1 /*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16
17 #include <asm/pvclock.h>
18 #include <asm/xen/hypervisor.h>
19 #include <asm/xen/hypercall.h>
20
21 #include <xen/events.h>
22 #include <xen/interface/xen.h>
23 #include <xen/interface/vcpu.h>
24
25 #include "xen-ops.h"
26
27 #define XEN_SHIFT 22
28
29 /* Xen may fire a timer up to this many ns early */
30 #define TIMER_SLOP 100000
31 #define NS_PER_TICK (1000000000LL / HZ)
32
33 /* runstate info updated by Xen */
34 static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate);
35
36 /* snapshots of runstate info */
37 static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot);
38
39 /* unused ns of stolen and blocked time */
40 static DEFINE_PER_CPU(u64, residual_stolen);
41 static DEFINE_PER_CPU(u64, residual_blocked);
42
43 /* return an consistent snapshot of 64-bit time/counter value */
get64(const u64 * p)44 static u64 get64(const u64 *p)
45 {
46 u64 ret;
47
48 if (BITS_PER_LONG < 64) {
49 u32 *p32 = (u32 *)p;
50 u32 h, l;
51
52 /*
53 * Read high then low, and then make sure high is
54 * still the same; this will only loop if low wraps
55 * and carries into high.
56 * XXX some clean way to make this endian-proof?
57 */
58 do {
59 h = p32[1];
60 barrier();
61 l = p32[0];
62 barrier();
63 } while (p32[1] != h);
64
65 ret = (((u64)h) << 32) | l;
66 } else
67 ret = *p;
68
69 return ret;
70 }
71
72 /*
73 * Runstate accounting
74 */
get_runstate_snapshot(struct vcpu_runstate_info * res)75 static void get_runstate_snapshot(struct vcpu_runstate_info *res)
76 {
77 u64 state_time;
78 struct vcpu_runstate_info *state;
79
80 BUG_ON(preemptible());
81
82 state = &__get_cpu_var(runstate);
83
84 /*
85 * The runstate info is always updated by the hypervisor on
86 * the current CPU, so there's no need to use anything
87 * stronger than a compiler barrier when fetching it.
88 */
89 do {
90 state_time = get64(&state->state_entry_time);
91 barrier();
92 *res = *state;
93 barrier();
94 } while (get64(&state->state_entry_time) != state_time);
95 }
96
97 /* return true when a vcpu could run but has no real cpu to run on */
xen_vcpu_stolen(int vcpu)98 bool xen_vcpu_stolen(int vcpu)
99 {
100 return per_cpu(runstate, vcpu).state == RUNSTATE_runnable;
101 }
102
setup_runstate_info(int cpu)103 static void setup_runstate_info(int cpu)
104 {
105 struct vcpu_register_runstate_memory_area area;
106
107 area.addr.v = &per_cpu(runstate, cpu);
108
109 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
110 cpu, &area))
111 BUG();
112 }
113
do_stolen_accounting(void)114 static void do_stolen_accounting(void)
115 {
116 struct vcpu_runstate_info state;
117 struct vcpu_runstate_info *snap;
118 s64 blocked, runnable, offline, stolen;
119 cputime_t ticks;
120
121 get_runstate_snapshot(&state);
122
123 WARN_ON(state.state != RUNSTATE_running);
124
125 snap = &__get_cpu_var(runstate_snapshot);
126
127 /* work out how much time the VCPU has not been runn*ing* */
128 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
129 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131
132 *snap = state;
133
134 /* Add the appropriate number of ticks of stolen time,
135 including any left-overs from last time. */
136 stolen = runnable + offline + __get_cpu_var(residual_stolen);
137
138 if (stolen < 0)
139 stolen = 0;
140
141 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
142 __get_cpu_var(residual_stolen) = stolen;
143 account_steal_ticks(ticks);
144
145 /* Add the appropriate number of ticks of blocked time,
146 including any left-overs from last time. */
147 blocked += __get_cpu_var(residual_blocked);
148
149 if (blocked < 0)
150 blocked = 0;
151
152 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
153 __get_cpu_var(residual_blocked) = blocked;
154 account_idle_ticks(ticks);
155 }
156
157 /*
158 * Xen sched_clock implementation. Returns the number of unstolen
159 * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED
160 * states.
161 */
xen_sched_clock(void)162 unsigned long long xen_sched_clock(void)
163 {
164 struct vcpu_runstate_info state;
165 cycle_t now;
166 u64 ret;
167 s64 offset;
168
169 /*
170 * Ideally sched_clock should be called on a per-cpu basis
171 * anyway, so preempt should already be disabled, but that's
172 * not current practice at the moment.
