• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19 
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
21 
22 static struct kmem_cache *fuse_req_cachep;
23 
fuse_get_conn(struct file * file)24 static struct fuse_conn *fuse_get_conn(struct file *file)
25 {
26 	/*
27 	 * Lockless access is OK, because file->private data is set
28 	 * once during mount and is valid until the file is released.
29 	 */
30 	return file->private_data;
31 }
32 
fuse_request_init(struct fuse_req * req)33 static void fuse_request_init(struct fuse_req *req)
34 {
35 	memset(req, 0, sizeof(*req));
36 	INIT_LIST_HEAD(&req->list);
37 	INIT_LIST_HEAD(&req->intr_entry);
38 	init_waitqueue_head(&req->waitq);
39 	atomic_set(&req->count, 1);
40 }
41 
fuse_request_alloc(void)42 struct fuse_req *fuse_request_alloc(void)
43 {
44 	struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
45 	if (req)
46 		fuse_request_init(req);
47 	return req;
48 }
49 
fuse_request_alloc_nofs(void)50 struct fuse_req *fuse_request_alloc_nofs(void)
51 {
52 	struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS);
53 	if (req)
54 		fuse_request_init(req);
55 	return req;
56 }
57 
fuse_request_free(struct fuse_req * req)58 void fuse_request_free(struct fuse_req *req)
59 {
60 	kmem_cache_free(fuse_req_cachep, req);
61 }
62 
block_sigs(sigset_t * oldset)63 static void block_sigs(sigset_t *oldset)
64 {
65 	sigset_t mask;
66 
67 	siginitsetinv(&mask, sigmask(SIGKILL));
68 	sigprocmask(SIG_BLOCK, &mask, oldset);
69 }
70 
restore_sigs(sigset_t * oldset)71 static void restore_sigs(sigset_t *oldset)
72 {
73 	sigprocmask(SIG_SETMASK, oldset, NULL);
74 }
75 
__fuse_get_request(struct fuse_req * req)76 static void __fuse_get_request(struct fuse_req *req)
77 {
78 	atomic_inc(&req->count);
79 }
80 
81 /* Must be called with > 1 refcount */
__fuse_put_request(struct fuse_req * req)82 static void __fuse_put_request(struct fuse_req *req)
83 {
84 	BUG_ON(atomic_read(&req->count) < 2);
85 	atomic_dec(&req->count);
86 }
87 
fuse_req_init_context(struct fuse_req * req)88 static void fuse_req_init_context(struct fuse_req *req)
89 {
90 	req->in.h.uid = current_fsuid();
91 	req->in.h.gid = current_fsgid();
92 	req->in.h.pid = current->pid;
93 }
94 
fuse_get_req(struct fuse_conn * fc)95 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
96 {
97 	struct fuse_req *req;
98 	sigset_t oldset;
99 	int intr;
100 	int err;
101 
102 	atomic_inc(&fc->num_waiting);
103 	block_sigs(&oldset);
104 	intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
105 	restore_sigs(&oldset);
106 	err = -EINTR;
107 	if (intr)
108 		goto out;
109 
110 	err = -ENOTCONN;
111 	if (!fc->connected)
112 		goto out;
113 
114 	req = fuse_request_alloc();
115 	err = -ENOMEM;
116 	if (!req)
117 		goto out;
118 
119 	fuse_req_init_context(req);
120 	req->waiting = 1;
121 	return req;
122 
123  out:
124 	atomic_dec(&fc->num_waiting);
125 	return ERR_PTR(err);
126 }
127 
128 /*
129  * Return request in fuse_file->reserved_req.  However that may
130  * currently be in use.  If that is the case, wait for it to become
131  * available.
132  */
get_reserved_req(struct fuse_conn * fc,struct file * file)133 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
134 					 struct file *file)
135 {
136 	struct fuse_req *req = NULL;
137 	struct fuse_file *ff = file->private_data;
138 
139 	do {
140 		wait_event(fc->reserved_req_waitq, ff->reserved_req);
141 		spin_lock(&fc->lock);
142 		if (ff->reserved_req) {
143 			req = ff->reserved_req;
144 			ff->reserved_req = NULL;
145 			get_file(file);
146 			req->stolen_file = file;
147 		}
148 		spin_unlock(&fc->lock);
149 	} while (!req);
150 
151 	return req;
152 }
153 
154 /*
155  * Put stolen request back into fuse_file->reserved_req
156  */
put_reserved_req(struct fuse_conn * fc,struct fuse_req * req)157 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
158 {
159 	struct file *file = req->stolen_file;
160 	struct fuse_file *ff = file->private_data;
161 
162 	spin_lock(&fc->lock);
163 	fuse_request_init(req);
164 	BUG_ON(ff->reserved_req);
165 	ff->reserved_req = req;
166 	wake_up_all(&fc->reserved_req_waitq);
167 	spin_unlock(&fc->lock);
168 	fput(file);
169 }
170 
171 /*
172  * Gets a requests for a file operation, always succeeds
173  *
174  * This is used for sending the FLUSH request, which must get to
175  * userspace, due to POSIX locks which may need to be unlocked.
