• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- mode: c; c-basic-offset: 8 -*- */
2 
3 /* Copyright (C) 1999,2001
4  *
5  * Author: J.E.J.Bottomley@HansenPartnership.com
6  *
7  * This file provides all the same external entries as smp.c but uses
8  * the voyager hal to provide the functionality
9  */
10 #include <linux/cpu.h>
11 #include <linux/module.h>
12 #include <linux/mm.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/delay.h>
15 #include <linux/mc146818rtc.h>
16 #include <linux/cache.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/bootmem.h>
21 #include <linux/completion.h>
22 #include <asm/desc.h>
23 #include <asm/voyager.h>
24 #include <asm/vic.h>
25 #include <asm/mtrr.h>
26 #include <asm/pgalloc.h>
27 #include <asm/tlbflush.h>
28 #include <asm/arch_hooks.h>
29 #include <asm/trampoline.h>
30 
31 /* TLB state -- visible externally, indexed physically */
32 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
33 
34 /* CPU IRQ affinity -- set to all ones initially */
35 static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
36 	{[0 ... NR_CPUS-1]  = ~0UL };
37 
38 /* per CPU data structure (for /proc/cpuinfo et al), visible externally
39  * indexed physically */
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
41 EXPORT_PER_CPU_SYMBOL(cpu_info);
42 
43 /* physical ID of the CPU used to boot the system */
44 unsigned char boot_cpu_id;
45 
46 /* The memory line addresses for the Quad CPIs */
47 struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
48 
49 /* The masks for the Extended VIC processors, filled in by cat_init */
50 __u32 voyager_extended_vic_processors = 0;
51 
52 /* Masks for the extended Quad processors which cannot be VIC booted */
53 __u32 voyager_allowed_boot_processors = 0;
54 
55 /* The mask for the Quad Processors (both extended and non-extended) */
56 __u32 voyager_quad_processors = 0;
57 
58 /* Total count of live CPUs, used in process.c to display
59  * the CPU information and in irq.c for the per CPU irq
60  * activity count.  Finally exported by i386_ksyms.c */
61 static int voyager_extended_cpus = 1;
62 
63 /* Used for the invalidate map that's also checked in the spinlock */
64 static volatile unsigned long smp_invalidate_needed;
65 
66 /* Bitmask of CPUs present in the system - exported by i386_syms.c, used
67  * by scheduler but indexed physically */
68 static cpumask_t voyager_phys_cpu_present_map = CPU_MASK_NONE;
69 
70 /* The internal functions */
71 static void send_CPI(__u32 cpuset, __u8 cpi);
72 static void ack_CPI(__u8 cpi);
73 static int ack_QIC_CPI(__u8 cpi);
74 static void ack_special_QIC_CPI(__u8 cpi);
75 static void ack_VIC_CPI(__u8 cpi);
76 static void send_CPI_allbutself(__u8 cpi);
77 static void mask_vic_irq(unsigned int irq);
78 static void unmask_vic_irq(unsigned int irq);
79 static unsigned int startup_vic_irq(unsigned int irq);
80 static void enable_local_vic_irq(unsigned int irq);
81 static void disable_local_vic_irq(unsigned int irq);
82 static void before_handle_vic_irq(unsigned int irq);
83 static void after_handle_vic_irq(unsigned int irq);
84 static void set_vic_irq_affinity(unsigned int irq, const struct cpumask *mask);
85 static void ack_vic_irq(unsigned int irq);
86 static void vic_enable_cpi(void);
87 static void do_boot_cpu(__u8 cpuid);
88 static void do_quad_bootstrap(void);
89 static void initialize_secondary(void);
90 
91 int hard_smp_processor_id(void);
92 int safe_smp_processor_id(void);
93 
94 /* Inline functions */
send_one_QIC_CPI(__u8 cpu,__u8 cpi)95 static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
96 {
97 	voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
98 	    (smp_processor_id() << 16) + cpi;
99 }
100 
send_QIC_CPI(__u32 cpuset,__u8 cpi)101 static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
102 {
103 	int cpu;
104 
105 	for_each_online_cpu(cpu) {
106 		if (cpuset & (1 << cpu)) {
107 #ifdef VOYAGER_DEBUG
108 			if (!cpu_online(cpu))
109 				VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
110 					"cpu_online_map\n",
111 					hard_smp_processor_id(), cpi, cpu));
112 #endif
113 			send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
114 		}
115 	}
116 }
117 
wrapper_smp_local_timer_interrupt(void)118 static inline void wrapper_smp_local_timer_interrupt(void)
119 {
120 	irq_enter();
121 	smp_local_timer_interrupt();
122 	irq_exit();
123 }
124 
send_one_CPI(__u8 cpu,__u8 cpi)125 static inline void send_one_CPI(__u8 cpu, __u8 cpi)
126 {
127 	if (voyager_quad_processors & (1 << cpu))
128 		send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
129 	else
130 		send_CPI(1 << cpu, cpi);
131 }
132 
send_CPI_allbutself(__u8 cpi)133 static inline void send_CPI_allbutself(__u8 cpi)
134 {
135 	__u8 cpu = smp_processor_id();
136 	__u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
137 	send_CPI(mask, cpi);
138 }
139 
is_cpu_quad(void)140 static inline int is_cpu_quad(void)
141 {
142 	__u8 cpumask = inb(VIC_PROC_WHO_AM_I);
143 	return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
144 }
145 
is_cpu_extended(void)146 static inline int is_cpu_extended(void)
147 {
148 	__u8 cpu = hard_smp_processor_id();
149 
150 	return (voyager_extended_vic_processors & (1 << cpu));
151 }
152 
is_cpu_vic_boot(void)153 static inline int is_cpu_vic_boot(void)
154 {
155 	__u8 cpu = hard_smp_processor_id();
156 
157 	return (voyager_extended_vic_processors
158 		& voyager_allowed_boot_processors & (1 << cpu));
159 }
160 
ack_CPI(__u8 cpi)161 static inline void ack_CPI(__u8 cpi)
162 {
163 	switch (cpi) {
164 	case VIC_CPU_BOOT_CPI:
165 		if (is_cpu_quad() && !is_cpu_vic_boot())
166 			ack_QIC_CPI(cpi);
167 		else
168 			ack_VIC_CPI(cpi);
169 		break;
170 	case VIC_SYS_INT:
171 	case VIC_CMN_INT:
172 		/* These are slightly strange.  Even on the Quad card,
173 		 * They are vectored as VIC CPIs */
174 		if (is_cpu_quad())
175 			ack_special_QIC_CPI(cpi);
176 		else
177 			ack_VIC_CPI(cpi);
178 		break;
179 	default:
180 		printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
181 		break;
182 	}
183 }
184 
185 /* local variables */
186 
187 /* The VIC IRQ descriptors -- these look almost identical to the
188  * 8259 IRQs except that masks and things must be kept per processor
189  */
190 static struct irq_chip vic_chip = {
191 	.name = "VIC",
192 	.startup = startup_vic_irq,
193 	.mask = mask_vic_irq,
194 	.unmask = unmask_vic_irq,
195 	.set_affinity = set_vic_irq_affinity,
196 };
197 
198 /* used to count up as CPUs are brought on line (starts at 0) */
199 static int cpucount = 0;
200 
201 /* The per cpu profile stuff - used in smp_local_timer_interrupt */
202 static DEFINE_PER_CPU(int, prof_multiplier) = 1;
203 static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
204 static DEFINE_PER_CPU(int, prof_counter) = 1;
205 
206 /* the map used to check if a CPU has booted */
207 static __u32 cpu_booted_map;
208 
209 /* the synchronize flag used to hold all secondary CPUs spinning in
210  * a tight loop until the boot sequence is ready for them */
211 static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
212 
213 /* This is for the new dynamic CPU boot code */
214 
215 /* The per processor IRQ masks (these are usually kept in sync) */
216 static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
217 
218 /* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
219 static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
220 
221 /* Lock for enable/disable of VIC interrupts */
222 static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
223 
224 /* The boot processor is correctly set up in PC mode when it
225  * comes up, but the secondaries need their master/slave 8259
226  * pairs initializing correctly */
227 
228 /* Interrupt counters (per cpu) and total - used to try to
229  * even up the interrupt handling routines */
230 static long vic_intr_total = 0;
231 static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
232 static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
233 
234 /* Since we can only use CPI0, we fake all the other CPIs */
235 static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
236 
