• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/usb.h>
43 
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47 
48 
49 /*-------------------------------------------------------------------------*/
50 
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
78  *		associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
80  */
81 
82 /*-------------------------------------------------------------------------*/
83 
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87 
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91 
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS		64
94 struct usb_busmap {
95 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98 
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102 
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105 
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108 
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111 
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114 
is_root_hub(struct usb_device * udev)115 static inline int is_root_hub(struct usb_device *udev)
116 {
117 	return (udev->parent == NULL);
118 }
119 
120 /*-------------------------------------------------------------------------*/
121 
122 /*
123  * Sharable chunks of root hub code.
124  */
125 
126 /*-------------------------------------------------------------------------*/
127 
128 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
129 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
130 
131 /* usb 2.0 root hub device descriptor */
132 static const u8 usb2_rh_dev_descriptor [18] = {
133 	0x12,       /*  __u8  bLength; */
134 	0x01,       /*  __u8  bDescriptorType; Device */
135 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
136 
137 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
138 	0x00,	    /*  __u8  bDeviceSubClass; */
139 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
140 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
141 
142 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
143 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
144 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145 
146 	0x03,       /*  __u8  iManufacturer; */
147 	0x02,       /*  __u8  iProduct; */
148 	0x01,       /*  __u8  iSerialNumber; */
149 	0x01        /*  __u8  bNumConfigurations; */
150 };
151 
152 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
153 
154 /* usb 1.1 root hub device descriptor */
155 static const u8 usb11_rh_dev_descriptor [18] = {
156 	0x12,       /*  __u8  bLength; */
157 	0x01,       /*  __u8  bDescriptorType; Device */
158 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
159 
160 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
161 	0x00,	    /*  __u8  bDeviceSubClass; */
162 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
163 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
164 
165 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
166 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
167 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
168 
169 	0x03,       /*  __u8  iManufacturer; */
170 	0x02,       /*  __u8  iProduct; */
171 	0x01,       /*  __u8  iSerialNumber; */
172 	0x01        /*  __u8  bNumConfigurations; */
173 };
174 
175 
176 /*-------------------------------------------------------------------------*/
177 
178 /* Configuration descriptors for our root hubs */
179 
180 static const u8 fs_rh_config_descriptor [] = {
181 
182 	/* one configuration */
183 	0x09,       /*  __u8  bLength; */
184 	0x02,       /*  __u8  bDescriptorType; Configuration */
185 	0x19, 0x00, /*  __le16 wTotalLength; */
186 	0x01,       /*  __u8  bNumInterfaces; (1) */
187 	0x01,       /*  __u8  bConfigurationValue; */
188 	0x00,       /*  __u8  iConfiguration; */
189 	0xc0,       /*  __u8  bmAttributes;
190 				 Bit 7: must be set,
191 				     6: Self-powered,
192 				     5: Remote wakeup,
193 				     4..0: resvd */
194 	0x00,       /*  __u8  MaxPower; */
195 
196 	/* USB 1.1:
197 	 * USB 2.0, single TT organization (mandatory):
198 	 *	one interface, protocol 0
199 	 *
200 	 * USB 2.0, multiple TT organization (optional):
201 	 *	two interfaces, protocols 1 (like single TT)
202 	 *	and 2 (multiple TT mode) ... config is
203 	 *	sometimes settable
204 	 *	NOT IMPLEMENTED
205 	 */
206 
207 	/* one interface */
208 	0x09,       /*  __u8  if_bLength; */
209 	0x04,       /*  __u8  if_bDescriptorType; Interface */
210 	0x00,       /*  __u8  if_bInterfaceNumber; */
211 	0x00,       /*  __u8  if_bAlternateSetting; */
212 	0x01,       /*  __u8  if_bNumEndpoints; */
213 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
214 	0x00,       /*  __u8  if_bInterfaceSubClass; */
215 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
216 	0x00,       /*  __u8  if_iInterface; */
217 
218 	/* one endpoint (status change endpoint) */
219 	0x07,       /*  __u8  ep_bLength; */
220 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
221 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
222  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
223  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
224 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
225 };
226 
227 static const u8 hs_rh_config_descriptor [] = {
228 
229 	/* one configuration */
230 	0x09,       /*  __u8  bLength; */
231 	0x02,       /*  __u8  bDescriptorType; Configuration */
232 	0x19, 0x00, /*  __le16 wTotalLength; */
233 	0x01,       /*  __u8  bNumInterfaces; (1) */
234 	0x01,       /*  __u8  bConfigurationValue; */
235 	0x00,       /*  __u8  iConfiguration; */
236 	0xc0,       /*  __u8  bmAttributes;
237 				 Bit 7: must be set,
238 				     6: Self-powered,
239 				     5: Remote wakeup,
240 				     4..0: resvd */
241 	0x00,       /*  __u8  MaxPower; */
242 
243 	/* USB 1.1:
244 	 * USB 2.0, single TT organization (mandatory):
245 	 *	one interface, protocol 0
246 	 *
247 	 * USB 2.0, multiple TT organization (optional):
248 	 *	two interfaces, protocols 1 (like single TT)
249 	 *	and 2 (multiple TT mode) ... config is
250 	 *	sometimes settable
251 	 *	NOT IMPLEMENTED
252 	 */
253 
254 	/* one interface */
255 	0x09,       /*  __u8  if_bLength; */
256 	0x04,       /*  __u8  if_bDescriptorType; Interface */
257 	0x00,       /*  __u8  if_bInterfaceNumber; */
258 	0x00,       /*  __u8  if_bAlternateSetting; */
259 	0x01,       /*  __u8  if_bNumEndpoints; */
260 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
261 	0x00,       /*  __u8  if_bInterfaceSubClass; */
262 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
263 	0x00,       /*  __u8  if_iInterface; */
264 
265 	/* one endpoint (status change endpoint) */
266 	0x07,       /*  __u8  ep_bLength; */
267 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
268 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
269  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
270 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
271 		     * see hub.c:hub_configure() for details. */
272 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
273 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
274 };
275 
276 /*-------------------------------------------------------------------------*/
277 
278 /*
279  * helper routine for returning string descriptors in UTF-16LE
280  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
281  */
ascii2utf(char * s,u8 * utf,int utfmax)282 static int ascii2utf (char *s, u8 *utf, int utfmax)
283 {
284 	int retval;
285 
286 	for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
287 		*utf++ = *s++;
288 		*utf++ = 0;
289 	}
290 	if (utfmax > 0) {
291 		*utf = *s;
292 		++retval;
293 	}
294 	return retval;
295 }
296 
297 /*
298  * rh_string - provides manufacturer, product and serial strings for root hub
299  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
300  * @hcd: the host controller for this root hub
301  * @data: return packet in UTF-16 LE
302  * @len: length of the return packet
303  *
304  * Produces either a manufacturer, product or serial number string for the
305  * virtual root hub device.