176  *
177  * If allocation fails due to OOM, use the reserved request in
178  * fuse_file.
179  *
180  * This is very unlikely to deadlock accidentally, since the
181  * filesystem should not have it's own file open.  If deadlock is
182  * intentional, it can still be broken by "aborting" the filesystem.
183  */
fuse_get_req_nofail(struct fuse_conn * fc,struct file * file)184 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
185 {
186 	struct fuse_req *req;
187 
188 	atomic_inc(&fc->num_waiting);
189 	wait_event(fc->blocked_waitq, !fc->blocked);
190 	req = fuse_request_alloc();
191 	if (!req)
192 		req = get_reserved_req(fc, file);
193 
194 	fuse_req_init_context(req);
195 	req->waiting = 1;
196 	return req;
197 }
198 
fuse_put_request(struct fuse_conn * fc,struct fuse_req * req)199 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
200 {
201 	if (atomic_dec_and_test(&req->count)) {
202 		if (req->waiting)
203 			atomic_dec(&fc->num_waiting);
204 
205 		if (req->stolen_file)
206 			put_reserved_req(fc, req);
207 		else
208 			fuse_request_free(req);
209 	}
210 }
211 
len_args(unsigned numargs,struct fuse_arg * args)212 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
213 {
214 	unsigned nbytes = 0;
215 	unsigned i;
216 
217 	for (i = 0; i < numargs; i++)
218 		nbytes += args[i].size;
219 
220 	return nbytes;
221 }
222 
fuse_get_unique(struct fuse_conn * fc)223 static u64 fuse_get_unique(struct fuse_conn *fc)
224 {
225 	fc->reqctr++;
226 	/* zero is special */
227 	if (fc->reqctr == 0)
228 		fc->reqctr = 1;
229 
230 	return fc->reqctr;
231 }
232 
queue_request(struct fuse_conn * fc,struct fuse_req * req)233 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
234 {
235 	req->in.h.unique = fuse_get_unique(fc);
236 	req->in.h.len = sizeof(struct fuse_in_header) +
237 		len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
238 	list_add_tail(&req->list, &fc->pending);
239 	req->state = FUSE_REQ_PENDING;
240 	if (!req->waiting) {
241 		req->waiting = 1;
242 		atomic_inc(&fc->num_waiting);
243 	}
244 	wake_up(&fc->waitq);
245 	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
246 }
247 
flush_bg_queue(struct fuse_conn * fc)248 static void flush_bg_queue(struct fuse_conn *fc)
249 {
250 	while (fc->active_background < FUSE_MAX_BACKGROUND &&
251 	       !list_empty(&fc->bg_queue)) {
252 		struct fuse_req *req;
253 
254 		req = list_entry(fc->bg_queue.next, struct fuse_req, list);
255 		list_del(&req->list);
256 		fc->active_background++;
257 		queue_request(fc, req);
258 	}
259 }
260 
261 /*
262  * This function is called when a request is finished.  Either a reply
263  * has arrived or it was aborted (and not yet sent) or some error
264  * occurred during communication with userspace, or the device file
265  * was closed.  The requester thread is woken up (if still waiting),
266  * the 'end' callback is called if given, else the reference to the
267  * request is released
268  *
269  * Called with fc->lock, unlocks it
270  */
request_end(struct fuse_conn * fc,struct fuse_req * req)271 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
272 __releases(&fc->lock)
273 {
274 	void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
275 	req->end = NULL;
276 	list_del(&req->list);
277 	list_del(&req->intr_entry);
278 	req->state = FUSE_REQ_FINISHED;
279 	if (req->background) {
280 		if (fc->num_background == FUSE_MAX_BACKGROUND) {
281 			fc->blocked = 0;
282 			wake_up_all(&fc->blocked_waitq);
283 		}
284 		if (fc->num_background == FUSE_CONGESTION_THRESHOLD &&
285 		    fc->connected) {
286 			clear_bdi_congested(&fc->bdi, READ);
287 			clear_bdi_congested(&fc->bdi, WRITE);
288 		}
289 		fc->num_background--;
290 		fc->active_background--;
291 		flush_bg_queue(fc);
292 	}
293 	spin_unlock(&fc->lock);
294 	wake_up(&req->waitq);
295 	if (end)
296 		end(fc, req);
297 	fuse_put_request(fc, req);
298 }
299 
wait_answer_interruptible(struct fuse_conn * fc,struct fuse_req * req)300 static void wait_answer_interruptible(struct fuse_conn *fc,
301 				      struct fuse_req *req)
302 __releases(&fc->lock)
303 __acquires(&fc->lock)
304 {
305 	if (signal_pending(current))
306 		return;
307 
308 	spin_unlock(&fc->lock);
309 	wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
310 	spin_lock(&fc->lock);
311 }
312 
queue_interrupt(struct fuse_conn * fc,struct fuse_req * req)313 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
314 {
315 	list_add_tail(&req->intr_entry, &fc->interrupts);
316 	wake_up(&fc->waitq);
317 	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
318 }
319 
request_wait_answer(struct fuse_conn * fc,struct fuse_req * req)320 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
321 __releases(&fc->lock)
322 __acquires(&fc->lock)
323 {
324 	if (!fc->no_interrupt) {
325 		/* Any signal may interrupt this */
326 		wait_answer_interruptible(fc, req);
327 
328 		if (req->aborted)
329 			goto aborted;
330 		if (req->state == FUSE_REQ_FINISHED)
331 			return;
332 
333 		req->interrupted = 1;
334 		if (req->state == FUSE_REQ_SENT)
335 			queue_interrupt(fc, req);
336 	}
337 
338 	if (!req->force) {
339 		sigset_t oldset;
340 
341 		/* Only fatal signals may interrupt this */
342 		block_sigs(&oldset);
343 		wait_answer_interruptible(fc, req);
344 		restore_sigs(&oldset);
345 
346 		if (req->aborted)
347 			goto aborted;
348 		if (req->state == FUSE_REQ_FINISHED)
349 			return;
350 
351 		/* Request is not yet in userspace, bail out */
352 		if (req->state == FUSE_REQ_PENDING) {
353 			list_del(&req->list);
354 			__fuse_put_request(req);
355 			req->out.h.error = -EINTR;
356 			return;
357 		}
358 	}
359 
360 	/*
361 	 * Either request is already in userspace, or it was forced.
