• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PowerPC64 SLB support.
3  *
4  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5  * Based on earlier code writteh by:
6  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7  *    Copyright (c) 2001 Dave Engebretsen
8  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #undef DEBUG
18 
19 #include <asm/pgtable.h>
20 #include <asm/mmu.h>
21 #include <asm/mmu_context.h>
22 #include <asm/paca.h>
23 #include <asm/cputable.h>
24 #include <asm/cacheflush.h>
25 #include <asm/smp.h>
26 #include <asm/firmware.h>
27 #include <linux/compiler.h>
28 #include <asm/udbg.h>
29 
30 #ifdef DEBUG
31 #define DBG(fmt...) printk(fmt)
32 #else
33 #define DBG pr_debug
34 #endif
35 
36 extern void slb_allocate_realmode(unsigned long ea);
37 extern void slb_allocate_user(unsigned long ea);
38 
slb_allocate(unsigned long ea)39 static void slb_allocate(unsigned long ea)
40 {
41 	/* Currently, we do real mode for all SLBs including user, but
42 	 * that will change if we bring back dynamic VSIDs
43 	 */
44 	slb_allocate_realmode(ea);
45 }
46 
47 #define slb_esid_mask(ssize)	\
48 	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
49 
mk_esid_data(unsigned long ea,int ssize,unsigned long slot)50 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
51 					 unsigned long slot)
52 {
53 	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | slot;
54 }
55 
56 #define slb_vsid_shift(ssize)	\
57 	((ssize) == MMU_SEGSIZE_256M? SLB_VSID_SHIFT: SLB_VSID_SHIFT_1T)
58 
mk_vsid_data(unsigned long ea,int ssize,unsigned long flags)59 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
60 					 unsigned long flags)
61 {
62 	return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
63 		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
64 }
65 
slb_shadow_update(unsigned long ea,int ssize,unsigned long flags,unsigned long entry)66 static inline void slb_shadow_update(unsigned long ea, int ssize,
67 				     unsigned long flags,
68 				     unsigned long entry)
69 {
70 	/*
71 	 * Clear the ESID first so the entry is not valid while we are
72 	 * updating it.  No write barriers are needed here, provided
73 	 * we only update the current CPU's SLB shadow buffer.
74 	 */
75 	get_slb_shadow()->save_area[entry].esid = 0;
76 	get_slb_shadow()->save_area[entry].vsid = mk_vsid_data(ea, ssize, flags);
77 	get_slb_shadow()->save_area[entry].esid = mk_esid_data(ea, ssize, entry);
78 }
79 
slb_shadow_clear(unsigned long entry)80 static inline void slb_shadow_clear(unsigned long entry)
81 {
82 	get_slb_shadow()->save_area[entry].esid = 0;
83 }
84 
create_shadowed_slbe(unsigned long ea,int ssize,unsigned long flags,unsigned long entry)85 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
86 					unsigned long flags,
87 					unsigned long entry)
88 {
89 	/*
90 	 * Updating the shadow buffer before writing the SLB ensures
91 	 * we don't get a stale entry here if we get preempted by PHYP
92 	 * between these two statements.
93 	 */
94 	slb_shadow_update(ea, ssize, flags, entry);
95 
96 	asm volatile("slbmte  %0,%1" :
97 		     : "r" (mk_vsid_data(ea, ssize, flags)),
98 		       "r" (mk_esid_data(ea, ssize, entry))
99 		     : "memory" );
100 }
101 
slb_flush_and_rebolt(void)102 void slb_flush_and_rebolt(void)
103 {
104 	/* If you change this make sure you change SLB_NUM_BOLTED
105 	 * appropriately too. */
106 	unsigned long linear_llp, vmalloc_llp, lflags, vflags;
107 	unsigned long ksp_esid_data, ksp_vsid_data;
108 
109 	WARN_ON(!irqs_disabled());
110 
111 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
112 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
113 	lflags = SLB_VSID_KERNEL | linear_llp;
114 	vflags = SLB_VSID_KERNEL | vmalloc_llp;
115 
116 	ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2);
117 	if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
118 		ksp_esid_data &= ~SLB_ESID_V;
119 		ksp_vsid_data = 0;
120 		slb_shadow_clear(2);
121 	} else {
122 		/* Update stack entry; others don't change */
123 		slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2);
124 		ksp_vsid_data = get_slb_shadow()->save_area[2].vsid;
125 	}
126 
127 	/*
128 	 * We can't take a PMU exception in the following code, so hard
129 	 * disable interrupts.
