• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 
48 STATIC int	xfs_uuid_mount(xfs_mount_t *);
49 STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
50 
51 
52 #ifdef HAVE_PERCPU_SB
53 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
54 						int);
55 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
56 						int);
57 STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
58 						int64_t, int);
59 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
60 
61 #else
62 
63 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
64 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
65 #define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0)
66 
67 #endif
68 
69 static const struct {
70 	short offset;
71 	short type;	/* 0 = integer
72 			 * 1 = binary / string (no translation)
73 			 */
74 } xfs_sb_info[] = {
75     { offsetof(xfs_sb_t, sb_magicnum),   0 },
76     { offsetof(xfs_sb_t, sb_blocksize),  0 },
77     { offsetof(xfs_sb_t, sb_dblocks),    0 },
78     { offsetof(xfs_sb_t, sb_rblocks),    0 },
79     { offsetof(xfs_sb_t, sb_rextents),   0 },
80     { offsetof(xfs_sb_t, sb_uuid),       1 },
81     { offsetof(xfs_sb_t, sb_logstart),   0 },
82     { offsetof(xfs_sb_t, sb_rootino),    0 },
83     { offsetof(xfs_sb_t, sb_rbmino),     0 },
84     { offsetof(xfs_sb_t, sb_rsumino),    0 },
85     { offsetof(xfs_sb_t, sb_rextsize),   0 },
86     { offsetof(xfs_sb_t, sb_agblocks),   0 },
87     { offsetof(xfs_sb_t, sb_agcount),    0 },
88     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
89     { offsetof(xfs_sb_t, sb_logblocks),  0 },
90     { offsetof(xfs_sb_t, sb_versionnum), 0 },
91     { offsetof(xfs_sb_t, sb_sectsize),   0 },
92     { offsetof(xfs_sb_t, sb_inodesize),  0 },
93     { offsetof(xfs_sb_t, sb_inopblock),  0 },
94     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
95     { offsetof(xfs_sb_t, sb_blocklog),   0 },
96     { offsetof(xfs_sb_t, sb_sectlog),    0 },
97     { offsetof(xfs_sb_t, sb_inodelog),   0 },
98     { offsetof(xfs_sb_t, sb_inopblog),   0 },
99     { offsetof(xfs_sb_t, sb_agblklog),   0 },
100     { offsetof(xfs_sb_t, sb_rextslog),   0 },
101     { offsetof(xfs_sb_t, sb_inprogress), 0 },
102     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
103     { offsetof(xfs_sb_t, sb_icount),     0 },
104     { offsetof(xfs_sb_t, sb_ifree),      0 },
105     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
106     { offsetof(xfs_sb_t, sb_frextents),  0 },
107     { offsetof(xfs_sb_t, sb_uquotino),   0 },
108     { offsetof(xfs_sb_t, sb_gquotino),   0 },
109     { offsetof(xfs_sb_t, sb_qflags),     0 },
110     { offsetof(xfs_sb_t, sb_flags),      0 },
111     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
112     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
113     { offsetof(xfs_sb_t, sb_unit),	 0 },
114     { offsetof(xfs_sb_t, sb_width),	 0 },
115     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
116     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
117     { offsetof(xfs_sb_t, sb_logsectsize),0 },
118     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
119     { offsetof(xfs_sb_t, sb_features2),	 0 },
120     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
121     { sizeof(xfs_sb_t),			 0 }
122 };
123 
124 /*
125  * Free up the resources associated with a mount structure.  Assume that
126  * the structure was initially zeroed, so we can tell which fields got
127  * initialized.
128  */
129 STATIC void
xfs_free_perag(xfs_mount_t * mp)130 xfs_free_perag(
131 	xfs_mount_t	*mp)
132 {
133 	if (mp->m_perag) {
134 		int	agno;
135 
136 		for (agno = 0; agno < mp->m_maxagi; agno++)
137 			if (mp->m_perag[agno].pagb_list)
138 				kmem_free(mp->m_perag[agno].pagb_list);
139 		kmem_free(mp->m_perag);
140 	}
141 }
142 
143 /*
144  * Check size of device based on the (data/realtime) block count.
145  * Note: this check is used by the growfs code as well as mount.
146  */
147 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,__uint64_t nblocks)148 xfs_sb_validate_fsb_count(
149 	xfs_sb_t	*sbp,
150 	__uint64_t	nblocks)
151 {
152 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
153 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
154 
155 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
156 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
157 		return E2BIG;
158 #else                  /* Limited by UINT_MAX of sectors */
159 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
160 		return E2BIG;
161 #endif
162 	return 0;
163 }
164 
165 /*
166  * Check the validity of the SB found.
167  */
168 STATIC int
xfs_mount_validate_sb(xfs_mount_t * mp,xfs_sb_t * sbp,int flags)169 xfs_mount_validate_sb(
170 	xfs_mount_t	*mp,
171 	xfs_sb_t	*sbp,
172 	int		flags)
173 {
174 	/*
175 	 * If the log device and data device have the
176 	 * same device number, the log is internal.
177 	 * Consequently, the sb_logstart should be non-zero.  If
178 	 * we have a zero sb_logstart in this case, we may be trying to mount
179 	 * a volume filesystem in a non-volume manner.
180 	 */
181 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
182 		xfs_fs_mount_cmn_err(flags, "bad magic number");
183 		return XFS_ERROR(EWRONGFS);
184 	}
185 
186 	if (!xfs_sb_good_version(sbp)) {
187 		xfs_fs_mount_cmn_err(flags, "bad version");
188 		return XFS_ERROR(EWRONGFS);
189 	}
190 
191 	if (unlikely(
192 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
193 		xfs_fs_mount_cmn_err(flags,
194 			"filesystem is marked as having an external log; "
195 			"specify logdev on the\nmount command line.");
196 		return XFS_ERROR(EINVAL);
197 	}
198 
199 	if (unlikely(
200 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
201 		xfs_fs_mount_cmn_err(flags,
202 			"filesystem is marked as having an internal log; "
203 			"do not specify logdev on\nthe mount command line.");
204 		return XFS_ERROR(EINVAL);
205 	}
206 
207 	/*
208 	 * More sanity checking. These were stolen directly from
209 	 * xfs_repair.
210 	 */
211 	if (unlikely(
212 	    sbp->sb_agcount <= 0					||
213 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
214 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
215 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
216 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
217 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
218 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
219 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
220 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
221 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
222 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
223 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
224 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
225 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
226 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
227 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
228 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
229 		xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
230 		return XFS_ERROR(EFSCORRUPTED);
231 	}
232 
233 	/*
234 	 * Sanity check AG count, size fields against data size field
235 	 */
236 	if (unlikely(
237 	    sbp->sb_dblocks == 0 ||
238 	    sbp->sb_dblocks >
239 	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
240 	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
241 			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
242 		xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
243 		return XFS_ERROR(EFSCORRUPTED);
244 	}
245 
246 	/*
247 	 * Until this is fixed only page-sized or smaller data blocks work.
248 	 */
249 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
250 		xfs_fs_mount_cmn_err(flags,
251 			"file system with blocksize %d bytes",
252 			sbp->sb_blocksize);
253 		xfs_fs_mount_cmn_err(flags,
254 			"only pagesize (%ld) or less will currently work.",
255 			PAGE_SIZE);
256 		return XFS_ERROR(ENOSYS);
257 	}
258 
259 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
260 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
261 		xfs_fs_mount_cmn_err(flags,
262 			"file system too large to be mounted on this system.");
263 		return XFS_ERROR(E2BIG);
264 	}
265 
266 	if (unlikely(sbp->sb_inprogress)) {
267 		xfs_fs_mount_cmn_err(flags, "file system busy");
268 		return XFS_ERROR(EFSCORRUPTED);
269 	}
270 
271 	/*
272 	 * Version 1 directory format has never worked on Linux.
273 	 */
274 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
275 		xfs_fs_mount_cmn_err(flags,
276 			"file system using version 1 directory format");
277 		return XFS_ERROR(ENOSYS);
278 	}
279 
280 	return 0;
281 }
282 
283 STATIC void
xfs_initialize_perag_icache(xfs_perag_t * pag)284 xfs_initialize_perag_icache(
285 	xfs_perag_t	*pag)
286 {
287 	if (!pag->pag_ici_init) {
288 		rwlock_init(&pag->pag_ici_lock);
289 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
290 		pag->pag_ici_init = 1;
291 	}
292 }
293 
294 xfs_agnumber_t
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount)295 xfs_initialize_perag(
296 	xfs_mount_t	*mp,
297 	xfs_agnumber_t	agcount)
298 {
299 	xfs_agnumber_t	index, max_metadata;
300 	xfs_perag_t	*pag;
301 	xfs_agino_t	agino;
302 	xfs_ino_t	ino;
303 	xfs_sb_t	*sbp = &mp->m_sb;
304 	xfs_ino_t	max_inum = XFS_MAXINUMBER_32;
305 
306 	/* Check to see if the filesystem can overflow 32 bit inodes */
307 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
308 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
309 
310 	/* Clear the mount flag if no inode can overflow 32 bits
311 	 * on this filesystem, or if specifically requested..
312 	 */
313 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
314 		mp->m_flags |= XFS_MOUNT_32BITINODES;
315 	} else {
316 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
317 	}
318 
319 	/* If we can overflow then setup the ag headers accordingly */
320 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
321 		/* Calculate how much should be reserved for inodes to
322 		 * meet the max inode percentage.