362 	 * Wait it out.
363 	 */
364 	spin_unlock(&fc->lock);
365 	wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
366 	spin_lock(&fc->lock);
367 
368 	if (!req->aborted)
369 		return;
370 
371  aborted:
372 	BUG_ON(req->state != FUSE_REQ_FINISHED);
373 	if (req->locked) {
374 		/* This is uninterruptible sleep, because data is
375 		   being copied to/from the buffers of req.  During
376 		   locked state, there mustn't be any filesystem
377 		   operation (e.g. page fault), since that could lead
378 		   to deadlock */
379 		spin_unlock(&fc->lock);
380 		wait_event(req->waitq, !req->locked);
381 		spin_lock(&fc->lock);
382 	}
383 }
384 
fuse_request_send(struct fuse_conn * fc,struct fuse_req * req)385 void fuse_request_send(struct fuse_conn *fc, struct fuse_req *req)
386 {
387 	req->isreply = 1;
388 	spin_lock(&fc->lock);
389 	if (!fc->connected)
390 		req->out.h.error = -ENOTCONN;
391 	else if (fc->conn_error)
392 		req->out.h.error = -ECONNREFUSED;
393 	else {
394 		queue_request(fc, req);
395 		/* acquire extra reference, since request is still needed
396 		   after request_end() */
397 		__fuse_get_request(req);
398 
399 		request_wait_answer(fc, req);
400 	}
401 	spin_unlock(&fc->lock);
402 }
403 
fuse_request_send_nowait_locked(struct fuse_conn * fc,struct fuse_req * req)404 static void fuse_request_send_nowait_locked(struct fuse_conn *fc,
405 					    struct fuse_req *req)
406 {
407 	req->background = 1;
408 	fc->num_background++;
409 	if (fc->num_background == FUSE_MAX_BACKGROUND)
410 		fc->blocked = 1;
411 	if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
412 		set_bdi_congested(&fc->bdi, READ);
413 		set_bdi_congested(&fc->bdi, WRITE);
414 	}
415 	list_add_tail(&req->list, &fc->bg_queue);
416 	flush_bg_queue(fc);
417 }
418 
fuse_request_send_nowait(struct fuse_conn * fc,struct fuse_req * req)419 static void fuse_request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
420 {
421 	spin_lock(&fc->lock);
422 	if (fc->connected) {
423 		fuse_request_send_nowait_locked(fc, req);
424 		spin_unlock(&fc->lock);
425 	} else {
426 		req->out.h.error = -ENOTCONN;
427 		request_end(fc, req);
428 	}
429 }
430 
fuse_request_send_noreply(struct fuse_conn * fc,struct fuse_req * req)431 void fuse_request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
432 {
433 	req->isreply = 0;
434 	fuse_request_send_nowait(fc, req);
435 }
436 
fuse_request_send_background(struct fuse_conn * fc,struct fuse_req * req)437 void fuse_request_send_background(struct fuse_conn *fc, struct fuse_req *req)
438 {
439 	req->isreply = 1;
440 	fuse_request_send_nowait(fc, req);
441 }
442 
443 /*
444  * Called under fc->lock
445  *
446  * fc->connected must have been checked previously
447  */
fuse_request_send_background_locked(struct fuse_conn * fc,struct fuse_req * req)448 void fuse_request_send_background_locked(struct fuse_conn *fc,
449 					 struct fuse_req *req)
450 {
451 	req->isreply = 1;
452 	fuse_request_send_nowait_locked(fc, req);
453 }
454 
455 /*
456  * Lock the request.  Up to the next unlock_request() there mustn't be
457  * anything that could cause a page-fault.  If the request was already
458  * aborted bail out.
