1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52 * USB Host Controller Driver framework
53 *
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
56 *
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
61 *
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
67 *
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
72 *
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75 *
76 * HISTORY:
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
80 */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS 64
94 struct usb_busmap {
95 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
is_root_hub(struct usb_device * udev)115 static inline int is_root_hub(struct usb_device *udev)
116 {
117 return (udev->parent == NULL);
118 }
119
120 /*-------------------------------------------------------------------------*/
121
122 /*
123 * Sharable chunks of root hub code.
124 */
125
126 /*-------------------------------------------------------------------------*/
127
128 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
129 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
130
131 /* usb 2.0 root hub device descriptor */
132 static const u8 usb2_rh_dev_descriptor [18] = {
133 0x12, /* __u8 bLength; */
134 0x01, /* __u8 bDescriptorType; Device */
135 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
140 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
143 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150 };
151
152 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
153
154 /* usb 1.1 root hub device descriptor */
155 static const u8 usb11_rh_dev_descriptor [18] = {
156 0x12, /* __u8 bLength; */
157 0x01, /* __u8 bDescriptorType; Device */
158 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
159
160 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
161 0x00, /* __u8 bDeviceSubClass; */
162 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
163 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
164
165 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
166 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
167 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
168
169 0x03, /* __u8 iManufacturer; */
170 0x02, /* __u8 iProduct; */
171 0x01, /* __u8 iSerialNumber; */
172 0x01 /* __u8 bNumConfigurations; */
173 };
174
175
176 /*-------------------------------------------------------------------------*/
177
178 /* Configuration descriptors for our root hubs */
179
180 static const u8 fs_rh_config_descriptor [] = {
181
182 /* one configuration */
183 0x09, /* __u8 bLength; */
184 0x02, /* __u8 bDescriptorType; Configuration */
185 0x19, 0x00, /* __le16 wTotalLength; */
186 0x01, /* __u8 bNumInterfaces; (1) */
187 0x01, /* __u8 bConfigurationValue; */
188 0x00, /* __u8 iConfiguration; */
189 0xc0, /* __u8 bmAttributes;
190 Bit 7: must be set,
191 6: Self-powered,
192 5: Remote wakeup,
193 4..0: resvd */
194 0x00, /* __u8 MaxPower; */
195
196 /* USB 1.1:
197 * USB 2.0, single TT organization (mandatory):
198 * one interface, protocol 0
199 *
200 * USB 2.0, multiple TT organization (optional):
201 * two interfaces, protocols 1 (like single TT)
202 * and 2 (multiple TT mode) ... config is
203 * sometimes settable
204 * NOT IMPLEMENTED
205 */
206
207 /* one interface */
208 0x09, /* __u8 if_bLength; */
209 0x04, /* __u8 if_bDescriptorType; Interface */
210 0x00, /* __u8 if_bInterfaceNumber; */
211 0x00, /* __u8 if_bAlternateSetting; */
212 0x01, /* __u8 if_bNumEndpoints; */
213 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
214 0x00, /* __u8 if_bInterfaceSubClass; */
215 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
216 0x00, /* __u8 if_iInterface; */
217
218 /* one endpoint (status change endpoint) */
219 0x07, /* __u8 ep_bLength; */
220 0x05, /* __u8 ep_bDescriptorType; Endpoint */
221 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
222 0x03, /* __u8 ep_bmAttributes; Interrupt */
223 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
224 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
225 };
226
227 static const u8 hs_rh_config_descriptor [] = {
228
229 /* one configuration */
230 0x09, /* __u8 bLength; */
231 0x02, /* __u8 bDescriptorType; Configuration */
232 0x19, 0x00, /* __le16 wTotalLength; */
233 0x01, /* __u8 bNumInterfaces; (1) */
234 0x01, /* __u8 bConfigurationValue; */
235 0x00, /* __u8 iConfiguration; */
236 0xc0, /* __u8 bmAttributes;
237 Bit 7: must be set,
238 6: Self-powered,
239 5: Remote wakeup,
240 4..0: resvd */
241 0x00, /* __u8 MaxPower; */
242
243 /* USB 1.1:
244 * USB 2.0, single TT organization (mandatory):
245 * one interface, protocol 0
246 *
247 * USB 2.0, multiple TT organization (optional):
248 * two interfaces, protocols 1 (like single TT)
249 * and 2 (multiple TT mode) ... config is
250 * sometimes settable
251 * NOT IMPLEMENTED
252 */
253
254 /* one interface */
255 0x09, /* __u8 if_bLength; */
256 0x04, /* __u8 if_bDescriptorType; Interface */
257 0x00, /* __u8 if_bInterfaceNumber; */
258 0x00, /* __u8 if_bAlternateSetting; */
259 0x01, /* __u8 if_bNumEndpoints; */
260 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
261 0x00, /* __u8 if_bInterfaceSubClass; */
262 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
263 0x00, /* __u8 if_iInterface; */
264
265 /* one endpoint (status change endpoint) */
266 0x07, /* __u8 ep_bLength; */
267 0x05, /* __u8 ep_bDescriptorType; Endpoint */
268 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
269 0x03, /* __u8 ep_bmAttributes; Interrupt */
270 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
271 * see hub.c:hub_configure() for details. */
272 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
273 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
274 };
275
276 /*-------------------------------------------------------------------------*/
277
278 /*
279 * helper routine for returning string descriptors in UTF-16LE
280 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
281 */
ascii2utf(char * s,u8 * utf,int utfmax)282 static int ascii2utf (char *s, u8 *utf, int utfmax)
283 {
284 int retval;
285
286 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
287 *utf++ = *s++;
288 *utf++ = 0;
289 }
290 if (utfmax > 0) {
291 *utf = *s;
292 ++retval;
293 }
294 return retval;
295 }
296
297 /*
298 * rh_string - provides manufacturer, product and serial strings for root hub
299 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
300 * @hcd: the host controller for this root hub
301 * @data: return packet in UTF-16 LE
302 * @len: length of the return packet
303 *
304 * Produces either a manufacturer, product or serial number string for the
305 * virtual root hub device.
306 */
rh_string(int id,struct usb_hcd * hcd,u8 * data,int len)307 static int rh_string (
308 int id,
309 struct usb_hcd *hcd,
310 u8 *data,
311 int len
312 ) {
313 char buf [100];
314
315 // language ids
316 if (id == 0) {
317 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
318 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
319 len = min (len, 4);
320 memcpy (data, buf, len);
321 return len;
322
323 // serial number
324 } else if (id == 1) {
325 strlcpy (buf, hcd->self.bus_name, sizeof buf);
326
327 // product description
328 } else if (id == 2) {
329 strlcpy (buf, hcd->product_desc, sizeof buf);
330
331 // id 3 == vendor description
332 } else if (id == 3) {
333 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
334 init_utsname()->release, hcd->driver->description);
335
336 // unsupported IDs --> "protocol stall"
337 } else
338 return -EPIPE;
339
340 switch (len) { /* All cases fall through */
341 default:
342 len = 2 + ascii2utf (buf, data + 2, len - 2);
343 case 2:
344 data [1] = 3; /* type == string */
345 case 1:
346 data [0] = 2 * (strlen (buf) + 1);
347 case 0:
348 ; /* Compiler wants a statement here */
349 }
350 return len;
351 }
352
353
354 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)355 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
356 {
357 struct usb_ctrlrequest *cmd;
358 u16 typeReq, wValue, wIndex, wLength;
359 u8 *ubuf = urb->transfer_buffer;
360 u8 tbuf [sizeof (struct usb_hub_descriptor)]
361 __attribute__((aligned(4)));
362 const u8 *bufp = tbuf;
363 int len = 0;
364 int status;
365 int n;
366 u8 patch_wakeup = 0;
367 u8 patch_protocol = 0;
368
369 might_sleep();
370
371 spin_lock_irq(&hcd_root_hub_lock);
372 status = usb_hcd_link_urb_to_ep(hcd, urb);
373 spin_unlock_irq(&hcd_root_hub_lock);
374 if (status)
375 return status;
376 urb->hcpriv = hcd; /* Indicate it's queued */
377
378 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
379 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
380 wValue = le16_to_cpu (cmd->wValue);
381 wIndex = le16_to_cpu (cmd->wIndex);
382 wLength = le16_to_cpu (cmd->wLength);
383
384 if (wLength > urb->transfer_buffer_length)
385 goto error;
386
387 urb->actual_length = 0;
388 switch (typeReq) {
389
390 /* DEVICE REQUESTS */
391
392 /* The root hub's remote wakeup enable bit is implemented using
393 * driver model wakeup flags. If this system supports wakeup
394 * through USB, userspace may change the default "allow wakeup"
395 * policy through sysfs or these calls.
