1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 *
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
21 *
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * transport.c
42 *
43 * This file contains the top-level implementation of an RPC RDMA
44 * transport.
45 *
46 * Naming convention: functions beginning with xprt_ are part of the
47 * transport switch. All others are RPC RDMA internal.
48 */
49
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/seq_file.h>
53
54 #include "xprt_rdma.h"
55
56 #ifdef RPC_DEBUG
57 # define RPCDBG_FACILITY RPCDBG_TRANS
58 #endif
59
60 MODULE_LICENSE("Dual BSD/GPL");
61
62 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
63 MODULE_AUTHOR("Network Appliance, Inc.");
64
65 /*
66 * tunables
67 */
68
69 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
70 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
71 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
72 static unsigned int xprt_rdma_inline_write_padding;
73 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
74 int xprt_rdma_pad_optimize = 0;
75
76 #ifdef RPC_DEBUG
77
78 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
79 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
80 static unsigned int zero;
81 static unsigned int max_padding = PAGE_SIZE;
82 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
83 static unsigned int max_memreg = RPCRDMA_LAST - 1;
84
85 static struct ctl_table_header *sunrpc_table_header;
86
87 static ctl_table xr_tunables_table[] = {
88 {
89 .ctl_name = CTL_UNNUMBERED,
90 .procname = "rdma_slot_table_entries",
91 .data = &xprt_rdma_slot_table_entries,
92 .maxlen = sizeof(unsigned int),
93 .mode = 0644,
94 .proc_handler = &proc_dointvec_minmax,
95 .strategy = &sysctl_intvec,
96 .extra1 = &min_slot_table_size,
97 .extra2 = &max_slot_table_size
98 },
99 {
100 .ctl_name = CTL_UNNUMBERED,
101 .procname = "rdma_max_inline_read",
102 .data = &xprt_rdma_max_inline_read,
103 .maxlen = sizeof(unsigned int),
104 .mode = 0644,
105 .proc_handler = &proc_dointvec,
106 .strategy = &sysctl_intvec,
107 },
108 {
109 .ctl_name = CTL_UNNUMBERED,
110 .procname = "rdma_max_inline_write",
111 .data = &xprt_rdma_max_inline_write,
112 .maxlen = sizeof(unsigned int),
113 .mode = 0644,
114 .proc_handler = &proc_dointvec,
115 .strategy = &sysctl_intvec,
116 },
117 {
118 .ctl_name = CTL_UNNUMBERED,
119 .procname = "rdma_inline_write_padding",
120 .data = &xprt_rdma_inline_write_padding,
121 .maxlen = sizeof(unsigned int),
122 .mode = 0644,
123 .proc_handler = &proc_dointvec_minmax,
124 .strategy = &sysctl_intvec,
125 .extra1 = &zero,
126 .extra2 = &max_padding,
127 },
128 {
129 .ctl_name = CTL_UNNUMBERED,
130 .procname = "rdma_memreg_strategy",
131 .data = &xprt_rdma_memreg_strategy,
132 .maxlen = sizeof(unsigned int),
133 .mode = 0644,
134 .proc_handler = &proc_dointvec_minmax,
135 .strategy = &sysctl_intvec,
136 .extra1 = &min_memreg,
137 .extra2 = &max_memreg,
138 },
139 {
140 .ctl_name = CTL_UNNUMBERED,
141 .procname = "rdma_pad_optimize",
142 .data = &xprt_rdma_pad_optimize,
143 .maxlen = sizeof(unsigned int),
144 .mode = 0644,
145 .proc_handler = &proc_dointvec,
146 },
147 {
148 .ctl_name = 0,
149 },
150 };
151
152 static ctl_table sunrpc_table[] = {
153 {