459  */
lock_request(struct fuse_conn * fc,struct fuse_req * req)460 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
461 {
462 	int err = 0;
463 	if (req) {
464 		spin_lock(&fc->lock);
465 		if (req->aborted)
466 			err = -ENOENT;
467 		else
468 			req->locked = 1;
469 		spin_unlock(&fc->lock);
470 	}
471 	return err;
472 }
473 
474 /*
475  * Unlock request.  If it was aborted during being locked, the
476  * requester thread is currently waiting for it to be unlocked, so
477  * wake it up.
478  */
unlock_request(struct fuse_conn * fc,struct fuse_req * req)479 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
480 {
481 	if (req) {
482 		spin_lock(&fc->lock);
483 		req->locked = 0;
484 		if (req->aborted)
485 			wake_up(&req->waitq);
486 		spin_unlock(&fc->lock);
487 	}
488 }
489 
490 struct fuse_copy_state {
491 	struct fuse_conn *fc;
492 	int write;
493 	struct fuse_req *req;
494 	const struct iovec *iov;
495 	unsigned long nr_segs;
496 	unsigned long seglen;
497 	unsigned long addr;
498 	struct page *pg;
499 	void *mapaddr;
500 	void *buf;
501 	unsigned len;
502 };
503 
fuse_copy_init(struct fuse_copy_state * cs,struct fuse_conn * fc,int write,struct fuse_req * req,const struct iovec * iov,unsigned long nr_segs)504 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
505 			   int write, struct fuse_req *req,
506 			   const struct iovec *iov, unsigned long nr_segs)
507 {
508 	memset(cs, 0, sizeof(*cs));
509 	cs->fc = fc;
510 	cs->write = write;
511 	cs->req = req;
512 	cs->iov = iov;
513 	cs->nr_segs = nr_segs;
514 }
515 
516 /* Unmap and put previous page of userspace buffer */
fuse_copy_finish(struct fuse_copy_state * cs)517 static void fuse_copy_finish(struct fuse_copy_state *cs)
518 {
519 	if (cs->mapaddr) {
520 		kunmap_atomic(cs->mapaddr, KM_USER0);
521 		if (cs->write) {
522 			flush_dcache_page(cs->pg);
523 			set_page_dirty_lock(cs->pg);
524 		}
525 		put_page(cs->pg);
526 		cs->mapaddr = NULL;
527 	}
528 }
529 
530 /*
531  * Get another pagefull of userspace buffer, and map it to kernel
532  * address space, and lock request
533  */
fuse_copy_fill(struct fuse_copy_state * cs)534 static int fuse_copy_fill(struct fuse_copy_state *cs)
535 {
536 	unsigned long offset;
537 	int err;
538 
539 	unlock_request(cs->fc, cs->req);
540 	fuse_copy_finish(cs);
541 	if (!cs->seglen) {
542 		BUG_ON(!cs->nr_segs);
543 		cs->seglen = cs->iov[0].iov_len;
544 		cs->addr = (unsigned long) cs->iov[0].iov_base;
545 		cs->iov++;
546 		cs->nr_segs--;
547 	}
548 	down_read(&current->mm->mmap_sem);
549 	err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
550 			     &cs->pg, NULL);
551 	up_read(&current->mm->mmap_sem);
552 	if (err < 0)
553 		return err;
554 	BUG_ON(err != 1);
555 	offset = cs->addr % PAGE_SIZE;
556 	cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
557 	cs->buf = cs->mapaddr + offset;
558 	cs->len = min(PAGE_SIZE - offset, cs->seglen);
559 	cs->seglen -= cs->len;
560 	cs->addr += cs->len;
561 
562 	return lock_request(cs->fc, cs->req);
563 }
564 
565 /* Do as much copy to/from userspace buffer as we can */
fuse_copy_do(struct fuse_copy_state * cs,void ** val,unsigned * size)566 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
567 {
568 	unsigned ncpy = min(*size, cs->len);
569 	if (val) {
570 		if (cs->write)
571 			memcpy(cs->buf, *val, ncpy);
572 		else
573 			memcpy(*val, cs->buf, ncpy);
574 		*val += ncpy;
575 	}
576 	*size -= ncpy;
577 	cs->len -= ncpy;
578 	cs->buf += ncpy;
579 	return ncpy;
580 }
581 
582 /*
583  * Copy a page in the request to/from the userspace buffer.  Must be
584  * done atomically
585  */
fuse_copy_page(struct fuse_copy_state * cs,struct page * page,unsigned offset,unsigned count,int zeroing)586 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
587 			  unsigned offset, unsigned count, int zeroing)
588 {
589 	if (page && zeroing && count < PAGE_SIZE) {
590 		void *mapaddr = kmap_atomic(page, KM_USER1);
591 		memset(mapaddr, 0, PAGE_SIZE);
592 		kunmap_atomic(mapaddr, KM_USER1);
593 	}
594 	while (count) {
595 		if (!cs->len) {
596 			int err = fuse_copy_fill(cs);
597 			if (err)
598 				return err;
599 		}
600 		if (page) {
601 			void *mapaddr = kmap_atomic(page, KM_USER1);
602 			void *buf = mapaddr + offset;
603 			offset += fuse_copy_do(cs, &buf, &count);
604 			kunmap_atomic(mapaddr, KM_USER1);
605 		} else
606 			offset += fuse_copy_do(cs, NULL, &count);