323 		 */
324 		if (mp->m_maxicount) {
325 			__uint64_t	icount;
326 
327 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
328 			do_div(icount, 100);
329 			icount += sbp->sb_agblocks - 1;
330 			do_div(icount, sbp->sb_agblocks);
331 			max_metadata = icount;
332 		} else {
333 			max_metadata = agcount;
334 		}
335 		for (index = 0; index < agcount; index++) {
336 			ino = XFS_AGINO_TO_INO(mp, index, agino);
337 			if (ino > max_inum) {
338 				index++;
339 				break;
340 			}
341 
342 			/* This ag is preferred for inodes */
343 			pag = &mp->m_perag[index];
344 			pag->pagi_inodeok = 1;
345 			if (index < max_metadata)
346 				pag->pagf_metadata = 1;
347 			xfs_initialize_perag_icache(pag);
348 		}
349 	} else {
350 		/* Setup default behavior for smaller filesystems */
351 		for (index = 0; index < agcount; index++) {
352 			pag = &mp->m_perag[index];
353 			pag->pagi_inodeok = 1;
354 			xfs_initialize_perag_icache(pag);
355 		}
356 	}
357 	return index;
358 }
359 
360 void
xfs_sb_from_disk(xfs_sb_t * to,xfs_dsb_t * from)361 xfs_sb_from_disk(
362 	xfs_sb_t	*to,
363 	xfs_dsb_t	*from)
364 {
365 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
366 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
367 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
368 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
369 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
370 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
371 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
372 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
373 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
374 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
375 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
376 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
377 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
378 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
379 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
380 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
381 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
382 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
383 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
384 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
385 	to->sb_blocklog = from->sb_blocklog;
386 	to->sb_sectlog = from->sb_sectlog;
387 	to->sb_inodelog = from->sb_inodelog;
388 	to->sb_inopblog = from->sb_inopblog;
389 	to->sb_agblklog = from->sb_agblklog;
390 	to->sb_rextslog = from->sb_rextslog;
391 	to->sb_inprogress = from->sb_inprogress;
392 	to->sb_imax_pct = from->sb_imax_pct;
393 	to->sb_icount = be64_to_cpu(from->sb_icount);
394 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
395 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
396 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
397 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
398 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
399 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
400 	to->sb_flags = from->sb_flags;
401 	to->sb_shared_vn = from->sb_shared_vn;
402 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
403 	to->sb_unit = be32_to_cpu(from->sb_unit);
404 	to->sb_width = be32_to_cpu(from->sb_width);
405 	to->sb_dirblklog = from->sb_dirblklog;
406 	to->sb_logsectlog = from->sb_logsectlog;
407 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
408 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
409 	to->sb_features2 = be32_to_cpu(from->sb_features2);
410 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
411 }
412 
413 /*
414  * Copy in core superblock to ondisk one.
415  *
416  * The fields argument is mask of superblock fields to copy.
417  */
418 void
xfs_sb_to_disk(xfs_dsb_t * to,xfs_sb_t * from,__int64_t fields)419 xfs_sb_to_disk(
420 	xfs_dsb_t	*to,
421 	xfs_sb_t	*from,
422 	__int64_t	fields)
423 {
424 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
425 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
426 	xfs_sb_field_t	f;
427 	int		first;
428 	int		size;
429 
430 	ASSERT(fields);
431 	if (!fields)
432 		return;
433 
434 	while (fields) {
435 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
436 		first = xfs_sb_info[f].offset;
437 		size = xfs_sb_info[f + 1].offset - first;
438 
439 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
440 
441 		if (size == 1 || xfs_sb_info[f].type == 1) {
442 			memcpy(to_ptr + first, from_ptr + first, size);
443 		} else {
444 			switch (size) {
445 			case 2:
446 				*(__be16 *)(to_ptr + first) =
447 					cpu_to_be16(*(__u16 *)(from_ptr + first));
448 				break;
449 			case 4:
450 				*(__be32 *)(to_ptr + first) =
451 					cpu_to_be32(*(__u32 *)(from_ptr + first));
452 				break;
453 			case 8:
454 				*(__be64 *)(to_ptr + first) =
455 					cpu_to_be64(*(__u64 *)(from_ptr + first));
456 				break;
457 			default:
458 				ASSERT(0);
459 			}
460 		}
461 
462 		fields &= ~(1LL << f);
463 	}
464 }
465 
466 /*
467  * xfs_readsb
468  *
469  * Does the initial read of the superblock.
470  */
471 int
xfs_readsb(xfs_mount_t * mp,int flags)472 xfs_readsb(xfs_mount_t *mp, int flags)
473 {
474 	unsigned int	sector_size;
475 	unsigned int	extra_flags;
476 	xfs_buf_t	*bp;
477 	int		error;
478 
479 	ASSERT(mp->m_sb_bp == NULL);
480 	ASSERT(mp->m_ddev_targp != NULL);
481 
482 	/*
483 	 * Allocate a (locked) buffer to hold the superblock.
484 	 * This will be kept around at all times to optimize
485 	 * access to the superblock.
486 	 */
487 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
488 	extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
489 
490 	bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
491 				BTOBB(sector_size), extra_flags);
492 	if (!bp || XFS_BUF_ISERROR(bp)) {
493 		xfs_fs_mount_cmn_err(flags, "SB read failed");
494 		error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
495 		goto fail;
496 	}
497 	ASSERT(XFS_BUF_ISBUSY(bp));
498 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
499 
500 	/*
501 	 * Initialize the mount structure from the superblock.
502 	 * But first do some basic consistency checking.
503 	 */
504 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
505 
506 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
507 	if (error) {
508 		xfs_fs_mount_cmn_err(flags, "SB validate failed");
509 		goto fail;
510 	}
511 
512 	/*
513 	 * We must be able to do sector-sized and sector-aligned IO.
514 	 */
515 	if (sector_size > mp->m_sb.sb_sectsize) {
516 		xfs_fs_mount_cmn_err(flags,
517 			"device supports only %u byte sectors (not %u)",
518 			sector_size, mp->m_sb.sb_sectsize);
519 		error = ENOSYS;
520 		goto fail;
521 	}
522 
523 	/*
524 	 * If device sector size is smaller than the superblock size,
525 	 * re-read the superblock so the buffer is correctly sized.
526 	 */
527 	if (sector_size < mp->m_sb.sb_sectsize) {
528 		XFS_BUF_UNMANAGE(bp);
529 		xfs_buf_relse(bp);
530 		sector_size = mp->m_sb.sb_sectsize;
531 		bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
532 					BTOBB(sector_size), extra_flags);
533 		if (!bp || XFS_BUF_ISERROR(bp)) {
534 			xfs_fs_mount_cmn_err(flags, "SB re-read failed");
535 			error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
536 			goto fail;
537 		}
538 		ASSERT(XFS_BUF_ISBUSY(bp));
539 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
540 	}
541 
542 	/* Initialize per-cpu counters */
543 	xfs_icsb_reinit_counters(mp);
544 
545 	mp->m_sb_bp = bp;
546 	xfs_buf_relse(bp);
547 	ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
548 	return 0;
549 
550  fail:
551 	if (bp) {
552 		XFS_BUF_UNMANAGE(bp);
553 		xfs_buf_relse(bp);
554 	}
555 	return error;
556 }
557 
558 
559 /*
560  * xfs_mount_common
561  *
562  * Mount initialization code establishing various mount
563  * fields from the superblock associated with the given
564  * mount structure
565  */
566 STATIC void
xfs_mount_common(xfs_mount_t * mp,xfs_sb_t * sbp)567 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
568 {
569 	mp->m_agfrotor = mp->m_agirotor = 0;
570 	spin_lock_init(&mp->m_agirotor_lock);
571 	mp->m_maxagi = mp->m_sb.sb_agcount;
572 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
573 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
574 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
575 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
576 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
577 	mp->m_litino = sbp->sb_inodesize - sizeof(struct xfs_dinode);
578 	mp->m_blockmask = sbp->sb_blocksize - 1;
579 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
580 	mp->m_blockwmask = mp->m_blockwsize - 1;
581 
582 	/*
583 	 * Setup for attributes, in case they get created.
584 	 * This value is for inodes getting attributes for the first time,
585 	 * the per-inode value is for old attribute values.
586 	 */
587 	ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
588 	switch (sbp->sb_inodesize) {
589 	case 256:
590 		mp->m_attroffset = XFS_LITINO(mp) -
591 				   XFS_BMDR_SPACE_CALC(MINABTPTRS);
592 		break;
593 	case 512:
594 	case 1024:
595 	case 2048:
596 		mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
597 		break;
598 	default:
599 		ASSERT(0);
600 	}
601 	ASSERT(mp->m_attroffset < XFS_LITINO(mp));
602 
603 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
604 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
605 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
606 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
607 
608 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
609 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
610 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
611 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
612 
613 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
614 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
615 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
616 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
617 
618 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
619 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
620 					sbp->sb_inopblock);
621 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
622 }
623 
624 /*
625  * xfs_initialize_perag_data
626  *
627  * Read in each per-ag structure so we can count up the number of
628  * allocated inodes, free inodes and used filesystem blocks as this
629  * information is no longer persistent in the superblock. Once we have
630  * this information, write it into the in-core superblock structure.
631  */
632 STATIC int
xfs_initialize_perag_data(xfs_mount_t * mp,xfs_agnumber_t agcount)633 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
634 {
635 	xfs_agnumber_t	index;
636 	xfs_perag_t	*pag;
637 	xfs_sb_t	*sbp = &mp->m_sb;
638 	uint64_t	ifree = 0;
639 	uint64_t	ialloc = 0;
640 	uint64_t	bfree = 0;
641 	uint64_t	bfreelst = 0;
642 	uint64_t	btree = 0;
643 	int		error;
644 
645 	for (index = 0; index < agcount; index++) {
646 		/*
647 		 * read the agf, then the agi. This gets us
648 		 * all the inforamtion we need and populates the
649 		 * per-ag structures for us.
650 		 */
651 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
652 		if (error)
653 			return error;
654 
655 		error = xfs_ialloc_pagi_init(mp, NULL, index);
656 		if (error)
657 			return error;
658 		pag = &mp->m_perag[index];
659 		ifree += pag->pagi_freecount;
660 		ialloc += pag->pagi_count;
661 		bfree += pag->pagf_freeblks;
662 		bfreelst += pag->pagf_flcount;
663 		btree += pag->pagf_btreeblks;
664 	}
665 	/*
666 	 * Overwrite incore superblock counters with just-read data
667 	 */
668 	spin_lock(&mp->m_sb_lock);
669 	sbp->sb_ifree = ifree;
670 	sbp->sb_icount = ialloc;
671 	sbp->sb_fdblocks = bfree + bfreelst + btree;
672 	spin_unlock(&mp->m_sb_lock);
673 
674 	/* Fixup the per-cpu counters as well. */
675 	xfs_icsb_reinit_counters(mp);
676 
677 	return 0;
678 }
679 
680 /*
681  * Update alignment values based on mount options and sb values
682  */
683 STATIC int
xfs_update_alignment(xfs_mount_t * mp)684 xfs_update_alignment(xfs_mount_t *mp)
685 {
686 	xfs_sb_t	*sbp = &(mp->m_sb);
687 
688 	if (mp->m_dalign) {
689 		/*
690 		 * If stripe unit and stripe width are not multiples
691 		 * of the fs blocksize turn off alignment.
