• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_ag.h"
40 #include "xfs_dmapi.h"
41 #include "xfs_mount.h"
42 
43 static kmem_zone_t *xfs_buf_zone;
44 STATIC int xfsbufd(void *);
45 STATIC int xfsbufd_wakeup(int, gfp_t);
46 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
47 static struct shrinker xfs_buf_shake = {
48 	.shrink = xfsbufd_wakeup,
49 	.seeks = DEFAULT_SEEKS,
50 };
51 
52 static struct workqueue_struct *xfslogd_workqueue;
53 struct workqueue_struct *xfsdatad_workqueue;
54 
55 #ifdef XFS_BUF_TRACE
56 void
xfs_buf_trace(xfs_buf_t * bp,char * id,void * data,void * ra)57 xfs_buf_trace(
58 	xfs_buf_t	*bp,
59 	char		*id,
60 	void		*data,
61 	void		*ra)
62 {
63 	ktrace_enter(xfs_buf_trace_buf,
64 		bp, id,
65 		(void *)(unsigned long)bp->b_flags,
66 		(void *)(unsigned long)bp->b_hold.counter,
67 		(void *)(unsigned long)bp->b_sema.count,
68 		(void *)current,
69 		data, ra,
70 		(void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
71 		(void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
72 		(void *)(unsigned long)bp->b_buffer_length,
73 		NULL, NULL, NULL, NULL, NULL);
74 }
75 ktrace_t *xfs_buf_trace_buf;
76 #define XFS_BUF_TRACE_SIZE	4096
77 #define XB_TRACE(bp, id, data)	\
78 	xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
79 #else
80 #define XB_TRACE(bp, id, data)	do { } while (0)
81 #endif
82 
83 #ifdef XFS_BUF_LOCK_TRACKING
84 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
85 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
86 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
87 #else
88 # define XB_SET_OWNER(bp)	do { } while (0)
89 # define XB_CLEAR_OWNER(bp)	do { } while (0)
90 # define XB_GET_OWNER(bp)	do { } while (0)
91 #endif
92 
93 #define xb_to_gfp(flags) \
94 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
95 	  ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
96 
97 #define xb_to_km(flags) \
98 	 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
99 
100 #define xfs_buf_allocate(flags) \
101 	kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
102 #define xfs_buf_deallocate(bp) \
103 	kmem_zone_free(xfs_buf_zone, (bp));
104 
105 /*
106  *	Page Region interfaces.
107  *
108  *	For pages in filesystems where the blocksize is smaller than the
109  *	pagesize, we use the page->private field (long) to hold a bitmap
110  * 	of uptodate regions within the page.
111  *
112  *	Each such region is "bytes per page / bits per long" bytes long.
113  *
114  *	NBPPR == number-of-bytes-per-page-region
115  *	BTOPR == bytes-to-page-region (rounded up)
116  *	BTOPRT == bytes-to-page-region-truncated (rounded down)
117  */
118 #if (BITS_PER_LONG == 32)
119 #define PRSHIFT		(PAGE_CACHE_SHIFT - 5)	/* (32 == 1<<5) */
120 #elif (BITS_PER_LONG == 64)
121 #define PRSHIFT		(PAGE_CACHE_SHIFT - 6)	/* (64 == 1<<6) */
122 #else
123 #error BITS_PER_LONG must be 32 or 64
124 #endif
125 #define NBPPR		(PAGE_CACHE_SIZE/BITS_PER_LONG)
126 #define BTOPR(b)	(((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
127 #define BTOPRT(b)	(((unsigned int)(b) >> PRSHIFT))
128 
129 STATIC unsigned long
page_region_mask(size_t offset,size_t length)130 page_region_mask(
131 	size_t		offset,
132 	size_t		length)
133 {
134 	unsigned long	mask;
135 	int		first, final;
136 
137 	first = BTOPR(offset);
138 	final = BTOPRT(offset + length - 1);
139 	first = min(first, final);
140 
141 	mask = ~0UL;
142 	mask <<= BITS_PER_LONG - (final - first);
143 	mask >>= BITS_PER_LONG - (final);
144 
145 	ASSERT(offset + length <= PAGE_CACHE_SIZE);
146 	ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
147 
148 	return mask;
149 }
150 
151 STATIC_INLINE void
set_page_region(struct page * page,size_t offset,size_t length)152 set_page_region(
153 	struct page	*page,
154 	size_t		offset,
155 	size_t		length)
156 {
157 	set_page_private(page,
158 		page_private(page) | page_region_mask(offset, length));
159 	if (page_private(page) == ~0UL)
160 		SetPageUptodate(page);
161 }
162 
163 STATIC_INLINE int
test_page_region(struct page * page,size_t offset,size_t length)164 test_page_region(
165 	struct page	*page,
166 	size_t		offset,
167 	size_t		length)
168 {
169 	unsigned long	mask = page_region_mask(offset, length);
170 
171 	return (mask && (page_private(page) & mask) == mask);
172 }
173 
174 /*
175  *	Mapping of multi-page buffers into contiguous virtual space
176  */
177 
178 typedef struct a_list {
179 	void		*vm_addr;
180 	struct a_list	*next;
181 } a_list_t;
182 
183 static a_list_t		*as_free_head;
184 static int		as_list_len;
185 static DEFINE_SPINLOCK(as_lock);
186 
187 /*
188  *	Try to batch vunmaps because they are costly.
189  */
190 STATIC void
free_address(void * addr)191 free_address(
192 	void		*addr)
193 {
194 	a_list_t	*aentry;
195 
196 #ifdef CONFIG_XEN
197 	/*
198 	 * Xen needs to be able to make sure it can get an exclusive
199 	 * RO mapping of pages it wants to turn into a pagetable.  If
200 	 * a newly allocated page is also still being vmap()ed by xfs,
201 	 * it will cause pagetable construction to fail.  This is a
202 	 * quick workaround to always eagerly unmap pages so that Xen
203 	 * is happy.
204 	 */
205 	vunmap(addr);
206 	return;
207 #endif
208 
209 	aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
210 	if (likely(aentry)) {
211 		spin_lock(&as_lock);
212 		aentry->next = as_free_head;
213 		aentry->vm_addr = addr;
214 		as_free_head = aentry;
215 		as_list_len++;
216 		spin_unlock(&as_lock);
217 	} else {
218 		vunmap(addr);
219 	}
220 }
221 
222 STATIC void
purge_addresses(void)223 purge_addresses(void)
224 {
225 	a_list_t	*aentry, *old;
226 
227 	if (as_free_head == NULL)
228 		return;
229 
230 	spin_lock(&as_lock);
231 	aentry = as_free_head;
232 	as_free_head = NULL;
233 	as_list_len = 0;
234 	spin_unlock(&as_lock);
235 
236 	while ((old = aentry) != NULL) {
237 		vunmap(aentry->vm_addr);
238 		aentry = aentry->next;
239 		kfree(old);
240 	}
241 }
242 
243 /*
244  *	Internal xfs_buf_t object manipulation
245  */
246 
247 STATIC void
_xfs_buf_initialize(xfs_buf_t * bp,xfs_buftarg_t * target,xfs_off_t range_base,size_t range_length,xfs_buf_flags_t flags)248 _xfs_buf_initialize(
249 	xfs_buf_t		*bp,
250 	xfs_buftarg_t		*target,
251 	xfs_off_t		range_base,
252 	size_t			range_length,
253 	xfs_buf_flags_t		flags)
254 {
255 	/*
256 	 * We don't want certain flags to appear in b_flags.
257 	 */
258 	flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
259 
260 	memset(bp, 0, sizeof(xfs_buf_t));
261 	atomic_set(&bp->b_hold, 1);
262 	init_completion(&bp->b_iowait);
263 	INIT_LIST_HEAD(&bp->b_list);
264 	INIT_LIST_HEAD(&bp->b_hash_list);
265 	init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
266 	XB_SET_OWNER(bp);
267 	bp->b_target = target;
268 	bp->b_file_offset = range_base;
269 	/*
270 	 * Set buffer_length and count_desired to the same value initially.
271 	 * I/O routines should use count_desired, which will be the same in
272 	 * most cases but may be reset (e.g. XFS recovery).