237 /* debugging routine to read the isr of the cpu's pic */
vic_read_isr(void)238 static inline __u16 vic_read_isr(void)
239 {
240 	__u16 isr;
241 
242 	outb(0x0b, 0xa0);
243 	isr = inb(0xa0) << 8;
244 	outb(0x0b, 0x20);
245 	isr |= inb(0x20);
246 
247 	return isr;
248 }
249 
qic_setup(void)250 static __init void qic_setup(void)
251 {
252 	if (!is_cpu_quad()) {
253 		/* not a quad, no setup */
254 		return;
255 	}
256 	outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
257 	outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
258 
259 	if (is_cpu_extended()) {
260 		/* the QIC duplicate of the VIC base register */
261 		outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
262 		outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
263 
264 		/* FIXME: should set up the QIC timer and memory parity
265 		 * error vectors here */
266 	}
267 }
268 
vic_setup_pic(void)269 static __init void vic_setup_pic(void)
270 {
271 	outb(1, VIC_REDIRECT_REGISTER_1);
272 	/* clear the claim registers for dynamic routing */
273 	outb(0, VIC_CLAIM_REGISTER_0);
274 	outb(0, VIC_CLAIM_REGISTER_1);
275 
276 	outb(0, VIC_PRIORITY_REGISTER);
277 	/* Set the Primary and Secondary Microchannel vector
278 	 * bases to be the same as the ordinary interrupts
279 	 *
280 	 * FIXME: This would be more efficient using separate
281 	 * vectors. */
282 	outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
283 	outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
284 	/* Now initiallise the master PIC belonging to this CPU by
285 	 * sending the four ICWs */
286 
287 	/* ICW1: level triggered, ICW4 needed */
288 	outb(0x19, 0x20);
289 
290 	/* ICW2: vector base */
291 	outb(FIRST_EXTERNAL_VECTOR, 0x21);
292 
293 	/* ICW3: slave at line 2 */
294 	outb(0x04, 0x21);
295 
296 	/* ICW4: 8086 mode */
297 	outb(0x01, 0x21);
298 
299 	/* now the same for the slave PIC */
300 
301 	/* ICW1: level trigger, ICW4 needed */
302 	outb(0x19, 0xA0);
303 
304 	/* ICW2: slave vector base */
305 	outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
306 
307 	/* ICW3: slave ID */
308 	outb(0x02, 0xA1);
309 
310 	/* ICW4: 8086 mode */
311 	outb(0x01, 0xA1);
312 }
313 
do_quad_bootstrap(void)314 static void do_quad_bootstrap(void)
315 {
316 	if (is_cpu_quad() && is_cpu_vic_boot()) {
317 		int i;
318 		unsigned long flags;
319 		__u8 cpuid = hard_smp_processor_id();
320 
321 		local_irq_save(flags);
322 
323 		for (i = 0; i < 4; i++) {
324 			/* FIXME: this would be >>3 &0x7 on the 32 way */
325 			if (((cpuid >> 2) & 0x03) == i)
326 				/* don't lower our own mask! */
327 				continue;
328 
329 			/* masquerade as local Quad CPU */
330 			outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
331 			/* enable the startup CPI */
332 			outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
333 			/* restore cpu id */
334 			outb(0, QIC_PROCESSOR_ID);
335 		}
336 		local_irq_restore(flags);
337 	}
338 }
339 
prefill_possible_map(void)340 void prefill_possible_map(void)
341 {
342 	/* This is empty on voyager because we need a much
343 	 * earlier detection which is done in find_smp_config */
344 }
345 
346 /* Set up all the basic stuff: read the SMP config and make all the
347  * SMP information reflect only the boot cpu.  All others will be
348  * brought on-line later. */
find_smp_config(void)349 void __init find_smp_config(void)
350 {
351 	int i;
352 
353 	boot_cpu_id = hard_smp_processor_id();
354 
355 	printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
356 
357 	/* initialize the CPU structures (moved from smp_boot_cpus) */
358 	for (i = 0; i < nr_cpu_ids; i++)
359 		cpu_irq_affinity[i] = ~0;
360 	cpu_online_map = cpumask_of_cpu(boot_cpu_id);
361 
362 	/* The boot CPU must be extended */
363 	voyager_extended_vic_processors = 1 << boot_cpu_id;
364 	/* initially, all of the first 8 CPUs can boot */
365 	voyager_allowed_boot_processors = 0xff;
366 	/* set up everything for just this CPU, we can alter
367 	 * this as we start the other CPUs later */
368 	/* now get the CPU disposition from the extended CMOS */
369 	cpus_addr(voyager_phys_cpu_present_map)[0] =
370 	    voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
371 	cpus_addr(voyager_phys_cpu_present_map)[0] |=
372 	    voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
373 	cpus_addr(voyager_phys_cpu_present_map)[0] |=
374 	    voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
375 				       2) << 16;
376 	cpus_addr(voyager_phys_cpu_present_map)[0] |=
377 	    voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
378 				       3) << 24;
379 	init_cpu_possible(&voyager_phys_cpu_present_map);
380 	printk("VOYAGER SMP: voyager_phys_cpu_present_map = 0x%lx\n",
381 	       cpus_addr(voyager_phys_cpu_present_map)[0]);
382 	/* Here we set up the VIC to enable SMP */
383 	/* enable the CPIs by writing the base vector to their register */
384 	outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
385 	outb(1, VIC_REDIRECT_REGISTER_1);
386 	/* set the claim registers for static routing --- Boot CPU gets
387 	 * all interrupts untill all other CPUs started */
388 	outb(0xff, VIC_CLAIM_REGISTER_0);
389 	outb(0xff, VIC_CLAIM_REGISTER_1);
390 	/* Set the Primary and Secondary Microchannel vector
391 	 * bases to be the same as the ordinary interrupts
392 	 *
393 	 * FIXME: This would be more efficient using separate
394 	 * vectors. */
395 	outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
396 	outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
397 
398 	/* Finally tell the firmware that we're driving */
399 	outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
400 	     VOYAGER_SUS_IN_CONTROL_PORT);
401 
402 	current_thread_info()->cpu = boot_cpu_id;
403 	x86_write_percpu(cpu_number, boot_cpu_id);
404 }
405 
406 /*
407  *	The bootstrap kernel entry code has set these up. Save them
408  *	for a given CPU, id is physical */
smp_store_cpu_info(int id)409 void __init smp_store_cpu_info(int id)
410 {
411 	struct cpuinfo_x86 *c = &cpu_data(id);
412 
413 	*c = boot_cpu_data;
414 	c->cpu_index = id;
415 
416 	identify_secondary_cpu(c);
417 }
418 
419 /* Routine initially called when a non-boot CPU is brought online */
start_secondary(void * unused)420 static void __init start_secondary(void *unused)
421 {
422 	__u8 cpuid = hard_smp_processor_id();
423 
424 	cpu_init();
425 
426 	/* OK, we're in the routine */
427 	ack_CPI(VIC_CPU_BOOT_CPI);
428 
429 	/* setup the 8259 master slave pair belonging to this CPU ---
430 	 * we won't actually receive any until the boot CPU
431 	 * relinquishes it's static routing mask */
432 	vic_setup_pic();
433 
434 	qic_setup();
435 
436 	if (is_cpu_quad() && !is_cpu_vic_boot()) {
437 		/* clear the boot CPI */
438 		__u8 dummy;
439 
440 		dummy =
441 		    voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
442 		printk("read dummy %d\n", dummy);
443 	}
444 
445 	/* lower the mask to receive CPIs */
446 	vic_enable_cpi();
447 
448 	VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
449 
450 	notify_cpu_starting(cpuid);
451 
452 	/* enable interrupts */
453 	local_irq_enable();
454 
455 	/* get our bogomips */
456 	calibrate_delay();
457 
458 	/* save our processor parameters */
459 	smp_store_cpu_info(cpuid);
460 
461 	/* if we're a quad, we may need to bootstrap other CPUs */
462 	do_quad_bootstrap();
463 
464 	/* FIXME: this is rather a poor hack to prevent the CPU
465 	 * activating softirqs while it's supposed to be waiting for
466 	 * permission to proceed.  Without this, the new per CPU stuff
467 	 * in the softirqs will fail */
468 	local_irq_disable();
469 	cpu_set(cpuid, cpu_callin_map);
470 
471 	/* signal that we're done */
472 	cpu_booted_map = 1;
473 
474 	while (!cpu_isset(cpuid, smp_commenced_mask))
475 		rep_nop();
476 	local_irq_enable();
477 
478 	local_flush_tlb();
479 
480 	cpu_set(cpuid, cpu_online_map);
481 	wmb();
482 	cpu_idle();
483 }
484 
485 /* Routine to kick start the given CPU and wait for it to report ready
486  * (or timeout in startup).  When this routine returns, the requested
487  * CPU is either fully running and configured or known to be dead.