692 		 */
693 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
694 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
695 			if (mp->m_flags & XFS_MOUNT_RETERR) {
696 				cmn_err(CE_WARN,
697 					"XFS: alignment check 1 failed");
698 				return XFS_ERROR(EINVAL);
699 			}
700 			mp->m_dalign = mp->m_swidth = 0;
701 		} else {
702 			/*
703 			 * Convert the stripe unit and width to FSBs.
704 			 */
705 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
706 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
707 				if (mp->m_flags & XFS_MOUNT_RETERR) {
708 					return XFS_ERROR(EINVAL);
709 				}
710 				xfs_fs_cmn_err(CE_WARN, mp,
711 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
712 					mp->m_dalign, mp->m_swidth,
713 					sbp->sb_agblocks);
714 
715 				mp->m_dalign = 0;
716 				mp->m_swidth = 0;
717 			} else if (mp->m_dalign) {
718 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
719 			} else {
720 				if (mp->m_flags & XFS_MOUNT_RETERR) {
721 					xfs_fs_cmn_err(CE_WARN, mp,
722 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
723                                         	mp->m_dalign,
724 						mp->m_blockmask +1);
725 					return XFS_ERROR(EINVAL);
726 				}
727 				mp->m_swidth = 0;
728 			}
729 		}
730 
731 		/*
732 		 * Update superblock with new values
733 		 * and log changes
734 		 */
735 		if (xfs_sb_version_hasdalign(sbp)) {
736 			if (sbp->sb_unit != mp->m_dalign) {
737 				sbp->sb_unit = mp->m_dalign;
738 				mp->m_update_flags |= XFS_SB_UNIT;
739 			}
740 			if (sbp->sb_width != mp->m_swidth) {
741 				sbp->sb_width = mp->m_swidth;
742 				mp->m_update_flags |= XFS_SB_WIDTH;
743 			}
744 		}
745 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
746 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
747 			mp->m_dalign = sbp->sb_unit;
748 			mp->m_swidth = sbp->sb_width;
749 	}
750 
751 	return 0;
752 }
753 
754 /*
755  * Set the maximum inode count for this filesystem
756  */
757 STATIC void
xfs_set_maxicount(xfs_mount_t * mp)758 xfs_set_maxicount(xfs_mount_t *mp)
759 {
760 	xfs_sb_t	*sbp = &(mp->m_sb);
761 	__uint64_t	icount;
762 
763 	if (sbp->sb_imax_pct) {
764 		/*
765 		 * Make sure the maximum inode count is a multiple
766 		 * of the units we allocate inodes in.
767 		 */
768 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
769 		do_div(icount, 100);
770 		do_div(icount, mp->m_ialloc_blks);
771 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
772 				   sbp->sb_inopblog;
773 	} else {
774 		mp->m_maxicount = 0;
775 	}
776 }
777 
778 /*
779  * Set the default minimum read and write sizes unless
780  * already specified in a mount option.
781  * We use smaller I/O sizes when the file system
782  * is being used for NFS service (wsync mount option).
783  */
784 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)785 xfs_set_rw_sizes(xfs_mount_t *mp)
786 {
787 	xfs_sb_t	*sbp = &(mp->m_sb);
788 	int		readio_log, writeio_log;
789 
790 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
791 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
792 			readio_log = XFS_WSYNC_READIO_LOG;
793 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
794 		} else {
795 			readio_log = XFS_READIO_LOG_LARGE;
796 			writeio_log = XFS_WRITEIO_LOG_LARGE;
797 		}
798 	} else {
799 		readio_log = mp->m_readio_log;
800 		writeio_log = mp->m_writeio_log;
801 	}
802 
803 	if (sbp->sb_blocklog > readio_log) {
804 		mp->m_readio_log = sbp->sb_blocklog;
805 	} else {
806 		mp->m_readio_log = readio_log;
807 	}
808 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
809 	if (sbp->sb_blocklog > writeio_log) {
810 		mp->m_writeio_log = sbp->sb_blocklog;
811 	} else {
812 		mp->m_writeio_log = writeio_log;
813 	}
814 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
815 }
816 
817 /*
818  * Set whether we're using inode alignment.
819  */
820 STATIC void
xfs_set_inoalignment(xfs_mount_t * mp)821 xfs_set_inoalignment(xfs_mount_t *mp)
822 {
823 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
824 	    mp->m_sb.sb_inoalignmt >=
825 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
826 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
827 	else
828 		mp->m_inoalign_mask = 0;
829 	/*
830 	 * If we are using stripe alignment, check whether
831 	 * the stripe unit is a multiple of the inode alignment
832 	 */
833 	if (mp->m_dalign && mp->m_inoalign_mask &&
834 	    !(mp->m_dalign & mp->m_inoalign_mask))
835 		mp->m_sinoalign = mp->m_dalign;
836 	else
837 		mp->m_sinoalign = 0;
838 }
839 
840 /*
841  * Check that the data (and log if separate) are an ok size.
842  */
843 STATIC int
xfs_check_sizes(xfs_mount_t * mp)844 xfs_check_sizes(xfs_mount_t *mp)
845 {
846 	xfs_buf_t	*bp;
847 	xfs_daddr_t	d;
848 	int		error;
849 
850 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
851 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
852 		cmn_err(CE_WARN, "XFS: size check 1 failed");
853 		return XFS_ERROR(E2BIG);
854 	}
855 	error = xfs_read_buf(mp, mp->m_ddev_targp,
856 			     d - XFS_FSS_TO_BB(mp, 1),
857 			     XFS_FSS_TO_BB(mp, 1), 0, &bp);
858 	if (!error) {
859 		xfs_buf_relse(bp);
860 	} else {
861 		cmn_err(CE_WARN, "XFS: size check 2 failed");
862 		if (error == ENOSPC)
863 			error = XFS_ERROR(E2BIG);
864 		return error;
865 	}
866 
867 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
868 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
869 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
870 			cmn_err(CE_WARN, "XFS: size check 3 failed");
871 			return XFS_ERROR(E2BIG);
872 		}
873 		error = xfs_read_buf(mp, mp->m_logdev_targp,
874 				     d - XFS_FSB_TO_BB(mp, 1),
875 				     XFS_FSB_TO_BB(mp, 1), 0, &bp);
876 		if (!error) {
877 			xfs_buf_relse(bp);
878 		} else {
879 			cmn_err(CE_WARN, "XFS: size check 3 failed");
880 			if (error == ENOSPC)
881 				error = XFS_ERROR(E2BIG);
882 			return error;
883 		}
884 	}
885 	return 0;
886 }
887 
888 /*
889  * xfs_mountfs
890  *
891  * This function does the following on an initial mount of a file system:
892  *	- reads the superblock from disk and init the mount struct
893  *	- if we're a 32-bit kernel, do a size check on the superblock
894  *		so we don't mount terabyte filesystems
895  *	- init mount struct realtime fields
896  *	- allocate inode hash table for fs
897  *	- init directory manager
898  *	- perform recovery and init the log manager
899  */
900 int
xfs_mountfs(xfs_mount_t * mp)901 xfs_mountfs(
902 	xfs_mount_t	*mp)
903 {
904 	xfs_sb_t	*sbp = &(mp->m_sb);
905 	xfs_inode_t	*rip;
906 	__uint64_t	resblks;
907 	uint		quotamount, quotaflags;
908 	int		uuid_mounted = 0;
909 	int		error = 0;
910 
911 	xfs_mount_common(mp, sbp);
912 
913 	/*
914 	 * Check for a mismatched features2 values.  Older kernels
915 	 * read & wrote into the wrong sb offset for sb_features2
916 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
917 	 * when sb_features2 was added, which made older superblock
918 	 * reading/writing routines swap it as a 64-bit value.
919 	 *
920 	 * For backwards compatibility, we make both slots equal.
921 	 *
922 	 * If we detect a mismatched field, we OR the set bits into the
923 	 * existing features2 field in case it has already been modified; we
924 	 * don't want to lose any features.  We then update the bad location
925 	 * with the ORed value so that older kernels will see any features2
926 	 * flags, and mark the two fields as needing updates once the
927 	 * transaction subsystem is online.
928 	 */
929 	if (xfs_sb_has_mismatched_features2(sbp)) {
930 		cmn_err(CE_WARN,
931 			"XFS: correcting sb_features alignment problem");
932 		sbp->sb_features2 |= sbp->sb_bad_features2;
933 		sbp->sb_bad_features2 = sbp->sb_features2;
934 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
935 
936 		/*
937 		 * Re-check for ATTR2 in case it was found in bad_features2
938 		 * slot.
939 		 */
940 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
941 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
942 			mp->m_flags |= XFS_MOUNT_ATTR2;
943 	}
944 
945 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
946 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
947 		xfs_sb_version_removeattr2(&mp->m_sb);
948 		mp->m_update_flags |= XFS_SB_FEATURES2;
949 
950 		/* update sb_versionnum for the clearing of the morebits */
951 		if (!sbp->sb_features2)
952 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
953 	}
954 
955 	/*
956 	 * Check if sb_agblocks is aligned at stripe boundary
957 	 * If sb_agblocks is NOT aligned turn off m_dalign since
958 	 * allocator alignment is within an ag, therefore ag has
959 	 * to be aligned at stripe boundary.