273 	 */
274 	bp->b_buffer_length = bp->b_count_desired = range_length;
275 	bp->b_flags = flags;
276 	bp->b_bn = XFS_BUF_DADDR_NULL;
277 	atomic_set(&bp->b_pin_count, 0);
278 	init_waitqueue_head(&bp->b_waiters);
279 
280 	XFS_STATS_INC(xb_create);
281 	XB_TRACE(bp, "initialize", target);
282 }
283 
284 /*
285  *	Allocate a page array capable of holding a specified number
286  *	of pages, and point the page buf at it.
287  */
288 STATIC int
_xfs_buf_get_pages(xfs_buf_t * bp,int page_count,xfs_buf_flags_t flags)289 _xfs_buf_get_pages(
290 	xfs_buf_t		*bp,
291 	int			page_count,
292 	xfs_buf_flags_t		flags)
293 {
294 	/* Make sure that we have a page list */
295 	if (bp->b_pages == NULL) {
296 		bp->b_offset = xfs_buf_poff(bp->b_file_offset);
297 		bp->b_page_count = page_count;
298 		if (page_count <= XB_PAGES) {
299 			bp->b_pages = bp->b_page_array;
300 		} else {
301 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
302 					page_count, xb_to_km(flags));
303 			if (bp->b_pages == NULL)
304 				return -ENOMEM;
305 		}
306 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
307 	}
308 	return 0;
309 }
310 
311 /*
312  *	Frees b_pages if it was allocated.
313  */
314 STATIC void
_xfs_buf_free_pages(xfs_buf_t * bp)315 _xfs_buf_free_pages(
316 	xfs_buf_t	*bp)
317 {
318 	if (bp->b_pages != bp->b_page_array) {
319 		kmem_free(bp->b_pages);
320 	}
321 }
322 
323 /*
324  *	Releases the specified buffer.
325  *
326  * 	The modification state of any associated pages is left unchanged.
327  * 	The buffer most not be on any hash - use xfs_buf_rele instead for
328  * 	hashed and refcounted buffers
329  */
330 void
xfs_buf_free(xfs_buf_t * bp)331 xfs_buf_free(
332 	xfs_buf_t		*bp)
333 {
334 	XB_TRACE(bp, "free", 0);
335 
336 	ASSERT(list_empty(&bp->b_hash_list));
337 
338 	if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
339 		uint		i;
340 
341 		if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
342 			free_address(bp->b_addr - bp->b_offset);
343 
344 		for (i = 0; i < bp->b_page_count; i++) {
345 			struct page	*page = bp->b_pages[i];
346 
347 			if (bp->b_flags & _XBF_PAGE_CACHE)
348 				ASSERT(!PagePrivate(page));
349 			page_cache_release(page);
350 		}
351 		_xfs_buf_free_pages(bp);
352 	}
353 
354 	xfs_buf_deallocate(bp);
355 }
356 
357 /*
358  *	Finds all pages for buffer in question and builds it's page list.
359  */
360 STATIC int
_xfs_buf_lookup_pages(xfs_buf_t * bp,uint flags)361 _xfs_buf_lookup_pages(
362 	xfs_buf_t		*bp,
363 	uint			flags)
364 {
365 	struct address_space	*mapping = bp->b_target->bt_mapping;
366 	size_t			blocksize = bp->b_target->bt_bsize;
367 	size_t			size = bp->b_count_desired;
368 	size_t			nbytes, offset;
369 	gfp_t			gfp_mask = xb_to_gfp(flags);
370 	unsigned short		page_count, i;
371 	pgoff_t			first;
372 	xfs_off_t		end;
373 	int			error;
374 
375 	end = bp->b_file_offset + bp->b_buffer_length;
376 	page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
377 
378 	error = _xfs_buf_get_pages(bp, page_count, flags);
379 	if (unlikely(error))
380 		return error;
381 	bp->b_flags |= _XBF_PAGE_CACHE;
382 
383 	offset = bp->b_offset;
384 	first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
385 
386 	for (i = 0; i < bp->b_page_count; i++) {
387 		struct page	*page;
388 		uint		retries = 0;
389 
390 	      retry:
391 		page = find_or_create_page(mapping, first + i, gfp_mask);
392 		if (unlikely(page == NULL)) {
393 			if (flags & XBF_READ_AHEAD) {
394 				bp->b_page_count = i;
395 				for (i = 0; i < bp->b_page_count; i++)
396 					unlock_page(bp->b_pages[i]);
397 				return -ENOMEM;
398 			}
399 
400 			/*
401 			 * This could deadlock.
402 			 *
403 			 * But until all the XFS lowlevel code is revamped to
404 			 * handle buffer allocation failures we can't do much.
405 			 */
406 			if (!(++retries % 100))
407 				printk(KERN_ERR
408 					"XFS: possible memory allocation "
409 					"deadlock in %s (mode:0x%x)\n",
410 					__func__, gfp_mask);
411 
412 			XFS_STATS_INC(xb_page_retries);
413 			xfsbufd_wakeup(0, gfp_mask);
414 			congestion_wait(WRITE, HZ/50);
415 			goto retry;
416 		}
417 
418 		XFS_STATS_INC(xb_page_found);
419 
420 		nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
421 		size -= nbytes;
422 
423 		ASSERT(!PagePrivate(page));
424 		if (!PageUptodate(page)) {
425 			page_count--;
426 			if (blocksize >= PAGE_CACHE_SIZE) {
427 				if (flags & XBF_READ)
428 					bp->b_flags |= _XBF_PAGE_LOCKED;
429 			} else if (!PagePrivate(page)) {
430 				if (test_page_region(page, offset, nbytes))
431 					page_count++;
432 			}
433 		}
434 
435 		bp->b_pages[i] = page;
436 		offset = 0;
437 	}
438 
439 	if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
440 		for (i = 0; i < bp->b_page_count; i++)
441 			unlock_page(bp->b_pages[i]);
442 	}
443 
444 	if (page_count == bp->b_page_count)
445 		bp->b_flags |= XBF_DONE;
446 
447 	XB_TRACE(bp, "lookup_pages", (long)page_count);
448 	return error;
449 }
450 
451 /*
452  *	Map buffer into kernel address-space if nessecary.
453  */
454 STATIC int
_xfs_buf_map_pages(xfs_buf_t * bp,uint flags)455 _xfs_buf_map_pages(
456 	xfs_buf_t		*bp,
457 	uint			flags)
458 {
459 	/* A single page buffer is always mappable */
460 	if (bp->b_page_count == 1) {
461 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
462 		bp->b_flags |= XBF_MAPPED;
463 	} else if (flags & XBF_MAPPED) {
464 		if (as_list_len > 64)
465 			purge_addresses();
466 		bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
467 					VM_MAP, PAGE_KERNEL);
468 		if (unlikely(bp->b_addr == NULL))
469 			return -ENOMEM;
470 		bp->b_addr += bp->b_offset;
471 		bp->b_flags |= XBF_MAPPED;
472 	}
473 
474 	return 0;
475 }
476 
477 /*
478  *	Finding and Reading Buffers
479  */
480 
481 /*
482  *	Look up, and creates if absent, a lockable buffer for
483  *	a given range of an inode.  The buffer is returned
484  *	locked.	 If other overlapping buffers exist, they are
485  *	released before the new buffer is created and locked,
486  *	which may imply that this call will block until those buffers
487  *	are unlocked.  No I/O is implied by this call.
488  */
489 xfs_buf_t *
_xfs_buf_find(xfs_buftarg_t * btp,xfs_off_t ioff,size_t isize,xfs_buf_flags_t flags,xfs_buf_t * new_bp)490 _xfs_buf_find(
491 	xfs_buftarg_t		*btp,	/* block device target		*/
492 	xfs_off_t		ioff,	/* starting offset of range	*/
493 	size_t			isize,	/* length of range		*/
494 	xfs_buf_flags_t		flags,
495 	xfs_buf_t		*new_bp)
496 {
497 	xfs_off_t		range_base;
498 	size_t			range_length;
499 	xfs_bufhash_t		*hash;
500 	xfs_buf_t		*bp, *n;
501 
502 	range_base = (ioff << BBSHIFT);
503 	range_length = (isize << BBSHIFT);
504 
505 	/* Check for IOs smaller than the sector size / not sector aligned */
506 	ASSERT(!(range_length < (1 << btp->bt_sshift)));
507 	ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
508 
509 	hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
510 
511 	spin_lock(&hash->bh_lock);
512 
513 	list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
514 		ASSERT(btp == bp->b_target);
515 		if (bp->b_file_offset == range_base &&
516 		    bp->b_buffer_length == range_length) {
517 			/*
518 			 * If we look at something, bring it to the
519 			 * front of the list for next time.