154 .ctl_name = CTL_SUNRPC,
155 .procname = "sunrpc",
156 .mode = 0555,
157 .child = xr_tunables_table
158 },
159 {
160 .ctl_name = 0,
161 },
162 };
163
164 #endif
165
166 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
167
168 static void
xprt_rdma_format_addresses(struct rpc_xprt * xprt)169 xprt_rdma_format_addresses(struct rpc_xprt *xprt)
170 {
171 struct sockaddr_in *addr = (struct sockaddr_in *)
172 &rpcx_to_rdmad(xprt).addr;
173 char *buf;
174
175 buf = kzalloc(20, GFP_KERNEL);
176 if (buf)
177 snprintf(buf, 20, "%pI4", &addr->sin_addr.s_addr);
178 xprt->address_strings[RPC_DISPLAY_ADDR] = buf;
179
180 buf = kzalloc(8, GFP_KERNEL);
181 if (buf)
182 snprintf(buf, 8, "%u", ntohs(addr->sin_port));
183 xprt->address_strings[RPC_DISPLAY_PORT] = buf;
184
185 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
186
187 buf = kzalloc(48, GFP_KERNEL);
188 if (buf)
189 snprintf(buf, 48, "addr=%pI4 port=%u proto=%s",
190 &addr->sin_addr.s_addr,
191 ntohs(addr->sin_port), "rdma");
192 xprt->address_strings[RPC_DISPLAY_ALL] = buf;
193
194 buf = kzalloc(10, GFP_KERNEL);
195 if (buf)
196 snprintf(buf, 10, "%02x%02x%02x%02x",
197 NIPQUAD(addr->sin_addr.s_addr));
198 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = buf;
199
200 buf = kzalloc(8, GFP_KERNEL);
201 if (buf)
202 snprintf(buf, 8, "%4hx", ntohs(addr->sin_port));
203 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = buf;
204
205 buf = kzalloc(30, GFP_KERNEL);
206 if (buf)
207 snprintf(buf, 30, "%pI4.%u.%u",
208 &addr->sin_addr.s_addr,
209 ntohs(addr->sin_port) >> 8,
210 ntohs(addr->sin_port) & 0xff);
211 xprt->address_strings[RPC_DISPLAY_UNIVERSAL_ADDR] = buf;
212
213 /* netid */
214 xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
215 }
216
217 static void
xprt_rdma_free_addresses(struct rpc_xprt * xprt)218 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
219 {
220 unsigned int i;
221
222 for (i = 0; i < RPC_DISPLAY_MAX; i++)
223 switch (i) {
224 case RPC_DISPLAY_PROTO:
225 case RPC_DISPLAY_NETID:
226 continue;
227 default:
228 kfree(xprt->address_strings[i]);
229 }
230 }
231
232 static void
xprt_rdma_connect_worker(struct work_struct * work)233 xprt_rdma_connect_worker(struct work_struct *work)
234 {
235 struct rpcrdma_xprt *r_xprt =
236 container_of(work, struct rpcrdma_xprt, rdma_connect.work);
237 struct rpc_xprt *xprt = &r_xprt->xprt;
238 int rc = 0;
239
240 if (!xprt->shutdown) {
241 xprt_clear_connected(xprt);
242
243 dprintk("RPC: %s: %sconnect\n", __func__,
244 r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
245 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
246 if (rc)
247 goto out;
248 }
249 goto out_clear;
250
251 out:
252 xprt_wake_pending_tasks(xprt, rc);
253
254 out_clear:
255 dprintk("RPC: %s: exit\n", __func__);
256 xprt_clear_connecting(xprt);
257 }
258
259 /*
260 * xprt_rdma_destroy
261 *
262 * Destroy the xprt.
263 * Free all memory associated with the object, including its own.
264 * NOTE: none of the *destroy methods free memory for their top-level
265 * objects, even though they may have allocated it (they do free
266 * private memory). It's up to the caller to handle it. In this
267 * case (RDMA transport), all structure memory is inlined with the
268 * struct rpcrdma_xprt.
