792 	brelse(epos.bh);
793 
794 	if (spread == 0xFFFFFFFF) {
795 		brelse(goal_epos.bh);
796 		mutex_unlock(&sbi->s_alloc_mutex);
797 		return 0;
798 	}
799 
800 	/* Only allocate blocks from the beginning of the extent.
801 	   That way, we only delete (empty) extents, never have to insert an
802 	   extent because of splitting */
803 	/* This works, but very poorly.... */
804 
805 	newblock = goal_eloc.logicalBlockNum;
806 	goal_eloc.logicalBlockNum++;
807 	goal_elen -= sb->s_blocksize;
808 
809 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) {
810 		brelse(goal_epos.bh);
811 		mutex_unlock(&sbi->s_alloc_mutex);
812 		*err = -EDQUOT;
813 		return 0;
814 	}
815 
816 	if (goal_elen)
817 		udf_write_aext(table, &goal_epos, goal_eloc, goal_elen, 1);
818 	else
819 		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
820 	brelse(goal_epos.bh);
821 
822 	if (udf_add_free_space(sbi, partition, -1))
823 		mark_buffer_dirty(sbi->s_lvid_bh);
824 
825 	sb->s_dirt = 1;
826 	mutex_unlock(&sbi->s_alloc_mutex);
827 	*err = 0;
828 	return newblock;
829 }
830 
udf_free_blocks(struct super_block * sb,struct inode * inode,kernel_lb_addr bloc,uint32_t offset,uint32_t count)831 inline void udf_free_blocks(struct super_block *sb,
832 			    struct inode *inode,
833 			    kernel_lb_addr bloc, uint32_t offset,
834 			    uint32_t count)
835 {
836 	uint16_t partition = bloc.partitionReferenceNum;
837 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
838 
839 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
840 		return udf_bitmap_free_blocks(sb, inode,
841 					      map->s_uspace.s_bitmap,
842 					      bloc, offset, count);
843 	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
844 		return udf_table_free_blocks(sb, inode,
845 					     map->s_uspace.s_table,
846 					     bloc, offset, count);
847 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
848 		return udf_bitmap_free_blocks(sb, inode,
849 					      map->s_fspace.s_bitmap,
850 					      bloc, offset, count);
851 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
852 		return udf_table_free_blocks(sb, inode,
853 					     map->s_fspace.s_table,
854 					     bloc, offset, count);
855 	} else {
856 		return;
857 	}
858 }
859 
udf_prealloc_blocks(struct super_block * sb,struct inode * inode,uint16_t partition,uint32_t first_block,uint32_t block_count)860 inline int udf_prealloc_blocks(struct super_block *sb,
861 			       struct inode *inode,
862 			       uint16_t partition, uint32_t first_block,
863 			       uint32_t block_count)
864 {
865 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
866 
867 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
868 		return udf_bitmap_prealloc_blocks(sb, inode,
869 						  map->s_uspace.s_bitmap,
870 						  partition, first_block,
871 						  block_count);
872 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
873 		return udf_table_prealloc_blocks(sb, inode,
874 						 map->s_uspace.s_table,
875 						 partition, first_block,
876 						 block_count);
877 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
878 		return udf_bitmap_prealloc_blocks(sb, inode,
879 						  map->s_fspace.s_bitmap,
880 						  partition, first_block,
881 						  block_count);
882 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
883 		return udf_table_prealloc_blocks(sb, inode,
884 						 map->s_fspace.s_table,
885 						 partition, first_block,
886 						 block_count);
887 	else
888 		return 0;
889 }
890 
udf_new_block(struct super_block * sb,struct inode * inode,uint16_t partition,uint32_t goal,int * err)891 inline int udf_new_block(struct super_block *sb,
892 			 struct inode *inode,
893 			 uint16_t partition, uint32_t goal, int *err)
894 {
895 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
896 
897 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
898 		return udf_bitmap_new_block(sb, inode,
899 					   map->s_uspace.s_bitmap,
900 					   partition, goal, err);
901 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
902 		return udf_table_new_block(sb, inode,
903 					   map->s_uspace.s_table,
904 					   partition, goal, err);
905 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
906 		return udf_bitmap_new_block(sb, inode,
907 					    map->s_fspace.s_bitmap,
908 					    partition, goal, err);
909 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
910 		return udf_table_new_block(sb, inode,
911 					   map->s_fspace.s_table,
912 					   partition, goal, err);
913 	else {
914 		*err = -EIO;
915 		return 0;
916 	}
917 }
918