520 			 */
521 			atomic_inc(&bp->b_hold);
522 			list_move(&bp->b_hash_list, &hash->bh_list);
523 			goto found;
524 		}
525 	}
526 
527 	/* No match found */
528 	if (new_bp) {
529 		_xfs_buf_initialize(new_bp, btp, range_base,
530 				range_length, flags);
531 		new_bp->b_hash = hash;
532 		list_add(&new_bp->b_hash_list, &hash->bh_list);
533 	} else {
534 		XFS_STATS_INC(xb_miss_locked);
535 	}
536 
537 	spin_unlock(&hash->bh_lock);
538 	return new_bp;
539 
540 found:
541 	spin_unlock(&hash->bh_lock);
542 
543 	/* Attempt to get the semaphore without sleeping,
544 	 * if this does not work then we need to drop the
545 	 * spinlock and do a hard attempt on the semaphore.
546 	 */
547 	if (down_trylock(&bp->b_sema)) {
548 		if (!(flags & XBF_TRYLOCK)) {
549 			/* wait for buffer ownership */
550 			XB_TRACE(bp, "get_lock", 0);
551 			xfs_buf_lock(bp);
552 			XFS_STATS_INC(xb_get_locked_waited);
553 		} else {
554 			/* We asked for a trylock and failed, no need
555 			 * to look at file offset and length here, we
556 			 * know that this buffer at least overlaps our
557 			 * buffer and is locked, therefore our buffer
558 			 * either does not exist, or is this buffer.
559 			 */
560 			xfs_buf_rele(bp);
561 			XFS_STATS_INC(xb_busy_locked);
562 			return NULL;
563 		}
564 	} else {
565 		/* trylock worked */
566 		XB_SET_OWNER(bp);
567 	}
568 
569 	if (bp->b_flags & XBF_STALE) {
570 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
571 		bp->b_flags &= XBF_MAPPED;
572 	}
573 	XB_TRACE(bp, "got_lock", 0);
574 	XFS_STATS_INC(xb_get_locked);
575 	return bp;
576 }
577 
578 /*
579  *	Assembles a buffer covering the specified range.
580  *	Storage in memory for all portions of the buffer will be allocated,
581  *	although backing storage may not be.
582  */
583 xfs_buf_t *
xfs_buf_get_flags(xfs_buftarg_t * target,xfs_off_t ioff,size_t isize,xfs_buf_flags_t flags)584 xfs_buf_get_flags(
585 	xfs_buftarg_t		*target,/* target for buffer		*/
586 	xfs_off_t		ioff,	/* starting offset of range	*/
587 	size_t			isize,	/* length of range		*/
588 	xfs_buf_flags_t		flags)
589 {
590 	xfs_buf_t		*bp, *new_bp;
591 	int			error = 0, i;
592 
593 	new_bp = xfs_buf_allocate(flags);
594 	if (unlikely(!new_bp))
595 		return NULL;
596 
597 	bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
598 	if (bp == new_bp) {
599 		error = _xfs_buf_lookup_pages(bp, flags);
600 		if (error)
601 			goto no_buffer;
602 	} else {
603 		xfs_buf_deallocate(new_bp);
604 		if (unlikely(bp == NULL))
605 			return NULL;
606 	}
607 
608 	for (i = 0; i < bp->b_page_count; i++)
609 		mark_page_accessed(bp->b_pages[i]);
610 
611 	if (!(bp->b_flags & XBF_MAPPED)) {
612 		error = _xfs_buf_map_pages(bp, flags);
613 		if (unlikely(error)) {
614 			printk(KERN_WARNING "%s: failed to map pages\n",
615 					__func__);
616 			goto no_buffer;
617 		}
618 	}
619 
620 	XFS_STATS_INC(xb_get);
621 
622 	/*
623 	 * Always fill in the block number now, the mapped cases can do
624 	 * their own overlay of this later.
625 	 */
626 	bp->b_bn = ioff;
627 	bp->b_count_desired = bp->b_buffer_length;
628 
629 	XB_TRACE(bp, "get", (unsigned long)flags);
630 	return bp;
631 
632  no_buffer:
633 	if (flags & (XBF_LOCK | XBF_TRYLOCK))
634 		xfs_buf_unlock(bp);
635 	xfs_buf_rele(bp);
636 	return NULL;
637 }
638 
639 STATIC int
_xfs_buf_read(xfs_buf_t * bp,xfs_buf_flags_t flags)640 _xfs_buf_read(
641 	xfs_buf_t		*bp,
642 	xfs_buf_flags_t		flags)
643 {
644 	int			status;
645 
646 	XB_TRACE(bp, "_xfs_buf_read", (unsigned long)flags);
647 
648 	ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
649 	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
650 
651 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
652 			XBF_READ_AHEAD | _XBF_RUN_QUEUES);
653 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
654 			XBF_READ_AHEAD | _XBF_RUN_QUEUES);
655 
656 	status = xfs_buf_iorequest(bp);
657 	if (!status && !(flags & XBF_ASYNC))
658 		status = xfs_buf_iowait(bp);
659 	return status;
660 }
661 
662 xfs_buf_t *
xfs_buf_read_flags(xfs_buftarg_t * target,xfs_off_t ioff,size_t isize,xfs_buf_flags_t flags)663 xfs_buf_read_flags(
664 	xfs_buftarg_t		*target,
665 	xfs_off_t		ioff,
666 	size_t			isize,
667 	xfs_buf_flags_t		flags)
668 {
669 	xfs_buf_t		*bp;
670 
671 	flags |= XBF_READ;
672 
673 	bp = xfs_buf_get_flags(target, ioff, isize, flags);
674 	if (bp) {
675 		if (!XFS_BUF_ISDONE(bp)) {
676 			XB_TRACE(bp, "read", (unsigned long)flags);
677 			XFS_STATS_INC(xb_get_read);
678 			_xfs_buf_read(bp, flags);
679 		} else if (flags & XBF_ASYNC) {
680 			XB_TRACE(bp, "read_async", (unsigned long)flags);
681 			/*
682 			 * Read ahead call which is already satisfied,
683 			 * drop the buffer
684 			 */
685 			goto no_buffer;
686 		} else {
687 			XB_TRACE(bp, "read_done", (unsigned long)flags);
688 			/* We do not want read in the flags */
689 			bp->b_flags &= ~XBF_READ;
690 		}
691 	}
692 
693 	return bp;
694 
695  no_buffer:
696 	if (flags & (XBF_LOCK | XBF_TRYLOCK))
697 		xfs_buf_unlock(bp);
698 	xfs_buf_rele(bp);
699 	return NULL;
700 }
701 
702 /*
703  *	If we are not low on memory then do the readahead in a deadlock
704  *	safe manner.