269 */
270 static void
xprt_rdma_destroy(struct rpc_xprt * xprt)271 xprt_rdma_destroy(struct rpc_xprt *xprt)
272 {
273 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
274 int rc;
275
276 dprintk("RPC: %s: called\n", __func__);
277
278 cancel_delayed_work(&r_xprt->rdma_connect);
279 flush_scheduled_work();
280
281 xprt_clear_connected(xprt);
282
283 rpcrdma_buffer_destroy(&r_xprt->rx_buf);
284 rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
285 if (rc)
286 dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
287 __func__, rc);
288 rpcrdma_ia_close(&r_xprt->rx_ia);
289
290 xprt_rdma_free_addresses(xprt);
291
292 kfree(xprt->slot);
293 xprt->slot = NULL;
294 kfree(xprt);
295
296 dprintk("RPC: %s: returning\n", __func__);
297
298 module_put(THIS_MODULE);
299 }
300
301 static const struct rpc_timeout xprt_rdma_default_timeout = {
302 .to_initval = 60 * HZ,
303 .to_maxval = 60 * HZ,
304 };
305
306 /**
307 * xprt_setup_rdma - Set up transport to use RDMA
308 *
309 * @args: rpc transport arguments
310 */
311 static struct rpc_xprt *
xprt_setup_rdma(struct xprt_create * args)312 xprt_setup_rdma(struct xprt_create *args)
313 {
314 struct rpcrdma_create_data_internal cdata;
315 struct rpc_xprt *xprt;
316 struct rpcrdma_xprt *new_xprt;
317 struct rpcrdma_ep *new_ep;
318 struct sockaddr_in *sin;
319 int rc;
320
321 if (args->addrlen > sizeof(xprt->addr)) {
322 dprintk("RPC: %s: address too large\n", __func__);
323 return ERR_PTR(-EBADF);
324 }
325
326 xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL);
327 if (xprt == NULL) {
328 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
329 __func__);
330 return ERR_PTR(-ENOMEM);
331 }
332
333 xprt->max_reqs = xprt_rdma_slot_table_entries;
334 xprt->slot = kcalloc(xprt->max_reqs,
335 sizeof(struct rpc_rqst), GFP_KERNEL);
336 if (xprt->slot == NULL) {
337 dprintk("RPC: %s: couldn't allocate %d slots\n",
338 __func__, xprt->max_reqs);
339 kfree(xprt);
340 return ERR_PTR(-ENOMEM);
341 }
342
343 /* 60 second timeout, no retries */
344 xprt->timeout = &xprt_rdma_default_timeout;
345 xprt->bind_timeout = (60U * HZ);
346 xprt->connect_timeout = (60U * HZ);
347 xprt->reestablish_timeout = (5U * HZ);
348 xprt->idle_timeout = (5U * 60 * HZ);
349
350 xprt->resvport = 0; /* privileged port not needed */
351 xprt->tsh_size = 0; /* RPC-RDMA handles framing */
352 xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
353 xprt->ops = &xprt_rdma_procs;
354
355 /*
356 * Set up RDMA-specific connect data.
357 */
358
359 /* Put server RDMA address in local cdata */
360 memcpy(&cdata.addr, args->dstaddr, args->addrlen);
361
362 /* Ensure xprt->addr holds valid server TCP (not RDMA)
363 * address, for any side protocols which peek at it */
364 xprt->prot = IPPROTO_TCP;
365 xprt->addrlen = args->addrlen;
366 memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
367
368 sin = (struct sockaddr_in *)&cdata.addr;
369 if (ntohs(sin->sin_port) != 0)
370 xprt_set_bound(xprt);
371
372 dprintk("RPC: %s: %pI4:%u\n",
373 __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
374
375 /* Set max requests */
376 cdata.max_requests = xprt->max_reqs;
377
378 /* Set some length limits */
379 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
380 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
381
382 cdata.inline_wsize = xprt_rdma_max_inline_write;
383 if (cdata.inline_wsize > cdata.wsize)
384 cdata.inline_wsize = cdata.wsize;
385
386 cdata.inline_rsize = xprt_rdma_max_inline_read;
387 if (cdata.inline_rsize > cdata.rsize)
388 cdata.inline_rsize = cdata.rsize;
389
390 cdata.padding = xprt_rdma_inline_write_padding;
391
392 /*
393 * Create new transport instance, which includes initialized
394 * o ia
395 * o endpoint
396 * o buffers
397 */
398
399 new_xprt = rpcx_to_rdmax(xprt);
400
401 rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
402 xprt_rdma_memreg_strategy);
403 if (rc)
404 goto out1;
405
406 /*
407 * initialize and create ep
408 */
409 new_xprt->rx_data = cdata;
410 new_ep = &new_xprt->rx_ep;
411 new_ep->rep_remote_addr = cdata.addr;
412
413 rc = rpcrdma_ep_create(&new_xprt->rx_ep,
414 &new_xprt->rx_ia, &new_xprt->rx_data);
415 if (rc)
416 goto out2;
417
418 /*
419 * Allocate pre-registered send and receive buffers for headers and
420 * any inline data. Also specify any padding which will be provided
421 * from a preregistered zero buffer.
422 */
423 rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
424 &new_xprt->rx_data);
425 if (rc)
426 goto out3;
427
428 /*
429 * Register a callback for connection events. This is necessary because
430 * connection loss notification is async. We also catch connection loss
431 * when reaping receives.