396 *
397 * Most root hubs support wakeup from downstream devices, for
398 * runtime power management (disabling USB clocks and reducing
399 * VBUS power usage). However, not all of them do so; silicon,
400 * board, and BIOS bugs here are not uncommon, so these can't
401 * be treated quite like external hubs.
402 *
403 * Likewise, not all root hubs will pass wakeup events upstream,
404 * to wake up the whole system. So don't assume root hub and
405 * controller capabilities are identical.
406 */
407
408 case DeviceRequest | USB_REQ_GET_STATUS:
409 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
410 << USB_DEVICE_REMOTE_WAKEUP)
411 | (1 << USB_DEVICE_SELF_POWERED);
412 tbuf [1] = 0;
413 len = 2;
414 break;
415 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
416 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
417 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
418 else
419 goto error;
420 break;
421 case DeviceOutRequest | USB_REQ_SET_FEATURE:
422 if (device_can_wakeup(&hcd->self.root_hub->dev)
423 && wValue == USB_DEVICE_REMOTE_WAKEUP)
424 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
425 else
426 goto error;
427 break;
428 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
429 tbuf [0] = 1;
430 len = 1;
431 /* FALLTHROUGH */
432 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
433 break;
434 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
435 switch (wValue & 0xff00) {
436 case USB_DT_DEVICE << 8:
437 if (hcd->driver->flags & HCD_USB2)
438 bufp = usb2_rh_dev_descriptor;
439 else if (hcd->driver->flags & HCD_USB11)
440 bufp = usb11_rh_dev_descriptor;
441 else
442 goto error;
443 len = 18;
444 if (hcd->has_tt)
445 patch_protocol = 1;
446 break;
447 case USB_DT_CONFIG << 8:
448 if (hcd->driver->flags & HCD_USB2) {
449 bufp = hs_rh_config_descriptor;
450 len = sizeof hs_rh_config_descriptor;
451 } else {
452 bufp = fs_rh_config_descriptor;
453 len = sizeof fs_rh_config_descriptor;
454 }
455 if (device_can_wakeup(&hcd->self.root_hub->dev))
456 patch_wakeup = 1;
457 break;
458 case USB_DT_STRING << 8:
459 n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
460 if (n < 0)
461 goto error;
462 urb->actual_length = n;
463 break;
464 default:
465 goto error;
466 }
467 break;
468 case DeviceRequest | USB_REQ_GET_INTERFACE:
469 tbuf [0] = 0;
470 len = 1;
471 /* FALLTHROUGH */
472 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
473 break;
474 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
475 // wValue == urb->dev->devaddr
476 dev_dbg (hcd->self.controller, "root hub device address %d\n",
477 wValue);
478 break;
479
480 /* INTERFACE REQUESTS (no defined feature/status flags) */
481
482 /* ENDPOINT REQUESTS */
483
484 case EndpointRequest | USB_REQ_GET_STATUS:
485 // ENDPOINT_HALT flag
486 tbuf [0] = 0;
487 tbuf [1] = 0;
488 len = 2;
489 /* FALLTHROUGH */
490 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
491 case EndpointOutRequest | USB_REQ_SET_FEATURE:
492 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
493 break;
494
495 /* CLASS REQUESTS (and errors) */
496
497 default:
498 /* non-generic request */
499 switch (typeReq) {
500 case GetHubStatus:
501 case GetPortStatus:
502 len = 4;
503 break;
504 case GetHubDescriptor:
505 len = sizeof (struct usb_hub_descriptor);
506 break;
507 }
508 status = hcd->driver->hub_control (hcd,
509 typeReq, wValue, wIndex,
510 tbuf, wLength);
511 break;
512 error:
513 /* "protocol stall" on error */
514 status = -EPIPE;
515 }
516
517 if (status) {
518 len = 0;
519 if (status != -EPIPE) {
520 dev_dbg (hcd->self.controller,
521 "CTRL: TypeReq=0x%x val=0x%x "
522 "idx=0x%x len=%d ==> %d\n",
523 typeReq, wValue, wIndex,
524 wLength, status);
525 }
526 }
527 if (len) {
528 if (urb->transfer_buffer_length < len)
529 len = urb->transfer_buffer_length;
530 urb->actual_length = len;
531 // always USB_DIR_IN, toward host
532 memcpy (ubuf, bufp, len);
533
534 /* report whether RH hardware supports remote wakeup */
535 if (patch_wakeup &&
536 len > offsetof (struct usb_config_descriptor,
537 bmAttributes))
538 ((struct usb_config_descriptor *)ubuf)->bmAttributes
539 |= USB_CONFIG_ATT_WAKEUP;
540
541 /* report whether RH hardware has an integrated TT */
542 if (patch_protocol &&
543 len > offsetof(struct usb_device_descriptor,
544 bDeviceProtocol))
545 ((struct usb_device_descriptor *) ubuf)->
546 bDeviceProtocol = 1;
547 }
548
549 /* any errors get returned through the urb completion */
550 spin_lock_irq(&hcd_root_hub_lock);
551 usb_hcd_unlink_urb_from_ep(hcd, urb);
552
553 /* This peculiar use of spinlocks echoes what real HC drivers do.
554 * Avoiding calls to local_irq_disable/enable makes the code
555 * RT-friendly.
556 */
557 spin_unlock(&hcd_root_hub_lock);
558 usb_hcd_giveback_urb(hcd, urb, status);
559 spin_lock(&hcd_root_hub_lock);
560
561 spin_unlock_irq(&hcd_root_hub_lock);
562 return 0;
563 }
564
565 /*-------------------------------------------------------------------------*/
566
567 /*
568 * Root Hub interrupt transfers are polled using a timer if the
569 * driver requests it; otherwise the driver is responsible for
570 * calling usb_hcd_poll_rh_status() when an event occurs.
571 *
572 * Completions are called in_interrupt(), but they may or may not
573 * be in_irq().