705  */
706 void
xfs_buf_readahead(xfs_buftarg_t * target,xfs_off_t ioff,size_t isize,xfs_buf_flags_t flags)707 xfs_buf_readahead(
708 	xfs_buftarg_t		*target,
709 	xfs_off_t		ioff,
710 	size_t			isize,
711 	xfs_buf_flags_t		flags)
712 {
713 	struct backing_dev_info *bdi;
714 
715 	bdi = target->bt_mapping->backing_dev_info;
716 	if (bdi_read_congested(bdi))
717 		return;
718 
719 	flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
720 	xfs_buf_read_flags(target, ioff, isize, flags);
721 }
722 
723 xfs_buf_t *
xfs_buf_get_empty(size_t len,xfs_buftarg_t * target)724 xfs_buf_get_empty(
725 	size_t			len,
726 	xfs_buftarg_t		*target)
727 {
728 	xfs_buf_t		*bp;
729 
730 	bp = xfs_buf_allocate(0);
731 	if (bp)
732 		_xfs_buf_initialize(bp, target, 0, len, 0);
733 	return bp;
734 }
735 
736 static inline struct page *
mem_to_page(void * addr)737 mem_to_page(
738 	void			*addr)
739 {
740 	if ((!is_vmalloc_addr(addr))) {
741 		return virt_to_page(addr);
742 	} else {
743 		return vmalloc_to_page(addr);
744 	}
745 }
746 
747 int
xfs_buf_associate_memory(xfs_buf_t * bp,void * mem,size_t len)748 xfs_buf_associate_memory(
749 	xfs_buf_t		*bp,
750 	void			*mem,
751 	size_t			len)
752 {
753 	int			rval;
754 	int			i = 0;
755 	unsigned long		pageaddr;
756 	unsigned long		offset;
757 	size_t			buflen;
758 	int			page_count;
759 
760 	pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
761 	offset = (unsigned long)mem - pageaddr;
762 	buflen = PAGE_CACHE_ALIGN(len + offset);
763 	page_count = buflen >> PAGE_CACHE_SHIFT;
764 
765 	/* Free any previous set of page pointers */
766 	if (bp->b_pages)
767 		_xfs_buf_free_pages(bp);
768 
769 	bp->b_pages = NULL;
770 	bp->b_addr = mem;
771 
772 	rval = _xfs_buf_get_pages(bp, page_count, 0);
773 	if (rval)
774 		return rval;
775 
776 	bp->b_offset = offset;
777 
778 	for (i = 0; i < bp->b_page_count; i++) {
779 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
780 		pageaddr += PAGE_CACHE_SIZE;
781 	}
782 
783 	bp->b_count_desired = len;
784 	bp->b_buffer_length = buflen;
785 	bp->b_flags |= XBF_MAPPED;
786 	bp->b_flags &= ~_XBF_PAGE_LOCKED;
787 
788 	return 0;
789 }
790 
791 xfs_buf_t *
xfs_buf_get_noaddr(size_t len,xfs_buftarg_t * target)792 xfs_buf_get_noaddr(
793 	size_t			len,
794 	xfs_buftarg_t		*target)
795 {
796 	unsigned long		page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
797 	int			error, i;
798 	xfs_buf_t		*bp;
799 
800 	bp = xfs_buf_allocate(0);
801 	if (unlikely(bp == NULL))
802 		goto fail;
803 	_xfs_buf_initialize(bp, target, 0, len, 0);
804 
805 	error = _xfs_buf_get_pages(bp, page_count, 0);
806 	if (error)
807 		goto fail_free_buf;
808 
809 	for (i = 0; i < page_count; i++) {
810 		bp->b_pages[i] = alloc_page(GFP_KERNEL);
811 		if (!bp->b_pages[i])
812 			goto fail_free_mem;
813 	}
814 	bp->b_flags |= _XBF_PAGES;
815 
816 	error = _xfs_buf_map_pages(bp, XBF_MAPPED);
817 	if (unlikely(error)) {
818 		printk(KERN_WARNING "%s: failed to map pages\n",
819 				__func__);
820 		goto fail_free_mem;
821 	}
822 
823 	xfs_buf_unlock(bp);
824 
825 	XB_TRACE(bp, "no_daddr", len);
826 	return bp;
827 
828  fail_free_mem:
829 	while (--i >= 0)
830 		__free_page(bp->b_pages[i]);
831 	_xfs_buf_free_pages(bp);
832  fail_free_buf:
833 	xfs_buf_deallocate(bp);
834  fail:
835 	return NULL;
836 }
837 
838 /*
839  *	Increment reference count on buffer, to hold the buffer concurrently
840  *	with another thread which may release (free) the buffer asynchronously.
841  *	Must hold the buffer already to call this function.
842  */
843 void
xfs_buf_hold(xfs_buf_t * bp)844 xfs_buf_hold(
845 	xfs_buf_t		*bp)
846 {
847 	atomic_inc(&bp->b_hold);
848 	XB_TRACE(bp, "hold", 0);
849 }
850 
851 /*
852  *	Releases a hold on the specified buffer.  If the
853  *	the hold count is 1, calls xfs_buf_free.
854  */
855 void
xfs_buf_rele(xfs_buf_t * bp)856 xfs_buf_rele(
857 	xfs_buf_t		*bp)
858 {
859 	xfs_bufhash_t		*hash = bp->b_hash;
860 
861 	XB_TRACE(bp, "rele", bp->b_relse);
862 
863 	if (unlikely(!hash)) {
864 		ASSERT(!bp->b_relse);
865 		if (atomic_dec_and_test(&bp->b_hold))
866 			xfs_buf_free(bp);
867 		return;
868 	}
869 
870 	ASSERT(atomic_read(&bp->b_hold) > 0);
871 	if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
872 		if (bp->b_relse) {
873 			atomic_inc(&bp->b_hold);
874 			spin_unlock(&hash->bh_lock);
875 			(*(bp->b_relse)) (bp);
876 		} else if (bp->b_flags & XBF_FS_MANAGED) {
877 			spin_unlock(&hash->bh_lock);
878 		} else {
879 			ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
880 			list_del_init(&bp->b_hash_list);
881 			spin_unlock(&hash->bh_lock);
882 			xfs_buf_free(bp);
883 		}
884 	}
885 }
886 
887 
888 /*
889  *	Mutual exclusion on buffers.  Locking model:
890  *
891  *	Buffers associated with inodes for which buffer locking
892  *	is not enabled are not protected by semaphores, and are
893  *	assumed to be exclusively owned by the caller.  There is a
894  *	spinlock in the buffer, used by the caller when concurrent
895  *	access is possible.
896  */
897 
898 /*
899  *	Locks a buffer object, if it is not already locked.
900  *	Note that this in no way locks the underlying pages, so it is only
901  *	useful for synchronizing concurrent use of buffer objects, not for
902  *	synchronizing independent access to the underlying pages.
903  */
904 int
xfs_buf_cond_lock(xfs_buf_t * bp)905 xfs_buf_cond_lock(
906 	xfs_buf_t		*bp)
907 {
908 	int			locked;
909 
910 	locked = down_trylock(&bp->b_sema) == 0;
911 	if (locked) {
912 		XB_SET_OWNER(bp);
913 	}
914 	XB_TRACE(bp, "cond_lock", (long)locked);
915 	return locked ? 0 : -EBUSY;
916 }
917 
918 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
919 int
xfs_buf_lock_value(xfs_buf_t * bp)920 xfs_buf_lock_value(
921 	xfs_buf_t		*bp)
922 {
923 	return bp->b_sema.count;
924 }
925 #endif
926 
927 /*
928  *	Locks a buffer object.
929  *	Note that this in no way locks the underlying pages, so it is only
930  *	useful for synchronizing concurrent use of buffer objects, not for
931  *	synchronizing independent access to the underlying pages.
932  */
933 void
xfs_buf_lock(xfs_buf_t * bp)934 xfs_buf_lock(
935 	xfs_buf_t		*bp)
936 {
937 	XB_TRACE(bp, "lock", 0);
938 	if (atomic_read(&bp->b_io_remaining))
939 		blk_run_address_space(bp->b_target->bt_mapping);
940 	down(&bp->b_sema);
941 	XB_SET_OWNER(bp);
942 	XB_TRACE(bp, "locked", 0);
943 }
944 
945 /*
946  *	Releases the lock on the buffer object.
947  *	If the buffer is marked delwri but is not queued, do so before we
948  *	unlock the buffer as we need to set flags correctly.  We also need to
949  *	take a reference for the delwri queue because the unlocker is going to
950  *	drop their's and they don't know we just queued it.
951  */
952 void
xfs_buf_unlock(xfs_buf_t * bp)953 xfs_buf_unlock(
954 	xfs_buf_t		*bp)
955 {
956 	if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
957 		atomic_inc(&bp->b_hold);
958 		bp->b_flags |= XBF_ASYNC;
959 		xfs_buf_delwri_queue(bp, 0);
960 	}
961 
962 	XB_CLEAR_OWNER(bp);
963 	up(&bp->b_sema);
964 	XB_TRACE(bp, "unlock", 0);
965 }
966 
967 
968 /*
969  *	Pinning Buffer Storage in Memory
970  *	Ensure that no attempt to force a buffer to disk will succeed.