432 */
433 INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
434 new_ep->rep_func = rpcrdma_conn_func;
435 new_ep->rep_xprt = xprt;
436
437 xprt_rdma_format_addresses(xprt);
438
439 if (!try_module_get(THIS_MODULE))
440 goto out4;
441
442 return xprt;
443
444 out4:
445 xprt_rdma_free_addresses(xprt);
446 rc = -EINVAL;
447 out3:
448 (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
449 out2:
450 rpcrdma_ia_close(&new_xprt->rx_ia);
451 out1:
452 kfree(xprt->slot);
453 kfree(xprt);
454 return ERR_PTR(rc);
455 }
456
457 /*
458 * Close a connection, during shutdown or timeout/reconnect
459 */
460 static void
xprt_rdma_close(struct rpc_xprt * xprt)461 xprt_rdma_close(struct rpc_xprt *xprt)
462 {
463 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
464
465 dprintk("RPC: %s: closing\n", __func__);
466 if (r_xprt->rx_ep.rep_connected > 0)
467 xprt->reestablish_timeout = 0;
468 xprt_disconnect_done(xprt);
469 (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
470 }
471
472 static void
xprt_rdma_set_port(struct rpc_xprt * xprt,u16 port)473 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
474 {
475 struct sockaddr_in *sap;
476
477 sap = (struct sockaddr_in *)&xprt->addr;
478 sap->sin_port = htons(port);
479 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
480 sap->sin_port = htons(port);
481 dprintk("RPC: %s: %u\n", __func__, port);
482 }
483
484 static void
xprt_rdma_connect(struct rpc_task * task)485 xprt_rdma_connect(struct rpc_task *task)
486 {
487 struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
488 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
489
490 if (!xprt_test_and_set_connecting(xprt)) {
491 if (r_xprt->rx_ep.rep_connected != 0) {
492 /* Reconnect */
493 schedule_delayed_work(&r_xprt->rdma_connect,
494 xprt->reestablish_timeout);
495 xprt->reestablish_timeout <<= 1;
496 if (xprt->reestablish_timeout > (30 * HZ))
497 xprt->reestablish_timeout = (30 * HZ);
498 else if (xprt->reestablish_timeout < (5 * HZ))
499 xprt->reestablish_timeout = (5 * HZ);
500 } else {
501 schedule_delayed_work(&r_xprt->rdma_connect, 0);
502 if (!RPC_IS_ASYNC(task))
503 flush_scheduled_work();
504 }
505 }
506 }
507
508 static int
xprt_rdma_reserve_xprt(struct rpc_task * task)509 xprt_rdma_reserve_xprt(struct rpc_task *task)
510 {
511 struct rpc_xprt *xprt = task->tk_xprt;
512 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
513 int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
514
515 /* == RPC_CWNDSCALE @ init, but *after* setup */
516 if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
517 r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
518 dprintk("RPC: %s: cwndscale %lu\n", __func__,
519 r_xprt->rx_buf.rb_cwndscale);
520 BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
521 }
522 xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
523 return xprt_reserve_xprt_cong(task);
524 }
525
526 /*
527 * The RDMA allocate/free functions need the task structure as a place
528 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
529 * sequence. For this reason, the recv buffers are attached to send
530 * buffers for portions of the RPC. Note that the RPC layer allocates
531 * both send and receive buffers in the same call. We may register
532 * the receive buffer portion when using reply chunks.
533 */
534 static void *
xprt_rdma_allocate(struct rpc_task * task,size_t size)535 xprt_rdma_allocate(struct rpc_task *task, size_t size)
536 {
537 struct rpc_xprt *xprt = task->tk_xprt;
538 struct rpcrdma_req *req, *nreq;
539
540 req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
541 BUG_ON(NULL == req);
542
543 if (size > req->rl_size) {
544 dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
545 "prog %d vers %d proc %d\n",
546 __func__, size, req->rl_size,
547 task->tk_client->cl_prog, task->tk_client->cl_vers,
548 task->tk_msg.rpc_proc->p_proc);
549 /*
550 * Outgoing length shortage. Our inline write max must have
551 * been configured to perform direct i/o.
552 *
553 * This is therefore a large metadata operation, and the
554 * allocate call was made on the maximum possible message,
555 * e.g. containing long filename(s) or symlink data. In
556 * fact, while these metadata operations *might* carry
557 * large outgoing payloads, they rarely *do*. However, we
558 * have to commit to the request here, so reallocate and
559 * register it now. The data path will never require this
560 * reallocation.
561 *
562 * If the allocation or registration fails, the RPC framework
563 * will (doggedly) retry.