607 	}
608 	if (page && !cs->write)
609 		flush_dcache_page(page);
610 	return 0;
611 }
612 
613 /* Copy pages in the request to/from userspace buffer */
fuse_copy_pages(struct fuse_copy_state * cs,unsigned nbytes,int zeroing)614 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
615 			   int zeroing)
616 {
617 	unsigned i;
618 	struct fuse_req *req = cs->req;
619 	unsigned offset = req->page_offset;
620 	unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
621 
622 	for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
623 		struct page *page = req->pages[i];
624 		int err = fuse_copy_page(cs, page, offset, count, zeroing);
625 		if (err)
626 			return err;
627 
628 		nbytes -= count;
629 		count = min(nbytes, (unsigned) PAGE_SIZE);
630 		offset = 0;
631 	}
632 	return 0;
633 }
634 
635 /* Copy a single argument in the request to/from userspace buffer */
fuse_copy_one(struct fuse_copy_state * cs,void * val,unsigned size)636 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
637 {
638 	while (size) {
639 		if (!cs->len) {
640 			int err = fuse_copy_fill(cs);
641 			if (err)
642 				return err;
643 		}
644 		fuse_copy_do(cs, &val, &size);
645 	}
646 	return 0;
647 }
648 
649 /* Copy request arguments to/from userspace buffer */
fuse_copy_args(struct fuse_copy_state * cs,unsigned numargs,unsigned argpages,struct fuse_arg * args,int zeroing)650 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
651 			  unsigned argpages, struct fuse_arg *args,
652 			  int zeroing)
653 {
654 	int err = 0;
655 	unsigned i;
656 
657 	for (i = 0; !err && i < numargs; i++)  {
658 		struct fuse_arg *arg = &args[i];
659 		if (i == numargs - 1 && argpages)
660 			err = fuse_copy_pages(cs, arg->size, zeroing);
661 		else
662 			err = fuse_copy_one(cs, arg->value, arg->size);
663 	}
664 	return err;
665 }
666 
request_pending(struct fuse_conn * fc)667 static int request_pending(struct fuse_conn *fc)
668 {
669 	return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
670 }
671 
672 /* Wait until a request is available on the pending list */
request_wait(struct fuse_conn * fc)673 static void request_wait(struct fuse_conn *fc)
674 __releases(&fc->lock)
675 __acquires(&fc->lock)
676 {
677 	DECLARE_WAITQUEUE(wait, current);
678 
679 	add_wait_queue_exclusive(&fc->waitq, &wait);
680 	while (fc->connected && !request_pending(fc)) {
681 		set_current_state(TASK_INTERRUPTIBLE);
682 		if (signal_pending(current))
683 			break;
684 
685 		spin_unlock(&fc->lock);
686 		schedule();
687 		spin_lock(&fc->lock);
688 	}
689 	set_current_state(TASK_RUNNING);
690 	remove_wait_queue(&fc->waitq, &wait);
691 }
692 
693 /*
694  * Transfer an interrupt request to userspace
695  *
696  * Unlike other requests this is assembled on demand, without a need
697  * to allocate a separate fuse_req structure.
698  *
699  * Called with fc->lock held, releases it
700  */
fuse_read_interrupt(struct fuse_conn * fc,struct fuse_req * req,const struct iovec * iov,unsigned long nr_segs)701 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
702 			       const struct iovec *iov, unsigned long nr_segs)
703 __releases(&fc->lock)
704 {
705 	struct fuse_copy_state cs;
706 	struct fuse_in_header ih;
707 	struct fuse_interrupt_in arg;
708 	unsigned reqsize = sizeof(ih) + sizeof(arg);
709 	int err;
710 
711 	list_del_init(&req->intr_entry);
712 	req->intr_unique = fuse_get_unique(fc);
713 	memset(&ih, 0, sizeof(ih));
714 	memset(&arg, 0, sizeof(arg));
715 	ih.len = reqsize;
716 	ih.opcode = FUSE_INTERRUPT;
717 	ih.unique = req->intr_unique;
718 	arg.unique = req->in.h.unique;
719 
720 	spin_unlock(&fc->lock);
721 	if (iov_length(iov, nr_segs) < reqsize)
722 		return -EINVAL;
723 
724 	fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
725 	err = fuse_copy_one(&cs, &ih, sizeof(ih));
726 	if (!err)
727 		err = fuse_copy_one(&cs, &arg, sizeof(arg));
728 	fuse_copy_finish(&cs);
729 
730 	return err ? err : reqsize;
731 }
732 
733 /*
734  * Read a single request into the userspace filesystem's buffer.  This
735  * function waits until a request is available, then removes it from
736  * the pending list and copies request data to userspace buffer.  If
737  * no reply is needed (FORGET) or request has been aborted or there
738  * was an error during the copying then it's finished by calling
739  * request_end().  Otherwise add it to the processing list, and set
740  * the 'sent' flag.