488  *
489  * We call this routine sequentially 1 CPU at a time, so no need for
490  * locking */
491 
do_boot_cpu(__u8 cpu)492 static void __init do_boot_cpu(__u8 cpu)
493 {
494 	struct task_struct *idle;
495 	int timeout;
496 	unsigned long flags;
497 	int quad_boot = (1 << cpu) & voyager_quad_processors
498 	    & ~(voyager_extended_vic_processors
499 		& voyager_allowed_boot_processors);
500 
501 	/* This is the format of the CPI IDT gate (in real mode) which
502 	 * we're hijacking to boot the CPU */
503 	union IDTFormat {
504 		struct seg {
505 			__u16 Offset;
506 			__u16 Segment;
507 		} idt;
508 		__u32 val;
509 	} hijack_source;
510 
511 	__u32 *hijack_vector;
512 	__u32 start_phys_address = setup_trampoline();
513 
514 	/* There's a clever trick to this: The linux trampoline is
515 	 * compiled to begin at absolute location zero, so make the
516 	 * address zero but have the data segment selector compensate
517 	 * for the actual address */
518 	hijack_source.idt.Offset = start_phys_address & 0x000F;
519 	hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
520 
521 	cpucount++;
522 	alternatives_smp_switch(1);
523 
524 	idle = fork_idle(cpu);
525 	if (IS_ERR(idle))
526 		panic("failed fork for CPU%d", cpu);
527 	idle->thread.ip = (unsigned long)start_secondary;
528 	/* init_tasks (in sched.c) is indexed logically */
529 	stack_start.sp = (void *)idle->thread.sp;
530 
531 	init_gdt(cpu);
532 	per_cpu(current_task, cpu) = idle;
533 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
534 	irq_ctx_init(cpu);
535 
536 	/* Note: Don't modify initial ss override */
537 	VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
538 		(unsigned long)hijack_source.val, hijack_source.idt.Segment,
539 		hijack_source.idt.Offset, stack_start.sp));
540 
541 	/* init lowmem identity mapping */
542 	clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
543 			min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
544 	flush_tlb_all();
545 
546 	if (quad_boot) {
547 		printk("CPU %d: non extended Quad boot\n", cpu);
548 		hijack_vector =
549 		    (__u32 *)
550 		    phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
551 		*hijack_vector = hijack_source.val;
552 	} else {
553 		printk("CPU%d: extended VIC boot\n", cpu);
554 		hijack_vector =
555 		    (__u32 *)
556 		    phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
557 		*hijack_vector = hijack_source.val;
558 		/* VIC errata, may also receive interrupt at this address */
559 		hijack_vector =
560 		    (__u32 *)
561 		    phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
562 				  VIC_DEFAULT_CPI_BASE) * 4);
563 		*hijack_vector = hijack_source.val;
564 	}
565 	/* All non-boot CPUs start with interrupts fully masked.  Need
566 	 * to lower the mask of the CPI we're about to send.  We do
567 	 * this in the VIC by masquerading as the processor we're
568 	 * about to boot and lowering its interrupt mask */
569 	local_irq_save(flags);
570 	if (quad_boot) {
571 		send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
572 	} else {
573 		outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
574 		/* here we're altering registers belonging to `cpu' */
575 
576 		outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
577 		/* now go back to our original identity */
578 		outb(boot_cpu_id, VIC_PROCESSOR_ID);
579 
580 		/* and boot the CPU */
581 
582 		send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
583 	}
584 	cpu_booted_map = 0;
585 	local_irq_restore(flags);
586 
587 	/* now wait for it to become ready (or timeout) */
588 	for (timeout = 0; timeout < 50000; timeout++) {
589 		if (cpu_booted_map)
590 			break;
591 		udelay(100);
592 	}
593 	/* reset the page table */
594 	zap_low_mappings();
595 
596 	if (cpu_booted_map) {
597 		VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
598 			cpu, smp_processor_id()));
599 
600 		printk("CPU%d: ", cpu);
601 		print_cpu_info(&cpu_data(cpu));
602 		wmb();
603 		cpu_set(cpu, cpu_callout_map);
604 		cpu_set(cpu, cpu_present_map);
605 	} else {
606 		printk("CPU%d FAILED TO BOOT: ", cpu);
607 		if (*
608 		    ((volatile unsigned char *)phys_to_virt(start_phys_address))
609 		    == 0xA5)
610 			printk("Stuck.\n");
611 		else
612 			printk("Not responding.\n");
613 
614 		cpucount--;
615 	}
616 }
617 
smp_boot_cpus(void)618 void __init smp_boot_cpus(void)
619 {
620 	int i;
621 
622 	/* CAT BUS initialisation must be done after the memory */
623 	/* FIXME: The L4 has a catbus too, it just needs to be
624 	 * accessed in a totally different way */
625 	if (voyager_level == 5) {
626 		voyager_cat_init();
627 
628 		/* now that the cat has probed the Voyager System Bus, sanity
629 		 * check the cpu map */
630 		if (((voyager_quad_processors | voyager_extended_vic_processors)
631 		     & cpus_addr(voyager_phys_cpu_present_map)[0]) !=
632 		    cpus_addr(voyager_phys_cpu_present_map)[0]) {
633 			/* should panic */
634 			printk("\n\n***WARNING*** "
635 			       "Sanity check of CPU present map FAILED\n");
636 		}
637 	} else if (voyager_level == 4)
638 		voyager_extended_vic_processors =
639 		    cpus_addr(voyager_phys_cpu_present_map)[0];
640 
641 	/* this sets up the idle task to run on the current cpu */
642 	voyager_extended_cpus = 1;
643 	/* Remove the global_irq_holder setting, it triggers a BUG() on
644 	 * schedule at the moment */
645 	//global_irq_holder = boot_cpu_id;
646 
647 	/* FIXME: Need to do something about this but currently only works
648 	 * on CPUs with a tsc which none of mine have.
649 	 smp_tune_scheduling();
650 	 */
651 	smp_store_cpu_info(boot_cpu_id);
652 	/* setup the jump vector */
653 	initial_code = (unsigned long)initialize_secondary;
654 	printk("CPU%d: ", boot_cpu_id);
655 	print_cpu_info(&cpu_data(boot_cpu_id));
656 
657 	if (is_cpu_quad()) {
658 		/* booting on a Quad CPU */
659 		printk("VOYAGER SMP: Boot CPU is Quad\n");
660 		qic_setup();
661 		do_quad_bootstrap();
662 	}
663 
664 	/* enable our own CPIs */
665 	vic_enable_cpi();
666 
667 	cpu_set(boot_cpu_id, cpu_online_map);
668 	cpu_set(boot_cpu_id, cpu_callout_map);
669 
670 	/* loop over all the extended VIC CPUs and boot them.  The
671 	 * Quad CPUs must be bootstrapped by their extended VIC cpu */
672 	for (i = 0; i < nr_cpu_ids; i++) {
673 		if (i == boot_cpu_id || !cpu_isset(i, voyager_phys_cpu_present_map))
674 			continue;
675 		do_boot_cpu(i);
676 		/* This udelay seems to be needed for the Quad boots
677 		 * don't remove unless you know what you're doing */
678 		udelay(1000);
679 	}
680 	/* we could compute the total bogomips here, but why bother?,
681 	 * Code added from smpboot.c */
682 	{
683 		unsigned long bogosum = 0;
684 
685 		for_each_online_cpu(i)
686 			bogosum += cpu_data(i).loops_per_jiffy;
687 		printk(KERN_INFO "Total of %d processors activated "
688 		       "(%lu.%02lu BogoMIPS).\n",
689 		       cpucount + 1, bogosum / (500000 / HZ),
690 		       (bogosum / (5000 / HZ)) % 100);
691 	}
692 	voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
693 	printk("VOYAGER: Extended (interrupt handling CPUs): "
694 	       "%d, non-extended: %d\n", voyager_extended_cpus,
695 	       num_booting_cpus() - voyager_extended_cpus);
696 	/* that's it, switch to symmetric mode */
697 	outb(0, VIC_PRIORITY_REGISTER);
698 	outb(0, VIC_CLAIM_REGISTER_0);
699 	outb(0, VIC_CLAIM_REGISTER_1);
700 
701 	VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
702 }
703 
704 /* Reload the secondary CPUs task structure (this function does not
705  * return ) */
initialize_secondary(void)706 static void __init initialize_secondary(void)
707 {
708 #if 0
709 	// AC kernels only
710 	set_current(hard_get_current());
711 #endif
712 
713 	/*
714 	 * We don't actually need to load the full TSS,
715 	 * basically just the stack pointer and the eip.