564 */
565 if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
566 RPCRDMA_BOUNCEBUFFERS) {
567 /* forced to "pure inline" */
568 dprintk("RPC: %s: too much data (%zd) for inline "
569 "(r/w max %d/%d)\n", __func__, size,
570 rpcx_to_rdmad(xprt).inline_rsize,
571 rpcx_to_rdmad(xprt).inline_wsize);
572 size = req->rl_size;
573 rpc_exit(task, -EIO); /* fail the operation */
574 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
575 goto out;
576 }
577 if (task->tk_flags & RPC_TASK_SWAPPER)
578 nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
579 else
580 nreq = kmalloc(sizeof *req + size, GFP_NOFS);
581 if (nreq == NULL)
582 goto outfail;
583
584 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
585 nreq->rl_base, size + sizeof(struct rpcrdma_req)
586 - offsetof(struct rpcrdma_req, rl_base),
587 &nreq->rl_handle, &nreq->rl_iov)) {
588 kfree(nreq);
589 goto outfail;
590 }
591 rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
592 nreq->rl_size = size;
593 nreq->rl_niovs = 0;
594 nreq->rl_nchunks = 0;
595 nreq->rl_buffer = (struct rpcrdma_buffer *)req;
596 nreq->rl_reply = req->rl_reply;
597 memcpy(nreq->rl_segments,
598 req->rl_segments, sizeof nreq->rl_segments);
599 /* flag the swap with an unused field */
600 nreq->rl_iov.length = 0;
601 req->rl_reply = NULL;
602 req = nreq;
603 }
604 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
605 out:
606 req->rl_connect_cookie = 0; /* our reserved value */
607 return req->rl_xdr_buf;
608
609 outfail:
610 rpcrdma_buffer_put(req);
611 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
612 return NULL;
613 }
614
615 /*
616 * This function returns all RDMA resources to the pool.
617 */
618 static void
xprt_rdma_free(void * buffer)619 xprt_rdma_free(void *buffer)
620 {
621 struct rpcrdma_req *req;
622 struct rpcrdma_xprt *r_xprt;
623 struct rpcrdma_rep *rep;
624 int i;
625
626 if (buffer == NULL)
627 return;
628
629 req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
630 if (req->rl_iov.length == 0) { /* see allocate above */
631 r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
632 struct rpcrdma_xprt, rx_buf);
633 } else
634 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
635 rep = req->rl_reply;
636
637 dprintk("RPC: %s: called on 0x%p%s\n",
638 __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
639
640 /*
641 * Finish the deregistration. When using mw bind, this was
642 * begun in rpcrdma_reply_handler(). In all other modes, we
643 * do it here, in thread context. The process is considered
644 * complete when the rr_func vector becomes NULL - this
645 * was put in place during rpcrdma_reply_handler() - the wait
646 * call below will not block if the dereg is "done". If
647 * interrupted, our framework will clean up.
648 */
649 for (i = 0; req->rl_nchunks;) {
650 --req->rl_nchunks;
651 i += rpcrdma_deregister_external(
652 &req->rl_segments[i], r_xprt, NULL);
653 }
654
655 if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
656 rep->rr_func = NULL; /* abandon the callback */
657 req->rl_reply = NULL;
658 }
659
660 if (req->rl_iov.length == 0) { /* see allocate above */
661 struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
662 oreq->rl_reply = req->rl_reply;
663 (void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
664 req->rl_handle,
665 &req->rl_iov);
666 kfree(req);
667 req = oreq;
668 }
669
670 /* Put back request+reply buffers */
671 rpcrdma_buffer_put(req);
672 }
673
674 /*
675 * send_request invokes the meat of RPC RDMA. It must do the following:
676 * 1. Marshal the RPC request into an RPC RDMA request, which means
677 * putting a header in front of data, and creating IOVs for RDMA
678 * from those in the request.
679 * 2. In marshaling, detect opportunities for RDMA, and use them.
680 * 3. Post a recv message to set up asynch completion, then send
681 * the request (rpcrdma_ep_post).