574 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)575 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
576 {
577 struct urb *urb;
578 int length;
579 unsigned long flags;
580 char buffer[4]; /* Any root hubs with > 31 ports? */
581
582 if (unlikely(!hcd->rh_registered))
583 return;
584 if (!hcd->uses_new_polling && !hcd->status_urb)
585 return;
586
587 length = hcd->driver->hub_status_data(hcd, buffer);
588 if (length > 0) {
589
590 /* try to complete the status urb */
591 spin_lock_irqsave(&hcd_root_hub_lock, flags);
592 urb = hcd->status_urb;
593 if (urb) {
594 hcd->poll_pending = 0;
595 hcd->status_urb = NULL;
596 urb->actual_length = length;
597 memcpy(urb->transfer_buffer, buffer, length);
598
599 usb_hcd_unlink_urb_from_ep(hcd, urb);
600 spin_unlock(&hcd_root_hub_lock);
601 usb_hcd_giveback_urb(hcd, urb, 0);
602 spin_lock(&hcd_root_hub_lock);
603 } else {
604 length = 0;
605 hcd->poll_pending = 1;
606 }
607 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
608 }
609
610 /* The USB 2.0 spec says 256 ms. This is close enough and won't
611 * exceed that limit if HZ is 100. The math is more clunky than
612 * maybe expected, this is to make sure that all timers for USB devices
613 * fire at the same time to give the CPU a break inbetween */
614 if (hcd->uses_new_polling ? hcd->poll_rh :
615 (length == 0 && hcd->status_urb != NULL))
616 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
617 }
618 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
619
620 /* timer callback */
rh_timer_func(unsigned long _hcd)621 static void rh_timer_func (unsigned long _hcd)
622 {
623 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
624 }
625
626 /*-------------------------------------------------------------------------*/
627
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)628 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
629 {
630 int retval;
631 unsigned long flags;
632 int len = 1 + (urb->dev->maxchild / 8);
633
634 spin_lock_irqsave (&hcd_root_hub_lock, flags);
635 if (hcd->status_urb || urb->transfer_buffer_length < len) {
636 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
637 retval = -EINVAL;
638 goto done;
639 }
640
641 retval = usb_hcd_link_urb_to_ep(hcd, urb);
642 if (retval)
643 goto done;
644
645 hcd->status_urb = urb;
646 urb->hcpriv = hcd; /* indicate it's queued */
647 if (!hcd->uses_new_polling)
648 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
649
650 /* If a status change has already occurred, report it ASAP */
651 else if (hcd->poll_pending)
652 mod_timer(&hcd->rh_timer, jiffies);
653 retval = 0;
654 done:
655 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
656 return retval;
657 }
658
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)659 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
660 {
661 if (usb_endpoint_xfer_int(&urb->ep->desc))
662 return rh_queue_status (hcd, urb);
663 if (usb_endpoint_xfer_control(&urb->ep->desc))
664 return rh_call_control (hcd, urb);
665 return -EINVAL;
666 }
667
668 /*-------------------------------------------------------------------------*/
669
670 /* Unlinks of root-hub control URBs are legal, but they don't do anything
671 * since these URBs always execute synchronously.
672 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)673 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
674 {
675 unsigned long flags;
676 int rc;
677
678 spin_lock_irqsave(&hcd_root_hub_lock, flags);
679 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
680 if (rc)
681 goto done;
682
683 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
684 ; /* Do nothing */
685
686 } else { /* Status URB */
687 if (!hcd->uses_new_polling)
688 del_timer (&hcd->rh_timer);
689 if (urb == hcd->status_urb) {
690 hcd->status_urb = NULL;
691 usb_hcd_unlink_urb_from_ep(hcd, urb);
692
693 spin_unlock(&hcd_root_hub_lock);
694 usb_hcd_giveback_urb(hcd, urb, status);
695 spin_lock(&hcd_root_hub_lock);
696 }
697 }
698 done:
699 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
700 return rc;
701 }
702
703
704
705 /*
706 * Show & store the current value of authorized_default
707 */
usb_host_authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)708 static ssize_t usb_host_authorized_default_show(struct device *dev,
709 struct device_attribute *attr,
710 char *buf)
711 {
712 struct usb_device *rh_usb_dev = to_usb_device(dev);
713 struct usb_bus *usb_bus = rh_usb_dev->bus;
714 struct usb_hcd *usb_hcd;
715
716 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
717 return -ENODEV;
718 usb_hcd = bus_to_hcd(usb_bus);
719 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
720 }
721
usb_host_authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)722 static ssize_t usb_host_authorized_default_store(struct device *dev,
723 struct device_attribute *attr,
724 const char *buf, size_t size)
725 {
726 ssize_t result;
727 unsigned val;
728 struct usb_device *rh_usb_dev = to_usb_device(dev);
729 struct usb_bus *usb_bus = rh_usb_dev->bus;
730 struct usb_hcd *usb_hcd;
731
732 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
733 return -ENODEV;
734 usb_hcd = bus_to_hcd(usb_bus);
735 result = sscanf(buf, "%u\n", &val);
736 if (result == 1) {
737 usb_hcd->authorized_default = val? 1 : 0;
738 result = size;
739 }
740 else
741 result = -EINVAL;
742 return result;
743 }
744
745 static DEVICE_ATTR(authorized_default, 0644,
746 usb_host_authorized_default_show,
747 usb_host_authorized_default_store);
748
749
750 /* Group all the USB bus attributes */
751 static struct attribute *usb_bus_attrs[] = {
752 &dev_attr_authorized_default.attr,
753 NULL,
754 };
755
756 static struct attribute_group usb_bus_attr_group = {
757 .name = NULL, /* we want them in the same directory */
758 .attrs = usb_bus_attrs,
759 };
760
761
762
763 /*-------------------------------------------------------------------------*/
764
765 static struct class *usb_host_class;
766
usb_host_init(void)767 int usb_host_init(void)
768 {
769 int retval = 0;
770
771 usb_host_class = class_create(THIS_MODULE, "usb_host");
772 if (IS_ERR(usb_host_class))
773 retval = PTR_ERR(usb_host_class);
774 return retval;
775 }
776
usb_host_cleanup(void)777 void usb_host_cleanup(void)
778 {
779 class_destroy(usb_host_class);
780 }
781
782 /**
783 * usb_bus_init - shared initialization code
784 * @bus: the bus structure being initialized
785 *
786 * This code is used to initialize a usb_bus structure, memory for which is
787 * separately managed.
788 */
usb_bus_init(struct usb_bus * bus)789 static void usb_bus_init (struct usb_bus *bus)
790 {
791 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
792
793 bus->devnum_next = 1;
794
795 bus->root_hub = NULL;
796 bus->busnum = -1;
797 bus->bandwidth_allocated = 0;
798 bus->bandwidth_int_reqs = 0;
799 bus->bandwidth_isoc_reqs = 0;
800
801 INIT_LIST_HEAD (&bus->bus_list);
802 }
803
804 /*-------------------------------------------------------------------------*/
805
806 /**
807 * usb_register_bus - registers the USB host controller with the usb core
808 * @bus: pointer to the bus to register
809 * Context: !in_interrupt()
810 *
811 * Assigns a bus number, and links the controller into usbcore data
812 * structures so that it can be seen by scanning the bus list.
813 */
usb_register_bus(struct usb_bus * bus)814 static int usb_register_bus(struct usb_bus *bus)
815 {
816 int result = -E2BIG;
817 int busnum;
818
819 mutex_lock(&usb_bus_list_lock);
820 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
821 if (busnum >= USB_MAXBUS) {
822 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
823 goto error_find_busnum;
824 }
825 set_bit (busnum, busmap.busmap);
826 bus->busnum = busnum;
827
828 bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
829 bus, "usb_host%d", busnum);
830 result = PTR_ERR(bus->dev);
831 if (IS_ERR(bus->dev))
832 goto error_create_class_dev;
833
834 /* Add it to the local list of buses */
835 list_add (&bus->bus_list, &usb_bus_list);
836 mutex_unlock(&usb_bus_list_lock);
837
838 usb_notify_add_bus(bus);
839
840 dev_info (bus->controller, "new USB bus registered, assigned bus "
841 "number %d\n", bus->busnum);
842 return 0;
843
844 error_create_class_dev:
845 clear_bit(busnum, busmap.busmap);
846 error_find_busnum:
847 mutex_unlock(&usb_bus_list_lock);
848 return result;
849 }
850
851 /**
852 * usb_deregister_bus - deregisters the USB host controller
853 * @bus: pointer to the bus to deregister
854 * Context: !in_interrupt()
855 *
856 * Recycles the bus number, and unlinks the controller from usbcore data
857 * structures so that it won't be seen by scanning the bus list.