716 	 */
717 
718 	asm volatile ("movl %0,%%esp\n\t"
719 		      "jmp *%1"::"r" (current->thread.sp),
720 		      "r"(current->thread.ip));
721 }
722 
723 /* handle a Voyager SYS_INT -- If we don't, the base board will
724  * panic the system.
725  *
726  * System interrupts occur because some problem was detected on the
727  * various busses.  To find out what you have to probe all the
728  * hardware via the CAT bus.  FIXME: At the moment we do nothing. */
smp_vic_sys_interrupt(struct pt_regs * regs)729 void smp_vic_sys_interrupt(struct pt_regs *regs)
730 {
731 	ack_CPI(VIC_SYS_INT);
732 	printk("Voyager SYSTEM INTERRUPT\n");
733 }
734 
735 /* Handle a voyager CMN_INT; These interrupts occur either because of
736  * a system status change or because a single bit memory error
737  * occurred.  FIXME: At the moment, ignore all this. */
smp_vic_cmn_interrupt(struct pt_regs * regs)738 void smp_vic_cmn_interrupt(struct pt_regs *regs)
739 {
740 	static __u8 in_cmn_int = 0;
741 	static DEFINE_SPINLOCK(cmn_int_lock);
742 
743 	/* common ints are broadcast, so make sure we only do this once */
744 	_raw_spin_lock(&cmn_int_lock);
745 	if (in_cmn_int)
746 		goto unlock_end;
747 
748 	in_cmn_int++;
749 	_raw_spin_unlock(&cmn_int_lock);
750 
751 	VDEBUG(("Voyager COMMON INTERRUPT\n"));
752 
753 	if (voyager_level == 5)
754 		voyager_cat_do_common_interrupt();
755 
756 	_raw_spin_lock(&cmn_int_lock);
757 	in_cmn_int = 0;
758       unlock_end:
759 	_raw_spin_unlock(&cmn_int_lock);
760 	ack_CPI(VIC_CMN_INT);
761 }
762 
763 /*
764  * Reschedule call back. Nothing to do, all the work is done
765  * automatically when we return from the interrupt.  */
smp_reschedule_interrupt(void)766 static void smp_reschedule_interrupt(void)
767 {
768 	/* do nothing */
769 }
770 
771 static struct mm_struct *flush_mm;
772 static unsigned long flush_va;
773 static DEFINE_SPINLOCK(tlbstate_lock);
774 
775 /*
776  * We cannot call mmdrop() because we are in interrupt context,
777  * instead update mm->cpu_vm_mask.
778  *
779  * We need to reload %cr3 since the page tables may be going
780  * away from under us..
781  */
voyager_leave_mm(unsigned long cpu)782 static inline void voyager_leave_mm(unsigned long cpu)
783 {
784 	if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
785 		BUG();
786 	cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
787 	load_cr3(swapper_pg_dir);
788 }
789 
790 /*
791  * Invalidate call-back
792  */
smp_invalidate_interrupt(void)793 static void smp_invalidate_interrupt(void)
794 {
795 	__u8 cpu = smp_processor_id();
796 
797 	if (!test_bit(cpu, &smp_invalidate_needed))
798 		return;
799 	/* This will flood messages.  Don't uncomment unless you see
800 	 * Problems with cross cpu invalidation
801 	 VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
802 	 smp_processor_id()));
803 	 */
804 
805 	if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
806 		if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
807 			if (flush_va == TLB_FLUSH_ALL)
808 				local_flush_tlb();
809 			else
810 				__flush_tlb_one(flush_va);
811 		} else
812 			voyager_leave_mm(cpu);
813 	}
814 	smp_mb__before_clear_bit();
815 	clear_bit(cpu, &smp_invalidate_needed);
816 	smp_mb__after_clear_bit();
817 }
818 
819 /* All the new flush operations for 2.4 */
820 
821 /* This routine is called with a physical cpu mask */
822 static void
voyager_flush_tlb_others(unsigned long cpumask,struct mm_struct * mm,unsigned long va)823 voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
824 			 unsigned long va)
825 {
826 	int stuck = 50000;
827 
828 	if (!cpumask)
829 		BUG();
830 	if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
831 		BUG();
832 	if (cpumask & (1 << smp_processor_id()))
833 		BUG();
834 	if (!mm)
835 		BUG();
836 
837 	spin_lock(&tlbstate_lock);
838 
839 	flush_mm = mm;
840 	flush_va = va;
841 	atomic_set_mask(cpumask, &smp_invalidate_needed);
842 	/*
843 	 * We have to send the CPI only to
844 	 * CPUs affected.
845 	 */
846 	send_CPI(cpumask, VIC_INVALIDATE_CPI);
847 
848 	while (smp_invalidate_needed) {
849 		mb();
850 		if (--stuck == 0) {
851 			printk("***WARNING*** Stuck doing invalidate CPI "
852 			       "(CPU%d)\n", smp_processor_id());
853 			break;
854 		}
855 	}
856 
857 	/* Uncomment only to debug invalidation problems
858 	   VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
859 	 */
860 
861 	flush_mm = NULL;
862 	flush_va = 0;
863 	spin_unlock(&tlbstate_lock);
864 }
865 
flush_tlb_current_task(void)866 void flush_tlb_current_task(void)
867 {
868 	struct mm_struct *mm = current->mm;
869 	unsigned long cpu_mask;
870 
871 	preempt_disable();
872 
873 	cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
874 	local_flush_tlb();
875 	if (cpu_mask)
876 		voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
877 
878 	preempt_enable();
879 }
880 
flush_tlb_mm(struct mm_struct * mm)881 void flush_tlb_mm(struct mm_struct *mm)
882 {
883 	unsigned long cpu_mask;
884 
885 	preempt_disable();
886 
887 	cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
888 
889 	if (current->active_mm == mm) {
890 		if (current->mm)
891 			local_flush_tlb();
892 		else
893 			voyager_leave_mm(smp_processor_id());
894 	}
895 	if (cpu_mask)
896 		voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
897 
898 	preempt_enable();
899 }
900 
flush_tlb_page(struct vm_area_struct * vma,unsigned long va)901 void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
902 {
903 	struct mm_struct *mm = vma->vm_mm;
904 	unsigned long cpu_mask;
905 
906 	preempt_disable();
907 
908 	cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
909 	if (current->active_mm == mm) {
910 		if (current->mm)
911 			__flush_tlb_one(va);
912 		else
913 			voyager_leave_mm(smp_processor_id());
914 	}
915 
916 	if (cpu_mask)
917 		voyager_flush_tlb_others(cpu_mask, mm, va);
918 
919 	preempt_enable();
920 }
921 
922 EXPORT_SYMBOL(flush_tlb_page);
923 
924 /* enable the requested IRQs */
smp_enable_irq_interrupt(void)925 static void smp_enable_irq_interrupt(void)
926 {
927 	__u8 irq;
928 	__u8 cpu = get_cpu();
929 
930 	VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
931 		vic_irq_enable_mask[cpu]));
932 
933 	spin_lock(&vic_irq_lock);
934 	for (irq = 0; irq < 16; irq++) {
935 		if (vic_irq_enable_mask[cpu] & (1 << irq))
936 			enable_local_vic_irq(irq);
937 	}
938 	vic_irq_enable_mask[cpu] = 0;
939 	spin_unlock(&vic_irq_lock);
940 
941 	put_cpu_no_resched();
942 }
943 
944 /*
945  *	CPU halt call-back
946  */
smp_stop_cpu_function(void * dummy)947 static void smp_stop_cpu_function(void *dummy)
948 {
949 	VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
950 	cpu_clear(smp_processor_id(), cpu_online_map);
951 	local_irq_disable();
952 	for (;;)
953 		halt();
954 }
955 
956 /* execute a thread on a new CPU.  The function to be called must be
957  * previously set up.  This is used to schedule a function for
958  * execution on all CPUs - set up the function then broadcast a
959  * function_interrupt CPI to come here on each CPU */
smp_call_function_interrupt(void)960 static void smp_call_function_interrupt(void)
961 {
962 	irq_enter();
963 	generic_smp_call_function_interrupt();
964 	__get_cpu_var(irq_stat).irq_call_count++;
965 	irq_exit();
966 }
967 
smp_call_function_single_interrupt(void)968 static void smp_call_function_single_interrupt(void)
969 {
970 	irq_enter();
971 	generic_smp_call_function_single_interrupt();
972 	__get_cpu_var(irq_stat).irq_call_count++;
973 	irq_exit();
974 }
975 
976 /* Sorry about the name.  In an APIC based system, the APICs