971  */
972 void
xfs_buf_pin(xfs_buf_t * bp)973 xfs_buf_pin(
974 	xfs_buf_t		*bp)
975 {
976 	atomic_inc(&bp->b_pin_count);
977 	XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
978 }
979 
980 void
xfs_buf_unpin(xfs_buf_t * bp)981 xfs_buf_unpin(
982 	xfs_buf_t		*bp)
983 {
984 	if (atomic_dec_and_test(&bp->b_pin_count))
985 		wake_up_all(&bp->b_waiters);
986 	XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
987 }
988 
989 int
xfs_buf_ispin(xfs_buf_t * bp)990 xfs_buf_ispin(
991 	xfs_buf_t		*bp)
992 {
993 	return atomic_read(&bp->b_pin_count);
994 }
995 
996 STATIC void
xfs_buf_wait_unpin(xfs_buf_t * bp)997 xfs_buf_wait_unpin(
998 	xfs_buf_t		*bp)
999 {
1000 	DECLARE_WAITQUEUE	(wait, current);
1001 
1002 	if (atomic_read(&bp->b_pin_count) == 0)
1003 		return;
1004 
1005 	add_wait_queue(&bp->b_waiters, &wait);
1006 	for (;;) {
1007 		set_current_state(TASK_UNINTERRUPTIBLE);
1008 		if (atomic_read(&bp->b_pin_count) == 0)
1009 			break;
1010 		if (atomic_read(&bp->b_io_remaining))
1011 			blk_run_address_space(bp->b_target->bt_mapping);
1012 		schedule();
1013 	}
1014 	remove_wait_queue(&bp->b_waiters, &wait);
1015 	set_current_state(TASK_RUNNING);
1016 }
1017 
1018 /*
1019  *	Buffer Utility Routines
1020  */
1021 
1022 STATIC void
xfs_buf_iodone_work(struct work_struct * work)1023 xfs_buf_iodone_work(
1024 	struct work_struct	*work)
1025 {
1026 	xfs_buf_t		*bp =
1027 		container_of(work, xfs_buf_t, b_iodone_work);
1028 
1029 	/*
1030 	 * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
1031 	 * ordered flag and reissue them.  Because we can't tell the higher
1032 	 * layers directly that they should not issue ordered I/O anymore, they
1033 	 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
1034 	 */
1035 	if ((bp->b_error == EOPNOTSUPP) &&
1036 	    (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1037 		XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1038 		bp->b_flags &= ~XBF_ORDERED;
1039 		bp->b_flags |= _XFS_BARRIER_FAILED;
1040 		xfs_buf_iorequest(bp);
1041 	} else if (bp->b_iodone)
1042 		(*(bp->b_iodone))(bp);
1043 	else if (bp->b_flags & XBF_ASYNC)
1044 		xfs_buf_relse(bp);
1045 }
1046 
1047 void
xfs_buf_ioend(xfs_buf_t * bp,int schedule)1048 xfs_buf_ioend(
1049 	xfs_buf_t		*bp,
1050 	int			schedule)
1051 {
1052 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1053 	if (bp->b_error == 0)
1054 		bp->b_flags |= XBF_DONE;
1055 
1056 	XB_TRACE(bp, "iodone", bp->b_iodone);
1057 
1058 	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1059 		if (schedule) {
1060 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1061 			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1062 		} else {
1063 			xfs_buf_iodone_work(&bp->b_iodone_work);
1064 		}
1065 	} else {
1066 		complete(&bp->b_iowait);
1067 	}
1068 }
1069 
1070 void
xfs_buf_ioerror(xfs_buf_t * bp,int error)1071 xfs_buf_ioerror(
1072 	xfs_buf_t		*bp,
1073 	int			error)
1074 {
1075 	ASSERT(error >= 0 && error <= 0xffff);
1076 	bp->b_error = (unsigned short)error;
1077 	XB_TRACE(bp, "ioerror", (unsigned long)error);
1078 }
1079 
1080 int
xfs_bawrite(void * mp,struct xfs_buf * bp)1081 xfs_bawrite(
1082 	void			*mp,
1083 	struct xfs_buf		*bp)
1084 {
1085 	XB_TRACE(bp, "bawrite", 0);
1086 
1087 	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
1088 
1089 	xfs_buf_delwri_dequeue(bp);
1090 
1091 	bp->b_flags &= ~(XBF_READ | XBF_DELWRI | XBF_READ_AHEAD);
1092 	bp->b_flags |= (XBF_WRITE | XBF_ASYNC | _XBF_RUN_QUEUES);
1093 
1094 	bp->b_mount = mp;
1095 	bp->b_strat = xfs_bdstrat_cb;
1096 	return xfs_bdstrat_cb(bp);
1097 }
1098 
1099 void
xfs_bdwrite(void * mp,struct xfs_buf * bp)1100 xfs_bdwrite(
1101 	void			*mp,
1102 	struct xfs_buf		*bp)
1103 {
1104 	XB_TRACE(bp, "bdwrite", 0);
1105 
1106 	bp->b_strat = xfs_bdstrat_cb;
1107 	bp->b_mount = mp;
1108 
1109 	bp->b_flags &= ~XBF_READ;
1110 	bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1111 
1112 	xfs_buf_delwri_queue(bp, 1);
1113 }
1114 
1115 STATIC_INLINE void
_xfs_buf_ioend(xfs_buf_t * bp,int schedule)1116 _xfs_buf_ioend(
1117 	xfs_buf_t		*bp,
1118 	int			schedule)
1119 {
1120 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1121 		bp->b_flags &= ~_XBF_PAGE_LOCKED;
1122 		xfs_buf_ioend(bp, schedule);
1123 	}
1124 }
1125 
1126 STATIC void
xfs_buf_bio_end_io(struct bio * bio,int error)1127 xfs_buf_bio_end_io(
1128 	struct bio		*bio,
1129 	int			error)
1130 {
1131 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1132 	unsigned int		blocksize = bp->b_target->bt_bsize;
1133 	struct bio_vec		*bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1134 
1135 	xfs_buf_ioerror(bp, -error);
1136 
1137 	do {
1138 		struct page	*page = bvec->bv_page;
1139 
1140 		ASSERT(!PagePrivate(page));
1141 		if (unlikely(bp->b_error)) {
1142 			if (bp->b_flags & XBF_READ)
1143 				ClearPageUptodate(page);
1144 		} else if (blocksize >= PAGE_CACHE_SIZE) {
1145 			SetPageUptodate(page);
1146 		} else if (!PagePrivate(page) &&
1147 				(bp->b_flags & _XBF_PAGE_CACHE)) {
1148 			set_page_region(page, bvec->bv_offset, bvec->bv_len);
1149 		}
1150 
1151 		if (--bvec >= bio->bi_io_vec)
1152 			prefetchw(&bvec->bv_page->flags);
1153 
1154 		if (bp->b_flags & _XBF_PAGE_LOCKED)
1155 			unlock_page(page);
1156 	} while (bvec >= bio->bi_io_vec);
1157 
1158 	_xfs_buf_ioend(bp, 1);
1159 	bio_put(bio);
1160 }
1161 
1162 STATIC void
_xfs_buf_ioapply(xfs_buf_t * bp)1163 _xfs_buf_ioapply(
1164 	xfs_buf_t		*bp)
1165 {
1166 	int			rw, map_i, total_nr_pages, nr_pages;
1167 	struct bio		*bio;
1168 	int			offset = bp->b_offset;
1169 	int			size = bp->b_count_desired;
1170 	sector_t		sector = bp->b_bn;
1171 	unsigned int		blocksize = bp->b_target->bt_bsize;
1172 
1173 	total_nr_pages = bp->b_page_count;
1174 	map_i = 0;
1175 
1176 	if (bp->b_flags & XBF_ORDERED) {
1177 		ASSERT(!(bp->b_flags & XBF_READ));
1178 		rw = WRITE_BARRIER;
1179 	} else if (bp->b_flags & _XBF_RUN_QUEUES) {
1180 		ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1181 		bp->b_flags &= ~_XBF_RUN_QUEUES;
1182 		rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1183 	} else {
1184 		rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1185 		     (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1186 	}
1187 
1188 	/* Special code path for reading a sub page size buffer in --
1189 	 * we populate up the whole page, and hence the other metadata
1190 	 * in the same page.  This optimization is only valid when the
1191 	 * filesystem block size is not smaller than the page size.