858 */
usb_deregister_bus(struct usb_bus * bus)859 static void usb_deregister_bus (struct usb_bus *bus)
860 {
861 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
862
863 /*
864 * NOTE: make sure that all the devices are removed by the
865 * controller code, as well as having it call this when cleaning
866 * itself up
867 */
868 mutex_lock(&usb_bus_list_lock);
869 list_del (&bus->bus_list);
870 mutex_unlock(&usb_bus_list_lock);
871
872 usb_notify_remove_bus(bus);
873
874 clear_bit (bus->busnum, busmap.busmap);
875
876 device_unregister(bus->dev);
877 }
878
879 /**
880 * register_root_hub - called by usb_add_hcd() to register a root hub
881 * @hcd: host controller for this root hub
882 *
883 * This function registers the root hub with the USB subsystem. It sets up
884 * the device properly in the device tree and then calls usb_new_device()
885 * to register the usb device. It also assigns the root hub's USB address
886 * (always 1).
887 */
register_root_hub(struct usb_hcd * hcd)888 static int register_root_hub(struct usb_hcd *hcd)
889 {
890 struct device *parent_dev = hcd->self.controller;
891 struct usb_device *usb_dev = hcd->self.root_hub;
892 const int devnum = 1;
893 int retval;
894
895 usb_dev->devnum = devnum;
896 usb_dev->bus->devnum_next = devnum + 1;
897 memset (&usb_dev->bus->devmap.devicemap, 0,
898 sizeof usb_dev->bus->devmap.devicemap);
899 set_bit (devnum, usb_dev->bus->devmap.devicemap);
900 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
901
902 mutex_lock(&usb_bus_list_lock);
903
904 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
905 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
906 if (retval != sizeof usb_dev->descriptor) {
907 mutex_unlock(&usb_bus_list_lock);
908 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
909 dev_name(&usb_dev->dev), retval);
910 return (retval < 0) ? retval : -EMSGSIZE;
911 }
912
913 retval = usb_new_device (usb_dev);
914 if (retval) {
915 dev_err (parent_dev, "can't register root hub for %s, %d\n",
916 dev_name(&usb_dev->dev), retval);
917 }
918 mutex_unlock(&usb_bus_list_lock);
919
920 if (retval == 0) {
921 spin_lock_irq (&hcd_root_hub_lock);
922 hcd->rh_registered = 1;
923 spin_unlock_irq (&hcd_root_hub_lock);
924
925 /* Did the HC die before the root hub was registered? */
926 if (hcd->state == HC_STATE_HALT)
927 usb_hc_died (hcd); /* This time clean up */
928 }
929
930 return retval;
931 }
932
933
934 /*-------------------------------------------------------------------------*/
935
936 /**
937 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
938 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
939 * @is_input: true iff the transaction sends data to the host
940 * @isoc: true for isochronous transactions, false for interrupt ones
941 * @bytecount: how many bytes in the transaction.
942 *
943 * Returns approximate bus time in nanoseconds for a periodic transaction.
944 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
945 * scheduled in software, this function is only used for such scheduling.
946 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)947 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
948 {
949 unsigned long tmp;
950
951 switch (speed) {
952 case USB_SPEED_LOW: /* INTR only */
953 if (is_input) {
954 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
955 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
956 } else {
957 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
958 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
959 }
960 case USB_SPEED_FULL: /* ISOC or INTR */
961 if (isoc) {
962 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
963 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
964 } else {
965 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
966 return (9107L + BW_HOST_DELAY + tmp);
967 }
968 case USB_SPEED_HIGH: /* ISOC or INTR */
969 // FIXME adjust for input vs output
970 if (isoc)
971 tmp = HS_NSECS_ISO (bytecount);
972 else
973 tmp = HS_NSECS (bytecount);
974 return tmp;
975 default:
976 pr_debug ("%s: bogus device speed!\n", usbcore_name);
977 return -1;
978 }
979 }
980 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
981
982
983 /*-------------------------------------------------------------------------*/
984
985 /*
986 * Generic HC operations.
987 */
988
989 /*-------------------------------------------------------------------------*/
990
991 /**
992 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
993 * @hcd: host controller to which @urb was submitted
994 * @urb: URB being submitted
995 *
996 * Host controller drivers should call this routine in their enqueue()
997 * method. The HCD's private spinlock must be held and interrupts must
998 * be disabled. The actions carried out here are required for URB
999 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1000 *
1001 * Returns 0 for no error, otherwise a negative error code (in which case
1002 * the enqueue() method must fail). If no error occurs but enqueue() fails
1003 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1004 * the private spinlock and returning.
1005 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1006 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1007 {
1008 int rc = 0;
1009
1010 spin_lock(&hcd_urb_list_lock);
1011
1012 /* Check that the URB isn't being killed */
1013 if (unlikely(atomic_read(&urb->reject))) {
1014 rc = -EPERM;
1015 goto done;
1016 }
1017
1018 if (unlikely(!urb->ep->enabled)) {
1019 rc = -ENOENT;
1020 goto done;
1021 }
1022
1023 if (unlikely(!urb->dev->can_submit)) {
1024 rc = -EHOSTUNREACH;
1025 goto done;
1026 }
1027
1028 /*
1029 * Check the host controller's state and add the URB to the
1030 * endpoint's queue.
1031 */
1032 switch (hcd->state) {
1033 case HC_STATE_RUNNING:
1034 case HC_STATE_RESUMING:
1035 urb->unlinked = 0;
1036 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1037 break;
1038 default:
1039 rc = -ESHUTDOWN;
1040 goto done;
1041 }
1042 done:
1043 spin_unlock(&hcd_urb_list_lock);
1044 return rc;
1045 }
1046 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1047
1048 /**
1049 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1050 * @hcd: host controller to which @urb was submitted
1051 * @urb: URB being checked for unlinkability
1052 * @status: error code to store in @urb if the unlink succeeds
1053 *
1054 * Host controller drivers should call this routine in their dequeue()
1055 * method. The HCD's private spinlock must be held and interrupts must
1056 * be disabled. The actions carried out here are required for making
1057 * sure than an unlink is valid.
1058 *
1059 * Returns 0 for no error, otherwise a negative error code (in which case
1060 * the dequeue() method must fail). The possible error codes are:
1061 *
1062 * -EIDRM: @urb was not submitted or has already completed.
1063 * The completion function may not have been called yet.
1064 *
1065 * -EBUSY: @urb has already been unlinked.
1066 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1067 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1068 int status)
1069 {
1070 struct list_head *tmp;
1071
1072 /* insist the urb is still queued */
1073 list_for_each(tmp, &urb->ep->urb_list) {
1074 if (tmp == &urb->urb_list)
1075 break;
1076 }
1077 if (tmp != &urb->urb_list)
1078 return -EIDRM;
1079
1080 /* Any status except -EINPROGRESS means something already started to
1081 * unlink this URB from the hardware. So there's no more work to do.
1082 */
1083 if (urb->unlinked)
1084 return -EBUSY;
1085 urb->unlinked = status;
1086
1087 /* IRQ setup can easily be broken so that USB controllers
1088 * never get completion IRQs ... maybe even the ones we need to
1089 * finish unlinking the initial failed usb_set_address()
1090 * or device descriptor fetch.
1091 */
1092 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1093 !is_root_hub(urb->dev)) {
1094 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1095 "Controller is probably using the wrong IRQ.\n");
1096 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1097 }
1098
1099 return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1102
1103 /**
1104 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1105 * @hcd: host controller to which @urb was submitted
1106 * @urb: URB being unlinked
1107 *
1108 * Host controller drivers should call this routine before calling
1109 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1110 * interrupts must be disabled. The actions carried out here are required
1111 * for URB completion.
1112 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1113 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1114 {
1115 /* clear all state linking urb to this dev (and hcd) */
1116 spin_lock(&hcd_urb_list_lock);
1117 list_del_init(&urb->urb_list);
1118 spin_unlock(&hcd_urb_list_lock);
1119 }
1120 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1121
1122 /*
1123 * Some usb host controllers can only perform dma using a small SRAM area.
1124 * The usb core itself is however optimized for host controllers that can dma
1125 * using regular system memory - like pci devices doing bus mastering.