960 	 */
961 	error = xfs_update_alignment(mp);
962 	if (error)
963 		goto error1;
964 
965 	xfs_alloc_compute_maxlevels(mp);
966 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
967 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
968 	xfs_ialloc_compute_maxlevels(mp);
969 
970 	xfs_set_maxicount(mp);
971 
972 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
973 
974 	/*
975 	 * XFS uses the uuid from the superblock as the unique
976 	 * identifier for fsid.  We can not use the uuid from the volume
977 	 * since a single partition filesystem is identical to a single
978 	 * partition volume/filesystem.
979 	 */
980 	if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
981 		if (xfs_uuid_mount(mp)) {
982 			error = XFS_ERROR(EINVAL);
983 			goto error1;
984 		}
985 		uuid_mounted=1;
986 	}
987 
988 	/*
989 	 * Set the minimum read and write sizes
990 	 */
991 	xfs_set_rw_sizes(mp);
992 
993 	/*
994 	 * Set the inode cluster size.
995 	 * This may still be overridden by the file system
996 	 * block size if it is larger than the chosen cluster size.
997 	 */
998 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
999 
1000 	/*
1001 	 * Set inode alignment fields
1002 	 */
1003 	xfs_set_inoalignment(mp);
1004 
1005 	/*
1006 	 * Check that the data (and log if separate) are an ok size.
1007 	 */
1008 	error = xfs_check_sizes(mp);
1009 	if (error)
1010 		goto error1;
1011 
1012 	/*
1013 	 * Initialize realtime fields in the mount structure
1014 	 */
1015 	error = xfs_rtmount_init(mp);
1016 	if (error) {
1017 		cmn_err(CE_WARN, "XFS: RT mount failed");
1018 		goto error1;
1019 	}
1020 
1021 	/*
1022 	 *  Copies the low order bits of the timestamp and the randomly
1023 	 *  set "sequence" number out of a UUID.
1024 	 */
1025 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1026 
1027 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1028 
1029 	xfs_dir_mount(mp);
1030 
1031 	/*
1032 	 * Initialize the attribute manager's entries.
1033 	 */
1034 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1035 
1036 	/*
1037 	 * Initialize the precomputed transaction reservations values.
1038 	 */
1039 	xfs_trans_init(mp);
1040 
1041 	/*
1042 	 * Allocate and initialize the per-ag data.
1043 	 */
1044 	init_rwsem(&mp->m_peraglock);
1045 	mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t),
1046 				  KM_MAYFAIL);
1047 	if (!mp->m_perag)
1048 		goto error1;
1049 
1050 	mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1051 
1052 	/*
1053 	 * log's mount-time initialization. Perform 1st part recovery if needed
1054 	 */
1055 	if (likely(sbp->sb_logblocks > 0)) {	/* check for volume case */
1056 		error = xfs_log_mount(mp, mp->m_logdev_targp,
1057 				      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1058 				      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1059 		if (error) {
1060 			cmn_err(CE_WARN, "XFS: log mount failed");
1061 			goto error2;
1062 		}
1063 	} else {	/* No log has been defined */
1064 		cmn_err(CE_WARN, "XFS: no log defined");
1065 		XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1066 		error = XFS_ERROR(EFSCORRUPTED);
1067 		goto error2;
1068 	}
1069 
1070 	/*
1071 	 * Now the log is mounted, we know if it was an unclean shutdown or
1072 	 * not. If it was, with the first phase of recovery has completed, we
1073 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1074 	 * but they are recovered transactionally in the second recovery phase
1075 	 * later.
1076 	 *
1077 	 * Hence we can safely re-initialise incore superblock counters from
1078 	 * the per-ag data. These may not be correct if the filesystem was not
1079 	 * cleanly unmounted, so we need to wait for recovery to finish before
1080 	 * doing this.
1081 	 *
1082 	 * If the filesystem was cleanly unmounted, then we can trust the
1083 	 * values in the superblock to be correct and we don't need to do
1084 	 * anything here.
1085 	 *
1086 	 * If we are currently making the filesystem, the initialisation will
1087 	 * fail as the perag data is in an undefined state.
1088 	 */
1089 
1090 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1091 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1092 	     !mp->m_sb.sb_inprogress) {
1093 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1094 		if (error) {
1095 			goto error2;
1096 		}
1097 	}
1098 	/*
1099 	 * Get and sanity-check the root inode.
1100 	 * Save the pointer to it in the mount structure.
1101 	 */
1102 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1103 	if (error) {
1104 		cmn_err(CE_WARN, "XFS: failed to read root inode");
1105 		goto error3;
1106 	}
1107 
1108 	ASSERT(rip != NULL);
1109 
1110 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1111 		cmn_err(CE_WARN, "XFS: corrupted root inode");
1112 		cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1113 			XFS_BUFTARG_NAME(mp->m_ddev_targp),
1114 			(unsigned long long)rip->i_ino);
1115 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1116 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1117 				 mp);
1118 		error = XFS_ERROR(EFSCORRUPTED);
1119 		goto error4;
1120 	}
1121 	mp->m_rootip = rip;	/* save it */
1122 
1123 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1124 
1125 	/*
1126 	 * Initialize realtime inode pointers in the mount structure
1127 	 */
1128 	error = xfs_rtmount_inodes(mp);
1129 	if (error) {
1130 		/*
1131 		 * Free up the root inode.
1132 		 */
1133 		cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1134 		goto error4;
1135 	}
1136 
1137 	/*
1138 	 * If this is a read-only mount defer the superblock updates until
1139 	 * the next remount into writeable mode.  Otherwise we would never
1140 	 * perform the update e.g. for the root filesystem.
1141 	 */
1142 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1143 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1144 		if (error) {
1145 			cmn_err(CE_WARN, "XFS: failed to write sb changes");
1146 			goto error4;
1147 		}
1148 	}
1149 
1150 	/*
1151 	 * Initialise the XFS quota management subsystem for this mount
1152 	 */
1153 	error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1154 	if (error)
1155 		goto error4;
1156 
1157 	/*
1158 	 * Finish recovering the file system.  This part needed to be
1159 	 * delayed until after the root and real-time bitmap inodes
1160 	 * were consistently read in.
1161 	 */
1162 	error = xfs_log_mount_finish(mp);
1163 	if (error) {
1164 		cmn_err(CE_WARN, "XFS: log mount finish failed");
1165 		goto error4;
1166 	}
1167 
1168 	/*
1169 	 * Complete the quota initialisation, post-log-replay component.
1170 	 */
1171 	error = XFS_QM_MOUNT(mp, quotamount, quotaflags);
1172 	if (error)
1173 		goto error4;
1174 
1175 	/*
1176 	 * Now we are mounted, reserve a small amount of unused space for
1177 	 * privileged transactions. This is needed so that transaction
1178 	 * space required for critical operations can dip into this pool
1179 	 * when at ENOSPC. This is needed for operations like create with
1180 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1181 	 * are not allowed to use this reserved space.
1182 	 *
1183 	 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1184 	 * This may drive us straight to ENOSPC on mount, but that implies
1185 	 * we were already there on the last unmount. Warn if this occurs.
1186 	 */
1187 	resblks = mp->m_sb.sb_dblocks;
1188 	do_div(resblks, 20);
1189 	resblks = min_t(__uint64_t, resblks, 1024);
1190 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1191 	if (error)
1192 		cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1193 				"Continuing without a reserve pool.");
1194 
1195 	return 0;
1196 
1197  error4:
1198 	/*
1199 	 * Free up the root inode.
1200 	 */
1201 	IRELE(rip);
1202  error3:
1203 	xfs_log_unmount_dealloc(mp);
1204  error2:
1205 	xfs_free_perag(mp);
1206  error1:
1207 	if (uuid_mounted)
1208 		uuid_table_remove(&mp->m_sb.sb_uuid);
1209 	return error;
1210 }
1211 
1212 /*
1213  * This flushes out the inodes,dquots and the superblock, unmounts the
1214  * log and makes sure that incore structures are freed.
1215  */
1216 void
xfs_unmountfs(struct xfs_mount * mp)1217 xfs_unmountfs(
1218 	struct xfs_mount	*mp)
1219 {
1220 	__uint64_t		resblks;
1221 	int			error;
1222 
1223 	/*
1224 	 * Release dquot that rootinode, rbmino and rsumino might be holding,
1225 	 * and release the quota inodes.
1226 	 */
1227 	XFS_QM_UNMOUNT(mp);
1228 
1229 	if (mp->m_rbmip)
1230 		IRELE(mp->m_rbmip);
1231 	if (mp->m_rsumip)
1232 		IRELE(mp->m_rsumip);
1233 	IRELE(mp->m_rootip);
1234 
1235 	/*
1236 	 * We can potentially deadlock here if we have an inode cluster
1237 	 * that has been freed has it's buffer still pinned in memory because
1238 	 * the transaction is still sitting in a iclog. The stale inodes
1239 	 * on that buffer will have their flush locks held until the
1240 	 * transaction hits the disk and the callbacks run. the inode
1241 	 * flush takes the flush lock unconditionally and with nothing to
1242 	 * push out the iclog we will never get that unlocked. hence we
1243 	 * need to force the log first.
1244 	 */
1245 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1246 	xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_ASYNC);
1247 
1248 	XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1249 
1250 	if (mp->m_quotainfo)
1251 		XFS_QM_DONE(mp);
1252 
1253 	/*
1254 	 * Flush out the log synchronously so that we know for sure
1255 	 * that nothing is pinned.  This is important because bflush()
1256 	 * will skip pinned buffers.
1257 	 */
1258 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1259 
1260 	xfs_binval(mp->m_ddev_targp);
1261 	if (mp->m_rtdev_targp) {
1262 		xfs_binval(mp->m_rtdev_targp);
1263 	}
1264 
1265 	/*
1266 	 * Unreserve any blocks we have so that when we unmount we don't account
1267 	 * the reserved free space as used. This is really only necessary for
1268 	 * lazy superblock counting because it trusts the incore superblock
1269 	 * counters to be aboslutely correct on clean unmount.
1270 	 *
1271 	 * We don't bother correcting this elsewhere for lazy superblock
1272 	 * counting because on mount of an unclean filesystem we reconstruct the
1273 	 * correct counter value and this is irrelevant.