977  * themselves are programmed to send a timer interrupt.  This is used
978  * by linux to reschedule the processor.  Voyager doesn't have this,
979  * so we use the system clock to interrupt one processor, which in
980  * turn, broadcasts a timer CPI to all the others --- we receive that
981  * CPI here.  We don't use this actually for counting so losing
982  * ticks doesn't matter
983  *
984  * FIXME: For those CPUs which actually have a local APIC, we could
985  * try to use it to trigger this interrupt instead of having to
986  * broadcast the timer tick.  Unfortunately, all my pentium DYADs have
987  * no local APIC, so I can't do this
988  *
989  * This function is currently a placeholder and is unused in the code */
smp_apic_timer_interrupt(struct pt_regs * regs)990 void smp_apic_timer_interrupt(struct pt_regs *regs)
991 {
992 	struct pt_regs *old_regs = set_irq_regs(regs);
993 	wrapper_smp_local_timer_interrupt();
994 	set_irq_regs(old_regs);
995 }
996 
997 /* All of the QUAD interrupt GATES */
smp_qic_timer_interrupt(struct pt_regs * regs)998 void smp_qic_timer_interrupt(struct pt_regs *regs)
999 {
1000 	struct pt_regs *old_regs = set_irq_regs(regs);
1001 	ack_QIC_CPI(QIC_TIMER_CPI);
1002 	wrapper_smp_local_timer_interrupt();
1003 	set_irq_regs(old_regs);
1004 }
1005 
smp_qic_invalidate_interrupt(struct pt_regs * regs)1006 void smp_qic_invalidate_interrupt(struct pt_regs *regs)
1007 {
1008 	ack_QIC_CPI(QIC_INVALIDATE_CPI);
1009 	smp_invalidate_interrupt();
1010 }
1011 
smp_qic_reschedule_interrupt(struct pt_regs * regs)1012 void smp_qic_reschedule_interrupt(struct pt_regs *regs)
1013 {
1014 	ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1015 	smp_reschedule_interrupt();
1016 }
1017 
smp_qic_enable_irq_interrupt(struct pt_regs * regs)1018 void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1019 {
1020 	ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1021 	smp_enable_irq_interrupt();
1022 }
1023 
smp_qic_call_function_interrupt(struct pt_regs * regs)1024 void smp_qic_call_function_interrupt(struct pt_regs *regs)
1025 {
1026 	ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1027 	smp_call_function_interrupt();
1028 }
1029 
smp_qic_call_function_single_interrupt(struct pt_regs * regs)1030 void smp_qic_call_function_single_interrupt(struct pt_regs *regs)
1031 {
1032 	ack_QIC_CPI(QIC_CALL_FUNCTION_SINGLE_CPI);
1033 	smp_call_function_single_interrupt();
1034 }
1035 
smp_vic_cpi_interrupt(struct pt_regs * regs)1036 void smp_vic_cpi_interrupt(struct pt_regs *regs)
1037 {
1038 	struct pt_regs *old_regs = set_irq_regs(regs);
1039 	__u8 cpu = smp_processor_id();
1040 
1041 	if (is_cpu_quad())
1042 		ack_QIC_CPI(VIC_CPI_LEVEL0);
1043 	else
1044 		ack_VIC_CPI(VIC_CPI_LEVEL0);
1045 
1046 	if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1047 		wrapper_smp_local_timer_interrupt();
1048 	if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1049 		smp_invalidate_interrupt();
1050 	if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1051 		smp_reschedule_interrupt();
1052 	if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1053 		smp_enable_irq_interrupt();
1054 	if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1055 		smp_call_function_interrupt();
1056 	if (test_and_clear_bit(VIC_CALL_FUNCTION_SINGLE_CPI, &vic_cpi_mailbox[cpu]))
1057 		smp_call_function_single_interrupt();
1058 	set_irq_regs(old_regs);
1059 }
1060 
do_flush_tlb_all(void * info)1061 static void do_flush_tlb_all(void *info)
1062 {
1063 	unsigned long cpu = smp_processor_id();
1064 
1065 	__flush_tlb_all();
1066 	if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1067 		voyager_leave_mm(cpu);
1068 }
1069 
1070 /* flush the TLB of every active CPU in the system */
flush_tlb_all(void)1071 void flush_tlb_all(void)
1072 {
1073 	on_each_cpu(do_flush_tlb_all, 0, 1);
1074 }
1075 
1076 /* send a reschedule CPI to one CPU by physical CPU number*/
voyager_smp_send_reschedule(int cpu)1077 static void voyager_smp_send_reschedule(int cpu)
1078 {
1079 	send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1080 }
1081 
hard_smp_processor_id(void)1082 int hard_smp_processor_id(void)
1083 {
1084 	__u8 i;
1085 	__u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1086 	if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1087 		return cpumask & 0x1F;
1088 
1089 	for (i = 0; i < 8; i++) {
1090 		if (cpumask & (1 << i))
1091 			return i;
1092 	}
1093 	printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1094 	return 0;
1095 }
1096 
safe_smp_processor_id(void)1097 int safe_smp_processor_id(void)
1098 {
1099 	return hard_smp_processor_id();
1100 }
1101 
1102 /* broadcast a halt to all other CPUs */
voyager_smp_send_stop(void)1103 static void voyager_smp_send_stop(void)
1104 {
1105 	smp_call_function(smp_stop_cpu_function, NULL, 1);
1106 }
1107 
1108 /* this function is triggered in time.c when a clock tick fires
1109  * we need to re-broadcast the tick to all CPUs */
smp_vic_timer_interrupt(void)1110 void smp_vic_timer_interrupt(void)
1111 {
1112 	send_CPI_allbutself(VIC_TIMER_CPI);
1113 	smp_local_timer_interrupt();
1114 }
1115 
1116 /* local (per CPU) timer interrupt.  It does both profiling and
1117  * process statistics/rescheduling.
1118  *
1119  * We do profiling in every local tick, statistics/rescheduling
1120  * happen only every 'profiling multiplier' ticks. The default
1121  * multiplier is 1 and it can be changed by writing the new multiplier
1122  * value into /proc/profile.
1123  */
smp_local_timer_interrupt(void)1124 void smp_local_timer_interrupt(void)
1125 {
1126 	int cpu = smp_processor_id();
1127 	long weight;
1128 
1129 	profile_tick(CPU_PROFILING);
1130 	if (--per_cpu(prof_counter, cpu) <= 0) {
1131 		/*
1132 		 * The multiplier may have changed since the last time we got
1133 		 * to this point as a result of the user writing to
1134 		 * /proc/profile. In this case we need to adjust the APIC
1135 		 * timer accordingly.
1136 		 *
1137 		 * Interrupts are already masked off at this point.
1138 		 */
1139 		per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
1140 		if (per_cpu(prof_counter, cpu) !=
1141 		    per_cpu(prof_old_multiplier, cpu)) {
1142 			/* FIXME: need to update the vic timer tick here */
1143 			per_cpu(prof_old_multiplier, cpu) =
1144 			    per_cpu(prof_counter, cpu);
1145 		}
1146 
1147 		update_process_times(user_mode_vm(get_irq_regs()));
1148 	}
1149 
1150 	if (((1 << cpu) & voyager_extended_vic_processors) == 0)
1151 		/* only extended VIC processors participate in
1152 		 * interrupt distribution */
1153 		return;
1154 
1155 	/*
1156 	 * We take the 'long' return path, and there every subsystem
1157 	 * grabs the appropriate locks (kernel lock/ irq lock).
1158 	 *
1159 	 * we might want to decouple profiling from the 'long path',
1160 	 * and do the profiling totally in assembly.
1161 	 *
1162 	 * Currently this isn't too much of an issue (performance wise),
1163 	 * we can take more than 100K local irqs per second on a 100 MHz P5.
1164 	 */
1165 
1166 	if ((++vic_tick[cpu] & 0x7) != 0)
1167 		return;
1168 	/* get here every 16 ticks (about every 1/6 of a second) */
1169 
1170 	/* Change our priority to give someone else a chance at getting
1171 	 * the IRQ. The algorithm goes like this:
1172 	 *
1173 	 * In the VIC, the dynamically routed interrupt is always
1174 	 * handled by the lowest priority eligible (i.e. receiving
1175 	 * interrupts) CPU.  If >1 eligible CPUs are equal lowest, the
1176 	 * lowest processor number gets it.