1192 	 */
1193 	if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1194 	    ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1195 	      (XBF_READ|_XBF_PAGE_LOCKED)) &&
1196 	    (blocksize >= PAGE_CACHE_SIZE)) {
1197 		bio = bio_alloc(GFP_NOIO, 1);
1198 
1199 		bio->bi_bdev = bp->b_target->bt_bdev;
1200 		bio->bi_sector = sector - (offset >> BBSHIFT);
1201 		bio->bi_end_io = xfs_buf_bio_end_io;
1202 		bio->bi_private = bp;
1203 
1204 		bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1205 		size = 0;
1206 
1207 		atomic_inc(&bp->b_io_remaining);
1208 
1209 		goto submit_io;
1210 	}
1211 
1212 next_chunk:
1213 	atomic_inc(&bp->b_io_remaining);
1214 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1215 	if (nr_pages > total_nr_pages)
1216 		nr_pages = total_nr_pages;
1217 
1218 	bio = bio_alloc(GFP_NOIO, nr_pages);
1219 	bio->bi_bdev = bp->b_target->bt_bdev;
1220 	bio->bi_sector = sector;
1221 	bio->bi_end_io = xfs_buf_bio_end_io;
1222 	bio->bi_private = bp;
1223 
1224 	for (; size && nr_pages; nr_pages--, map_i++) {
1225 		int	rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1226 
1227 		if (nbytes > size)
1228 			nbytes = size;
1229 
1230 		rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1231 		if (rbytes < nbytes)
1232 			break;
1233 
1234 		offset = 0;
1235 		sector += nbytes >> BBSHIFT;
1236 		size -= nbytes;
1237 		total_nr_pages--;
1238 	}
1239 
1240 submit_io:
1241 	if (likely(bio->bi_size)) {
1242 		submit_bio(rw, bio);
1243 		if (size)
1244 			goto next_chunk;
1245 	} else {
1246 		bio_put(bio);
1247 		xfs_buf_ioerror(bp, EIO);
1248 	}
1249 }
1250 
1251 int
xfs_buf_iorequest(xfs_buf_t * bp)1252 xfs_buf_iorequest(
1253 	xfs_buf_t		*bp)
1254 {
1255 	XB_TRACE(bp, "iorequest", 0);
1256 
1257 	if (bp->b_flags & XBF_DELWRI) {
1258 		xfs_buf_delwri_queue(bp, 1);
1259 		return 0;
1260 	}
1261 
1262 	if (bp->b_flags & XBF_WRITE) {
1263 		xfs_buf_wait_unpin(bp);
1264 	}
1265 
1266 	xfs_buf_hold(bp);
1267 
1268 	/* Set the count to 1 initially, this will stop an I/O
1269 	 * completion callout which happens before we have started
1270 	 * all the I/O from calling xfs_buf_ioend too early.
1271 	 */
1272 	atomic_set(&bp->b_io_remaining, 1);
1273 	_xfs_buf_ioapply(bp);
1274 	_xfs_buf_ioend(bp, 0);
1275 
1276 	xfs_buf_rele(bp);
1277 	return 0;
1278 }
1279 
1280 /*
1281  *	Waits for I/O to complete on the buffer supplied.
1282  *	It returns immediately if no I/O is pending.
1283  *	It returns the I/O error code, if any, or 0 if there was no error.
1284  */
1285 int
xfs_buf_iowait(xfs_buf_t * bp)1286 xfs_buf_iowait(
1287 	xfs_buf_t		*bp)
1288 {
1289 	XB_TRACE(bp, "iowait", 0);
1290 	if (atomic_read(&bp->b_io_remaining))
1291 		blk_run_address_space(bp->b_target->bt_mapping);
1292 	wait_for_completion(&bp->b_iowait);
1293 	XB_TRACE(bp, "iowaited", (long)bp->b_error);
1294 	return bp->b_error;
1295 }
1296 
1297 xfs_caddr_t
xfs_buf_offset(xfs_buf_t * bp,size_t offset)1298 xfs_buf_offset(
1299 	xfs_buf_t		*bp,
1300 	size_t			offset)
1301 {
1302 	struct page		*page;
1303 
1304 	if (bp->b_flags & XBF_MAPPED)
1305 		return XFS_BUF_PTR(bp) + offset;
1306 
1307 	offset += bp->b_offset;
1308 	page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1309 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1310 }
1311 
1312 /*
1313  *	Move data into or out of a buffer.
1314  */
1315 void
xfs_buf_iomove(xfs_buf_t * bp,size_t boff,size_t bsize,caddr_t data,xfs_buf_rw_t mode)1316 xfs_buf_iomove(
1317 	xfs_buf_t		*bp,	/* buffer to process		*/
1318 	size_t			boff,	/* starting buffer offset	*/
1319 	size_t			bsize,	/* length to copy		*/
1320 	caddr_t			data,	/* data address			*/
1321 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1322 {
1323 	size_t			bend, cpoff, csize;
1324 	struct page		*page;
1325 
1326 	bend = boff + bsize;
1327 	while (boff < bend) {
1328 		page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1329 		cpoff = xfs_buf_poff(boff + bp->b_offset);
1330 		csize = min_t(size_t,
1331 			      PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1332 
1333 		ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1334 
1335 		switch (mode) {
1336 		case XBRW_ZERO:
1337 			memset(page_address(page) + cpoff, 0, csize);
1338 			break;
1339 		case XBRW_READ:
1340 			memcpy(data, page_address(page) + cpoff, csize);
1341 			break;
1342 		case XBRW_WRITE:
1343 			memcpy(page_address(page) + cpoff, data, csize);
1344 		}
1345 
1346 		boff += csize;
1347 		data += csize;
1348 	}
1349 }
1350 
1351 /*
1352  *	Handling of buffer targets (buftargs).
1353  */
1354 
1355 /*
1356  *	Wait for any bufs with callbacks that have been submitted but
1357  *	have not yet returned... walk the hash list for the target.
1358  */
1359 void
xfs_wait_buftarg(xfs_buftarg_t * btp)1360 xfs_wait_buftarg(
1361 	xfs_buftarg_t	*btp)
1362 {
1363 	xfs_buf_t	*bp, *n;
1364 	xfs_bufhash_t	*hash;
1365 	uint		i;
1366 
1367 	for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1368 		hash = &btp->bt_hash[i];
1369 again:
1370 		spin_lock(&hash->bh_lock);
1371 		list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1372 			ASSERT(btp == bp->b_target);
1373 			if (!(bp->b_flags & XBF_FS_MANAGED)) {
1374 				spin_unlock(&hash->bh_lock);
1375 				/*
1376 				 * Catch superblock reference count leaks
1377 				 * immediately
1378 				 */
1379 				BUG_ON(bp->b_bn == 0);
1380 				delay(100);
1381 				goto again;
1382 			}
1383 		}
1384 		spin_unlock(&hash->bh_lock);
1385 	}
1386 }
1387 
1388 /*
1389  *	Allocate buffer hash table for a given target.
1390  *	For devices containing metadata (i.e. not the log/realtime devices)
1391  *	we need to allocate a much larger hash table.