1274 	 *
1275 	 * For non-lazy counter filesystems, this doesn't matter at all because
1276 	 * we only every apply deltas to the superblock and hence the incore
1277 	 * value does not matter....
1278 	 */
1279 	resblks = 0;
1280 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1281 	if (error)
1282 		cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1283 				"Freespace may not be correct on next mount.");
1284 
1285 	error = xfs_log_sbcount(mp, 1);
1286 	if (error)
1287 		cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1288 				"Freespace may not be correct on next mount.");
1289 	xfs_unmountfs_writesb(mp);
1290 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1291 	xfs_log_unmount(mp);			/* Done! No more fs ops. */
1292 
1293 	if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1294 		uuid_table_remove(&mp->m_sb.sb_uuid);
1295 
1296 #if defined(DEBUG)
1297 	xfs_errortag_clearall(mp, 0);
1298 #endif
1299 	xfs_free_perag(mp);
1300 }
1301 
1302 STATIC void
xfs_unmountfs_wait(xfs_mount_t * mp)1303 xfs_unmountfs_wait(xfs_mount_t *mp)
1304 {
1305 	if (mp->m_logdev_targp != mp->m_ddev_targp)
1306 		xfs_wait_buftarg(mp->m_logdev_targp);
1307 	if (mp->m_rtdev_targp)
1308 		xfs_wait_buftarg(mp->m_rtdev_targp);
1309 	xfs_wait_buftarg(mp->m_ddev_targp);
1310 }
1311 
1312 int
xfs_fs_writable(xfs_mount_t * mp)1313 xfs_fs_writable(xfs_mount_t *mp)
1314 {
1315 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1316 		(mp->m_flags & XFS_MOUNT_RDONLY));
1317 }
1318 
1319 /*
1320  * xfs_log_sbcount
1321  *
1322  * Called either periodically to keep the on disk superblock values
1323  * roughly up to date or from unmount to make sure the values are
1324  * correct on a clean unmount.
1325  *
1326  * Note this code can be called during the process of freezing, so
1327  * we may need to use the transaction allocator which does not not
1328  * block when the transaction subsystem is in its frozen state.
1329  */
1330 int
xfs_log_sbcount(xfs_mount_t * mp,uint sync)1331 xfs_log_sbcount(
1332 	xfs_mount_t	*mp,
1333 	uint		sync)
1334 {
1335 	xfs_trans_t	*tp;
1336 	int		error;
1337 
1338 	if (!xfs_fs_writable(mp))
1339 		return 0;
1340 
1341 	xfs_icsb_sync_counters(mp, 0);
1342 
1343 	/*
1344 	 * we don't need to do this if we are updating the superblock
1345 	 * counters on every modification.
1346 	 */
1347 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1348 		return 0;
1349 
1350 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1351 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1352 					XFS_DEFAULT_LOG_COUNT);
1353 	if (error) {
1354 		xfs_trans_cancel(tp, 0);
1355 		return error;
1356 	}
1357 
1358 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1359 	if (sync)
1360 		xfs_trans_set_sync(tp);
1361 	error = xfs_trans_commit(tp, 0);
1362 	return error;
1363 }
1364 
1365 int
xfs_unmountfs_writesb(xfs_mount_t * mp)1366 xfs_unmountfs_writesb(xfs_mount_t *mp)
1367 {
1368 	xfs_buf_t	*sbp;
1369 	int		error = 0;
1370 
1371 	/*
1372 	 * skip superblock write if fs is read-only, or
1373 	 * if we are doing a forced umount.
1374 	 */
1375 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1376 		XFS_FORCED_SHUTDOWN(mp))) {
1377 
1378 		sbp = xfs_getsb(mp, 0);
1379 
1380 		XFS_BUF_UNDONE(sbp);
1381 		XFS_BUF_UNREAD(sbp);
1382 		XFS_BUF_UNDELAYWRITE(sbp);
1383 		XFS_BUF_WRITE(sbp);
1384 		XFS_BUF_UNASYNC(sbp);
1385 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1386 		xfsbdstrat(mp, sbp);
1387 		error = xfs_iowait(sbp);
1388 		if (error)
1389 			xfs_ioerror_alert("xfs_unmountfs_writesb",
1390 					  mp, sbp, XFS_BUF_ADDR(sbp));
1391 		xfs_buf_relse(sbp);
1392 	}
1393 	return error;
1394 }
1395 
1396 /*
1397  * xfs_mod_sb() can be used to copy arbitrary changes to the
1398  * in-core superblock into the superblock buffer to be logged.
1399  * It does not provide the higher level of locking that is
1400  * needed to protect the in-core superblock from concurrent
1401  * access.
1402  */
1403 void
xfs_mod_sb(xfs_trans_t * tp,__int64_t fields)1404 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1405 {
1406 	xfs_buf_t	*bp;
1407 	int		first;
1408 	int		last;
1409 	xfs_mount_t	*mp;
1410 	xfs_sb_field_t	f;
1411 
1412 	ASSERT(fields);
1413 	if (!fields)
1414 		return;
1415 	mp = tp->t_mountp;
1416 	bp = xfs_trans_getsb(tp, mp, 0);
1417 	first = sizeof(xfs_sb_t);
1418 	last = 0;
1419 
1420 	/* translate/copy */
1421 
1422 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1423 
1424 	/* find modified range */
1425 
1426 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1427 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1428 	first = xfs_sb_info[f].offset;
1429 
1430 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1431 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1432 	last = xfs_sb_info[f + 1].offset - 1;
1433 
1434 	xfs_trans_log_buf(tp, bp, first, last);
1435 }
1436 
1437 
1438 /*
1439  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1440  * a delta to a specified field in the in-core superblock.  Simply
1441  * switch on the field indicated and apply the delta to that field.
1442  * Fields are not allowed to dip below zero, so if the delta would
1443  * do this do not apply it and return EINVAL.
1444  *
1445  * The m_sb_lock must be held when this routine is called.
1446  */
1447 int
xfs_mod_incore_sb_unlocked(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1448 xfs_mod_incore_sb_unlocked(
1449 	xfs_mount_t	*mp,
1450 	xfs_sb_field_t	field,
1451 	int64_t		delta,
1452 	int		rsvd)
1453 {
1454 	int		scounter;	/* short counter for 32 bit fields */
1455 	long long	lcounter;	/* long counter for 64 bit fields */
1456 	long long	res_used, rem;
1457 
1458 	/*
1459 	 * With the in-core superblock spin lock held, switch
1460 	 * on the indicated field.  Apply the delta to the
1461 	 * proper field.  If the fields value would dip below
1462 	 * 0, then do not apply the delta and return EINVAL.
1463 	 */
1464 	switch (field) {
1465 	case XFS_SBS_ICOUNT:
1466 		lcounter = (long long)mp->m_sb.sb_icount;
1467 		lcounter += delta;
1468 		if (lcounter < 0) {
1469 			ASSERT(0);
1470 			return XFS_ERROR(EINVAL);
1471 		}
1472 		mp->m_sb.sb_icount = lcounter;
1473 		return 0;
1474 	case XFS_SBS_IFREE:
1475 		lcounter = (long long)mp->m_sb.sb_ifree;
1476 		lcounter += delta;
1477 		if (lcounter < 0) {
1478 			ASSERT(0);
1479 			return XFS_ERROR(EINVAL);
1480 		}
1481 		mp->m_sb.sb_ifree = lcounter;
1482 		return 0;
1483 	case XFS_SBS_FDBLOCKS:
1484 		lcounter = (long long)
1485 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1486 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1487 
1488 		if (delta > 0) {		/* Putting blocks back */
1489 			if (res_used > delta) {
1490 				mp->m_resblks_avail += delta;
1491 			} else {
1492 				rem = delta - res_used;
1493 				mp->m_resblks_avail = mp->m_resblks;
1494 				lcounter += rem;
1495 			}
1496 		} else {				/* Taking blocks away */
1497 
1498 			lcounter += delta;
1499 
1500 		/*
1501 		 * If were out of blocks, use any available reserved blocks if
1502 		 * were allowed to.