173 */
174 preempt_disable();
175
176 now = xen_clocksource_read();
177
178 get_runstate_snapshot(&state);
179
180 WARN_ON(state.state != RUNSTATE_running);
181
182 offset = now - state.state_entry_time;
183 if (offset < 0)
184 offset = 0;
185
186 ret = state.time[RUNSTATE_blocked] +
187 state.time[RUNSTATE_running] +
188 offset;
189
190 preempt_enable();
191
192 return ret;
193 }
194
195
196 /* Get the TSC speed from Xen */
xen_tsc_khz(void)197 unsigned long xen_tsc_khz(void)
198 {
199 struct pvclock_vcpu_time_info *info =
200 &HYPERVISOR_shared_info->vcpu_info[0].time;
201
202 return pvclock_tsc_khz(info);
203 }
204
xen_clocksource_read(void)205 cycle_t xen_clocksource_read(void)
206 {
207 struct pvclock_vcpu_time_info *src;
208 cycle_t ret;
209
210 src = &get_cpu_var(xen_vcpu)->time;
211 ret = pvclock_clocksource_read(src);
212 put_cpu_var(xen_vcpu);
213 return ret;
214 }
215
xen_read_wallclock(struct timespec * ts)216 static void xen_read_wallclock(struct timespec *ts)
217 {
218 struct shared_info *s = HYPERVISOR_shared_info;
219 struct pvclock_wall_clock *wall_clock = &(s->wc);
220 struct pvclock_vcpu_time_info *vcpu_time;
221
222 vcpu_time = &get_cpu_var(xen_vcpu)->time;
223 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
224 put_cpu_var(xen_vcpu);
225 }
226
xen_get_wallclock(void)227 unsigned long xen_get_wallclock(void)
228 {
229 struct timespec ts;
230
231 xen_read_wallclock(&ts);
232 return ts.tv_sec;
233 }
234
xen_set_wallclock(unsigned long now)235 int xen_set_wallclock(unsigned long now)
236 {
237 /* do nothing for domU */
238 return -1;
239 }
240
241 static struct clocksource xen_clocksource __read_mostly = {
242 .name = "xen",
243 .rating = 400,
244 .read = xen_clocksource_read,
245 .mask = ~0,
246 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
247 .shift = XEN_SHIFT,
248 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
249 };
250
251 /*
252 Xen clockevent implementation
253
254 Xen has two clockevent implementations:
255
256 The old timer_op one works with all released versions of Xen prior
257 to version 3.0.4. This version of the hypervisor provides a
258 single-shot timer with nanosecond resolution. However, sharing the
259 same event channel is a 100Hz tick which is delivered while the
260 vcpu is running. We don't care about or use this tick, but it will
261 cause the core time code to think the timer fired too soon, and
262 will end up resetting it each time. It could be filtered, but
263 doing so has complications when the ktime clocksource is not yet
264 the xen clocksource (ie, at boot time).
265
266 The new vcpu_op-based timer interface allows the tick timer period
267 to be changed or turned off. The tick timer is not useful as a
268 periodic timer because events are only delivered to running vcpus.
269 The one-shot timer can report when a timeout is in the past, so
270 set_next_event is capable of returning -ETIME when appropriate.
271 This interface is used when available.
272 */
273
274
275 /*
276 Get a hypervisor absolute time. In theory we could maintain an
277 offset between the kernel's time and the hypervisor's time, and
278 apply that to a kernel's absolute timeout. Unfortunately the
279 hypervisor and kernel times can drift even if the kernel is using
280 the Xen clocksource, because ntp can warp the kernel's clocksource.