1126 *
1127 * To support host controllers with limited dma capabilites we provide dma
1128 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1129 * For this to work properly the host controller code must first use the
1130 * function dma_declare_coherent_memory() to point out which memory area
1131 * that should be used for dma allocations.
1132 *
1133 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1134 * dma using dma_alloc_coherent() which in turn allocates from the memory
1135 * area pointed out with dma_declare_coherent_memory().
1136 *
1137 * So, to summarize...
1138 *
1139 * - We need "local" memory, canonical example being
1140 * a small SRAM on a discrete controller being the
1141 * only memory that the controller can read ...
1142 * (a) "normal" kernel memory is no good, and
1143 * (b) there's not enough to share
1144 *
1145 * - The only *portable* hook for such stuff in the
1146 * DMA framework is dma_declare_coherent_memory()
1147 *
1148 * - So we use that, even though the primary requirement
1149 * is that the memory be "local" (hence addressible
1150 * by that device), not "coherent".
1151 *
1152 */
1153
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1154 static int hcd_alloc_coherent(struct usb_bus *bus,
1155 gfp_t mem_flags, dma_addr_t *dma_handle,
1156 void **vaddr_handle, size_t size,
1157 enum dma_data_direction dir)
1158 {
1159 unsigned char *vaddr;
1160
1161 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1162 mem_flags, dma_handle);
1163 if (!vaddr)
1164 return -ENOMEM;
1165
1166 /*
1167 * Store the virtual address of the buffer at the end
1168 * of the allocated dma buffer. The size of the buffer
1169 * may be uneven so use unaligned functions instead
1170 * of just rounding up. It makes sense to optimize for
1171 * memory footprint over access speed since the amount
1172 * of memory available for dma may be limited.
1173 */
1174 put_unaligned((unsigned long)*vaddr_handle,
1175 (unsigned long *)(vaddr + size));
1176
1177 if (dir == DMA_TO_DEVICE)
1178 memcpy(vaddr, *vaddr_handle, size);
1179
1180 *vaddr_handle = vaddr;
1181 return 0;
1182 }
1183
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1184 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1185 void **vaddr_handle, size_t size,
1186 enum dma_data_direction dir)
1187 {
1188 unsigned char *vaddr = *vaddr_handle;
1189
1190 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1191
1192 if (dir == DMA_FROM_DEVICE)
1193 memcpy(vaddr, *vaddr_handle, size);
1194
1195 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1196
1197 *vaddr_handle = vaddr;
1198 *dma_handle = 0;
1199 }
1200
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1201 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1202 gfp_t mem_flags)
1203 {
1204 enum dma_data_direction dir;
1205 int ret = 0;
1206
1207 /* Map the URB's buffers for DMA access.
1208 * Lower level HCD code should use *_dma exclusively,
1209 * unless it uses pio or talks to another transport.
1210 */
1211 if (is_root_hub(urb->dev))
1212 return 0;
1213
1214 if (usb_endpoint_xfer_control(&urb->ep->desc)
1215 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1216 if (hcd->self.uses_dma)
1217 urb->setup_dma = dma_map_single(
1218 hcd->self.controller,
1219 urb->setup_packet,
1220 sizeof(struct usb_ctrlrequest),
1221 DMA_TO_DEVICE);
1222 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1223 ret = hcd_alloc_coherent(
1224 urb->dev->bus, mem_flags,
1225 &urb->setup_dma,
1226 (void **)&urb->setup_packet,
1227 sizeof(struct usb_ctrlrequest),
1228 DMA_TO_DEVICE);
1229 }
1230
1231 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1232 if (ret == 0 && urb->transfer_buffer_length != 0
1233 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1234 if (hcd->self.uses_dma)
1235 urb->transfer_dma = dma_map_single (
1236 hcd->self.controller,
1237 urb->transfer_buffer,
1238 urb->transfer_buffer_length,
1239 dir);
1240 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1241 ret = hcd_alloc_coherent(
1242 urb->dev->bus, mem_flags,
1243 &urb->transfer_dma,
1244 &urb->transfer_buffer,
1245 urb->transfer_buffer_length,
1246 dir);
1247
1248 if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1249 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1250 hcd_free_coherent(urb->dev->bus,
1251 &urb->setup_dma,
1252 (void **)&urb->setup_packet,
1253 sizeof(struct usb_ctrlrequest),
1254 DMA_TO_DEVICE);
1255 }
1256 }
1257 return ret;
1258 }
1259
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1260 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1261 {
1262 enum dma_data_direction dir;
1263
1264 if (is_root_hub(urb->dev))
1265 return;
1266
1267 if (usb_endpoint_xfer_control(&urb->ep->desc)
1268 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1269 if (hcd->self.uses_dma)
1270 dma_unmap_single(hcd->self.controller, urb->setup_dma,
1271 sizeof(struct usb_ctrlrequest),
1272 DMA_TO_DEVICE);
1273 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1274 hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1275 (void **)&urb->setup_packet,
1276 sizeof(struct usb_ctrlrequest),
1277 DMA_TO_DEVICE);
1278 }
1279
1280 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1281 if (urb->transfer_buffer_length != 0
1282 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1283 if (hcd->self.uses_dma)
1284 dma_unmap_single(hcd->self.controller,
1285 urb->transfer_dma,
1286 urb->transfer_buffer_length,
1287 dir);
1288 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1289 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1290 &urb->transfer_buffer,
1291 urb->transfer_buffer_length,
1292 dir);
1293 }
1294 }
1295
1296 /*-------------------------------------------------------------------------*/
1297
1298 /* may be called in any context with a valid urb->dev usecount
1299 * caller surrenders "ownership" of urb
1300 * expects usb_submit_urb() to have sanity checked and conditioned all
1301 * inputs in the urb
1302 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1303 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1304 {
1305 int status;
1306 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1307
1308 /* increment urb's reference count as part of giving it to the HCD
1309 * (which will control it). HCD guarantees that it either returns
1310 * an error or calls giveback(), but not both.
1311 */
1312 usb_get_urb(urb);
1313 atomic_inc(&urb->use_count);
1314 atomic_inc(&urb->dev->urbnum);
1315 usbmon_urb_submit(&hcd->self, urb);
1316
1317 /* NOTE requirements on root-hub callers (usbfs and the hub
1318 * driver, for now): URBs' urb->transfer_buffer must be
1319 * valid and usb_buffer_{sync,unmap}() not be needed, since
1320 * they could clobber root hub response data. Also, control
1321 * URBs must be submitted in process context with interrupts
1322 * enabled.
1323 */
1324 status = map_urb_for_dma(hcd, urb, mem_flags);
1325 if (unlikely(status)) {
1326 usbmon_urb_submit_error(&hcd->self, urb, status);
1327 goto error;
1328 }
1329
1330 if (is_root_hub(urb->dev))
1331 status = rh_urb_enqueue(hcd, urb);
1332 else
1333 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1334
1335 if (unlikely(status)) {
1336 usbmon_urb_submit_error(&hcd->self, urb, status);
1337 unmap_urb_for_dma(hcd, urb);
1338 error:
1339 urb->hcpriv = NULL;
1340 INIT_LIST_HEAD(&urb->urb_list);
1341 atomic_dec(&urb->use_count);
1342 atomic_dec(&urb->dev->urbnum);
1343 if (atomic_read(&urb->reject))
1344 wake_up(&usb_kill_urb_queue);
1345 usb_put_urb(urb);
1346 }
1347 return status;
1348 }
1349
1350 /*-------------------------------------------------------------------------*/
1351
1352 /* this makes the hcd giveback() the urb more quickly, by kicking it
1353 * off hardware queues (which may take a while) and returning it as
1354 * soon as practical. we've already set up the urb's return status,
1355 * but we can't know if the callback completed already.