741  */
fuse_dev_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)742 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
743 			      unsigned long nr_segs, loff_t pos)
744 {
745 	int err;
746 	struct fuse_req *req;
747 	struct fuse_in *in;
748 	struct fuse_copy_state cs;
749 	unsigned reqsize;
750 	struct file *file = iocb->ki_filp;
751 	struct fuse_conn *fc = fuse_get_conn(file);
752 	if (!fc)
753 		return -EPERM;
754 
755  restart:
756 	spin_lock(&fc->lock);
757 	err = -EAGAIN;
758 	if ((file->f_flags & O_NONBLOCK) && fc->connected &&
759 	    !request_pending(fc))
760 		goto err_unlock;
761 
762 	request_wait(fc);
763 	err = -ENODEV;
764 	if (!fc->connected)
765 		goto err_unlock;
766 	err = -ERESTARTSYS;
767 	if (!request_pending(fc))
768 		goto err_unlock;
769 
770 	if (!list_empty(&fc->interrupts)) {
771 		req = list_entry(fc->interrupts.next, struct fuse_req,
772 				 intr_entry);
773 		return fuse_read_interrupt(fc, req, iov, nr_segs);
774 	}
775 
776 	req = list_entry(fc->pending.next, struct fuse_req, list);
777 	req->state = FUSE_REQ_READING;
778 	list_move(&req->list, &fc->io);
779 
780 	in = &req->in;
781 	reqsize = in->h.len;
782 	/* If request is too large, reply with an error and restart the read */
783 	if (iov_length(iov, nr_segs) < reqsize) {
784 		req->out.h.error = -EIO;
785 		/* SETXATTR is special, since it may contain too large data */
786 		if (in->h.opcode == FUSE_SETXATTR)
787 			req->out.h.error = -E2BIG;
788 		request_end(fc, req);
789 		goto restart;
790 	}
791 	spin_unlock(&fc->lock);
792 	fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
793 	err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
794 	if (!err)
795 		err = fuse_copy_args(&cs, in->numargs, in->argpages,
796 				     (struct fuse_arg *) in->args, 0);
797 	fuse_copy_finish(&cs);
798 	spin_lock(&fc->lock);
799 	req->locked = 0;
800 	if (req->aborted) {
801 		request_end(fc, req);
802 		return -ENODEV;
803 	}
804 	if (err) {
805 		req->out.h.error = -EIO;
806 		request_end(fc, req);
807 		return err;
808 	}
809 	if (!req->isreply)
810 		request_end(fc, req);
811 	else {
812 		req->state = FUSE_REQ_SENT;
813 		list_move_tail(&req->list, &fc->processing);
814 		if (req->interrupted)
815 			queue_interrupt(fc, req);
816 		spin_unlock(&fc->lock);
817 	}
818 	return reqsize;
819 
820  err_unlock:
821 	spin_unlock(&fc->lock);
822 	return err;
823 }
824 
fuse_notify_poll(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)825 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
826 			    struct fuse_copy_state *cs)
827 {
828 	struct fuse_notify_poll_wakeup_out outarg;
829 	int err = -EINVAL;
830 
831 	if (size != sizeof(outarg))
832 		goto err;
833 
834 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
835 	if (err)
836 		goto err;
837 
838 	fuse_copy_finish(cs);
839 	return fuse_notify_poll_wakeup(fc, &outarg);
840 
841 err:
842 	fuse_copy_finish(cs);
843 	return err;
844 }
845 
fuse_notify(struct fuse_conn * fc,enum fuse_notify_code code,unsigned int size,struct fuse_copy_state * cs)846 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
847 		       unsigned int size, struct fuse_copy_state *cs)
848 {
849 	switch (code) {
850 	case FUSE_NOTIFY_POLL:
851 		return fuse_notify_poll(fc, size, cs);
852 
853 	default:
854 		fuse_copy_finish(cs);
855 		return -EINVAL;
856 	}
857 }
858 
859 /* Look up request on processing list by unique ID */
request_find(struct fuse_conn * fc,u64 unique)860 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
861 {
862 	struct list_head *entry;
863 
864 	list_for_each(entry, &fc->processing) {
865 		struct fuse_req *req;
866 		req = list_entry(entry, struct fuse_req, list);
867 		if (req->in.h.unique == unique || req->intr_unique == unique)
868 			return req;
869 	}
870 	return NULL;
871 }
872 
copy_out_args(struct fuse_copy_state * cs,struct fuse_out * out,unsigned nbytes)873 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
874 			 unsigned nbytes)
875 {
876 	unsigned reqsize = sizeof(struct fuse_out_header);
877 
878 	if (out->h.error)
879 		return nbytes != reqsize ? -EINVAL : 0;
880 
881 	reqsize += len_args(out->numargs, out->args);
882 
883 	if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
884 		return -EINVAL;
885 	else if (reqsize > nbytes) {
886 		struct fuse_arg *lastarg = &out->args[out->numargs-1];
887 		unsigned diffsize = reqsize - nbytes;
888 		if (diffsize > lastarg->size)
889 			return -EINVAL;
890 		lastarg->size -= diffsize;
891 	}
892 	return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
893 			      out->page_zeroing);
894 }
895 
896 /*
897  * Write a single reply to a request.  First the header is copied from
898  * the write buffer.  The request is then searched on the processing
899  * list by the unique ID found in the header.  If found, then remove
900  * it from the list and copy the rest of the buffer to the request.