306  */
rh_string(int id,struct usb_hcd * hcd,u8 * data,int len)307 static int rh_string (
308 	int		id,
309 	struct usb_hcd	*hcd,
310 	u8		*data,
311 	int		len
312 ) {
313 	char buf [100];
314 
315 	// language ids
316 	if (id == 0) {
317 		buf[0] = 4;    buf[1] = 3;	/* 4 bytes string data */
318 		buf[2] = 0x09; buf[3] = 0x04;	/* MSFT-speak for "en-us" */
319 		len = min (len, 4);
320 		memcpy (data, buf, len);
321 		return len;
322 
323 	// serial number
324 	} else if (id == 1) {
325 		strlcpy (buf, hcd->self.bus_name, sizeof buf);
326 
327 	// product description
328 	} else if (id == 2) {
329 		strlcpy (buf, hcd->product_desc, sizeof buf);
330 
331  	// id 3 == vendor description
332 	} else if (id == 3) {
333 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
334 			init_utsname()->release, hcd->driver->description);
335 
336 	// unsupported IDs --> "protocol stall"
337 	} else
338 		return -EPIPE;
339 
340 	switch (len) {		/* All cases fall through */
341 	default:
342 		len = 2 + ascii2utf (buf, data + 2, len - 2);
343 	case 2:
344 		data [1] = 3;	/* type == string */
345 	case 1:
346 		data [0] = 2 * (strlen (buf) + 1);
347 	case 0:
348 		;		/* Compiler wants a statement here */
349 	}
350 	return len;
351 }
352 
353 
354 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)355 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
356 {
357 	struct usb_ctrlrequest *cmd;
358  	u16		typeReq, wValue, wIndex, wLength;
359 	u8		*ubuf = urb->transfer_buffer;
360 	u8		tbuf [sizeof (struct usb_hub_descriptor)]
361 		__attribute__((aligned(4)));
362 	const u8	*bufp = tbuf;
363 	int		len = 0;
364 	int		status;
365 	int		n;
366 	u8		patch_wakeup = 0;
367 	u8		patch_protocol = 0;
368 
369 	might_sleep();
370 
371 	spin_lock_irq(&hcd_root_hub_lock);
372 	status = usb_hcd_link_urb_to_ep(hcd, urb);
373 	spin_unlock_irq(&hcd_root_hub_lock);
374 	if (status)
375 		return status;
376 	urb->hcpriv = hcd;	/* Indicate it's queued */
377 
378 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
379 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
380 	wValue   = le16_to_cpu (cmd->wValue);
381 	wIndex   = le16_to_cpu (cmd->wIndex);
382 	wLength  = le16_to_cpu (cmd->wLength);
383 
384 	if (wLength > urb->transfer_buffer_length)
385 		goto error;
386 
387 	urb->actual_length = 0;
388 	switch (typeReq) {
389 
390 	/* DEVICE REQUESTS */
391 
392 	/* The root hub's remote wakeup enable bit is implemented using
393 	 * driver model wakeup flags.  If this system supports wakeup
394 	 * through USB, userspace may change the default "allow wakeup"
395 	 * policy through sysfs or these calls.
396 	 *
397 	 * Most root hubs support wakeup from downstream devices, for
398 	 * runtime power management (disabling USB clocks and reducing
399 	 * VBUS power usage).  However, not all of them do so; silicon,
400 	 * board, and BIOS bugs here are not uncommon, so these can't
401 	 * be treated quite like external hubs.
402 	 *
403 	 * Likewise, not all root hubs will pass wakeup events upstream,
404 	 * to wake up the whole system.  So don't assume root hub and
405 	 * controller capabilities are identical.
406 	 */
407 
408 	case DeviceRequest | USB_REQ_GET_STATUS:
409 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
410 					<< USB_DEVICE_REMOTE_WAKEUP)
411 				| (1 << USB_DEVICE_SELF_POWERED);
412 		tbuf [1] = 0;
413 		len = 2;
414 		break;
415 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
416 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
417 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
418 		else
419 			goto error;
420 		break;
421 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
422 		if (device_can_wakeup(&hcd->self.root_hub->dev)
423 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
424 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
425 		else
426 			goto error;
427 		break;
428 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
429 		tbuf [0] = 1;
430 		len = 1;
431 			/* FALLTHROUGH */
432 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
433 		break;
434 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
435 		switch (wValue & 0xff00) {
436 		case USB_DT_DEVICE << 8:
437 			if (hcd->driver->flags & HCD_USB2)
438 				bufp = usb2_rh_dev_descriptor;
439 			else if (hcd->driver->flags & HCD_USB11)
440 				bufp = usb11_rh_dev_descriptor;
441 			else
442 				goto error;
443 			len = 18;
444 			if (hcd->has_tt)
445 				patch_protocol = 1;
446 			break;
447 		case USB_DT_CONFIG << 8:
448 			if (hcd->driver->flags & HCD_USB2) {
449 				bufp = hs_rh_config_descriptor;
450 				len = sizeof hs_rh_config_descriptor;
451 			} else {
452 				bufp = fs_rh_config_descriptor;
453 				len = sizeof fs_rh_config_descriptor;
454 			}
455 			if (device_can_wakeup(&hcd->self.root_hub->dev))
456 				patch_wakeup = 1;
457 			break;
458 		case USB_DT_STRING << 8:
459 			n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
460 			if (n < 0)
461 				goto error;
462 			urb->actual_length = n;
463 			break;
464 		default:
465 			goto error;
466 		}
467 		break;
468 	case DeviceRequest | USB_REQ_GET_INTERFACE:
469 		tbuf [0] = 0;
470 		len = 1;
471 			/* FALLTHROUGH */
472 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
473 		break;
474 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
475 		// wValue == urb->dev->devaddr
476 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
477 			wValue);
478 		break;
479 
480 	/* INTERFACE REQUESTS (no defined feature/status flags) */
481 
482 	/* ENDPOINT REQUESTS */
483 
484 	case EndpointRequest | USB_REQ_GET_STATUS:
485 		// ENDPOINT_HALT flag
486 		tbuf [0] = 0;
487 		tbuf [1] = 0;
488 		len = 2;
489 			/* FALLTHROUGH */
490 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
491 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
492 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
493 		break;
494 
495 	/* CLASS REQUESTS (and errors) */
496 
497 	default:
498 		/* non-generic request */
499 		switch (typeReq) {
500 		case GetHubStatus:
501 		case GetPortStatus:
502 			len = 4;
503 			break;
504 		case GetHubDescriptor:
505 			len = sizeof (struct usb_hub_descriptor);
506 			break;
507 		}
508 		status = hcd->driver->hub_control (hcd,
509 			typeReq, wValue, wIndex,
510 			tbuf, wLength);
511 		break;
512 error:
513 		/* "protocol stall" on error */
514 		status = -EPIPE;
515 	}
516 
517 	if (status) {
518 		len = 0;
519 		if (status != -EPIPE) {
520 			dev_dbg (hcd->self.controller,
521 				"CTRL: TypeReq=0x%x val=0x%x "
522 				"idx=0x%x len=%d ==> %d\n",
523 				typeReq, wValue, wIndex,
524 				wLength, status);
525 		}
526 	}
527 	if (len) {
528 		if (urb->transfer_buffer_length < len)
529 			len = urb->transfer_buffer_length;
530 		urb->actual_length = len;
531 		// always USB_DIR_IN, toward host
532 		memcpy (ubuf, bufp, len);
533 
534 		/* report whether RH hardware supports remote wakeup */
535 		if (patch_wakeup &&
536 				len > offsetof (struct usb_config_descriptor,
537 						bmAttributes))
538 			((struct usb_config_descriptor *)ubuf)->bmAttributes
539 				|= USB_CONFIG_ATT_WAKEUP;
540 
541 		/* report whether RH hardware has an integrated TT */
542 		if (patch_protocol &&
543 				len > offsetof(struct usb_device_descriptor,
544 						bDeviceProtocol))
545 			((struct usb_device_descriptor *) ubuf)->
546 					bDeviceProtocol = 1;
547 	}
548 
549 	/* any errors get returned through the urb completion */
550 	spin_lock_irq(&hcd_root_hub_lock);
551 	usb_hcd_unlink_urb_from_ep(hcd, urb);
552 
553 	/* This peculiar use of spinlocks echoes what real HC drivers do.
554 	 * Avoiding calls to local_irq_disable/enable makes the code
555 	 * RT-friendly.
556 	 */
557 	spin_unlock(&hcd_root_hub_lock);
558 	usb_hcd_giveback_urb(hcd, urb, status);
559 	spin_lock(&hcd_root_hub_lock);
560 
561 	spin_unlock_irq(&hcd_root_hub_lock);
562 	return 0;
563 }
564 
565 /*-------------------------------------------------------------------------*/
566 
567 /*
568  * Root Hub interrupt transfers are polled using a timer if the
569  * driver requests it; otherwise the driver is responsible for
570  * calling usb_hcd_poll_rh_status() when an event occurs.
571  *
572  * Completions are called in_interrupt(), but they may or may not
573  * be in_irq().