1503 		 */
1504 
1505 			if (lcounter < 0) {
1506 				if (rsvd) {
1507 					lcounter = (long long)mp->m_resblks_avail + delta;
1508 					if (lcounter < 0) {
1509 						return XFS_ERROR(ENOSPC);
1510 					}
1511 					mp->m_resblks_avail = lcounter;
1512 					return 0;
1513 				} else {	/* not reserved */
1514 					return XFS_ERROR(ENOSPC);
1515 				}
1516 			}
1517 		}
1518 
1519 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1520 		return 0;
1521 	case XFS_SBS_FREXTENTS:
1522 		lcounter = (long long)mp->m_sb.sb_frextents;
1523 		lcounter += delta;
1524 		if (lcounter < 0) {
1525 			return XFS_ERROR(ENOSPC);
1526 		}
1527 		mp->m_sb.sb_frextents = lcounter;
1528 		return 0;
1529 	case XFS_SBS_DBLOCKS:
1530 		lcounter = (long long)mp->m_sb.sb_dblocks;
1531 		lcounter += delta;
1532 		if (lcounter < 0) {
1533 			ASSERT(0);
1534 			return XFS_ERROR(EINVAL);
1535 		}
1536 		mp->m_sb.sb_dblocks = lcounter;
1537 		return 0;
1538 	case XFS_SBS_AGCOUNT:
1539 		scounter = mp->m_sb.sb_agcount;
1540 		scounter += delta;
1541 		if (scounter < 0) {
1542 			ASSERT(0);
1543 			return XFS_ERROR(EINVAL);
1544 		}
1545 		mp->m_sb.sb_agcount = scounter;
1546 		return 0;
1547 	case XFS_SBS_IMAX_PCT:
1548 		scounter = mp->m_sb.sb_imax_pct;
1549 		scounter += delta;
1550 		if (scounter < 0) {
1551 			ASSERT(0);
1552 			return XFS_ERROR(EINVAL);
1553 		}
1554 		mp->m_sb.sb_imax_pct = scounter;
1555 		return 0;
1556 	case XFS_SBS_REXTSIZE:
1557 		scounter = mp->m_sb.sb_rextsize;
1558 		scounter += delta;
1559 		if (scounter < 0) {
1560 			ASSERT(0);
1561 			return XFS_ERROR(EINVAL);
1562 		}
1563 		mp->m_sb.sb_rextsize = scounter;
1564 		return 0;
1565 	case XFS_SBS_RBMBLOCKS:
1566 		scounter = mp->m_sb.sb_rbmblocks;
1567 		scounter += delta;
1568 		if (scounter < 0) {
1569 			ASSERT(0);
1570 			return XFS_ERROR(EINVAL);
1571 		}
1572 		mp->m_sb.sb_rbmblocks = scounter;
1573 		return 0;
1574 	case XFS_SBS_RBLOCKS:
1575 		lcounter = (long long)mp->m_sb.sb_rblocks;
1576 		lcounter += delta;
1577 		if (lcounter < 0) {
1578 			ASSERT(0);
1579 			return XFS_ERROR(EINVAL);
1580 		}
1581 		mp->m_sb.sb_rblocks = lcounter;
1582 		return 0;
1583 	case XFS_SBS_REXTENTS:
1584 		lcounter = (long long)mp->m_sb.sb_rextents;
1585 		lcounter += delta;
1586 		if (lcounter < 0) {
1587 			ASSERT(0);
1588 			return XFS_ERROR(EINVAL);
1589 		}
1590 		mp->m_sb.sb_rextents = lcounter;
1591 		return 0;
1592 	case XFS_SBS_REXTSLOG:
1593 		scounter = mp->m_sb.sb_rextslog;
1594 		scounter += delta;
1595 		if (scounter < 0) {
1596 			ASSERT(0);
1597 			return XFS_ERROR(EINVAL);
1598 		}
1599 		mp->m_sb.sb_rextslog = scounter;
1600 		return 0;
1601 	default:
1602 		ASSERT(0);
1603 		return XFS_ERROR(EINVAL);
1604 	}
1605 }
1606 
1607 /*
1608  * xfs_mod_incore_sb() is used to change a field in the in-core
1609  * superblock structure by the specified delta.  This modification
1610  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1611  * routine to do the work.
1612  */
1613 int
xfs_mod_incore_sb(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)1614 xfs_mod_incore_sb(
1615 	xfs_mount_t	*mp,
1616 	xfs_sb_field_t	field,
1617 	int64_t		delta,
1618 	int		rsvd)
1619 {
1620 	int	status;
1621 
1622 	/* check for per-cpu counters */
1623 	switch (field) {
1624 #ifdef HAVE_PERCPU_SB
1625 	case XFS_SBS_ICOUNT:
1626 	case XFS_SBS_IFREE:
1627 	case XFS_SBS_FDBLOCKS:
1628 		if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1629 			status = xfs_icsb_modify_counters(mp, field,
1630 							delta, rsvd);
1631 			break;
1632 		}
1633 		/* FALLTHROUGH */
1634 #endif
1635 	default:
1636 		spin_lock(&mp->m_sb_lock);
1637 		status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1638 		spin_unlock(&mp->m_sb_lock);
1639 		break;
1640 	}
1641 
1642 	return status;
1643 }
1644 
1645 /*
1646  * xfs_mod_incore_sb_batch() is used to change more than one field
1647  * in the in-core superblock structure at a time.  This modification
1648  * is protected by a lock internal to this module.  The fields and
1649  * changes to those fields are specified in the array of xfs_mod_sb
1650  * structures passed in.
1651  *
1652  * Either all of the specified deltas will be applied or none of
1653  * them will.  If any modified field dips below 0, then all modifications
1654  * will be backed out and EINVAL will be returned.
1655  */
1656 int
xfs_mod_incore_sb_batch(xfs_mount_t * mp,xfs_mod_sb_t * msb,uint nmsb,int rsvd)1657 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1658 {
1659 	int		status=0;
1660 	xfs_mod_sb_t	*msbp;
1661 
1662 	/*
1663 	 * Loop through the array of mod structures and apply each
1664 	 * individually.  If any fail, then back out all those
1665 	 * which have already been applied.  Do all of this within
1666 	 * the scope of the m_sb_lock so that all of the changes will
1667 	 * be atomic.
1668 	 */
1669 	spin_lock(&mp->m_sb_lock);
1670 	msbp = &msb[0];
1671 	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1672 		/*
1673 		 * Apply the delta at index n.  If it fails, break
1674 		 * from the loop so we'll fall into the undo loop
1675 		 * below.
1676 		 */
1677 		switch (msbp->msb_field) {
1678 #ifdef HAVE_PERCPU_SB
1679 		case XFS_SBS_ICOUNT:
1680 		case XFS_SBS_IFREE:
1681 		case XFS_SBS_FDBLOCKS:
1682 			if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1683 				spin_unlock(&mp->m_sb_lock);
1684 				status = xfs_icsb_modify_counters(mp,
1685 							msbp->msb_field,
1686 							msbp->msb_delta, rsvd);
1687 				spin_lock(&mp->m_sb_lock);
1688 				break;
1689 			}
1690 			/* FALLTHROUGH */
1691 #endif
1692 		default:
1693 			status = xfs_mod_incore_sb_unlocked(mp,
1694 						msbp->msb_field,
1695 						msbp->msb_delta, rsvd);
1696 			break;
1697 		}
1698 
1699 		if (status != 0) {
1700 			break;
1701 		}
1702 	}
1703 
1704 	/*
1705 	 * If we didn't complete the loop above, then back out
1706 	 * any changes made to the superblock.  If you add code
1707 	 * between the loop above and here, make sure that you
1708 	 * preserve the value of status. Loop back until
1709 	 * we step below the beginning of the array.  Make sure
1710 	 * we don't touch anything back there.
1711 	 */
1712 	if (status != 0) {
1713 		msbp--;
1714 		while (msbp >= msb) {
1715 			switch (msbp->msb_field) {
1716 #ifdef HAVE_PERCPU_SB
1717 			case XFS_SBS_ICOUNT:
1718 			case XFS_SBS_IFREE:
1719 			case XFS_SBS_FDBLOCKS:
1720 				if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1721 					spin_unlock(&mp->m_sb_lock);
1722 					status = xfs_icsb_modify_counters(mp,
1723 							msbp->msb_field,
1724 							-(msbp->msb_delta),
1725 							rsvd);
1726 					spin_lock(&mp->m_sb_lock);
1727 					break;
1728 				}
1729 				/* FALLTHROUGH */
1730 #endif
1731 			default:
1732 				status = xfs_mod_incore_sb_unlocked(mp,
1733 							msbp->msb_field,
1734 							-(msbp->msb_delta),
1735 							rsvd);
1736 				break;
1737 			}
1738 			ASSERT(status == 0);
1739 			msbp--;
1740 		}
1741 	}
1742 	spin_unlock(&mp->m_sb_lock);
1743 	return status;
1744 }
1745 
1746 /*
1747  * xfs_getsb() is called to obtain the buffer for the superblock.
1748  * The buffer is returned locked and read in from disk.
1749  * The buffer should be released with a call to xfs_brelse().
1750  *
1751  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1752  * the superblock buffer if it can be locked without sleeping.
1753  * If it can't then we'll return NULL.
1754  */
1755 xfs_buf_t *
xfs_getsb(xfs_mount_t * mp,int flags)1756 xfs_getsb(
1757 	xfs_mount_t	*mp,
1758 	int		flags)
1759 {
1760 	xfs_buf_t	*bp;
1761 
1762 	ASSERT(mp->m_sb_bp != NULL);
1763 	bp = mp->m_sb_bp;
1764 	if (flags & XFS_BUF_TRYLOCK) {
1765 		if (!XFS_BUF_CPSEMA(bp)) {
1766 			return NULL;
1767 		}
1768 	} else {
1769 		XFS_BUF_PSEMA(bp, PRIBIO);
1770 	}
1771 	XFS_BUF_HOLD(bp);
1772 	ASSERT(XFS_BUF_ISDONE(bp));
1773 	return bp;
1774 }
1775 
1776 /*
1777  * Used to free the superblock along various error paths.
1778  */
1779 void
xfs_freesb(xfs_mount_t * mp)1780 xfs_freesb(
1781 	xfs_mount_t	*mp)
1782 {
1783 	xfs_buf_t	*bp;
1784 
1785 	/*
1786 	 * Use xfs_getsb() so that the buffer will be locked
1787 	 * when we call xfs_buf_relse().
1788 	 */
1789 	bp = xfs_getsb(mp, 0);
1790 	XFS_BUF_UNMANAGE(bp);
1791 	xfs_buf_relse(bp);
1792 	mp->m_sb_bp = NULL;
1793 }
1794 
1795 /*
1796  * See if the UUID is unique among mounted XFS filesystems.
1797  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1798  */
1799 STATIC int
xfs_uuid_mount(xfs_mount_t * mp)1800 xfs_uuid_mount(
1801 	xfs_mount_t	*mp)
1802 {
1803 	if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1804 		cmn_err(CE_WARN,
1805 			"XFS: Filesystem %s has nil UUID - can't mount",
1806 			mp->m_fsname);
1807 		return -1;
1808 	}
1809 	if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1810 		cmn_err(CE_WARN,
1811 			"XFS: Filesystem %s has duplicate UUID - can't mount",
1812 			mp->m_fsname);
1813 		return -1;
1814 	}
1815 	return 0;
1816 }
1817 
1818 /*
1819  * Used to log changes to the superblock unit and width fields which could
1820  * be altered by the mount options, as well as any potential sb_features2
1821  * fixup. Only the first superblock is updated.