1177 	 *
1178 	 * The priority of a CPU is controlled by a special per-CPU
1179 	 * VIC priority register which is 3 bits wide 0 being lowest
1180 	 * and 7 highest priority..
1181 	 *
1182 	 * Therefore we subtract the average number of interrupts from
1183 	 * the number we've fielded.  If this number is negative, we
1184 	 * lower the activity count and if it is positive, we raise
1185 	 * it.
1186 	 *
1187 	 * I'm afraid this still leads to odd looking interrupt counts:
1188 	 * the totals are all roughly equal, but the individual ones
1189 	 * look rather skewed.
1190 	 *
1191 	 * FIXME: This algorithm is total crap when mixed with SMP
1192 	 * affinity code since we now try to even up the interrupt
1193 	 * counts when an affinity binding is keeping them on a
1194 	 * particular CPU*/
1195 	weight = (vic_intr_count[cpu] * voyager_extended_cpus
1196 		  - vic_intr_total) >> 4;
1197 	weight += 4;
1198 	if (weight > 7)
1199 		weight = 7;
1200 	if (weight < 0)
1201 		weight = 0;
1202 
1203 	outb((__u8) weight, VIC_PRIORITY_REGISTER);
1204 
1205 #ifdef VOYAGER_DEBUG
1206 	if ((vic_tick[cpu] & 0xFFF) == 0) {
1207 		/* print this message roughly every 25 secs */
1208 		printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1209 		       cpu, vic_tick[cpu], weight);
1210 	}
1211 #endif
1212 }
1213 
1214 /* setup the profiling timer */
setup_profiling_timer(unsigned int multiplier)1215 int setup_profiling_timer(unsigned int multiplier)
1216 {
1217 	int i;
1218 
1219 	if ((!multiplier))
1220 		return -EINVAL;
1221 
1222 	/*
1223 	 * Set the new multiplier for each CPU. CPUs don't start using the
1224 	 * new values until the next timer interrupt in which they do process
1225 	 * accounting.
1226 	 */
1227 	for (i = 0; i < nr_cpu_ids; ++i)
1228 		per_cpu(prof_multiplier, i) = multiplier;
1229 
1230 	return 0;
1231 }
1232 
1233 /* This is a bit of a mess, but forced on us by the genirq changes
1234  * there's no genirq handler that really does what voyager wants
1235  * so hack it up with the simple IRQ handler */
handle_vic_irq(unsigned int irq,struct irq_desc * desc)1236 static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1237 {
1238 	before_handle_vic_irq(irq);
1239 	handle_simple_irq(irq, desc);
1240 	after_handle_vic_irq(irq);
1241 }
1242 
1243 /*  The CPIs are handled in the per cpu 8259s, so they must be
1244  *  enabled to be received: FIX: enabling the CPIs in the early
1245  *  boot sequence interferes with bug checking; enable them later
1246  *  on in smp_init */
1247 #define VIC_SET_GATE(cpi, vector) \
1248 	set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1249 #define QIC_SET_GATE(cpi, vector) \
1250 	set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1251 
voyager_smp_intr_init(void)1252 void __init voyager_smp_intr_init(void)
1253 {
1254 	int i;
1255 
1256 	/* initialize the per cpu irq mask to all disabled */
1257 	for (i = 0; i < nr_cpu_ids; i++)
1258 		vic_irq_mask[i] = 0xFFFF;
1259 
1260 	VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1261 
1262 	VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1263 	VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1264 
1265 	QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1266 	QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1267 	QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1268 	QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1269 	QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1270 
1271 	/* now put the VIC descriptor into the first 48 IRQs
1272 	 *
1273 	 * This is for later: first 16 correspond to PC IRQs; next 16
1274 	 * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1275 	for (i = 0; i < 48; i++)
1276 		set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1277 }
1278 
1279 /* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1280  * processor to receive CPI */
send_CPI(__u32 cpuset,__u8 cpi)1281 static void send_CPI(__u32 cpuset, __u8 cpi)
1282 {
1283 	int cpu;
1284 	__u32 quad_cpuset = (cpuset & voyager_quad_processors);
1285 
1286 	if (cpi < VIC_START_FAKE_CPI) {
1287 		/* fake CPI are only used for booting, so send to the
1288 		 * extended quads as well---Quads must be VIC booted */
1289 		outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
1290 		return;
1291 	}
1292 	if (quad_cpuset)
1293 		send_QIC_CPI(quad_cpuset, cpi);
1294 	cpuset &= ~quad_cpuset;
1295 	cpuset &= 0xff;		/* only first 8 CPUs vaild for VIC CPI */
1296 	if (cpuset == 0)
1297 		return;
1298 	for_each_online_cpu(cpu) {
1299 		if (cpuset & (1 << cpu))
1300 			set_bit(cpi, &vic_cpi_mailbox[cpu]);
1301 	}
1302 	if (cpuset)
1303 		outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1304 }
1305 
1306 /* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1307  * set the cache line to shared by reading it.
1308  *
1309  * DON'T make this inline otherwise the cache line read will be
1310  * optimised away
1311  * */
ack_QIC_CPI(__u8 cpi)1312 static int ack_QIC_CPI(__u8 cpi)
1313 {
1314 	__u8 cpu = hard_smp_processor_id();
1315 
1316 	cpi &= 7;
1317 
1318 	outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
1319 	return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1320 }
1321 
ack_special_QIC_CPI(__u8 cpi)1322 static void ack_special_QIC_CPI(__u8 cpi)
1323 {
1324 	switch (cpi) {
1325 	case VIC_CMN_INT:
1326 		outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1327 		break;
1328 	case VIC_SYS_INT:
1329 		outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1330 		break;
1331 	}
1332 	/* also clear at the VIC, just in case (nop for non-extended proc) */
1333 	ack_VIC_CPI(cpi);
1334 }
1335 
1336 /* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
ack_VIC_CPI(__u8 cpi)1337 static void ack_VIC_CPI(__u8 cpi)
1338 {
1339 #ifdef VOYAGER_DEBUG
1340 	unsigned long flags;
1341 	__u16 isr;
1342 	__u8 cpu = smp_processor_id();
1343 
1344 	local_irq_save(flags);
1345 	isr = vic_read_isr();
1346 	if ((isr & (1 << (cpi & 7))) == 0) {
1347 		printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1348 	}
1349 #endif
1350 	/* send specific EOI; the two system interrupts have
1351 	 * bit 4 set for a separate vector but behave as the
1352 	 * corresponding 3 bit intr */
1353 	outb_p(0x60 | (cpi & 7), 0x20);
1354 
1355 #ifdef VOYAGER_DEBUG
1356 	if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
1357 		printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1358 	}
1359 	local_irq_restore(flags);
1360 #endif
1361 }
1362 
1363 /* cribbed with thanks from irq.c */
1364 #define __byte(x,y)	(((unsigned char *)&(y))[x])
1365 #define cached_21(cpu)	(__byte(0,vic_irq_mask[cpu]))
1366 #define cached_A1(cpu)	(__byte(1,vic_irq_mask[cpu]))
1367 
startup_vic_irq(unsigned int irq)1368 static unsigned int startup_vic_irq(unsigned int irq)
1369 {
1370 	unmask_vic_irq(irq);
1371 
1372 	return 0;
1373 }
1374 
1375 /* The enable and disable routines.  This is where we run into
1376  * conflicting architectural philosophy.  Fundamentally, the voyager
1377  * architecture does not expect to have to disable interrupts globally
1378  * (the IRQ controllers belong to each CPU).  The processor masquerade
1379  * which is used to start the system shouldn't be used in a running OS
1380  * since it will cause great confusion if two separate CPUs drive to
1381  * the same IRQ controller (I know, I've tried it).
1382  *
1383  * The solution is a variant on the NCR lazy SPL design:
1384  *
1385  * 1) To disable an interrupt, do nothing (other than set the
1386  *    IRQ_DISABLED flag).  This dares the interrupt actually to arrive.
1387  *
1388  * 2) If the interrupt dares to come in, raise the local mask against
1389  *    it (this will result in all the CPU masks being raised
1390  *    eventually).