574  */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)575 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
576 {
577 	struct urb	*urb;
578 	int		length;
579 	unsigned long	flags;
580 	char		buffer[4];	/* Any root hubs with > 31 ports? */
581 
582 	if (unlikely(!hcd->rh_registered))
583 		return;
584 	if (!hcd->uses_new_polling && !hcd->status_urb)
585 		return;
586 
587 	length = hcd->driver->hub_status_data(hcd, buffer);
588 	if (length > 0) {
589 
590 		/* try to complete the status urb */
591 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
592 		urb = hcd->status_urb;
593 		if (urb) {
594 			hcd->poll_pending = 0;
595 			hcd->status_urb = NULL;
596 			urb->actual_length = length;
597 			memcpy(urb->transfer_buffer, buffer, length);
598 
599 			usb_hcd_unlink_urb_from_ep(hcd, urb);
600 			spin_unlock(&hcd_root_hub_lock);
601 			usb_hcd_giveback_urb(hcd, urb, 0);
602 			spin_lock(&hcd_root_hub_lock);
603 		} else {
604 			length = 0;
605 			hcd->poll_pending = 1;
606 		}
607 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
608 	}
609 
610 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
611 	 * exceed that limit if HZ is 100. The math is more clunky than
612 	 * maybe expected, this is to make sure that all timers for USB devices
613 	 * fire at the same time to give the CPU a break inbetween */
614 	if (hcd->uses_new_polling ? hcd->poll_rh :
615 			(length == 0 && hcd->status_urb != NULL))
616 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
617 }
618 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
619 
620 /* timer callback */
rh_timer_func(unsigned long _hcd)621 static void rh_timer_func (unsigned long _hcd)
622 {
623 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
624 }
625 
626 /*-------------------------------------------------------------------------*/
627 
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)628 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
629 {
630 	int		retval;
631 	unsigned long	flags;
632 	int		len = 1 + (urb->dev->maxchild / 8);
633 
634 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
635 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
636 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
637 		retval = -EINVAL;
638 		goto done;
639 	}
640 
641 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
642 	if (retval)
643 		goto done;
644 
645 	hcd->status_urb = urb;
646 	urb->hcpriv = hcd;	/* indicate it's queued */
647 	if (!hcd->uses_new_polling)
648 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
649 
650 	/* If a status change has already occurred, report it ASAP */
651 	else if (hcd->poll_pending)
652 		mod_timer(&hcd->rh_timer, jiffies);
653 	retval = 0;
654  done:
655 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
656 	return retval;
657 }
658 
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)659 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
660 {
661 	if (usb_endpoint_xfer_int(&urb->ep->desc))
662 		return rh_queue_status (hcd, urb);
663 	if (usb_endpoint_xfer_control(&urb->ep->desc))
664 		return rh_call_control (hcd, urb);
665 	return -EINVAL;
666 }
667 
668 /*-------------------------------------------------------------------------*/
669 
670 /* Unlinks of root-hub control URBs are legal, but they don't do anything
671  * since these URBs always execute synchronously.
672  */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)673 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
674 {
675 	unsigned long	flags;
676 	int		rc;
677 
678 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
679 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
680 	if (rc)
681 		goto done;
682 
683 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
684 		;	/* Do nothing */
685 
686 	} else {				/* Status URB */
687 		if (!hcd->uses_new_polling)
688 			del_timer (&hcd->rh_timer);
689 		if (urb == hcd->status_urb) {
690 			hcd->status_urb = NULL;
691 			usb_hcd_unlink_urb_from_ep(hcd, urb);
692 
693 			spin_unlock(&hcd_root_hub_lock);
694 			usb_hcd_giveback_urb(hcd, urb, status);
695 			spin_lock(&hcd_root_hub_lock);
696 		}
697 	}
698  done:
699 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
700 	return rc;
701 }
702 
703 
704 
705 /*
706  * Show & store the current value of authorized_default
707  */
usb_host_authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)708 static ssize_t usb_host_authorized_default_show(struct device *dev,
709 						struct device_attribute *attr,
710 						char *buf)
711 {
712 	struct usb_device *rh_usb_dev = to_usb_device(dev);
713 	struct usb_bus *usb_bus = rh_usb_dev->bus;
714 	struct usb_hcd *usb_hcd;
715 
716 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
717 		return -ENODEV;
718 	usb_hcd = bus_to_hcd(usb_bus);
719 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
720 }
721 
usb_host_authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)722 static ssize_t usb_host_authorized_default_store(struct device *dev,
723 						 struct device_attribute *attr,
724 						 const char *buf, size_t size)
725 {
726 	ssize_t result;
727 	unsigned val;
728 	struct usb_device *rh_usb_dev = to_usb_device(dev);
729 	struct usb_bus *usb_bus = rh_usb_dev->bus;
730 	struct usb_hcd *usb_hcd;
731 
732 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
733 		return -ENODEV;
734 	usb_hcd = bus_to_hcd(usb_bus);
735 	result = sscanf(buf, "%u\n", &val);
736 	if (result == 1) {
737 		usb_hcd->authorized_default = val? 1 : 0;
738 		result = size;
739 	}
740 	else
741 		result = -EINVAL;
742 	return result;
743 }
744 
745 static DEVICE_ATTR(authorized_default, 0644,
746 	    usb_host_authorized_default_show,
747 	    usb_host_authorized_default_store);
748 
749 
750 /* Group all the USB bus attributes */
751 static struct attribute *usb_bus_attrs[] = {
752 		&dev_attr_authorized_default.attr,
753 		NULL,
754 };
755 
756 static struct attribute_group usb_bus_attr_group = {
757 	.name = NULL,	/* we want them in the same directory */
758 	.attrs = usb_bus_attrs,
759 };
760 
761 
762 
763 /*-------------------------------------------------------------------------*/
764 
765 static struct class *usb_host_class;
766 
usb_host_init(void)767 int usb_host_init(void)
768 {
769 	int retval = 0;
770 
771 	usb_host_class = class_create(THIS_MODULE, "usb_host");
772 	if (IS_ERR(usb_host_class))
773 		retval = PTR_ERR(usb_host_class);
774 	return retval;
775 }
776 
usb_host_cleanup(void)777 void usb_host_cleanup(void)
778 {
779 	class_destroy(usb_host_class);
780 }
781 
782 /**
783  * usb_bus_init - shared initialization code
784  * @bus: the bus structure being initialized
785  *
786  * This code is used to initialize a usb_bus structure, memory for which is
787  * separately managed.
788  */
usb_bus_init(struct usb_bus * bus)789 static void usb_bus_init (struct usb_bus *bus)
790 {
791 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
792 
793 	bus->devnum_next = 1;
794 
795 	bus->root_hub = NULL;
796 	bus->busnum = -1;
797 	bus->bandwidth_allocated = 0;
798 	bus->bandwidth_int_reqs  = 0;
799 	bus->bandwidth_isoc_reqs = 0;
800 
801 	INIT_LIST_HEAD (&bus->bus_list);
802 }
803 
804 /*-------------------------------------------------------------------------*/
805 
806 /**
807  * usb_register_bus - registers the USB host controller with the usb core
808  * @bus: pointer to the bus to register
809  * Context: !in_interrupt()
810  *
811  * Assigns a bus number, and links the controller into usbcore data
812  * structures so that it can be seen by scanning the bus list.
813  */
usb_register_bus(struct usb_bus * bus)814 static int usb_register_bus(struct usb_bus *bus)
815 {
816 	int result = -E2BIG;
817 	int busnum;
818 
819 	mutex_lock(&usb_bus_list_lock);
820 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
821 	if (busnum >= USB_MAXBUS) {
822 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
823 		goto error_find_busnum;
824 	}
825 	set_bit (busnum, busmap.busmap);
826 	bus->busnum = busnum;
827 
828 	bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
829 				 bus, "usb_host%d", busnum);
830 	result = PTR_ERR(bus->dev);
831 	if (IS_ERR(bus->dev))
832 		goto error_create_class_dev;
833 
834 	/* Add it to the local list of buses */
835 	list_add (&bus->bus_list, &usb_bus_list);
836 	mutex_unlock(&usb_bus_list_lock);
837 
838 	usb_notify_add_bus(bus);
839 
840 	dev_info (bus->controller, "new USB bus registered, assigned bus "
841 		  "number %d\n", bus->busnum);
842 	return 0;
843 
844 error_create_class_dev:
845 	clear_bit(busnum, busmap.busmap);
846 error_find_busnum:
847 	mutex_unlock(&usb_bus_list_lock);
848 	return result;
849 }
850 
851 /**
852  * usb_deregister_bus - deregisters the USB host controller
853  * @bus: pointer to the bus to deregister
854  * Context: !in_interrupt()
855  *
856  * Recycles the bus number, and unlinks the controller from usbcore data
857  * structures so that it won't be seen by scanning the bus list.