1822  */
1823 int
xfs_mount_log_sb(xfs_mount_t * mp,__int64_t fields)1824 xfs_mount_log_sb(
1825 	xfs_mount_t	*mp,
1826 	__int64_t	fields)
1827 {
1828 	xfs_trans_t	*tp;
1829 	int		error;
1830 
1831 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1832 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1833 			 XFS_SB_VERSIONNUM));
1834 
1835 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1836 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1837 				XFS_DEFAULT_LOG_COUNT);
1838 	if (error) {
1839 		xfs_trans_cancel(tp, 0);
1840 		return error;
1841 	}
1842 	xfs_mod_sb(tp, fields);
1843 	error = xfs_trans_commit(tp, 0);
1844 	return error;
1845 }
1846 
1847 
1848 #ifdef HAVE_PERCPU_SB
1849 /*
1850  * Per-cpu incore superblock counters
1851  *
1852  * Simple concept, difficult implementation
1853  *
1854  * Basically, replace the incore superblock counters with a distributed per cpu
1855  * counter for contended fields (e.g.  free block count).
1856  *
1857  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1858  * hence needs to be accurately read when we are running low on space. Hence
1859  * there is a method to enable and disable the per-cpu counters based on how
1860  * much "stuff" is available in them.
1861  *
1862  * Basically, a counter is enabled if there is enough free resource to justify
1863  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1864  * ENOSPC), then we disable the counters to synchronise all callers and
1865  * re-distribute the available resources.
1866  *
1867  * If, once we redistributed the available resources, we still get a failure,
1868  * we disable the per-cpu counter and go through the slow path.
1869  *
1870  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1871  * when we disable a per-cpu counter, we need to drain it's resources back to
1872  * the global superblock. We do this after disabling the counter to prevent
1873  * more threads from queueing up on the counter.
1874  *
1875  * Essentially, this means that we still need a lock in the fast path to enable
1876  * synchronisation between the global counters and the per-cpu counters. This
1877  * is not a problem because the lock will be local to a CPU almost all the time
1878  * and have little contention except when we get to ENOSPC conditions.
1879  *
1880  * Basically, this lock becomes a barrier that enables us to lock out the fast
1881  * path while we do things like enabling and disabling counters and
1882  * synchronising the counters.
1883  *
1884  * Locking rules:
1885  *
1886  * 	1. m_sb_lock before picking up per-cpu locks
1887  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1888  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1889  * 	4. modifying per-cpu counters requires holding per-cpu lock
1890  * 	5. modifying global counters requires holding m_sb_lock
1891  *	6. enabling or disabling a counter requires holding the m_sb_lock
1892  *	   and _none_ of the per-cpu locks.
1893  *
1894  * Disabled counters are only ever re-enabled by a balance operation
1895  * that results in more free resources per CPU than a given threshold.
1896  * To ensure counters don't remain disabled, they are rebalanced when
1897  * the global resource goes above a higher threshold (i.e. some hysteresis
1898  * is present to prevent thrashing).
1899  */
1900 
1901 #ifdef CONFIG_HOTPLUG_CPU
1902 /*
1903  * hot-plug CPU notifier support.
1904  *
1905  * We need a notifier per filesystem as we need to be able to identify
1906  * the filesystem to balance the counters out. This is achieved by
1907  * having a notifier block embedded in the xfs_mount_t and doing pointer
1908  * magic to get the mount pointer from the notifier block address.
1909  */
1910 STATIC int
xfs_icsb_cpu_notify(struct notifier_block * nfb,unsigned long action,void * hcpu)1911 xfs_icsb_cpu_notify(
1912 	struct notifier_block *nfb,
1913 	unsigned long action,
1914 	void *hcpu)
1915 {
1916 	xfs_icsb_cnts_t *cntp;
1917 	xfs_mount_t	*mp;
1918 
1919 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1920 	cntp = (xfs_icsb_cnts_t *)
1921 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1922 	switch (action) {
1923 	case CPU_UP_PREPARE:
1924 	case CPU_UP_PREPARE_FROZEN:
1925 		/* Easy Case - initialize the area and locks, and
1926 		 * then rebalance when online does everything else for us. */
1927 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1928 		break;
1929 	case CPU_ONLINE:
1930 	case CPU_ONLINE_FROZEN:
1931 		xfs_icsb_lock(mp);
1932 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1933 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1934 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1935 		xfs_icsb_unlock(mp);
1936 		break;
1937 	case CPU_DEAD:
1938 	case CPU_DEAD_FROZEN:
1939 		/* Disable all the counters, then fold the dead cpu's
1940 		 * count into the total on the global superblock and
1941 		 * re-enable the counters. */
1942 		xfs_icsb_lock(mp);
1943 		spin_lock(&mp->m_sb_lock);
1944 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1945 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1946 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1947 
1948 		mp->m_sb.sb_icount += cntp->icsb_icount;
1949 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1950 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1951 
1952 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1953 
1954 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1955 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1956 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1957 		spin_unlock(&mp->m_sb_lock);
1958 		xfs_icsb_unlock(mp);
1959 		break;
1960 	}
1961 
1962 	return NOTIFY_OK;
1963 }
1964 #endif /* CONFIG_HOTPLUG_CPU */
1965 
1966 int
xfs_icsb_init_counters(xfs_mount_t * mp)1967 xfs_icsb_init_counters(
1968 	xfs_mount_t	*mp)
1969 {
1970 	xfs_icsb_cnts_t *cntp;
1971 	int		i;
1972 
1973 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1974 	if (mp->m_sb_cnts == NULL)
1975 		return -ENOMEM;
1976 
1977 #ifdef CONFIG_HOTPLUG_CPU
1978 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1979 	mp->m_icsb_notifier.priority = 0;
1980 	register_hotcpu_notifier(&mp->m_icsb_notifier);
1981 #endif /* CONFIG_HOTPLUG_CPU */
1982 
1983 	for_each_online_cpu(i) {
1984 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1985 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1986 	}
1987 
1988 	mutex_init(&mp->m_icsb_mutex);
1989 
1990 	/*
1991 	 * start with all counters disabled so that the
1992 	 * initial balance kicks us off correctly
1993 	 */
1994 	mp->m_icsb_counters = -1;
1995 	return 0;
1996 }
1997 
1998 void
xfs_icsb_reinit_counters(xfs_mount_t * mp)1999 xfs_icsb_reinit_counters(
2000 	xfs_mount_t	*mp)
2001 {
2002 	xfs_icsb_lock(mp);
2003 	/*
2004 	 * start with all counters disabled so that the
2005 	 * initial balance kicks us off correctly
2006 	 */
2007 	mp->m_icsb_counters = -1;
2008 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2009 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2010 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2011 	xfs_icsb_unlock(mp);
2012 }
2013 
2014 void
xfs_icsb_destroy_counters(xfs_mount_t * mp)2015 xfs_icsb_destroy_counters(
2016 	xfs_mount_t	*mp)
2017 {
2018 	if (mp->m_sb_cnts) {
2019 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2020 		free_percpu(mp->m_sb_cnts);
2021 	}
2022 	mutex_destroy(&mp->m_icsb_mutex);
2023 }
2024 
2025 STATIC_INLINE void
xfs_icsb_lock_cntr(xfs_icsb_cnts_t * icsbp)2026 xfs_icsb_lock_cntr(
2027 	xfs_icsb_cnts_t	*icsbp)
2028 {
2029 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2030 		ndelay(1000);
2031 	}
2032 }
2033 
2034 STATIC_INLINE void
xfs_icsb_unlock_cntr(xfs_icsb_cnts_t * icsbp)2035 xfs_icsb_unlock_cntr(
2036 	xfs_icsb_cnts_t	*icsbp)
2037 {
2038 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2039 }
2040 
2041 
2042 STATIC_INLINE void
xfs_icsb_lock_all_counters(xfs_mount_t * mp)2043 xfs_icsb_lock_all_counters(
2044 	xfs_mount_t	*mp)
2045 {
2046 	xfs_icsb_cnts_t *cntp;
2047 	int		i;
2048 
2049 	for_each_online_cpu(i) {
2050 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2051 		xfs_icsb_lock_cntr(cntp);
2052 	}
2053 }
2054 
2055 STATIC_INLINE void
xfs_icsb_unlock_all_counters(xfs_mount_t * mp)2056 xfs_icsb_unlock_all_counters(
2057 	xfs_mount_t	*mp)
2058 {
2059 	xfs_icsb_cnts_t *cntp;
2060 	int		i;
2061 
2062 	for_each_online_cpu(i) {
2063 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2064 		xfs_icsb_unlock_cntr(cntp);
2065 	}
2066 }
2067 
2068 STATIC void
xfs_icsb_count(xfs_mount_t * mp,xfs_icsb_cnts_t * cnt,int flags)2069 xfs_icsb_count(
2070 	xfs_mount_t	*mp,
2071 	xfs_icsb_cnts_t	*cnt,
2072 	int		flags)
2073 {
2074 	xfs_icsb_cnts_t *cntp;
2075 	int		i;
2076 
2077 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2078 
2079 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2080 		xfs_icsb_lock_all_counters(mp);
2081 
2082 	for_each_online_cpu(i) {
2083 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2084 		cnt->icsb_icount += cntp->icsb_icount;
2085 		cnt->icsb_ifree += cntp->icsb_ifree;
2086 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2087 	}
2088 
2089 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2090 		xfs_icsb_unlock_all_counters(mp);
2091 }
2092 
2093 STATIC int
xfs_icsb_counter_disabled(xfs_mount_t * mp,xfs_sb_field_t field)2094 xfs_icsb_counter_disabled(
2095 	xfs_mount_t	*mp,
2096 	xfs_sb_field_t	field)
2097 {
2098 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2099 	return test_bit(field, &mp->m_icsb_counters);
2100 }
2101 
2102 STATIC void
xfs_icsb_disable_counter(xfs_mount_t * mp,xfs_sb_field_t field)2103 xfs_icsb_disable_counter(
2104 	xfs_mount_t	*mp,
2105 	xfs_sb_field_t	field)
2106 {
2107 	xfs_icsb_cnts_t	cnt;
2108 
2109 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2110 
2111 	/*
2112 	 * If we are already disabled, then there is nothing to do
2113 	 * here. We check before locking all the counters to avoid
2114 	 * the expensive lock operation when being called in the
2115 	 * slow path and the counter is already disabled. This is
2116 	 * safe because the only time we set or clear this state is under
2117 	 * the m_icsb_mutex.