1392  */
1393 STATIC void
xfs_alloc_bufhash(xfs_buftarg_t * btp,int external)1394 xfs_alloc_bufhash(
1395 	xfs_buftarg_t		*btp,
1396 	int			external)
1397 {
1398 	unsigned int		i;
1399 
1400 	btp->bt_hashshift = external ? 3 : 8;	/* 8 or 256 buckets */
1401 	btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1402 	btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1403 					sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1404 	for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1405 		spin_lock_init(&btp->bt_hash[i].bh_lock);
1406 		INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1407 	}
1408 }
1409 
1410 STATIC void
xfs_free_bufhash(xfs_buftarg_t * btp)1411 xfs_free_bufhash(
1412 	xfs_buftarg_t		*btp)
1413 {
1414 	kmem_free(btp->bt_hash);
1415 	btp->bt_hash = NULL;
1416 }
1417 
1418 /*
1419  *	buftarg list for delwrite queue processing
1420  */
1421 static LIST_HEAD(xfs_buftarg_list);
1422 static DEFINE_SPINLOCK(xfs_buftarg_lock);
1423 
1424 STATIC void
xfs_register_buftarg(xfs_buftarg_t * btp)1425 xfs_register_buftarg(
1426 	xfs_buftarg_t           *btp)
1427 {
1428 	spin_lock(&xfs_buftarg_lock);
1429 	list_add(&btp->bt_list, &xfs_buftarg_list);
1430 	spin_unlock(&xfs_buftarg_lock);
1431 }
1432 
1433 STATIC void
xfs_unregister_buftarg(xfs_buftarg_t * btp)1434 xfs_unregister_buftarg(
1435 	xfs_buftarg_t           *btp)
1436 {
1437 	spin_lock(&xfs_buftarg_lock);
1438 	list_del(&btp->bt_list);
1439 	spin_unlock(&xfs_buftarg_lock);
1440 }
1441 
1442 void
xfs_free_buftarg(struct xfs_mount * mp,struct xfs_buftarg * btp)1443 xfs_free_buftarg(
1444 	struct xfs_mount	*mp,
1445 	struct xfs_buftarg	*btp)
1446 {
1447 	xfs_flush_buftarg(btp, 1);
1448 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1449 		xfs_blkdev_issue_flush(btp);
1450 	xfs_free_bufhash(btp);
1451 	iput(btp->bt_mapping->host);
1452 
1453 	/* Unregister the buftarg first so that we don't get a
1454 	 * wakeup finding a non-existent task
1455 	 */
1456 	xfs_unregister_buftarg(btp);
1457 	kthread_stop(btp->bt_task);
1458 
1459 	kmem_free(btp);
1460 }
1461 
1462 STATIC int
xfs_setsize_buftarg_flags(xfs_buftarg_t * btp,unsigned int blocksize,unsigned int sectorsize,int verbose)1463 xfs_setsize_buftarg_flags(
1464 	xfs_buftarg_t		*btp,
1465 	unsigned int		blocksize,
1466 	unsigned int		sectorsize,
1467 	int			verbose)
1468 {
1469 	btp->bt_bsize = blocksize;
1470 	btp->bt_sshift = ffs(sectorsize) - 1;
1471 	btp->bt_smask = sectorsize - 1;
1472 
1473 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1474 		printk(KERN_WARNING
1475 			"XFS: Cannot set_blocksize to %u on device %s\n",
1476 			sectorsize, XFS_BUFTARG_NAME(btp));
1477 		return EINVAL;
1478 	}
1479 
1480 	if (verbose &&
1481 	    (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1482 		printk(KERN_WARNING
1483 			"XFS: %u byte sectors in use on device %s.  "
1484 			"This is suboptimal; %u or greater is ideal.\n",
1485 			sectorsize, XFS_BUFTARG_NAME(btp),
1486 			(unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 /*
1493  *	When allocating the initial buffer target we have not yet
1494  *	read in the superblock, so don't know what sized sectors
1495  *	are being used is at this early stage.  Play safe.
1496  */
1497 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1498 xfs_setsize_buftarg_early(
1499 	xfs_buftarg_t		*btp,
1500 	struct block_device	*bdev)
1501 {
1502 	return xfs_setsize_buftarg_flags(btp,
1503 			PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1504 }
1505 
1506 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int blocksize,unsigned int sectorsize)1507 xfs_setsize_buftarg(
1508 	xfs_buftarg_t		*btp,
1509 	unsigned int		blocksize,
1510 	unsigned int		sectorsize)
1511 {
1512 	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1513 }
1514 
1515 STATIC int
xfs_mapping_buftarg(xfs_buftarg_t * btp,struct block_device * bdev)1516 xfs_mapping_buftarg(
1517 	xfs_buftarg_t		*btp,
1518 	struct block_device	*bdev)
1519 {
1520 	struct backing_dev_info	*bdi;
1521 	struct inode		*inode;
1522 	struct address_space	*mapping;
1523 	static const struct address_space_operations mapping_aops = {
1524 		.sync_page = block_sync_page,
1525 		.migratepage = fail_migrate_page,
1526 	};
1527 
1528 	inode = new_inode(bdev->bd_inode->i_sb);
1529 	if (!inode) {
1530 		printk(KERN_WARNING
1531 			"XFS: Cannot allocate mapping inode for device %s\n",
1532 			XFS_BUFTARG_NAME(btp));
1533 		return ENOMEM;
1534 	}
1535 	inode->i_mode = S_IFBLK;
1536 	inode->i_bdev = bdev;
1537 	inode->i_rdev = bdev->bd_dev;
1538 	bdi = blk_get_backing_dev_info(bdev);
1539 	if (!bdi)
1540 		bdi = &default_backing_dev_info;
1541 	mapping = &inode->i_data;
1542 	mapping->a_ops = &mapping_aops;
1543 	mapping->backing_dev_info = bdi;
1544 	mapping_set_gfp_mask(mapping, GFP_NOFS);
1545 	btp->bt_mapping = mapping;
1546 	return 0;
1547 }
1548 
1549 STATIC int
xfs_alloc_delwrite_queue(xfs_buftarg_t * btp)1550 xfs_alloc_delwrite_queue(
1551 	xfs_buftarg_t		*btp)
1552 {
1553 	int	error = 0;
1554 
1555 	INIT_LIST_HEAD(&btp->bt_list);
1556 	INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1557 	spin_lock_init(&btp->bt_delwrite_lock);
1558 	btp->bt_flags = 0;
1559 	btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1560 	if (IS_ERR(btp->bt_task)) {
1561 		error = PTR_ERR(btp->bt_task);
1562 		goto out_error;
1563 	}
1564 	xfs_register_buftarg(btp);
1565 out_error:
1566 	return error;
1567 }
1568 
1569 xfs_buftarg_t *
xfs_alloc_buftarg(struct block_device * bdev,int external)1570 xfs_alloc_buftarg(
1571 	struct block_device	*bdev,
1572 	int			external)
1573 {
1574 	xfs_buftarg_t		*btp;
1575 
1576 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1577 
1578 	btp->bt_dev =  bdev->bd_dev;
1579 	btp->bt_bdev = bdev;
1580 	if (xfs_setsize_buftarg_early(btp, bdev))
1581 		goto error;
1582 	if (xfs_mapping_buftarg(btp, bdev))
1583 		goto error;
1584 	if (xfs_alloc_delwrite_queue(btp))
1585 		goto error;
1586 	xfs_alloc_bufhash(btp, external);
1587 	return btp;
1588 
1589 error:
1590 	kmem_free(btp);
1591 	return NULL;
1592 }
1593 
1594 
1595 /*
1596  *	Delayed write buffer handling
1597  */
1598 STATIC void
xfs_buf_delwri_queue(xfs_buf_t * bp,int unlock)1599 xfs_buf_delwri_queue(
1600 	xfs_buf_t		*bp,
1601 	int			unlock)
1602 {
1603 	struct list_head	*dwq = &bp->b_target->bt_delwrite_queue;
1604 	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
1605 
1606 	XB_TRACE(bp, "delwri_q", (long)unlock);
1607 	ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1608 
1609 	spin_lock(dwlk);
1610 	/* If already in the queue, dequeue and place at tail */
1611 	if (!list_empty(&bp->b_list)) {
1612 		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613 		if (unlock)
1614 			atomic_dec(&bp->b_hold);
1615 		list_del(&bp->b_list);
1616 	}
1617 
1618 	bp->b_flags |= _XBF_DELWRI_Q;
1619 	list_add_tail(&bp->b_list, dwq);
1620 	bp->b_queuetime = jiffies;
1621 	spin_unlock(dwlk);
1622 
1623 	if (unlock)
1624 		xfs_buf_unlock(bp);
1625 }
1626 
1627 void
xfs_buf_delwri_dequeue(xfs_buf_t * bp)1628 xfs_buf_delwri_dequeue(
1629 	xfs_buf_t		*bp)
1630 {
1631 	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
1632 	int			dequeued = 0;
1633 
1634 	spin_lock(dwlk);
1635 	if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1636 		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1637 		list_del_init(&bp->b_list);
1638 		dequeued = 1;
1639 	}
1640 	bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1641 	spin_unlock(dwlk);
1642 
1643 	if (dequeued)
1644 		xfs_buf_rele(bp);
1645 
1646 	XB_TRACE(bp, "delwri_dq", (long)dequeued);
1647 }
1648 
1649 STATIC void
xfs_buf_runall_queues(struct workqueue_struct * queue)1650 xfs_buf_runall_queues(
1651 	struct workqueue_struct	*queue)
1652 {
1653 	flush_workqueue(queue);
1654 }
1655 
1656 STATIC int
xfsbufd_wakeup(int priority,gfp_t mask)1657 xfsbufd_wakeup(
1658 	int			priority,
1659 	gfp_t			mask)
1660 {
1661 	xfs_buftarg_t		*btp;
1662 
1663 	spin_lock(&xfs_buftarg_lock);
1664 	list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1665 		if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1666 			continue;
1667 		set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1668 		wake_up_process(btp->bt_task);
1669 	}
1670 	spin_unlock(&xfs_buftarg_lock);
1671 	return 0;
1672 }
1673 
1674 /*
1675  * Move as many buffers as specified to the supplied list
1676  * idicating if we skipped any buffers to prevent deadlocks.