1391  *
1392  * 3) To enable the interrupt, lower the mask on the local CPU and
1393  *    broadcast an Interrupt enable CPI which causes all other CPUs to
1394  *    adjust their masks accordingly.  */
1395 
unmask_vic_irq(unsigned int irq)1396 static void unmask_vic_irq(unsigned int irq)
1397 {
1398 	/* linux doesn't to processor-irq affinity, so enable on
1399 	 * all CPUs we know about */
1400 	int cpu = smp_processor_id(), real_cpu;
1401 	__u16 mask = (1 << irq);
1402 	__u32 processorList = 0;
1403 	unsigned long flags;
1404 
1405 	VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1406 		irq, cpu, cpu_irq_affinity[cpu]));
1407 	spin_lock_irqsave(&vic_irq_lock, flags);
1408 	for_each_online_cpu(real_cpu) {
1409 		if (!(voyager_extended_vic_processors & (1 << real_cpu)))
1410 			continue;
1411 		if (!(cpu_irq_affinity[real_cpu] & mask)) {
1412 			/* irq has no affinity for this CPU, ignore */
1413 			continue;
1414 		}
1415 		if (real_cpu == cpu) {
1416 			enable_local_vic_irq(irq);
1417 		} else if (vic_irq_mask[real_cpu] & mask) {
1418 			vic_irq_enable_mask[real_cpu] |= mask;
1419 			processorList |= (1 << real_cpu);
1420 		}
1421 	}
1422 	spin_unlock_irqrestore(&vic_irq_lock, flags);
1423 	if (processorList)
1424 		send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1425 }
1426 
mask_vic_irq(unsigned int irq)1427 static void mask_vic_irq(unsigned int irq)
1428 {
1429 	/* lazy disable, do nothing */
1430 }
1431 
enable_local_vic_irq(unsigned int irq)1432 static void enable_local_vic_irq(unsigned int irq)
1433 {
1434 	__u8 cpu = smp_processor_id();
1435 	__u16 mask = ~(1 << irq);
1436 	__u16 old_mask = vic_irq_mask[cpu];
1437 
1438 	vic_irq_mask[cpu] &= mask;
1439 	if (vic_irq_mask[cpu] == old_mask)
1440 		return;
1441 
1442 	VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1443 		irq, cpu));
1444 
1445 	if (irq & 8) {
1446 		outb_p(cached_A1(cpu), 0xA1);
1447 		(void)inb_p(0xA1);
1448 	} else {
1449 		outb_p(cached_21(cpu), 0x21);
1450 		(void)inb_p(0x21);
1451 	}
1452 }
1453 
disable_local_vic_irq(unsigned int irq)1454 static void disable_local_vic_irq(unsigned int irq)
1455 {
1456 	__u8 cpu = smp_processor_id();
1457 	__u16 mask = (1 << irq);
1458 	__u16 old_mask = vic_irq_mask[cpu];
1459 
1460 	if (irq == 7)
1461 		return;
1462 
1463 	vic_irq_mask[cpu] |= mask;
1464 	if (old_mask == vic_irq_mask[cpu])
1465 		return;
1466 
1467 	VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1468 		irq, cpu));
1469 
1470 	if (irq & 8) {
1471 		outb_p(cached_A1(cpu), 0xA1);
1472 		(void)inb_p(0xA1);
1473 	} else {
1474 		outb_p(cached_21(cpu), 0x21);
1475 		(void)inb_p(0x21);
1476 	}
1477 }
1478 
1479 /* The VIC is level triggered, so the ack can only be issued after the
1480  * interrupt completes.  However, we do Voyager lazy interrupt
1481  * handling here: It is an extremely expensive operation to mask an
1482  * interrupt in the vic, so we merely set a flag (IRQ_DISABLED).  If
1483  * this interrupt actually comes in, then we mask and ack here to push
1484  * the interrupt off to another CPU */
before_handle_vic_irq(unsigned int irq)1485 static void before_handle_vic_irq(unsigned int irq)
1486 {
1487 	irq_desc_t *desc = irq_to_desc(irq);
1488 	__u8 cpu = smp_processor_id();
1489 
1490 	_raw_spin_lock(&vic_irq_lock);
1491 	vic_intr_total++;
1492 	vic_intr_count[cpu]++;
1493 
1494 	if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
1495 		/* The irq is not in our affinity mask, push it off
1496 		 * onto another CPU */
1497 		VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
1498 			"on cpu %d\n", irq, cpu));
1499 		disable_local_vic_irq(irq);
1500 		/* set IRQ_INPROGRESS to prevent the handler in irq.c from
1501 		 * actually calling the interrupt routine */
1502 		desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1503 	} else if (desc->status & IRQ_DISABLED) {
1504 		/* Damn, the interrupt actually arrived, do the lazy
1505 		 * disable thing. The interrupt routine in irq.c will
1506 		 * not handle a IRQ_DISABLED interrupt, so nothing more
1507 		 * need be done here */
1508 		VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1509 			irq, cpu));
1510 		disable_local_vic_irq(irq);
1511 		desc->status |= IRQ_REPLAY;
1512 	} else {
1513 		desc->status &= ~IRQ_REPLAY;
1514 	}
1515 
1516 	_raw_spin_unlock(&vic_irq_lock);
1517 }
1518 
1519 /* Finish the VIC interrupt: basically mask */
after_handle_vic_irq(unsigned int irq)1520 static void after_handle_vic_irq(unsigned int irq)
1521 {
1522 	irq_desc_t *desc = irq_to_desc(irq);
1523 
1524 	_raw_spin_lock(&vic_irq_lock);
1525 	{
1526 		unsigned int status = desc->status & ~IRQ_INPROGRESS;
1527 #ifdef VOYAGER_DEBUG
1528 		__u16 isr;
1529 #endif
1530 
1531 		desc->status = status;
1532 		if ((status & IRQ_DISABLED))
1533 			disable_local_vic_irq(irq);
1534 #ifdef VOYAGER_DEBUG
1535 		/* DEBUG: before we ack, check what's in progress */
1536 		isr = vic_read_isr();
1537 		if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
1538 			int i;
1539 			__u8 cpu = smp_processor_id();
1540 			__u8 real_cpu;
1541 			int mask;	/* Um... initialize me??? --RR */
1542 
1543 			printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1544 			       cpu, irq);
1545 			for_each_possible_cpu(real_cpu, mask) {
1546 
1547 				outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1548 				     VIC_PROCESSOR_ID);
1549 				isr = vic_read_isr();
1550 				if (isr & (1 << irq)) {
1551 					printk
1552 					    ("VOYAGER SMP: CPU%d ack irq %d\n",
1553 					     real_cpu, irq);
1554 					ack_vic_irq(irq);
1555 				}
1556 				outb(cpu, VIC_PROCESSOR_ID);
1557 			}
1558 		}
1559 #endif /* VOYAGER_DEBUG */
1560 		/* as soon as we ack, the interrupt is eligible for
1561 		 * receipt by another CPU so everything must be in
1562 		 * order here  */
1563 		ack_vic_irq(irq);
1564 		if (status & IRQ_REPLAY) {
1565 			/* replay is set if we disable the interrupt
1566 			 * in the before_handle_vic_irq() routine, so
1567 			 * clear the in progress bit here to allow the
1568 			 * next CPU to handle this correctly */
1569 			desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1570 		}
1571 #ifdef VOYAGER_DEBUG
1572 		isr = vic_read_isr();
1573 		if ((isr & (1 << irq)) != 0)
1574 			printk("VOYAGER SMP: after_handle_vic_irq() after "
1575 			       "ack irq=%d, isr=0x%x\n", irq, isr);
1576 #endif /* VOYAGER_DEBUG */
1577 	}
1578 	_raw_spin_unlock(&vic_irq_lock);
1579 
1580 	/* All code after this point is out of the main path - the IRQ
1581 	 * may be intercepted by another CPU if reasserted */
1582 }
1583 
1584 /* Linux processor - interrupt affinity manipulations.
1585  *
1586  * For each processor, we maintain a 32 bit irq affinity mask.
1587  * Initially it is set to all 1's so every processor accepts every
1588  * interrupt.  In this call, we change the processor's affinity mask:
1589  *
1590  * Change from enable to disable:
1591  *
1592  * If the interrupt ever comes in to the processor, we will disable it
1593  * and ack it to push it off to another CPU, so just accept the mask here.