281 */
get_abs_timeout(unsigned long delta)282 static s64 get_abs_timeout(unsigned long delta)
283 {
284 return xen_clocksource_read() + delta;
285 }
286
xen_timerop_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)287 static void xen_timerop_set_mode(enum clock_event_mode mode,
288 struct clock_event_device *evt)
289 {
290 switch (mode) {
291 case CLOCK_EVT_MODE_PERIODIC:
292 /* unsupported */
293 WARN_ON(1);
294 break;
295
296 case CLOCK_EVT_MODE_ONESHOT:
297 case CLOCK_EVT_MODE_RESUME:
298 break;
299
300 case CLOCK_EVT_MODE_UNUSED:
301 case CLOCK_EVT_MODE_SHUTDOWN:
302 HYPERVISOR_set_timer_op(0); /* cancel timeout */
303 break;
304 }
305 }
306
xen_timerop_set_next_event(unsigned long delta,struct clock_event_device * evt)307 static int xen_timerop_set_next_event(unsigned long delta,
308 struct clock_event_device *evt)
309 {
310 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
311
312 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
313 BUG();
314
315 /* We may have missed the deadline, but there's no real way of
316 knowing for sure. If the event was in the past, then we'll
317 get an immediate interrupt. */
318
319 return 0;
320 }
321
322 static const struct clock_event_device xen_timerop_clockevent = {
323 .name = "xen",
324 .features = CLOCK_EVT_FEAT_ONESHOT,
325
326 .max_delta_ns = 0xffffffff,
327 .min_delta_ns = TIMER_SLOP,
328
329 .mult = 1,
330 .shift = 0,
331 .rating = 500,
332
333 .set_mode = xen_timerop_set_mode,
334 .set_next_event = xen_timerop_set_next_event,
335 };
336
337
338
xen_vcpuop_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)339 static void xen_vcpuop_set_mode(enum clock_event_mode mode,
340 struct clock_event_device *evt)
341 {
342 int cpu = smp_processor_id();
343
344 switch (mode) {
345 case CLOCK_EVT_MODE_PERIODIC:
346 WARN_ON(1); /* unsupported */
347 break;
348
349 case CLOCK_EVT_MODE_ONESHOT:
350 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
351 BUG();
352 break;
353
354 case CLOCK_EVT_MODE_UNUSED:
355 case CLOCK_EVT_MODE_SHUTDOWN:
356 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
357 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
358 BUG();
359 break;
360 case CLOCK_EVT_MODE_RESUME:
361 break;
362 }
363 }
364
xen_vcpuop_set_next_event(unsigned long delta,struct clock_event_device * evt)365 static int xen_vcpuop_set_next_event(unsigned long delta,
366 struct clock_event_device *evt)
367 {
368 int cpu = smp_processor_id();
369 struct vcpu_set_singleshot_timer single;
370 int ret;
371
372 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
373
374 single.timeout_abs_ns = get_abs_timeout(delta);
375 single.flags = VCPU_SSHOTTMR_future;
376
377 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
378
379 BUG_ON(ret != 0 && ret != -ETIME);
380
381 return ret;
382 }
383
384 static const struct clock_event_device xen_vcpuop_clockevent = {
385 .name = "xen",
386 .features = CLOCK_EVT_FEAT_ONESHOT,
387
388 .max_delta_ns = 0xffffffff,
389 .min_delta_ns = TIMER_SLOP,
390
391 .mult = 1,
392 .shift = 0,
393 .rating = 500,
394
395 .set_mode = xen_vcpuop_set_mode,
396 .set_next_event = xen_vcpuop_set_next_event,
397 };
398
399 static const struct clock_event_device *xen_clockevent =
400 &xen_timerop_clockevent;
401 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
402
xen_timer_interrupt(int irq,void * dev_id)403 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
404 {
405 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
406 irqreturn_t ret;
407
408 ret = IRQ_NONE;
409 if (evt->event_handler) {
410 evt->event_handler(evt);
411 ret = IRQ_HANDLED;
412 }
413
414 do_stolen_accounting();
415
416 return ret;
417 }
418
xen_setup_timer(int cpu)419 void xen_setup_timer(int cpu)
420 {
421 const char *name;
422 struct clock_event_device *evt;
423 int irq;
424
425 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
426
427 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
428 if (!name)
429 name = "<timer kasprintf failed>";
430
431 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
432 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
433 name, NULL);
434
435 evt = &per_cpu(xen_clock_events, cpu);
436 memcpy(evt, xen_clockevent, sizeof(*evt));
437
438 evt->cpumask = cpumask_of(cpu);
439 evt->irq = irq;
440
441 setup_runstate_info(cpu);
442 }
443
xen_teardown_timer(int cpu)444 void xen_teardown_timer(int cpu)
445 {
446 struct clock_event_device *evt;
447 BUG_ON(cpu == 0);
448 evt = &per_cpu(xen_clock_events, cpu);
449 unbind_from_irqhandler(evt->irq, NULL);
450 }
451
xen_setup_cpu_clockevents(void)452 void xen_setup_cpu_clockevents(void)
453 {
454 BUG_ON(preemptible());
455
456 clockevents_register_device(&__get_cpu_var(xen_clock_events));
457 }
458
xen_timer_resume(void)459 void xen_timer_resume(void)
460 {
461 int cpu;
462
463 if (xen_clockevent != &xen_vcpuop_clockevent)
464 return;
465
466 for_each_online_cpu(cpu) {
467 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
468 BUG();
469 }
470 }
471
xen_time_init(void)472 __init void xen_time_init(void)
473 {
474 int cpu = smp_processor_id();
475
476 clocksource_register(&xen_clocksource);
477
478 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
479 /* Successfully turned off 100Hz tick, so we have the
480 vcpuop-based timer interface */
481 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
482 xen_clockevent = &xen_vcpuop_clockevent;
483 }
484
485 /* Set initial system time with full resolution */
486 xen_read_wallclock(&xtime);
487 set_normalized_timespec(&wall_to_monotonic,
488 -xtime.tv_sec, -xtime.tv_nsec);
489
490 setup_force_cpu_cap(X86_FEATURE_TSC);
491
492 xen_setup_timer(cpu);
493 xen_setup_cpu_clockevents();
494 }
495