2118 	 */
2119 	if (xfs_icsb_counter_disabled(mp, field))
2120 		return;
2121 
2122 	xfs_icsb_lock_all_counters(mp);
2123 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2124 		/* drain back to superblock */
2125 
2126 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2127 		switch(field) {
2128 		case XFS_SBS_ICOUNT:
2129 			mp->m_sb.sb_icount = cnt.icsb_icount;
2130 			break;
2131 		case XFS_SBS_IFREE:
2132 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2133 			break;
2134 		case XFS_SBS_FDBLOCKS:
2135 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2136 			break;
2137 		default:
2138 			BUG();
2139 		}
2140 	}
2141 
2142 	xfs_icsb_unlock_all_counters(mp);
2143 }
2144 
2145 STATIC void
xfs_icsb_enable_counter(xfs_mount_t * mp,xfs_sb_field_t field,uint64_t count,uint64_t resid)2146 xfs_icsb_enable_counter(
2147 	xfs_mount_t	*mp,
2148 	xfs_sb_field_t	field,
2149 	uint64_t	count,
2150 	uint64_t	resid)
2151 {
2152 	xfs_icsb_cnts_t	*cntp;
2153 	int		i;
2154 
2155 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2156 
2157 	xfs_icsb_lock_all_counters(mp);
2158 	for_each_online_cpu(i) {
2159 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2160 		switch (field) {
2161 		case XFS_SBS_ICOUNT:
2162 			cntp->icsb_icount = count + resid;
2163 			break;
2164 		case XFS_SBS_IFREE:
2165 			cntp->icsb_ifree = count + resid;
2166 			break;
2167 		case XFS_SBS_FDBLOCKS:
2168 			cntp->icsb_fdblocks = count + resid;
2169 			break;
2170 		default:
2171 			BUG();
2172 			break;
2173 		}
2174 		resid = 0;
2175 	}
2176 	clear_bit(field, &mp->m_icsb_counters);
2177 	xfs_icsb_unlock_all_counters(mp);
2178 }
2179 
2180 void
xfs_icsb_sync_counters_locked(xfs_mount_t * mp,int flags)2181 xfs_icsb_sync_counters_locked(
2182 	xfs_mount_t	*mp,
2183 	int		flags)
2184 {
2185 	xfs_icsb_cnts_t	cnt;
2186 
2187 	xfs_icsb_count(mp, &cnt, flags);
2188 
2189 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2190 		mp->m_sb.sb_icount = cnt.icsb_icount;
2191 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2192 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2193 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2194 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2195 }
2196 
2197 /*
2198  * Accurate update of per-cpu counters to incore superblock
2199  */
2200 void
xfs_icsb_sync_counters(xfs_mount_t * mp,int flags)2201 xfs_icsb_sync_counters(
2202 	xfs_mount_t	*mp,
2203 	int		flags)
2204 {
2205 	spin_lock(&mp->m_sb_lock);
2206 	xfs_icsb_sync_counters_locked(mp, flags);
2207 	spin_unlock(&mp->m_sb_lock);
2208 }
2209 
2210 /*
2211  * Balance and enable/disable counters as necessary.
2212  *
2213  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2214  * chosen to be the same number as single on disk allocation chunk per CPU, and
2215  * free blocks is something far enough zero that we aren't going thrash when we
2216  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2217  * prevent looping endlessly when xfs_alloc_space asks for more than will
2218  * be distributed to a single CPU but each CPU has enough blocks to be
2219  * reenabled.
2220  *
2221  * Note that we can be called when counters are already disabled.
2222  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2223  * prevent locking every per-cpu counter needlessly.
2224  */
2225 
2226 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2227 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2228 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2229 STATIC void
xfs_icsb_balance_counter_locked(xfs_mount_t * mp,xfs_sb_field_t field,int min_per_cpu)2230 xfs_icsb_balance_counter_locked(
2231 	xfs_mount_t	*mp,
2232 	xfs_sb_field_t  field,
2233 	int		min_per_cpu)
2234 {
2235 	uint64_t	count, resid;
2236 	int		weight = num_online_cpus();
2237 	uint64_t	min = (uint64_t)min_per_cpu;
2238 
2239 	/* disable counter and sync counter */
2240 	xfs_icsb_disable_counter(mp, field);
2241 
2242 	/* update counters  - first CPU gets residual*/
2243 	switch (field) {
2244 	case XFS_SBS_ICOUNT:
2245 		count = mp->m_sb.sb_icount;
2246 		resid = do_div(count, weight);
2247 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2248 			return;
2249 		break;
2250 	case XFS_SBS_IFREE:
2251 		count = mp->m_sb.sb_ifree;
2252 		resid = do_div(count, weight);
2253 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2254 			return;
2255 		break;
2256 	case XFS_SBS_FDBLOCKS:
2257 		count = mp->m_sb.sb_fdblocks;
2258 		resid = do_div(count, weight);
2259 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2260 			return;
2261 		break;
2262 	default:
2263 		BUG();
2264 		count = resid = 0;	/* quiet, gcc */
2265 		break;
2266 	}
2267 
2268 	xfs_icsb_enable_counter(mp, field, count, resid);
2269 }
2270 
2271 STATIC void
xfs_icsb_balance_counter(xfs_mount_t * mp,xfs_sb_field_t fields,int min_per_cpu)2272 xfs_icsb_balance_counter(
2273 	xfs_mount_t	*mp,
2274 	xfs_sb_field_t  fields,
2275 	int		min_per_cpu)
2276 {
2277 	spin_lock(&mp->m_sb_lock);
2278 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2279 	spin_unlock(&mp->m_sb_lock);
2280 }
2281 
2282 STATIC int
xfs_icsb_modify_counters(xfs_mount_t * mp,xfs_sb_field_t field,int64_t delta,int rsvd)2283 xfs_icsb_modify_counters(
2284 	xfs_mount_t	*mp,
2285 	xfs_sb_field_t	field,
2286 	int64_t		delta,
2287 	int		rsvd)
2288 {
2289 	xfs_icsb_cnts_t	*icsbp;
2290 	long long	lcounter;	/* long counter for 64 bit fields */
2291 	int		cpu, ret = 0;
2292 
2293 	might_sleep();
2294 again:
2295 	cpu = get_cpu();
2296 	icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2297 
2298 	/*
2299 	 * if the counter is disabled, go to slow path
2300 	 */
2301 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2302 		goto slow_path;
2303 	xfs_icsb_lock_cntr(icsbp);
2304 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2305 		xfs_icsb_unlock_cntr(icsbp);
2306 		goto slow_path;
2307 	}
2308 
2309 	switch (field) {
2310 	case XFS_SBS_ICOUNT:
2311 		lcounter = icsbp->icsb_icount;
2312 		lcounter += delta;
2313 		if (unlikely(lcounter < 0))
2314 			goto balance_counter;
2315 		icsbp->icsb_icount = lcounter;
2316 		break;
2317 
2318 	case XFS_SBS_IFREE:
2319 		lcounter = icsbp->icsb_ifree;
2320 		lcounter += delta;
2321 		if (unlikely(lcounter < 0))
2322 			goto balance_counter;
2323 		icsbp->icsb_ifree = lcounter;
2324 		break;
2325 
2326 	case XFS_SBS_FDBLOCKS:
2327 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2328 
2329 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2330 		lcounter += delta;
2331 		if (unlikely(lcounter < 0))
2332 			goto balance_counter;
2333 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2334 		break;
2335 	default:
2336 		BUG();
2337 		break;
2338 	}
2339 	xfs_icsb_unlock_cntr(icsbp);
2340 	put_cpu();
2341 	return 0;
2342 
2343 slow_path:
2344 	put_cpu();
2345 
2346 	/*
2347 	 * serialise with a mutex so we don't burn lots of cpu on
2348 	 * the superblock lock. We still need to hold the superblock
2349 	 * lock, however, when we modify the global structures.
2350 	 */
2351 	xfs_icsb_lock(mp);
2352 
2353 	/*
2354 	 * Now running atomically.
2355 	 *
2356 	 * If the counter is enabled, someone has beaten us to rebalancing.
2357 	 * Drop the lock and try again in the fast path....
2358 	 */
2359 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2360 		xfs_icsb_unlock(mp);
2361 		goto again;
2362 	}
2363 
2364 	/*
2365 	 * The counter is currently disabled. Because we are
2366 	 * running atomically here, we know a rebalance cannot
2367 	 * be in progress. Hence we can go straight to operating
2368 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2369 	 * here even though we need to get the m_sb_lock. Doing so
2370 	 * will cause us to re-enter this function and deadlock.
2371 	 * Hence we get the m_sb_lock ourselves and then call
2372 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2373 	 * directly on the global counters.
2374 	 */
2375 	spin_lock(&mp->m_sb_lock);
2376 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2377 	spin_unlock(&mp->m_sb_lock);
2378 
2379 	/*
2380 	 * Now that we've modified the global superblock, we
2381 	 * may be able to re-enable the distributed counters
2382 	 * (e.g. lots of space just got freed). After that
2383 	 * we are done.
2384 	 */
2385 	if (ret != ENOSPC)
2386 		xfs_icsb_balance_counter(mp, field, 0);
2387 	xfs_icsb_unlock(mp);
2388 	return ret;
2389 
2390 balance_counter:
2391 	xfs_icsb_unlock_cntr(icsbp);
2392 	put_cpu();
2393 
2394 	/*
2395 	 * We may have multiple threads here if multiple per-cpu
2396 	 * counters run dry at the same time. This will mean we can
2397 	 * do more balances than strictly necessary but it is not
2398 	 * the common slowpath case.
2399 	 */
2400 	xfs_icsb_lock(mp);
2401 
2402 	/*
2403 	 * running atomically.
2404 	 *
2405 	 * This will leave the counter in the correct state for future
2406 	 * accesses. After the rebalance, we simply try again and our retry
2407 	 * will either succeed through the fast path or slow path without
2408 	 * another balance operation being required.
2409 	 */
2410 	xfs_icsb_balance_counter(mp, field, delta);
2411 	xfs_icsb_unlock(mp);
2412 	goto again;
2413 }
2414 
2415 #endif
2416