1677  */
1678 STATIC int
xfs_buf_delwri_split(xfs_buftarg_t * target,struct list_head * list,unsigned long age)1679 xfs_buf_delwri_split(
1680 	xfs_buftarg_t	*target,
1681 	struct list_head *list,
1682 	unsigned long	age)
1683 {
1684 	xfs_buf_t	*bp, *n;
1685 	struct list_head *dwq = &target->bt_delwrite_queue;
1686 	spinlock_t	*dwlk = &target->bt_delwrite_lock;
1687 	int		skipped = 0;
1688 	int		force;
1689 
1690 	force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1691 	INIT_LIST_HEAD(list);
1692 	spin_lock(dwlk);
1693 	list_for_each_entry_safe(bp, n, dwq, b_list) {
1694 		XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1695 		ASSERT(bp->b_flags & XBF_DELWRI);
1696 
1697 		if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1698 			if (!force &&
1699 			    time_before(jiffies, bp->b_queuetime + age)) {
1700 				xfs_buf_unlock(bp);
1701 				break;
1702 			}
1703 
1704 			bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1705 					 _XBF_RUN_QUEUES);
1706 			bp->b_flags |= XBF_WRITE;
1707 			list_move_tail(&bp->b_list, list);
1708 		} else
1709 			skipped++;
1710 	}
1711 	spin_unlock(dwlk);
1712 
1713 	return skipped;
1714 
1715 }
1716 
1717 STATIC int
xfsbufd(void * data)1718 xfsbufd(
1719 	void		*data)
1720 {
1721 	struct list_head tmp;
1722 	xfs_buftarg_t	*target = (xfs_buftarg_t *)data;
1723 	int		count;
1724 	xfs_buf_t	*bp;
1725 
1726 	current->flags |= PF_MEMALLOC;
1727 
1728 	set_freezable();
1729 
1730 	do {
1731 		if (unlikely(freezing(current))) {
1732 			set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1733 			refrigerator();
1734 		} else {
1735 			clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1736 		}
1737 
1738 		schedule_timeout_interruptible(
1739 			xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1740 
1741 		xfs_buf_delwri_split(target, &tmp,
1742 				xfs_buf_age_centisecs * msecs_to_jiffies(10));
1743 
1744 		count = 0;
1745 		while (!list_empty(&tmp)) {
1746 			bp = list_entry(tmp.next, xfs_buf_t, b_list);
1747 			ASSERT(target == bp->b_target);
1748 
1749 			list_del_init(&bp->b_list);
1750 			xfs_buf_iostrategy(bp);
1751 			count++;
1752 		}
1753 
1754 		if (as_list_len > 0)
1755 			purge_addresses();
1756 		if (count)
1757 			blk_run_address_space(target->bt_mapping);
1758 
1759 	} while (!kthread_should_stop());
1760 
1761 	return 0;
1762 }
1763 
1764 /*
1765  *	Go through all incore buffers, and release buffers if they belong to
1766  *	the given device. This is used in filesystem error handling to
1767  *	preserve the consistency of its metadata.
1768  */
1769 int
xfs_flush_buftarg(xfs_buftarg_t * target,int wait)1770 xfs_flush_buftarg(
1771 	xfs_buftarg_t	*target,
1772 	int		wait)
1773 {
1774 	struct list_head tmp;
1775 	xfs_buf_t	*bp, *n;
1776 	int		pincount = 0;
1777 
1778 	xfs_buf_runall_queues(xfsdatad_workqueue);
1779 	xfs_buf_runall_queues(xfslogd_workqueue);
1780 
1781 	set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1782 	pincount = xfs_buf_delwri_split(target, &tmp, 0);
1783 
1784 	/*
1785 	 * Dropped the delayed write list lock, now walk the temporary list
1786 	 */
1787 	list_for_each_entry_safe(bp, n, &tmp, b_list) {
1788 		ASSERT(target == bp->b_target);
1789 		if (wait)
1790 			bp->b_flags &= ~XBF_ASYNC;
1791 		else
1792 			list_del_init(&bp->b_list);
1793 
1794 		xfs_buf_iostrategy(bp);
1795 	}
1796 
1797 	if (wait)
1798 		blk_run_address_space(target->bt_mapping);
1799 
1800 	/*
1801 	 * Remaining list items must be flushed before returning
1802 	 */
1803 	while (!list_empty(&tmp)) {
1804 		bp = list_entry(tmp.next, xfs_buf_t, b_list);
1805 
1806 		list_del_init(&bp->b_list);
1807 		xfs_iowait(bp);
1808 		xfs_buf_relse(bp);
1809 	}
1810 
1811 	return pincount;
1812 }
1813 
1814 int __init
xfs_buf_init(void)1815 xfs_buf_init(void)
1816 {
1817 #ifdef XFS_BUF_TRACE
1818 	xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_NOFS);
1819 #endif
1820 
1821 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1822 						KM_ZONE_HWALIGN, NULL);
1823 	if (!xfs_buf_zone)
1824 		goto out_free_trace_buf;
1825 
1826 	xfslogd_workqueue = create_workqueue("xfslogd");
1827 	if (!xfslogd_workqueue)
1828 		goto out_free_buf_zone;
1829 
1830 	xfsdatad_workqueue = create_workqueue("xfsdatad");
1831 	if (!xfsdatad_workqueue)
1832 		goto out_destroy_xfslogd_workqueue;
1833 
1834 	register_shrinker(&xfs_buf_shake);
1835 	return 0;
1836 
1837  out_destroy_xfslogd_workqueue:
1838 	destroy_workqueue(xfslogd_workqueue);
1839  out_free_buf_zone:
1840 	kmem_zone_destroy(xfs_buf_zone);
1841  out_free_trace_buf:
1842 #ifdef XFS_BUF_TRACE
1843 	ktrace_free(xfs_buf_trace_buf);
1844 #endif
1845 	return -ENOMEM;
1846 }
1847 
1848 void
xfs_buf_terminate(void)1849 xfs_buf_terminate(void)
1850 {
1851 	unregister_shrinker(&xfs_buf_shake);
1852 	destroy_workqueue(xfsdatad_workqueue);
1853 	destroy_workqueue(xfslogd_workqueue);
1854 	kmem_zone_destroy(xfs_buf_zone);
1855 #ifdef XFS_BUF_TRACE
1856 	ktrace_free(xfs_buf_trace_buf);
1857 #endif
1858 }
1859 
1860 #ifdef CONFIG_KDB_MODULES
1861 struct list_head *
xfs_get_buftarg_list(void)1862 xfs_get_buftarg_list(void)
1863 {
1864 	return &xfs_buftarg_list;
1865 }
1866 #endif
1867