1356 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1357 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1358 {
1359 int value;
1360
1361 if (is_root_hub(urb->dev))
1362 value = usb_rh_urb_dequeue(hcd, urb, status);
1363 else {
1364
1365 /* The only reason an HCD might fail this call is if
1366 * it has not yet fully queued the urb to begin with.
1367 * Such failures should be harmless. */
1368 value = hcd->driver->urb_dequeue(hcd, urb, status);
1369 }
1370 return value;
1371 }
1372
1373 /*
1374 * called in any context
1375 *
1376 * caller guarantees urb won't be recycled till both unlink()
1377 * and the urb's completion function return
1378 */
usb_hcd_unlink_urb(struct urb * urb,int status)1379 int usb_hcd_unlink_urb (struct urb *urb, int status)
1380 {
1381 struct usb_hcd *hcd;
1382 int retval = -EIDRM;
1383 unsigned long flags;
1384
1385 /* Prevent the device and bus from going away while
1386 * the unlink is carried out. If they are already gone
1387 * then urb->use_count must be 0, since disconnected
1388 * devices can't have any active URBs.
1389 */
1390 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1391 if (atomic_read(&urb->use_count) > 0) {
1392 retval = 0;
1393 usb_get_dev(urb->dev);
1394 }
1395 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1396 if (retval == 0) {
1397 hcd = bus_to_hcd(urb->dev->bus);
1398 retval = unlink1(hcd, urb, status);
1399 usb_put_dev(urb->dev);
1400 }
1401
1402 if (retval == 0)
1403 retval = -EINPROGRESS;
1404 else if (retval != -EIDRM && retval != -EBUSY)
1405 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1406 urb, retval);
1407 return retval;
1408 }
1409
1410 /*-------------------------------------------------------------------------*/
1411
1412 /**
1413 * usb_hcd_giveback_urb - return URB from HCD to device driver
1414 * @hcd: host controller returning the URB
1415 * @urb: urb being returned to the USB device driver.
1416 * @status: completion status code for the URB.
1417 * Context: in_interrupt()
1418 *
1419 * This hands the URB from HCD to its USB device driver, using its
1420 * completion function. The HCD has freed all per-urb resources
1421 * (and is done using urb->hcpriv). It also released all HCD locks;
1422 * the device driver won't cause problems if it frees, modifies,
1423 * or resubmits this URB.
1424 *
1425 * If @urb was unlinked, the value of @status will be overridden by
1426 * @urb->unlinked. Erroneous short transfers are detected in case
1427 * the HCD hasn't checked for them.
1428 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1429 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1430 {
1431 urb->hcpriv = NULL;
1432 if (unlikely(urb->unlinked))
1433 status = urb->unlinked;
1434 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1435 urb->actual_length < urb->transfer_buffer_length &&
1436 !status))
1437 status = -EREMOTEIO;
1438
1439 unmap_urb_for_dma(hcd, urb);
1440 usbmon_urb_complete(&hcd->self, urb, status);
1441 usb_unanchor_urb(urb);
1442
1443 /* pass ownership to the completion handler */
1444 urb->status = status;
1445 urb->complete (urb);
1446 atomic_dec (&urb->use_count);
1447 if (unlikely(atomic_read(&urb->reject)))
1448 wake_up (&usb_kill_urb_queue);
1449 usb_put_urb (urb);
1450 }
1451 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1452
1453 /*-------------------------------------------------------------------------*/
1454
1455 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1456 * queue to drain completely. The caller must first insure that no more
1457 * URBs can be submitted for this endpoint.
1458 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1459 void usb_hcd_flush_endpoint(struct usb_device *udev,
1460 struct usb_host_endpoint *ep)
1461 {
1462 struct usb_hcd *hcd;
1463 struct urb *urb;
1464
1465 if (!ep)
1466 return;
1467 might_sleep();
1468 hcd = bus_to_hcd(udev->bus);
1469
1470 /* No more submits can occur */
1471 spin_lock_irq(&hcd_urb_list_lock);
1472 rescan:
1473 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1474 int is_in;
1475
1476 if (urb->unlinked)
1477 continue;
1478 usb_get_urb (urb);
1479 is_in = usb_urb_dir_in(urb);
1480 spin_unlock(&hcd_urb_list_lock);
1481
1482 /* kick hcd */
1483 unlink1(hcd, urb, -ESHUTDOWN);
1484 dev_dbg (hcd->self.controller,
1485 "shutdown urb %p ep%d%s%s\n",
1486 urb, usb_endpoint_num(&ep->desc),
1487 is_in ? "in" : "out",
1488 ({ char *s;
1489
1490 switch (usb_endpoint_type(&ep->desc)) {
1491 case USB_ENDPOINT_XFER_CONTROL:
1492 s = ""; break;
1493 case USB_ENDPOINT_XFER_BULK:
1494 s = "-bulk"; break;
1495 case USB_ENDPOINT_XFER_INT:
1496 s = "-intr"; break;
1497 default:
1498 s = "-iso"; break;
1499 };
1500 s;
1501 }));
1502 usb_put_urb (urb);
1503
1504 /* list contents may have changed */
1505 spin_lock(&hcd_urb_list_lock);
1506 goto rescan;
1507 }
1508 spin_unlock_irq(&hcd_urb_list_lock);
1509
1510 /* Wait until the endpoint queue is completely empty */
1511 while (!list_empty (&ep->urb_list)) {
1512 spin_lock_irq(&hcd_urb_list_lock);
1513
1514 /* The list may have changed while we acquired the spinlock */
1515 urb = NULL;
1516 if (!list_empty (&ep->urb_list)) {
1517 urb = list_entry (ep->urb_list.prev, struct urb,
1518 urb_list);
1519 usb_get_urb (urb);
1520 }
1521 spin_unlock_irq(&hcd_urb_list_lock);
1522
1523 if (urb) {
1524 usb_kill_urb (urb);
1525 usb_put_urb (urb);
1526 }
1527 }
1528 }
1529
1530 /* Disables the endpoint: synchronizes with the hcd to make sure all
1531 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1532 * have been called previously. Use for set_configuration, set_interface,
1533 * driver removal, physical disconnect.
1534 *
1535 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1536 * type, maxpacket size, toggle, halt status, and scheduling.
1537 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1538 void usb_hcd_disable_endpoint(struct usb_device *udev,
1539 struct usb_host_endpoint *ep)
1540 {
1541 struct usb_hcd *hcd;
1542
1543 might_sleep();
1544 hcd = bus_to_hcd(udev->bus);
1545 if (hcd->driver->endpoint_disable)
1546 hcd->driver->endpoint_disable(hcd, ep);
1547 }
1548
1549 /* Protect against drivers that try to unlink URBs after the device
1550 * is gone, by waiting until all unlinks for @udev are finished.
1551 * Since we don't currently track URBs by device, simply wait until
1552 * nothing is running in the locked region of usb_hcd_unlink_urb().