858  */
usb_deregister_bus(struct usb_bus * bus)859 static void usb_deregister_bus (struct usb_bus *bus)
860 {
861 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
862 
863 	/*
864 	 * NOTE: make sure that all the devices are removed by the
865 	 * controller code, as well as having it call this when cleaning
866 	 * itself up
867 	 */
868 	mutex_lock(&usb_bus_list_lock);
869 	list_del (&bus->bus_list);
870 	mutex_unlock(&usb_bus_list_lock);
871 
872 	usb_notify_remove_bus(bus);
873 
874 	clear_bit (bus->busnum, busmap.busmap);
875 
876 	device_unregister(bus->dev);
877 }
878 
879 /**
880  * register_root_hub - called by usb_add_hcd() to register a root hub
881  * @hcd: host controller for this root hub
882  *
883  * This function registers the root hub with the USB subsystem.  It sets up
884  * the device properly in the device tree and then calls usb_new_device()
885  * to register the usb device.  It also assigns the root hub's USB address
886  * (always 1).
887  */
register_root_hub(struct usb_hcd * hcd)888 static int register_root_hub(struct usb_hcd *hcd)
889 {
890 	struct device *parent_dev = hcd->self.controller;
891 	struct usb_device *usb_dev = hcd->self.root_hub;
892 	const int devnum = 1;
893 	int retval;
894 
895 	usb_dev->devnum = devnum;
896 	usb_dev->bus->devnum_next = devnum + 1;
897 	memset (&usb_dev->bus->devmap.devicemap, 0,
898 			sizeof usb_dev->bus->devmap.devicemap);
899 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
900 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
901 
902 	mutex_lock(&usb_bus_list_lock);
903 
904 	usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
905 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
906 	if (retval != sizeof usb_dev->descriptor) {
907 		mutex_unlock(&usb_bus_list_lock);
908 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
909 				dev_name(&usb_dev->dev), retval);
910 		return (retval < 0) ? retval : -EMSGSIZE;
911 	}
912 
913 	retval = usb_new_device (usb_dev);
914 	if (retval) {
915 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
916 				dev_name(&usb_dev->dev), retval);
917 	}
918 	mutex_unlock(&usb_bus_list_lock);
919 
920 	if (retval == 0) {
921 		spin_lock_irq (&hcd_root_hub_lock);
922 		hcd->rh_registered = 1;
923 		spin_unlock_irq (&hcd_root_hub_lock);
924 
925 		/* Did the HC die before the root hub was registered? */
926 		if (hcd->state == HC_STATE_HALT)
927 			usb_hc_died (hcd);	/* This time clean up */
928 	}
929 
930 	return retval;
931 }
932 
933 
934 /*-------------------------------------------------------------------------*/
935 
936 /**
937  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
938  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
939  * @is_input: true iff the transaction sends data to the host
940  * @isoc: true for isochronous transactions, false for interrupt ones
941  * @bytecount: how many bytes in the transaction.
942  *
943  * Returns approximate bus time in nanoseconds for a periodic transaction.
944  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
945  * scheduled in software, this function is only used for such scheduling.
946  */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)947 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
948 {
949 	unsigned long	tmp;
950 
951 	switch (speed) {
952 	case USB_SPEED_LOW: 	/* INTR only */
953 		if (is_input) {
954 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
955 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
956 		} else {
957 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
958 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
959 		}
960 	case USB_SPEED_FULL:	/* ISOC or INTR */
961 		if (isoc) {
962 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
963 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
964 		} else {
965 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
966 			return (9107L + BW_HOST_DELAY + tmp);
967 		}
968 	case USB_SPEED_HIGH:	/* ISOC or INTR */
969 		// FIXME adjust for input vs output
970 		if (isoc)
971 			tmp = HS_NSECS_ISO (bytecount);
972 		else
973 			tmp = HS_NSECS (bytecount);
974 		return tmp;
975 	default:
976 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
977 		return -1;
978 	}
979 }
980 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
981 
982 
983 /*-------------------------------------------------------------------------*/
984 
985 /*
986  * Generic HC operations.
987  */
988 
989 /*-------------------------------------------------------------------------*/
990 
991 /**
992  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
993  * @hcd: host controller to which @urb was submitted
994  * @urb: URB being submitted
995  *
996  * Host controller drivers should call this routine in their enqueue()
997  * method.  The HCD's private spinlock must be held and interrupts must
998  * be disabled.  The actions carried out here are required for URB
999  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1000  *
1001  * Returns 0 for no error, otherwise a negative error code (in which case
1002  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1003  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1004  * the private spinlock and returning.
1005  */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1006 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1007 {
1008 	int		rc = 0;
1009 
1010 	spin_lock(&hcd_urb_list_lock);
1011 
1012 	/* Check that the URB isn't being killed */
1013 	if (unlikely(atomic_read(&urb->reject))) {
1014 		rc = -EPERM;
1015 		goto done;
1016 	}
1017 
1018 	if (unlikely(!urb->ep->enabled)) {
1019 		rc = -ENOENT;
1020 		goto done;
1021 	}
1022 
1023 	if (unlikely(!urb->dev->can_submit)) {
1024 		rc = -EHOSTUNREACH;
1025 		goto done;
1026 	}
1027 
1028 	/*
1029 	 * Check the host controller's state and add the URB to the
1030 	 * endpoint's queue.
1031 	 */
1032 	switch (hcd->state) {
1033 	case HC_STATE_RUNNING:
1034 	case HC_STATE_RESUMING:
1035 		urb->unlinked = 0;
1036 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1037 		break;
1038 	default:
1039 		rc = -ESHUTDOWN;
1040 		goto done;
1041 	}
1042  done:
1043 	spin_unlock(&hcd_urb_list_lock);
1044 	return rc;
1045 }
1046 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1047 
1048 /**
1049  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1050  * @hcd: host controller to which @urb was submitted
1051  * @urb: URB being checked for unlinkability
1052  * @status: error code to store in @urb if the unlink succeeds
1053  *
1054  * Host controller drivers should call this routine in their dequeue()
1055  * method.  The HCD's private spinlock must be held and interrupts must
1056  * be disabled.  The actions carried out here are required for making
1057  * sure than an unlink is valid.
1058  *
1059  * Returns 0 for no error, otherwise a negative error code (in which case
1060  * the dequeue() method must fail).  The possible error codes are:
1061  *
1062  *	-EIDRM: @urb was not submitted or has already completed.
1063  *		The completion function may not have been called yet.
1064  *
1065  *	-EBUSY: @urb has already been unlinked.
1066  */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1067 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1068 		int status)
1069 {
1070 	struct list_head	*tmp;
1071 
1072 	/* insist the urb is still queued */
1073 	list_for_each(tmp, &urb->ep->urb_list) {
1074 		if (tmp == &urb->urb_list)
1075 			break;
1076 	}
1077 	if (tmp != &urb->urb_list)
1078 		return -EIDRM;
1079 
1080 	/* Any status except -EINPROGRESS means something already started to
1081 	 * unlink this URB from the hardware.  So there's no more work to do.
1082 	 */
1083 	if (urb->unlinked)
1084 		return -EBUSY;
1085 	urb->unlinked = status;
1086 
1087 	/* IRQ setup can easily be broken so that USB controllers
1088 	 * never get completion IRQs ... maybe even the ones we need to
1089 	 * finish unlinking the initial failed usb_set_address()
1090 	 * or device descriptor fetch.
1091 	 */
1092 	if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1093 			!is_root_hub(urb->dev)) {
1094 		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1095 			"Controller is probably using the wrong IRQ.\n");
1096 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1097 	}
1098 
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1102 
1103 /**
1104  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1105  * @hcd: host controller to which @urb was submitted
1106  * @urb: URB being unlinked
1107  *
1108  * Host controller drivers should call this routine before calling
1109  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1110  * interrupts must be disabled.  The actions carried out here are required
1111  * for URB completion.
1112  */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1113 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1114 {
1115 	/* clear all state linking urb to this dev (and hcd) */
1116 	spin_lock(&hcd_urb_list_lock);
1117 	list_del_init(&urb->urb_list);
1118 	spin_unlock(&hcd_urb_list_lock);
1119 }
1120 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1121 
1122 /*
1123  * Some usb host controllers can only perform dma using a small SRAM area.