901  * The request is finished by calling request_end()
902  */
fuse_dev_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)903 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
904 			       unsigned long nr_segs, loff_t pos)
905 {
906 	int err;
907 	unsigned nbytes = iov_length(iov, nr_segs);
908 	struct fuse_req *req;
909 	struct fuse_out_header oh;
910 	struct fuse_copy_state cs;
911 	struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
912 	if (!fc)
913 		return -EPERM;
914 
915 	fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
916 	if (nbytes < sizeof(struct fuse_out_header))
917 		return -EINVAL;
918 
919 	err = fuse_copy_one(&cs, &oh, sizeof(oh));
920 	if (err)
921 		goto err_finish;
922 
923 	err = -EINVAL;
924 	if (oh.len != nbytes)
925 		goto err_finish;
926 
927 	/*
928 	 * Zero oh.unique indicates unsolicited notification message
929 	 * and error contains notification code.
930 	 */
931 	if (!oh.unique) {
932 		err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), &cs);
933 		return err ? err : nbytes;
934 	}
935 
936 	err = -EINVAL;
937 	if (oh.error <= -1000 || oh.error > 0)
938 		goto err_finish;
939 
940 	spin_lock(&fc->lock);
941 	err = -ENOENT;
942 	if (!fc->connected)
943 		goto err_unlock;
944 
945 	req = request_find(fc, oh.unique);
946 	if (!req)
947 		goto err_unlock;
948 
949 	if (req->aborted) {
950 		spin_unlock(&fc->lock);
951 		fuse_copy_finish(&cs);
952 		spin_lock(&fc->lock);
953 		request_end(fc, req);
954 		return -ENOENT;
955 	}
956 	/* Is it an interrupt reply? */
957 	if (req->intr_unique == oh.unique) {
958 		err = -EINVAL;
959 		if (nbytes != sizeof(struct fuse_out_header))
960 			goto err_unlock;
961 
962 		if (oh.error == -ENOSYS)
963 			fc->no_interrupt = 1;
964 		else if (oh.error == -EAGAIN)
965 			queue_interrupt(fc, req);
966 
967 		spin_unlock(&fc->lock);
968 		fuse_copy_finish(&cs);
969 		return nbytes;
970 	}
971 
972 	req->state = FUSE_REQ_WRITING;
973 	list_move(&req->list, &fc->io);
974 	req->out.h = oh;
975 	req->locked = 1;
976 	cs.req = req;
977 	spin_unlock(&fc->lock);
978 
979 	err = copy_out_args(&cs, &req->out, nbytes);
980 	fuse_copy_finish(&cs);
981 
982 	spin_lock(&fc->lock);
983 	req->locked = 0;
984 	if (!err) {
985 		if (req->aborted)
986 			err = -ENOENT;
987 	} else if (!req->aborted)
988 		req->out.h.error = -EIO;
989 	request_end(fc, req);
990 
991 	return err ? err : nbytes;
992 
993  err_unlock:
994 	spin_unlock(&fc->lock);
995  err_finish:
996 	fuse_copy_finish(&cs);
997 	return err;
998 }
999 
fuse_dev_poll(struct file * file,poll_table * wait)1000 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
1001 {
1002 	unsigned mask = POLLOUT | POLLWRNORM;
1003 	struct fuse_conn *fc = fuse_get_conn(file);
1004 	if (!fc)
1005 		return POLLERR;
1006 
1007 	poll_wait(file, &fc->waitq, wait);
1008 
1009 	spin_lock(&fc->lock);
1010 	if (!fc->connected)
1011 		mask = POLLERR;
1012 	else if (request_pending(fc))
1013 		mask |= POLLIN | POLLRDNORM;
1014 	spin_unlock(&fc->lock);
1015 
1016 	return mask;
1017 }
1018 
1019 /*
1020  * Abort all requests on the given list (pending or processing)
1021  *
1022  * This function releases and reacquires fc->lock
1023  */
end_requests(struct fuse_conn * fc,struct list_head * head)1024 static void end_requests(struct fuse_conn *fc, struct list_head *head)
1025 __releases(&fc->lock)
1026 __acquires(&fc->lock)
1027 {
1028 	while (!list_empty(head)) {
1029 		struct fuse_req *req;
1030 		req = list_entry(head->next, struct fuse_req, list);
1031 		req->out.h.error = -ECONNABORTED;
1032 		request_end(fc, req);
1033 		spin_lock(&fc->lock);
1034 	}
1035 }
1036 
1037 /*
1038  * Abort requests under I/O
1039  *
1040  * The requests are set to aborted and finished, and the request
1041  * waiter is woken up.  This will make request_wait_answer() wait
1042  * until the request is unlocked and then return.
1043  *
1044  * If the request is asynchronous, then the end function needs to be
1045  * called after waiting for the request to be unlocked (if it was
1046  * locked).