1553 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)1554 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1555 {
1556 spin_lock_irq(&hcd_urb_unlink_lock);
1557 spin_unlock_irq(&hcd_urb_unlink_lock);
1558 }
1559
1560 /*-------------------------------------------------------------------------*/
1561
1562 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)1563 int usb_hcd_get_frame_number (struct usb_device *udev)
1564 {
1565 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1566
1567 if (!HC_IS_RUNNING (hcd->state))
1568 return -ESHUTDOWN;
1569 return hcd->driver->get_frame_number (hcd);
1570 }
1571
1572 /*-------------------------------------------------------------------------*/
1573
1574 #ifdef CONFIG_PM
1575
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)1576 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1577 {
1578 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1579 int status;
1580 int old_state = hcd->state;
1581
1582 dev_dbg(&rhdev->dev, "bus %s%s\n",
1583 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1584 if (!hcd->driver->bus_suspend) {
1585 status = -ENOENT;
1586 } else {
1587 hcd->state = HC_STATE_QUIESCING;
1588 status = hcd->driver->bus_suspend(hcd);
1589 }
1590 if (status == 0) {
1591 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1592 hcd->state = HC_STATE_SUSPENDED;
1593 } else {
1594 hcd->state = old_state;
1595 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1596 "suspend", status);
1597 }
1598 return status;
1599 }
1600
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)1601 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1602 {
1603 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1604 int status;
1605 int old_state = hcd->state;
1606
1607 dev_dbg(&rhdev->dev, "usb %s%s\n",
1608 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1609 if (!hcd->driver->bus_resume)
1610 return -ENOENT;
1611 if (hcd->state == HC_STATE_RUNNING)
1612 return 0;
1613
1614 hcd->state = HC_STATE_RESUMING;
1615 status = hcd->driver->bus_resume(hcd);
1616 if (status == 0) {
1617 /* TRSMRCY = 10 msec */
1618 msleep(10);
1619 usb_set_device_state(rhdev, rhdev->actconfig
1620 ? USB_STATE_CONFIGURED
1621 : USB_STATE_ADDRESS);
1622 hcd->state = HC_STATE_RUNNING;
1623 } else {
1624 hcd->state = old_state;
1625 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1626 "resume", status);
1627 if (status != -ESHUTDOWN)
1628 usb_hc_died(hcd);
1629 }
1630 return status;
1631 }
1632
1633 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)1634 static void hcd_resume_work(struct work_struct *work)
1635 {
1636 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1637 struct usb_device *udev = hcd->self.root_hub;
1638
1639 usb_lock_device(udev);
1640 usb_mark_last_busy(udev);
1641 usb_external_resume_device(udev, PMSG_REMOTE_RESUME);
1642 usb_unlock_device(udev);
1643 }
1644
1645 /**
1646 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1647 * @hcd: host controller for this root hub
1648 *
1649 * The USB host controller calls this function when its root hub is
1650 * suspended (with the remote wakeup feature enabled) and a remote
1651 * wakeup request is received. The routine submits a workqueue request
1652 * to resume the root hub (that is, manage its downstream ports again).
1653 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)1654 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1655 {
1656 unsigned long flags;
1657
1658 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1659 if (hcd->rh_registered)
1660 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1661 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1662 }
1663 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1664
1665 #endif
1666
1667 /*-------------------------------------------------------------------------*/
1668
1669 #ifdef CONFIG_USB_OTG
1670
1671 /**
1672 * usb_bus_start_enum - start immediate enumeration (for OTG)
1673 * @bus: the bus (must use hcd framework)
1674 * @port_num: 1-based number of port; usually bus->otg_port
1675 * Context: in_interrupt()
1676 *
1677 * Starts enumeration, with an immediate reset followed later by
1678 * khubd identifying and possibly configuring the device.
1679 * This is needed by OTG controller drivers, where it helps meet
1680 * HNP protocol timing requirements for starting a port reset.
1681 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)1682 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1683 {
1684 struct usb_hcd *hcd;
1685 int status = -EOPNOTSUPP;
1686
1687 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1688 * boards with root hubs hooked up to internal devices (instead of
1689 * just the OTG port) may need more attention to resetting...
1690 */
1691 hcd = container_of (bus, struct usb_hcd, self);
1692 if (port_num && hcd->driver->start_port_reset)
1693 status = hcd->driver->start_port_reset(hcd, port_num);
1694
1695 /* run khubd shortly after (first) root port reset finishes;
1696 * it may issue others, until at least 50 msecs have passed.
1697 */
1698 if (status == 0)
1699 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1700 return status;
1701 }
1702 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1703
1704 #endif
1705
1706 /*-------------------------------------------------------------------------*/
1707
1708 /**
1709 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1710 * @irq: the IRQ being raised
1711 * @__hcd: pointer to the HCD whose IRQ is being signaled
1712 *
1713 * If the controller isn't HALTed, calls the driver's irq handler.
1714 * Checks whether the controller is now dead.
1715 */
usb_hcd_irq(int irq,void * __hcd)1716 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1717 {
1718 struct usb_hcd *hcd = __hcd;
1719 unsigned long flags;
1720 irqreturn_t rc;
1721
1722 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1723 * when the first handler doesn't use it. So let's just
1724 * assume it's never used.
1725 */
1726 local_irq_save(flags);
1727
1728 if (unlikely(hcd->state == HC_STATE_HALT ||
1729 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1730 rc = IRQ_NONE;
1731 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1732 rc = IRQ_NONE;
1733 } else {
1734 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1735
1736 if (unlikely(hcd->state == HC_STATE_HALT))
1737 usb_hc_died(hcd);
1738 rc = IRQ_HANDLED;
1739 }
1740
1741 local_irq_restore(flags);
1742 return rc;
1743 }
1744
1745 /*-------------------------------------------------------------------------*/
1746
1747 /**
1748 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1749 * @hcd: pointer to the HCD representing the controller
1750 *
1751 * This is called by bus glue to report a USB host controller that died
1752 * while operations may still have been pending. It's called automatically
1753 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1754 */
usb_hc_died(struct usb_hcd * hcd)1755 void usb_hc_died (struct usb_hcd *hcd)
1756 {
1757 unsigned long flags;
1758
1759 dev_err (hcd->self.controller, "HC died; cleaning up\n");
1760
1761 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1762 if (hcd->rh_registered) {
1763 hcd->poll_rh = 0;
1764
1765 /* make khubd clean up old urbs and devices */
1766 usb_set_device_state (hcd->self.root_hub,
1767 USB_STATE_NOTATTACHED);
1768 usb_kick_khubd (hcd->self.root_hub);
1769 }
1770 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1771 }
1772 EXPORT_SYMBOL_GPL (usb_hc_died);
1773
1774 /*-------------------------------------------------------------------------*/
1775
1776 /**
1777 * usb_create_hcd - create and initialize an HCD structure
1778 * @driver: HC driver that will use this hcd
1779 * @dev: device for this HC, stored in hcd->self.controller
1780 * @bus_name: value to store in hcd->self.bus_name
1781 * Context: !in_interrupt()
1782 *
1783 * Allocate a struct usb_hcd, with extra space at the end for the
1784 * HC driver's private data. Initialize the generic members of the
1785 * hcd structure.
1786 *
1787 * If memory is unavailable, returns NULL.
1788 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)1789 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1790 struct device *dev, const char *bus_name)
1791 {
1792 struct usb_hcd *hcd;
1793
1794 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1795 if (!hcd) {
1796 dev_dbg (dev, "hcd alloc failed\n");
1797 return NULL;
1798 }
1799 dev_set_drvdata(dev, hcd);
1800 kref_init(&hcd->kref);
1801
1802 usb_bus_init(&hcd->self);
1803 hcd->self.controller = dev;
1804 hcd->self.bus_name = bus_name;
1805 hcd->self.uses_dma = (dev->dma_mask != NULL);
1806
1807 init_timer(&hcd->rh_timer);
1808 hcd->rh_timer.function = rh_timer_func;
1809 hcd->rh_timer.data = (unsigned long) hcd;
1810 #ifdef CONFIG_PM
1811 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1812 #endif
1813
1814 hcd->driver = driver;
1815 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1816 "USB Host Controller";
1817 return hcd;
1818 }
1819 EXPORT_SYMBOL_GPL(usb_create_hcd);
1820
hcd_release(struct kref * kref)1821 static void hcd_release (struct kref *kref)
1822 {
1823 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1824
1825 kfree(hcd);
1826 }
1827
usb_get_hcd(struct usb_hcd * hcd)1828 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1829 {
1830 if (hcd)
1831 kref_get (&hcd->kref);
1832 return hcd;
1833 }
1834 EXPORT_SYMBOL_GPL(usb_get_hcd);
1835
usb_put_hcd(struct usb_hcd * hcd)1836 void usb_put_hcd (struct usb_hcd *hcd)
1837 {
1838 if (hcd)
1839 kref_put (&hcd->kref, hcd_release);
1840 }
1841 EXPORT_SYMBOL_GPL(usb_put_hcd);
1842
1843 /**
1844 * usb_add_hcd - finish generic HCD structure initialization and register
1845 * @hcd: the usb_hcd structure to initialize
1846 * @irqnum: Interrupt line to allocate
1847 * @irqflags: Interrupt type flags
1848 *
1849 * Finish the remaining parts of generic HCD initialization: allocate the
1850 * buffers of consistent memory, register the bus, request the IRQ line,
1851 * and call the driver's reset() and start() routines.