1124  * The usb core itself is however optimized for host controllers that can dma
1125  * using regular system memory - like pci devices doing bus mastering.
1126  *
1127  * To support host controllers with limited dma capabilites we provide dma
1128  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1129  * For this to work properly the host controller code must first use the
1130  * function dma_declare_coherent_memory() to point out which memory area
1131  * that should be used for dma allocations.
1132  *
1133  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1134  * dma using dma_alloc_coherent() which in turn allocates from the memory
1135  * area pointed out with dma_declare_coherent_memory().
1136  *
1137  * So, to summarize...
1138  *
1139  * - We need "local" memory, canonical example being
1140  *   a small SRAM on a discrete controller being the
1141  *   only memory that the controller can read ...
1142  *   (a) "normal" kernel memory is no good, and
1143  *   (b) there's not enough to share
1144  *
1145  * - The only *portable* hook for such stuff in the
1146  *   DMA framework is dma_declare_coherent_memory()
1147  *
1148  * - So we use that, even though the primary requirement
1149  *   is that the memory be "local" (hence addressible
1150  *   by that device), not "coherent".
1151  *
1152  */
1153 
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1154 static int hcd_alloc_coherent(struct usb_bus *bus,
1155 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1156 			      void **vaddr_handle, size_t size,
1157 			      enum dma_data_direction dir)
1158 {
1159 	unsigned char *vaddr;
1160 
1161 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1162 				 mem_flags, dma_handle);
1163 	if (!vaddr)
1164 		return -ENOMEM;
1165 
1166 	/*
1167 	 * Store the virtual address of the buffer at the end
1168 	 * of the allocated dma buffer. The size of the buffer
1169 	 * may be uneven so use unaligned functions instead
1170 	 * of just rounding up. It makes sense to optimize for
1171 	 * memory footprint over access speed since the amount
1172 	 * of memory available for dma may be limited.
1173 	 */
1174 	put_unaligned((unsigned long)*vaddr_handle,
1175 		      (unsigned long *)(vaddr + size));
1176 
1177 	if (dir == DMA_TO_DEVICE)
1178 		memcpy(vaddr, *vaddr_handle, size);
1179 
1180 	*vaddr_handle = vaddr;
1181 	return 0;
1182 }
1183 
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1184 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1185 			      void **vaddr_handle, size_t size,
1186 			      enum dma_data_direction dir)
1187 {
1188 	unsigned char *vaddr = *vaddr_handle;
1189 
1190 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1191 
1192 	if (dir == DMA_FROM_DEVICE)
1193 		memcpy(vaddr, *vaddr_handle, size);
1194 
1195 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1196 
1197 	*vaddr_handle = vaddr;
1198 	*dma_handle = 0;
1199 }
1200 
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1201 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1202 			   gfp_t mem_flags)
1203 {
1204 	enum dma_data_direction dir;
1205 	int ret = 0;
1206 
1207 	/* Map the URB's buffers for DMA access.
1208 	 * Lower level HCD code should use *_dma exclusively,
1209 	 * unless it uses pio or talks to another transport.
1210 	 */
1211 	if (is_root_hub(urb->dev))
1212 		return 0;
1213 
1214 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1215 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1216 		if (hcd->self.uses_dma)
1217 			urb->setup_dma = dma_map_single(
1218 					hcd->self.controller,
1219 					urb->setup_packet,
1220 					sizeof(struct usb_ctrlrequest),
1221 					DMA_TO_DEVICE);
1222 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1223 			ret = hcd_alloc_coherent(
1224 					urb->dev->bus, mem_flags,
1225 					&urb->setup_dma,
1226 					(void **)&urb->setup_packet,
1227 					sizeof(struct usb_ctrlrequest),
1228 					DMA_TO_DEVICE);
1229 	}
1230 
1231 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1232 	if (ret == 0 && urb->transfer_buffer_length != 0
1233 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1234 		if (hcd->self.uses_dma)
1235 			urb->transfer_dma = dma_map_single (
1236 					hcd->self.controller,
1237 					urb->transfer_buffer,
1238 					urb->transfer_buffer_length,
1239 					dir);
1240 		else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1241 			ret = hcd_alloc_coherent(
1242 					urb->dev->bus, mem_flags,
1243 					&urb->transfer_dma,
1244 					&urb->transfer_buffer,
1245 					urb->transfer_buffer_length,
1246 					dir);
1247 
1248 			if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1249 			    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1250 				hcd_free_coherent(urb->dev->bus,
1251 					&urb->setup_dma,
1252 					(void **)&urb->setup_packet,
1253 					sizeof(struct usb_ctrlrequest),
1254 					DMA_TO_DEVICE);
1255 		}
1256 	}
1257 	return ret;
1258 }
1259 
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1260 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1261 {
1262 	enum dma_data_direction dir;
1263 
1264 	if (is_root_hub(urb->dev))
1265 		return;
1266 
1267 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1268 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1269 		if (hcd->self.uses_dma)
1270 			dma_unmap_single(hcd->self.controller, urb->setup_dma,
1271 					sizeof(struct usb_ctrlrequest),
1272 					DMA_TO_DEVICE);
1273 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1274 			hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1275 					(void **)&urb->setup_packet,
1276 					sizeof(struct usb_ctrlrequest),
1277 					DMA_TO_DEVICE);
1278 	}
1279 
1280 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1281 	if (urb->transfer_buffer_length != 0
1282 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1283 		if (hcd->self.uses_dma)
1284 			dma_unmap_single(hcd->self.controller,
1285 					urb->transfer_dma,
1286 					urb->transfer_buffer_length,
1287 					dir);
1288 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1289 			hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1290 					&urb->transfer_buffer,
1291 					urb->transfer_buffer_length,
1292 					dir);
1293 	}
1294 }
1295 
1296 /*-------------------------------------------------------------------------*/
1297 
1298 /* may be called in any context with a valid urb->dev usecount
1299  * caller surrenders "ownership" of urb
1300  * expects usb_submit_urb() to have sanity checked and conditioned all
1301  * inputs in the urb
1302  */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1303 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1304 {
1305 	int			status;
1306 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1307 
1308 	/* increment urb's reference count as part of giving it to the HCD
1309 	 * (which will control it).  HCD guarantees that it either returns
1310 	 * an error or calls giveback(), but not both.
1311 	 */
1312 	usb_get_urb(urb);
1313 	atomic_inc(&urb->use_count);
1314 	atomic_inc(&urb->dev->urbnum);
1315 	usbmon_urb_submit(&hcd->self, urb);
1316 
1317 	/* NOTE requirements on root-hub callers (usbfs and the hub
1318 	 * driver, for now):  URBs' urb->transfer_buffer must be
1319 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1320 	 * they could clobber root hub response data.  Also, control
1321 	 * URBs must be submitted in process context with interrupts
1322 	 * enabled.
1323 	 */
1324 	status = map_urb_for_dma(hcd, urb, mem_flags);
1325 	if (unlikely(status)) {
1326 		usbmon_urb_submit_error(&hcd->self, urb, status);
1327 		goto error;
1328 	}
1329 
1330 	if (is_root_hub(urb->dev))
1331 		status = rh_urb_enqueue(hcd, urb);
1332 	else
1333 		status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1334 
1335 	if (unlikely(status)) {
1336 		usbmon_urb_submit_error(&hcd->self, urb, status);
1337 		unmap_urb_for_dma(hcd, urb);
1338  error:
1339 		urb->hcpriv = NULL;
1340 		INIT_LIST_HEAD(&urb->urb_list);
1341 		atomic_dec(&urb->use_count);
1342 		atomic_dec(&urb->dev->urbnum);
1343 		if (atomic_read(&urb->reject))
1344 			wake_up(&usb_kill_urb_queue);
1345 		usb_put_urb(urb);
1346 	}
1347 	return status;
1348 }
1349 
1350 /*-------------------------------------------------------------------------*/
1351 
1352 /* this makes the hcd giveback() the urb more quickly, by kicking it
1353  * off hardware queues (which may take a while) and returning it as
1354  * soon as practical.  we've already set up the urb's return status,
1355  * but we can't know if the callback completed already.
1356  */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1357 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1358 {
1359 	int		value;
1360 
1361 	if (is_root_hub(urb->dev))
1362 		value = usb_rh_urb_dequeue(hcd, urb, status);
1363 	else {
1364 
1365 		/* The only reason an HCD might fail this call is if
1366 		 * it has not yet fully queued the urb to begin with.