682 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
683 */
684
685 static int
xprt_rdma_send_request(struct rpc_task * task)686 xprt_rdma_send_request(struct rpc_task *task)
687 {
688 struct rpc_rqst *rqst = task->tk_rqstp;
689 struct rpc_xprt *xprt = task->tk_xprt;
690 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
691 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
692
693 /* marshal the send itself */
694 if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
695 r_xprt->rx_stats.failed_marshal_count++;
696 dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
697 __func__);
698 return -EIO;
699 }
700
701 if (req->rl_reply == NULL) /* e.g. reconnection */
702 rpcrdma_recv_buffer_get(req);
703
704 if (req->rl_reply) {
705 req->rl_reply->rr_func = rpcrdma_reply_handler;
706 /* this need only be done once, but... */
707 req->rl_reply->rr_xprt = xprt;
708 }
709
710 /* Must suppress retransmit to maintain credits */
711 if (req->rl_connect_cookie == xprt->connect_cookie)
712 goto drop_connection;
713 req->rl_connect_cookie = xprt->connect_cookie;
714
715 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
716 goto drop_connection;
717
718 task->tk_bytes_sent += rqst->rq_snd_buf.len;
719 rqst->rq_bytes_sent = 0;
720 return 0;
721
722 drop_connection:
723 xprt_disconnect_done(xprt);
724 return -ENOTCONN; /* implies disconnect */
725 }
726
xprt_rdma_print_stats(struct rpc_xprt * xprt,struct seq_file * seq)727 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
728 {
729 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
730 long idle_time = 0;
731
732 if (xprt_connected(xprt))
733 idle_time = (long)(jiffies - xprt->last_used) / HZ;
734
735 seq_printf(seq,
736 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
737 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
738
739 0, /* need a local port? */
740 xprt->stat.bind_count,
741 xprt->stat.connect_count,
742 xprt->stat.connect_time,
743 idle_time,
744 xprt->stat.sends,
745 xprt->stat.recvs,
746 xprt->stat.bad_xids,
747 xprt->stat.req_u,
748 xprt->stat.bklog_u,
749
750 r_xprt->rx_stats.read_chunk_count,
751 r_xprt->rx_stats.write_chunk_count,
752 r_xprt->rx_stats.reply_chunk_count,
753 r_xprt->rx_stats.total_rdma_request,
754 r_xprt->rx_stats.total_rdma_reply,
755 r_xprt->rx_stats.pullup_copy_count,
756 r_xprt->rx_stats.fixup_copy_count,
757 r_xprt->rx_stats.hardway_register_count,
758 r_xprt->rx_stats.failed_marshal_count,
759 r_xprt->rx_stats.bad_reply_count);
760 }
761
762 /*
763 * Plumbing for rpc transport switch and kernel module
764 */
765
766 static struct rpc_xprt_ops xprt_rdma_procs = {
767 .reserve_xprt = xprt_rdma_reserve_xprt,
768 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
769 .release_request = xprt_release_rqst_cong, /* ditto */
770 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
771 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
772 .set_port = xprt_rdma_set_port,
773 .connect = xprt_rdma_connect,
774 .buf_alloc = xprt_rdma_allocate,
775 .buf_free = xprt_rdma_free,
776 .send_request = xprt_rdma_send_request,
777 .close = xprt_rdma_close,
778 .destroy = xprt_rdma_destroy,
779 .print_stats = xprt_rdma_print_stats
780 };
781
782 static struct xprt_class xprt_rdma = {
783 .list = LIST_HEAD_INIT(xprt_rdma.list),
784 .name = "rdma",
785 .owner = THIS_MODULE,
786 .ident = XPRT_TRANSPORT_RDMA,
787 .setup = xprt_setup_rdma,
788 };
789
xprt_rdma_cleanup(void)790 static void __exit xprt_rdma_cleanup(void)
791 {
792 int rc;
793
794 dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
795 #ifdef RPC_DEBUG
796 if (sunrpc_table_header) {
797 unregister_sysctl_table(sunrpc_table_header);
798 sunrpc_table_header = NULL;
799 }
800 #endif
801 rc = xprt_unregister_transport(&xprt_rdma);
802 if (rc)
803 dprintk("RPC: %s: xprt_unregister returned %i\n",
804 __func__, rc);
805 }
806
xprt_rdma_init(void)807 static int __init xprt_rdma_init(void)
808 {
809 int rc;
810
811 rc = xprt_register_transport(&xprt_rdma);
812
813 if (rc)
814 return rc;
815
816 dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
817
818 dprintk(KERN_INFO "Defaults:\n");
819 dprintk(KERN_INFO "\tSlots %d\n"
820 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
821 xprt_rdma_slot_table_entries,
822 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
823 dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
824 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
825
826 #ifdef RPC_DEBUG
827 if (!sunrpc_table_header)
828 sunrpc_table_header = register_sysctl_table(sunrpc_table);
829 #endif
830 return 0;
831 }
832
833 module_init(xprt_rdma_init);
834 module_exit(xprt_rdma_cleanup);
835