1852 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)1853 int usb_add_hcd(struct usb_hcd *hcd,
1854 unsigned int irqnum, unsigned long irqflags)
1855 {
1856 int retval;
1857 struct usb_device *rhdev;
1858
1859 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1860
1861 hcd->authorized_default = hcd->wireless? 0 : 1;
1862 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1863
1864 /* HC is in reset state, but accessible. Now do the one-time init,
1865 * bottom up so that hcds can customize the root hubs before khubd
1866 * starts talking to them. (Note, bus id is assigned early too.)
1867 */
1868 if ((retval = hcd_buffer_create(hcd)) != 0) {
1869 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1870 return retval;
1871 }
1872
1873 if ((retval = usb_register_bus(&hcd->self)) < 0)
1874 goto err_register_bus;
1875
1876 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1877 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1878 retval = -ENOMEM;
1879 goto err_allocate_root_hub;
1880 }
1881 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1882 USB_SPEED_FULL;
1883 hcd->self.root_hub = rhdev;
1884
1885 /* wakeup flag init defaults to "everything works" for root hubs,
1886 * but drivers can override it in reset() if needed, along with
1887 * recording the overall controller's system wakeup capability.
1888 */
1889 device_init_wakeup(&rhdev->dev, 1);
1890
1891 /* "reset" is misnamed; its role is now one-time init. the controller
1892 * should already have been reset (and boot firmware kicked off etc).
1893 */
1894 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1895 dev_err(hcd->self.controller, "can't setup\n");
1896 goto err_hcd_driver_setup;
1897 }
1898
1899 /* NOTE: root hub and controller capabilities may not be the same */
1900 if (device_can_wakeup(hcd->self.controller)
1901 && device_can_wakeup(&hcd->self.root_hub->dev))
1902 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1903
1904 /* enable irqs just before we start the controller */
1905 if (hcd->driver->irq) {
1906
1907 /* IRQF_DISABLED doesn't work as advertised when used together
1908 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1909 * interrupts we can remove it here.
1910 */
1911 if (irqflags & IRQF_SHARED)
1912 irqflags &= ~IRQF_DISABLED;
1913
1914 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1915 hcd->driver->description, hcd->self.busnum);
1916 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1917 hcd->irq_descr, hcd)) != 0) {
1918 dev_err(hcd->self.controller,
1919 "request interrupt %d failed\n", irqnum);
1920 goto err_request_irq;
1921 }
1922 hcd->irq = irqnum;
1923 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1924 (hcd->driver->flags & HCD_MEMORY) ?
1925 "io mem" : "io base",
1926 (unsigned long long)hcd->rsrc_start);
1927 } else {
1928 hcd->irq = -1;
1929 if (hcd->rsrc_start)
1930 dev_info(hcd->self.controller, "%s 0x%08llx\n",
1931 (hcd->driver->flags & HCD_MEMORY) ?
1932 "io mem" : "io base",
1933 (unsigned long long)hcd->rsrc_start);
1934 }
1935
1936 if ((retval = hcd->driver->start(hcd)) < 0) {
1937 dev_err(hcd->self.controller, "startup error %d\n", retval);
1938 goto err_hcd_driver_start;
1939 }
1940
1941 /* starting here, usbcore will pay attention to this root hub */
1942 rhdev->bus_mA = min(500u, hcd->power_budget);
1943 if ((retval = register_root_hub(hcd)) != 0)
1944 goto err_register_root_hub;
1945
1946 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1947 if (retval < 0) {
1948 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1949 retval);
1950 goto error_create_attr_group;
1951 }
1952 if (hcd->uses_new_polling && hcd->poll_rh)
1953 usb_hcd_poll_rh_status(hcd);
1954 return retval;
1955
1956 error_create_attr_group:
1957 mutex_lock(&usb_bus_list_lock);
1958 usb_disconnect(&hcd->self.root_hub);
1959 mutex_unlock(&usb_bus_list_lock);
1960 err_register_root_hub:
1961 hcd->driver->stop(hcd);
1962 err_hcd_driver_start:
1963 if (hcd->irq >= 0)
1964 free_irq(irqnum, hcd);
1965 err_request_irq:
1966 err_hcd_driver_setup:
1967 hcd->self.root_hub = NULL;
1968 usb_put_dev(rhdev);
1969 err_allocate_root_hub:
1970 usb_deregister_bus(&hcd->self);
1971 err_register_bus:
1972 hcd_buffer_destroy(hcd);
1973 return retval;
1974 }
1975 EXPORT_SYMBOL_GPL(usb_add_hcd);
1976
1977 /**
1978 * usb_remove_hcd - shutdown processing for generic HCDs
1979 * @hcd: the usb_hcd structure to remove
1980 * Context: !in_interrupt()
1981 *
1982 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1983 * invoking the HCD's stop() method.
1984 */
usb_remove_hcd(struct usb_hcd * hcd)1985 void usb_remove_hcd(struct usb_hcd *hcd)
1986 {
1987 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1988
1989 if (HC_IS_RUNNING (hcd->state))
1990 hcd->state = HC_STATE_QUIESCING;
1991
1992 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1993 spin_lock_irq (&hcd_root_hub_lock);
1994 hcd->rh_registered = 0;
1995 spin_unlock_irq (&hcd_root_hub_lock);
1996
1997 #ifdef CONFIG_PM
1998 cancel_work_sync(&hcd->wakeup_work);
1999 #endif
2000
2001 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2002 mutex_lock(&usb_bus_list_lock);
2003 usb_disconnect(&hcd->self.root_hub);
2004 mutex_unlock(&usb_bus_list_lock);
2005
2006 hcd->driver->stop(hcd);
2007 hcd->state = HC_STATE_HALT;
2008
2009 hcd->poll_rh = 0;
2010 del_timer_sync(&hcd->rh_timer);
2011
2012 if (hcd->irq >= 0)
2013 free_irq(hcd->irq, hcd);
2014 usb_deregister_bus(&hcd->self);
2015 hcd_buffer_destroy(hcd);
2016 }
2017 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2018
2019 void
usb_hcd_platform_shutdown(struct platform_device * dev)2020 usb_hcd_platform_shutdown(struct platform_device* dev)
2021 {
2022 struct usb_hcd *hcd = platform_get_drvdata(dev);
2023
2024 if (hcd->driver->shutdown)
2025 hcd->driver->shutdown(hcd);
2026 }
2027 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2028
2029 /*-------------------------------------------------------------------------*/
2030
2031 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2032
2033 struct usb_mon_operations *mon_ops;
2034
2035 /*
2036 * The registration is unlocked.
2037 * We do it this way because we do not want to lock in hot paths.
2038 *
2039 * Notice that the code is minimally error-proof. Because usbmon needs
2040 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2041 */
2042
usb_mon_register(struct usb_mon_operations * ops)2043 int usb_mon_register (struct usb_mon_operations *ops)
2044 {
2045
2046 if (mon_ops)
2047 return -EBUSY;
2048
2049 mon_ops = ops;
2050 mb();
2051 return 0;
2052 }
2053 EXPORT_SYMBOL_GPL (usb_mon_register);
2054
usb_mon_deregister(void)2055 void usb_mon_deregister (void)
2056 {
2057
2058 if (mon_ops == NULL) {
2059 printk(KERN_ERR "USB: monitor was not registered\n");
2060 return;
2061 }
2062 mon_ops = NULL;
2063 mb();
2064 }
2065 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2066
2067 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2068