1367 		 * Such failures should be harmless. */
1368 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1369 	}
1370 	return value;
1371 }
1372 
1373 /*
1374  * called in any context
1375  *
1376  * caller guarantees urb won't be recycled till both unlink()
1377  * and the urb's completion function return
1378  */
usb_hcd_unlink_urb(struct urb * urb,int status)1379 int usb_hcd_unlink_urb (struct urb *urb, int status)
1380 {
1381 	struct usb_hcd		*hcd;
1382 	int			retval = -EIDRM;
1383 	unsigned long		flags;
1384 
1385 	/* Prevent the device and bus from going away while
1386 	 * the unlink is carried out.  If they are already gone
1387 	 * then urb->use_count must be 0, since disconnected
1388 	 * devices can't have any active URBs.
1389 	 */
1390 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1391 	if (atomic_read(&urb->use_count) > 0) {
1392 		retval = 0;
1393 		usb_get_dev(urb->dev);
1394 	}
1395 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1396 	if (retval == 0) {
1397 		hcd = bus_to_hcd(urb->dev->bus);
1398 		retval = unlink1(hcd, urb, status);
1399 		usb_put_dev(urb->dev);
1400 	}
1401 
1402 	if (retval == 0)
1403 		retval = -EINPROGRESS;
1404 	else if (retval != -EIDRM && retval != -EBUSY)
1405 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1406 				urb, retval);
1407 	return retval;
1408 }
1409 
1410 /*-------------------------------------------------------------------------*/
1411 
1412 /**
1413  * usb_hcd_giveback_urb - return URB from HCD to device driver
1414  * @hcd: host controller returning the URB
1415  * @urb: urb being returned to the USB device driver.
1416  * @status: completion status code for the URB.
1417  * Context: in_interrupt()
1418  *
1419  * This hands the URB from HCD to its USB device driver, using its
1420  * completion function.  The HCD has freed all per-urb resources
1421  * (and is done using urb->hcpriv).  It also released all HCD locks;
1422  * the device driver won't cause problems if it frees, modifies,
1423  * or resubmits this URB.
1424  *
1425  * If @urb was unlinked, the value of @status will be overridden by
1426  * @urb->unlinked.  Erroneous short transfers are detected in case
1427  * the HCD hasn't checked for them.
1428  */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1429 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1430 {
1431 	urb->hcpriv = NULL;
1432 	if (unlikely(urb->unlinked))
1433 		status = urb->unlinked;
1434 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1435 			urb->actual_length < urb->transfer_buffer_length &&
1436 			!status))
1437 		status = -EREMOTEIO;
1438 
1439 	unmap_urb_for_dma(hcd, urb);
1440 	usbmon_urb_complete(&hcd->self, urb, status);
1441 	usb_unanchor_urb(urb);
1442 
1443 	/* pass ownership to the completion handler */
1444 	urb->status = status;
1445 	urb->complete (urb);
1446 	atomic_dec (&urb->use_count);
1447 	if (unlikely(atomic_read(&urb->reject)))
1448 		wake_up (&usb_kill_urb_queue);
1449 	usb_put_urb (urb);
1450 }
1451 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1452 
1453 /*-------------------------------------------------------------------------*/
1454 
1455 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1456  * queue to drain completely.  The caller must first insure that no more
1457  * URBs can be submitted for this endpoint.
1458  */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1459 void usb_hcd_flush_endpoint(struct usb_device *udev,
1460 		struct usb_host_endpoint *ep)
1461 {
1462 	struct usb_hcd		*hcd;
1463 	struct urb		*urb;
1464 
1465 	if (!ep)
1466 		return;
1467 	might_sleep();
1468 	hcd = bus_to_hcd(udev->bus);
1469 
1470 	/* No more submits can occur */
1471 	spin_lock_irq(&hcd_urb_list_lock);
1472 rescan:
1473 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1474 		int	is_in;
1475 
1476 		if (urb->unlinked)
1477 			continue;
1478 		usb_get_urb (urb);
1479 		is_in = usb_urb_dir_in(urb);
1480 		spin_unlock(&hcd_urb_list_lock);
1481 
1482 		/* kick hcd */
1483 		unlink1(hcd, urb, -ESHUTDOWN);
1484 		dev_dbg (hcd->self.controller,
1485 			"shutdown urb %p ep%d%s%s\n",
1486 			urb, usb_endpoint_num(&ep->desc),
1487 			is_in ? "in" : "out",
1488 			({	char *s;
1489 
1490 				 switch (usb_endpoint_type(&ep->desc)) {
1491 				 case USB_ENDPOINT_XFER_CONTROL:
1492 					s = ""; break;
1493 				 case USB_ENDPOINT_XFER_BULK:
1494 					s = "-bulk"; break;
1495 				 case USB_ENDPOINT_XFER_INT:
1496 					s = "-intr"; break;
1497 				 default:
1498 			 		s = "-iso"; break;
1499 				};
1500 				s;
1501 			}));
1502 		usb_put_urb (urb);
1503 
1504 		/* list contents may have changed */
1505 		spin_lock(&hcd_urb_list_lock);
1506 		goto rescan;
1507 	}
1508 	spin_unlock_irq(&hcd_urb_list_lock);
1509 
1510 	/* Wait until the endpoint queue is completely empty */
1511 	while (!list_empty (&ep->urb_list)) {
1512 		spin_lock_irq(&hcd_urb_list_lock);
1513 
1514 		/* The list may have changed while we acquired the spinlock */
1515 		urb = NULL;
1516 		if (!list_empty (&ep->urb_list)) {
1517 			urb = list_entry (ep->urb_list.prev, struct urb,
1518 					urb_list);
1519 			usb_get_urb (urb);
1520 		}
1521 		spin_unlock_irq(&hcd_urb_list_lock);
1522 
1523 		if (urb) {
1524 			usb_kill_urb (urb);
1525 			usb_put_urb (urb);
1526 		}
1527 	}
1528 }
1529 
1530 /* Disables the endpoint: synchronizes with the hcd to make sure all
1531  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1532  * have been called previously.  Use for set_configuration, set_interface,
1533  * driver removal, physical disconnect.
1534  *
1535  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1536  * type, maxpacket size, toggle, halt status, and scheduling.
1537  */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1538 void usb_hcd_disable_endpoint(struct usb_device *udev,
1539 		struct usb_host_endpoint *ep)
1540 {
1541 	struct usb_hcd		*hcd;
1542 
1543 	might_sleep();
1544 	hcd = bus_to_hcd(udev->bus);
1545 	if (hcd->driver->endpoint_disable)
1546 		hcd->driver->endpoint_disable(hcd, ep);
1547 }
1548 
1549 /* Protect against drivers that try to unlink URBs after the device
1550  * is gone, by waiting until all unlinks for @udev are finished.
1551  * Since we don't currently track URBs by device, simply wait until
1552  * nothing is running in the locked region of usb_hcd_unlink_urb().