1047  */
end_io_requests(struct fuse_conn * fc)1048 static void end_io_requests(struct fuse_conn *fc)
1049 __releases(&fc->lock)
1050 __acquires(&fc->lock)
1051 {
1052 	while (!list_empty(&fc->io)) {
1053 		struct fuse_req *req =
1054 			list_entry(fc->io.next, struct fuse_req, list);
1055 		void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
1056 
1057 		req->aborted = 1;
1058 		req->out.h.error = -ECONNABORTED;
1059 		req->state = FUSE_REQ_FINISHED;
1060 		list_del_init(&req->list);
1061 		wake_up(&req->waitq);
1062 		if (end) {
1063 			req->end = NULL;
1064 			__fuse_get_request(req);
1065 			spin_unlock(&fc->lock);
1066 			wait_event(req->waitq, !req->locked);
1067 			end(fc, req);
1068 			fuse_put_request(fc, req);
1069 			spin_lock(&fc->lock);
1070 		}
1071 	}
1072 }
1073 
1074 /*
1075  * Abort all requests.
1076  *
1077  * Emergency exit in case of a malicious or accidental deadlock, or
1078  * just a hung filesystem.
1079  *
1080  * The same effect is usually achievable through killing the
1081  * filesystem daemon and all users of the filesystem.  The exception
1082  * is the combination of an asynchronous request and the tricky
1083  * deadlock (see Documentation/filesystems/fuse.txt).
1084  *
1085  * During the aborting, progression of requests from the pending and
1086  * processing lists onto the io list, and progression of new requests
1087  * onto the pending list is prevented by req->connected being false.
1088  *
1089  * Progression of requests under I/O to the processing list is
1090  * prevented by the req->aborted flag being true for these requests.
1091  * For this reason requests on the io list must be aborted first.
1092  */
fuse_abort_conn(struct fuse_conn * fc)1093 void fuse_abort_conn(struct fuse_conn *fc)
1094 {
1095 	spin_lock(&fc->lock);
1096 	if (fc->connected) {
1097 		fc->connected = 0;
1098 		fc->blocked = 0;
1099 		end_io_requests(fc);
1100 		end_requests(fc, &fc->pending);
1101 		end_requests(fc, &fc->processing);
1102 		wake_up_all(&fc->waitq);
1103 		wake_up_all(&fc->blocked_waitq);
1104 		kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1105 	}
1106 	spin_unlock(&fc->lock);
1107 }
1108 
fuse_dev_release(struct inode * inode,struct file * file)1109 static int fuse_dev_release(struct inode *inode, struct file *file)
1110 {
1111 	struct fuse_conn *fc = fuse_get_conn(file);
1112 	if (fc) {
1113 		spin_lock(&fc->lock);
1114 		fc->connected = 0;
1115 		end_requests(fc, &fc->pending);
1116 		end_requests(fc, &fc->processing);
1117 		spin_unlock(&fc->lock);
1118 		fuse_conn_put(fc);
1119 	}
1120 
1121 	return 0;
1122 }
1123 
fuse_dev_fasync(int fd,struct file * file,int on)1124 static int fuse_dev_fasync(int fd, struct file *file, int on)
1125 {
1126 	struct fuse_conn *fc = fuse_get_conn(file);
1127 	if (!fc)
1128 		return -EPERM;
1129 
1130 	/* No locking - fasync_helper does its own locking */
1131 	return fasync_helper(fd, file, on, &fc->fasync);
1132 }
1133 
1134 const struct file_operations fuse_dev_operations = {
1135 	.owner		= THIS_MODULE,
1136 	.llseek		= no_llseek,
1137 	.read		= do_sync_read,
1138 	.aio_read	= fuse_dev_read,
1139 	.write		= do_sync_write,
1140 	.aio_write	= fuse_dev_write,
1141 	.poll		= fuse_dev_poll,
1142 	.release	= fuse_dev_release,
1143 	.fasync		= fuse_dev_fasync,
1144 };
1145 
1146 static struct miscdevice fuse_miscdevice = {
1147 	.minor = FUSE_MINOR,
1148 	.name  = "fuse",
1149 	.fops = &fuse_dev_operations,
1150 };
1151 
fuse_dev_init(void)1152 int __init fuse_dev_init(void)
1153 {
1154 	int err = -ENOMEM;
1155 	fuse_req_cachep = kmem_cache_create("fuse_request",
1156 					    sizeof(struct fuse_req),
1157 					    0, 0, NULL);
1158 	if (!fuse_req_cachep)
1159 		goto out;
1160 
1161 	err = misc_register(&fuse_miscdevice);
1162 	if (err)
1163 		goto out_cache_clean;
1164 
1165 	return 0;
1166 
1167  out_cache_clean:
1168 	kmem_cache_destroy(fuse_req_cachep);
1169  out:
1170 	return err;
1171 }
1172 
fuse_dev_cleanup(void)1173 void fuse_dev_cleanup(void)
1174 {
1175 	misc_deregister(&fuse_miscdevice);
1176 	kmem_cache_destroy(fuse_req_cachep);
1177 }
1178