1594  *
1595  * Change from disable to enable:
1596  *
1597  * change the mask and then do an interrupt enable CPI to re-enable on
1598  * the selected processors */
1599 
set_vic_irq_affinity(unsigned int irq,const struct cpumask * mask)1600 void set_vic_irq_affinity(unsigned int irq, const struct cpumask *mask)
1601 {
1602 	/* Only extended processors handle interrupts */
1603 	unsigned long real_mask;
1604 	unsigned long irq_mask = 1 << irq;
1605 	int cpu;
1606 
1607 	real_mask = cpus_addr(*mask)[0] & voyager_extended_vic_processors;
1608 
1609 	if (cpus_addr(*mask)[0] == 0)
1610 		/* can't have no CPUs to accept the interrupt -- extremely
1611 		 * bad things will happen */
1612 		return;
1613 
1614 	if (irq == 0)
1615 		/* can't change the affinity of the timer IRQ.  This
1616 		 * is due to the constraint in the voyager
1617 		 * architecture that the CPI also comes in on and IRQ
1618 		 * line and we have chosen IRQ0 for this.  If you
1619 		 * raise the mask on this interrupt, the processor
1620 		 * will no-longer be able to accept VIC CPIs */
1621 		return;
1622 
1623 	if (irq >= 32)
1624 		/* You can only have 32 interrupts in a voyager system
1625 		 * (and 32 only if you have a secondary microchannel
1626 		 * bus) */
1627 		return;
1628 
1629 	for_each_online_cpu(cpu) {
1630 		unsigned long cpu_mask = 1 << cpu;
1631 
1632 		if (cpu_mask & real_mask) {
1633 			/* enable the interrupt for this cpu */
1634 			cpu_irq_affinity[cpu] |= irq_mask;
1635 		} else {
1636 			/* disable the interrupt for this cpu */
1637 			cpu_irq_affinity[cpu] &= ~irq_mask;
1638 		}
1639 	}
1640 	/* this is magic, we now have the correct affinity maps, so
1641 	 * enable the interrupt.  This will send an enable CPI to
1642 	 * those CPUs who need to enable it in their local masks,
1643 	 * causing them to correct for the new affinity . If the
1644 	 * interrupt is currently globally disabled, it will simply be
1645 	 * disabled again as it comes in (voyager lazy disable).  If
1646 	 * the affinity map is tightened to disable the interrupt on a
1647 	 * cpu, it will be pushed off when it comes in */
1648 	unmask_vic_irq(irq);
1649 }
1650 
ack_vic_irq(unsigned int irq)1651 static void ack_vic_irq(unsigned int irq)
1652 {
1653 	if (irq & 8) {
1654 		outb(0x62, 0x20);	/* Specific EOI to cascade */
1655 		outb(0x60 | (irq & 7), 0xA0);
1656 	} else {
1657 		outb(0x60 | (irq & 7), 0x20);
1658 	}
1659 }
1660 
1661 /* enable the CPIs.  In the VIC, the CPIs are delivered by the 8259
1662  * but are not vectored by it.  This means that the 8259 mask must be
1663  * lowered to receive them */
vic_enable_cpi(void)1664 static __init void vic_enable_cpi(void)
1665 {
1666 	__u8 cpu = smp_processor_id();
1667 
1668 	/* just take a copy of the current mask (nop for boot cpu) */
1669 	vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1670 
1671 	enable_local_vic_irq(VIC_CPI_LEVEL0);
1672 	enable_local_vic_irq(VIC_CPI_LEVEL1);
1673 	/* for sys int and cmn int */
1674 	enable_local_vic_irq(7);
1675 
1676 	if (is_cpu_quad()) {
1677 		outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1678 		outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1679 		VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1680 			cpu, QIC_CPI_ENABLE));
1681 	}
1682 
1683 	VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1684 		cpu, vic_irq_mask[cpu]));
1685 }
1686 
voyager_smp_dump()1687 void voyager_smp_dump()
1688 {
1689 	int old_cpu = smp_processor_id(), cpu;
1690 
1691 	/* dump the interrupt masks of each processor */
1692 	for_each_online_cpu(cpu) {
1693 		__u16 imr, isr, irr;
1694 		unsigned long flags;
1695 
1696 		local_irq_save(flags);
1697 		outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1698 		imr = (inb(0xa1) << 8) | inb(0x21);
1699 		outb(0x0a, 0xa0);
1700 		irr = inb(0xa0) << 8;
1701 		outb(0x0a, 0x20);
1702 		irr |= inb(0x20);
1703 		outb(0x0b, 0xa0);
1704 		isr = inb(0xa0) << 8;
1705 		outb(0x0b, 0x20);
1706 		isr |= inb(0x20);
1707 		outb(old_cpu, VIC_PROCESSOR_ID);
1708 		local_irq_restore(flags);
1709 		printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1710 		       cpu, vic_irq_mask[cpu], imr, irr, isr);
1711 #if 0
1712 		/* These lines are put in to try to unstick an un ack'd irq */
1713 		if (isr != 0) {
1714 			int irq;
1715 			for (irq = 0; irq < 16; irq++) {
1716 				if (isr & (1 << irq)) {
1717 					printk("\tCPU%d: ack irq %d\n",
1718 					       cpu, irq);
1719 					local_irq_save(flags);
1720 					outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1721 					     VIC_PROCESSOR_ID);
1722 					ack_vic_irq(irq);
1723 					outb(old_cpu, VIC_PROCESSOR_ID);
1724 					local_irq_restore(flags);
1725 				}
1726 			}
1727 		}
1728 #endif
1729 	}
1730 }
1731 
smp_voyager_power_off(void * dummy)1732 void smp_voyager_power_off(void *dummy)
1733 {
1734 	if (smp_processor_id() == boot_cpu_id)
1735 		voyager_power_off();
1736 	else
1737 		smp_stop_cpu_function(NULL);
1738 }
1739 
voyager_smp_prepare_cpus(unsigned int max_cpus)1740 static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
1741 {
1742 	/* FIXME: ignore max_cpus for now */
1743 	smp_boot_cpus();
1744 }
1745 
voyager_smp_prepare_boot_cpu(void)1746 static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1747 {
1748 	init_gdt(smp_processor_id());
1749 	switch_to_new_gdt();
1750 
1751 	cpu_online_map = cpumask_of_cpu(smp_processor_id());
1752 	cpu_callout_map = cpumask_of_cpu(smp_processor_id());
1753 	cpu_callin_map = CPU_MASK_NONE;
1754 	cpu_present_map = cpumask_of_cpu(smp_processor_id());
1755 
1756 }
1757 
voyager_cpu_up(unsigned int cpu)1758 static int __cpuinit voyager_cpu_up(unsigned int cpu)
1759 {
1760 	/* This only works at boot for x86.  See "rewrite" above. */
1761 	if (cpu_isset(cpu, smp_commenced_mask))
1762 		return -ENOSYS;
1763 
1764 	/* In case one didn't come up */
1765 	if (!cpu_isset(cpu, cpu_callin_map))
1766 		return -EIO;
1767 	/* Unleash the CPU! */
1768 	cpu_set(cpu, smp_commenced_mask);
1769 	while (!cpu_online(cpu))
1770 		mb();
1771 	return 0;
1772 }
1773 
voyager_smp_cpus_done(unsigned int max_cpus)1774 static void __init voyager_smp_cpus_done(unsigned int max_cpus)
1775 {
1776 	zap_low_mappings();
1777 }
1778 
smp_setup_processor_id(void)1779 void __init smp_setup_processor_id(void)
1780 {
1781 	current_thread_info()->cpu = hard_smp_processor_id();
1782 	x86_write_percpu(cpu_number, hard_smp_processor_id());
1783 }
1784 
voyager_send_call_func(const struct cpumask * callmask)1785 static void voyager_send_call_func(const struct cpumask *callmask)
1786 {
1787 	__u32 mask = cpus_addr(*callmask)[0] & ~(1 << smp_processor_id());
1788 	send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1789 }
1790 
voyager_send_call_func_single(int cpu)1791 static void voyager_send_call_func_single(int cpu)
1792 {
1793 	send_CPI(1 << cpu, VIC_CALL_FUNCTION_SINGLE_CPI);
1794 }
1795 
1796 struct smp_ops smp_ops = {
1797 	.smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1798 	.smp_prepare_cpus = voyager_smp_prepare_cpus,
1799 	.cpu_up = voyager_cpu_up,
1800 	.smp_cpus_done = voyager_smp_cpus_done,
1801 
1802 	.smp_send_stop = voyager_smp_send_stop,
1803 	.smp_send_reschedule = voyager_smp_send_reschedule,
1804 
1805 	.send_call_func_ipi = voyager_send_call_func,
1806 	.send_call_func_single_ipi = voyager_send_call_func_single,
1807 };
1808