1553  */
usb_hcd_synchronize_unlinks(struct usb_device * udev)1554 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1555 {
1556 	spin_lock_irq(&hcd_urb_unlink_lock);
1557 	spin_unlock_irq(&hcd_urb_unlink_lock);
1558 }
1559 
1560 /*-------------------------------------------------------------------------*/
1561 
1562 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)1563 int usb_hcd_get_frame_number (struct usb_device *udev)
1564 {
1565 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1566 
1567 	if (!HC_IS_RUNNING (hcd->state))
1568 		return -ESHUTDOWN;
1569 	return hcd->driver->get_frame_number (hcd);
1570 }
1571 
1572 /*-------------------------------------------------------------------------*/
1573 
1574 #ifdef	CONFIG_PM
1575 
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)1576 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1577 {
1578 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1579 	int		status;
1580 	int		old_state = hcd->state;
1581 
1582 	dev_dbg(&rhdev->dev, "bus %s%s\n",
1583 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1584 	if (!hcd->driver->bus_suspend) {
1585 		status = -ENOENT;
1586 	} else {
1587 		hcd->state = HC_STATE_QUIESCING;
1588 		status = hcd->driver->bus_suspend(hcd);
1589 	}
1590 	if (status == 0) {
1591 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1592 		hcd->state = HC_STATE_SUSPENDED;
1593 	} else {
1594 		hcd->state = old_state;
1595 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1596 				"suspend", status);
1597 	}
1598 	return status;
1599 }
1600 
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)1601 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1602 {
1603 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1604 	int		status;
1605 	int		old_state = hcd->state;
1606 
1607 	dev_dbg(&rhdev->dev, "usb %s%s\n",
1608 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1609 	if (!hcd->driver->bus_resume)
1610 		return -ENOENT;
1611 	if (hcd->state == HC_STATE_RUNNING)
1612 		return 0;
1613 
1614 	hcd->state = HC_STATE_RESUMING;
1615 	status = hcd->driver->bus_resume(hcd);
1616 	if (status == 0) {
1617 		/* TRSMRCY = 10 msec */
1618 		msleep(10);
1619 		usb_set_device_state(rhdev, rhdev->actconfig
1620 				? USB_STATE_CONFIGURED
1621 				: USB_STATE_ADDRESS);
1622 		hcd->state = HC_STATE_RUNNING;
1623 	} else {
1624 		hcd->state = old_state;
1625 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1626 				"resume", status);
1627 		if (status != -ESHUTDOWN)
1628 			usb_hc_died(hcd);
1629 	}
1630 	return status;
1631 }
1632 
1633 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)1634 static void hcd_resume_work(struct work_struct *work)
1635 {
1636 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1637 	struct usb_device *udev = hcd->self.root_hub;
1638 
1639 	usb_lock_device(udev);
1640 	usb_mark_last_busy(udev);
1641 	usb_external_resume_device(udev, PMSG_REMOTE_RESUME);
1642 	usb_unlock_device(udev);
1643 }
1644 
1645 /**
1646  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1647  * @hcd: host controller for this root hub
1648  *
1649  * The USB host controller calls this function when its root hub is
1650  * suspended (with the remote wakeup feature enabled) and a remote
1651  * wakeup request is received.  The routine submits a workqueue request
1652  * to resume the root hub (that is, manage its downstream ports again).
1653  */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)1654 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1655 {
1656 	unsigned long flags;
1657 
1658 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1659 	if (hcd->rh_registered)
1660 		queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1661 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1662 }
1663 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1664 
1665 #endif
1666 
1667 /*-------------------------------------------------------------------------*/
1668 
1669 #ifdef	CONFIG_USB_OTG
1670 
1671 /**
1672  * usb_bus_start_enum - start immediate enumeration (for OTG)
1673  * @bus: the bus (must use hcd framework)
1674  * @port_num: 1-based number of port; usually bus->otg_port
1675  * Context: in_interrupt()
1676  *
1677  * Starts enumeration, with an immediate reset followed later by
1678  * khubd identifying and possibly configuring the device.
1679  * This is needed by OTG controller drivers, where it helps meet
1680  * HNP protocol timing requirements for starting a port reset.
1681  */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)1682 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1683 {
1684 	struct usb_hcd		*hcd;
1685 	int			status = -EOPNOTSUPP;
1686 
1687 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1688 	 * boards with root hubs hooked up to internal devices (instead of
1689 	 * just the OTG port) may need more attention to resetting...
1690 	 */
1691 	hcd = container_of (bus, struct usb_hcd, self);
1692 	if (port_num && hcd->driver->start_port_reset)
1693 		status = hcd->driver->start_port_reset(hcd, port_num);
1694 
1695 	/* run khubd shortly after (first) root port reset finishes;
1696 	 * it may issue others, until at least 50 msecs have passed.
1697 	 */
1698 	if (status == 0)
1699 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1700 	return status;
1701 }
1702 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1703 
1704 #endif
1705 
1706 /*-------------------------------------------------------------------------*/
1707 
1708 /**
1709  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1710  * @irq: the IRQ being raised
1711  * @__hcd: pointer to the HCD whose IRQ is being signaled
1712  *
1713  * If the controller isn't HALTed, calls the driver's irq handler.
1714  * Checks whether the controller is now dead.
1715  */
usb_hcd_irq(int irq,void * __hcd)1716 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1717 {
1718 	struct usb_hcd		*hcd = __hcd;
1719 	unsigned long		flags;
1720 	irqreturn_t		rc;
1721 
1722 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
1723 	 * when the first handler doesn't use it.  So let's just
1724 	 * assume it's never used.
1725 	 */
1726 	local_irq_save(flags);
1727 
1728 	if (unlikely(hcd->state == HC_STATE_HALT ||
1729 		     !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1730 		rc = IRQ_NONE;
1731 	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1732 		rc = IRQ_NONE;
1733 	} else {
1734 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1735 
1736 		if (unlikely(hcd->state == HC_STATE_HALT))
1737 			usb_hc_died(hcd);
1738 		rc = IRQ_HANDLED;
1739 	}
1740 
1741 	local_irq_restore(flags);
1742 	return rc;
1743 }
1744 
1745 /*-------------------------------------------------------------------------*/
1746 
1747 /**
1748  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1749  * @hcd: pointer to the HCD representing the controller
1750  *
1751  * This is called by bus glue to report a USB host controller that died
1752  * while operations may still have been pending.  It's called automatically
1753  * by the PCI glue, so only glue for non-PCI busses should need to call it.
1754  */
usb_hc_died(struct usb_hcd * hcd)1755 void usb_hc_died (struct usb_hcd *hcd)
1756 {
1757 	unsigned long flags;
1758 
1759 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
1760 
1761 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1762 	if (hcd->rh_registered) {
1763 		hcd->poll_rh = 0;
1764 
1765 		/* make khubd clean up old urbs and devices */
1766 		usb_set_device_state (hcd->self.root_hub,
1767 				USB_STATE_NOTATTACHED);
1768 		usb_kick_khubd (hcd->self.root_hub);
1769 	}
1770 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1771 }
1772 EXPORT_SYMBOL_GPL (usb_hc_died);
1773 
1774 /*-------------------------------------------------------------------------*/
1775 
1776 /**
1777  * usb_create_hcd - create and initialize an HCD structure
1778  * @driver: HC driver that will use this hcd
1779  * @dev: device for this HC, stored in hcd->self.controller
1780  * @bus_name: value to store in hcd->self.bus_name
1781  * Context: !in_interrupt()
1782  *
1783  * Allocate a struct usb_hcd, with extra space at the end for the
1784  * HC driver's private data.  Initialize the generic members of the
1785  * hcd structure.
1786  *
1787  * If memory is unavailable, returns NULL.
1788  */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)1789 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1790 		struct device *dev, const char *bus_name)
1791 {
1792 	struct usb_hcd *hcd;
1793 
1794 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1795 	if (!hcd) {
1796 		dev_dbg (dev, "hcd alloc failed\n");
1797 		return NULL;
1798 	}
1799 	dev_set_drvdata(dev, hcd);
1800 	kref_init(&hcd->kref);
1801 
1802 	usb_bus_init(&hcd->self);
1803 	hcd->self.controller = dev;
1804 	hcd->self.bus_name = bus_name;
1805 	hcd->self.uses_dma = (dev->dma_mask != NULL);
1806 
1807 	init_timer(&hcd->rh_timer);
1808 	hcd->rh_timer.function = rh_timer_func;
1809 	hcd->rh_timer.data = (unsigned long) hcd;
1810 #ifdef CONFIG_PM
1811 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1812 #endif
1813 
1814 	hcd->driver = driver;
1815 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1816 			"USB Host Controller";
1817 	return hcd;
1818 }
1819 EXPORT_SYMBOL_GPL(usb_create_hcd);
1820 
hcd_release(struct kref * kref)1821 static void hcd_release (struct kref *kref)
1822 {
1823 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1824 
1825 	kfree(hcd);
1826 }
1827 
usb_get_hcd(struct usb_hcd * hcd)1828 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1829 {
1830 	if (hcd)
1831 		kref_get (&hcd->kref);
1832 	return hcd;
1833 }
1834 EXPORT_SYMBOL_GPL(usb_get_hcd);
1835 
usb_put_hcd(struct usb_hcd * hcd)1836 void usb_put_hcd (struct usb_hcd *hcd)
1837 {
1838 	if (hcd)
1839 		kref_put (&hcd->kref, hcd_release);
1840 }
1841 EXPORT_SYMBOL_GPL(usb_put_hcd);
1842 
1843 /**
1844  * usb_add_hcd - finish generic HCD structure initialization and register
1845  * @hcd: the usb_hcd structure to initialize
1846  * @irqnum: Interrupt line to allocate
1847  * @irqflags: Interrupt type flags
1848  *
1849  * Finish the remaining parts of generic HCD initialization: allocate the
1850  * buffers of consistent memory, register the bus, request the IRQ line,
1851  * and call the driver's reset() and start() routines.
1852  */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)1853 int usb_add_hcd(struct usb_hcd *hcd,
1854 		unsigned int irqnum, unsigned long irqflags)
1855 {
1856 	int retval;
1857 	struct usb_device *rhdev;
1858 
1859 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1860 
1861 	hcd->authorized_default = hcd->wireless? 0 : 1;
1862 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1863 
1864 	/* HC is in reset state, but accessible.  Now do the one-time init,
1865 	 * bottom up so that hcds can customize the root hubs before khubd
1866 	 * starts talking to them.  (Note, bus id is assigned early too.)
1867 	 */
1868 	if ((retval = hcd_buffer_create(hcd)) != 0) {
1869 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
1870 		return retval;
1871 	}
1872 
1873 	if ((retval = usb_register_bus(&hcd->self)) < 0)
1874 		goto err_register_bus;
1875 
1876 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1877 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
1878 		retval = -ENOMEM;
1879 		goto err_allocate_root_hub;
1880 	}
1881 	rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1882 			USB_SPEED_FULL;
1883 	hcd->self.root_hub = rhdev;
1884 
1885 	/* wakeup flag init defaults to "everything works" for root hubs,
1886 	 * but drivers can override it in reset() if needed, along with
1887 	 * recording the overall controller's system wakeup capability.
1888 	 */
1889 	device_init_wakeup(&rhdev->dev, 1);
1890 
1891 	/* "reset" is misnamed; its role is now one-time init. the controller
1892 	 * should already have been reset (and boot firmware kicked off etc).
1893 	 */
1894 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1895 		dev_err(hcd->self.controller, "can't setup\n");
1896 		goto err_hcd_driver_setup;
1897 	}
1898 
1899 	/* NOTE: root hub and controller capabilities may not be the same */
1900 	if (device_can_wakeup(hcd->self.controller)
1901 			&& device_can_wakeup(&hcd->self.root_hub->dev))
1902 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1903 
1904 	/* enable irqs just before we start the controller */
1905 	if (hcd->driver->irq) {
1906 
1907 		/* IRQF_DISABLED doesn't work as advertised when used together
1908 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1909 		 * interrupts we can remove it here.
1910 		 */
1911 		if (irqflags & IRQF_SHARED)
1912 			irqflags &= ~IRQF_DISABLED;
1913 
1914 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1915 				hcd->driver->description, hcd->self.busnum);
1916 		if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1917 				hcd->irq_descr, hcd)) != 0) {
1918 			dev_err(hcd->self.controller,
1919 					"request interrupt %d failed\n", irqnum);
1920 			goto err_request_irq;
1921 		}
1922 		hcd->irq = irqnum;
1923 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1924 				(hcd->driver->flags & HCD_MEMORY) ?
1925 					"io mem" : "io base",
1926 					(unsigned long long)hcd->rsrc_start);
1927 	} else {
1928 		hcd->irq = -1;
1929 		if (hcd->rsrc_start)
1930 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
1931 					(hcd->driver->flags & HCD_MEMORY) ?
1932 					"io mem" : "io base",
1933 					(unsigned long long)hcd->rsrc_start);
1934 	}
1935 
1936 	if ((retval = hcd->driver->start(hcd)) < 0) {
1937 		dev_err(hcd->self.controller, "startup error %d\n", retval);
1938 		goto err_hcd_driver_start;
1939 	}
1940 
1941 	/* starting here, usbcore will pay attention to this root hub */
1942 	rhdev->bus_mA = min(500u, hcd->power_budget);
1943 	if ((retval = register_root_hub(hcd)) != 0)
1944 		goto err_register_root_hub;
1945 
1946 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1947 	if (retval < 0) {
1948 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1949 		       retval);
1950 		goto error_create_attr_group;
1951 	}
1952 	if (hcd->uses_new_polling && hcd->poll_rh)
1953 		usb_hcd_poll_rh_status(hcd);
1954 	return retval;
1955 
1956 error_create_attr_group:
1957 	mutex_lock(&usb_bus_list_lock);
1958 	usb_disconnect(&hcd->self.root_hub);
1959 	mutex_unlock(&usb_bus_list_lock);
1960 err_register_root_hub:
1961 	hcd->driver->stop(hcd);
1962 err_hcd_driver_start:
1963 	if (hcd->irq >= 0)
1964 		free_irq(irqnum, hcd);
1965 err_request_irq:
1966 err_hcd_driver_setup:
1967 	hcd->self.root_hub = NULL;
1968 	usb_put_dev(rhdev);
1969 err_allocate_root_hub:
1970 	usb_deregister_bus(&hcd->self);
1971 err_register_bus:
1972 	hcd_buffer_destroy(hcd);
1973 	return retval;
1974 }
1975 EXPORT_SYMBOL_GPL(usb_add_hcd);
1976 
1977 /**
1978  * usb_remove_hcd - shutdown processing for generic HCDs
1979  * @hcd: the usb_hcd structure to remove
1980  * Context: !in_interrupt()
1981  *
1982  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1983  * invoking the HCD's stop() method.
1984  */
usb_remove_hcd(struct usb_hcd * hcd)1985 void usb_remove_hcd(struct usb_hcd *hcd)
1986 {
1987 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1988 
1989 	if (HC_IS_RUNNING (hcd->state))
1990 		hcd->state = HC_STATE_QUIESCING;
1991 
1992 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1993 	spin_lock_irq (&hcd_root_hub_lock);
1994 	hcd->rh_registered = 0;
1995 	spin_unlock_irq (&hcd_root_hub_lock);
1996 
1997 #ifdef CONFIG_PM
1998 	cancel_work_sync(&hcd->wakeup_work);
1999 #endif
2000 
2001 	sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2002 	mutex_lock(&usb_bus_list_lock);
2003 	usb_disconnect(&hcd->self.root_hub);
2004 	mutex_unlock(&usb_bus_list_lock);
2005 
2006 	hcd->driver->stop(hcd);
2007 	hcd->state = HC_STATE_HALT;
2008 
2009 	hcd->poll_rh = 0;
2010 	del_timer_sync(&hcd->rh_timer);
2011 
2012 	if (hcd->irq >= 0)
2013 		free_irq(hcd->irq, hcd);
2014 	usb_deregister_bus(&hcd->self);
2015 	hcd_buffer_destroy(hcd);
2016 }
2017 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2018 
2019 void
usb_hcd_platform_shutdown(struct platform_device * dev)2020 usb_hcd_platform_shutdown(struct platform_device* dev)
2021 {
2022 	struct usb_hcd *hcd = platform_get_drvdata(dev);
2023 
2024 	if (hcd->driver->shutdown)
2025 		hcd->driver->shutdown(hcd);
2026 }
2027 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2028 
2029 /*-------------------------------------------------------------------------*/
2030 
2031 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2032 
2033 struct usb_mon_operations *mon_ops;
2034 
2035 /*
2036  * The registration is unlocked.
2037  * We do it this way because we do not want to lock in hot paths.
2038  *
2039  * Notice that the code is minimally error-proof. Because usbmon needs
2040  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2041  */
2042 
usb_mon_register(struct usb_mon_operations * ops)2043 int usb_mon_register (struct usb_mon_operations *ops)
2044 {
2045 
2046 	if (mon_ops)
2047 		return -EBUSY;
2048 
2049 	mon_ops = ops;
2050 	mb();
2051 	return 0;
2052 }
2053 EXPORT_SYMBOL_GPL (usb_mon_register);
2054 
usb_mon_deregister(void)2055 void usb_mon_deregister (void)
2056 {
2057 
2058 	if (mon_ops == NULL) {
2059 		printk(KERN_ERR "USB: monitor was not registered\n");
2060 		return;
2061 	}
2062 	mon_ops = NULL;
2063 	mb();
2064 }
2065 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2066 
2067 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2068