130 	 */
131 	hard_irq_disable();
132 
133 	/* We need to do this all in asm, so we're sure we don't touch
134 	 * the stack between the slbia and rebolting it. */
135 	asm volatile("isync\n"
136 		     "slbia\n"
137 		     /* Slot 1 - first VMALLOC segment */
138 		     "slbmte	%0,%1\n"
139 		     /* Slot 2 - kernel stack */
140 		     "slbmte	%2,%3\n"
141 		     "isync"
142 		     :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
143 		        "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
144 		        "r"(ksp_vsid_data),
145 		        "r"(ksp_esid_data)
146 		     : "memory");
147 }
148 
slb_vmalloc_update(void)149 void slb_vmalloc_update(void)
150 {
151 	unsigned long vflags;
152 
153 	vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
154 	slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
155 	slb_flush_and_rebolt();
156 }
157 
158 /* Helper function to compare esids.  There are four cases to handle.
159  * 1. The system is not 1T segment size capable.  Use the GET_ESID compare.
160  * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
161  * 3. The system is 1T capable, only one of the two addresses is > 1T.  This is not a match.
162  * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
163  */
esids_match(unsigned long addr1,unsigned long addr2)164 static inline int esids_match(unsigned long addr1, unsigned long addr2)
165 {
166 	int esid_1t_count;
167 
168 	/* System is not 1T segment size capable. */
169 	if (!cpu_has_feature(CPU_FTR_1T_SEGMENT))
170 		return (GET_ESID(addr1) == GET_ESID(addr2));
171 
172 	esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
173 				((addr2 >> SID_SHIFT_1T) != 0));
174 
175 	/* both addresses are < 1T */
176 	if (esid_1t_count == 0)
177 		return (GET_ESID(addr1) == GET_ESID(addr2));
178 
179 	/* One address < 1T, the other > 1T.  Not a match */
180 	if (esid_1t_count == 1)
181 		return 0;
182 
183 	/* Both addresses are > 1T. */
184 	return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
185 }
186 
187 /* Flush all user entries from the segment table of the current processor. */
switch_slb(struct task_struct * tsk,struct mm_struct * mm)188 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
189 {
190 	unsigned long offset = get_paca()->slb_cache_ptr;
191 	unsigned long slbie_data = 0;
192 	unsigned long pc = KSTK_EIP(tsk);
193 	unsigned long stack = KSTK_ESP(tsk);
194 	unsigned long unmapped_base;
195 
196 	if (!cpu_has_feature(CPU_FTR_NO_SLBIE_B) &&
197 	    offset <= SLB_CACHE_ENTRIES) {
198 		int i;
199 		asm volatile("isync" : : : "memory");
200 		for (i = 0; i < offset; i++) {
201 			slbie_data = (unsigned long)get_paca()->slb_cache[i]
202 				<< SID_SHIFT; /* EA */
203 			slbie_data |= user_segment_size(slbie_data)
204 				<< SLBIE_SSIZE_SHIFT;
205 			slbie_data |= SLBIE_C; /* C set for user addresses */
206 			asm volatile("slbie %0" : : "r" (slbie_data));
207 		}
208 		asm volatile("isync" : : : "memory");
209 	} else {
210 		slb_flush_and_rebolt();
211 	}
212 
213 	/* Workaround POWER5 < DD2.1 issue */
214 	if (offset == 1 || offset > SLB_CACHE_ENTRIES)
215 		asm volatile("slbie %0" : : "r" (slbie_data));
216 
217 	get_paca()->slb_cache_ptr = 0;
218 	get_paca()->context = mm->context;
219 
220 	/*
221 	 * preload some userspace segments into the SLB.
222 	 */
223 	if (test_tsk_thread_flag(tsk, TIF_32BIT))
224 		unmapped_base = TASK_UNMAPPED_BASE_USER32;
225 	else
226 		unmapped_base = TASK_UNMAPPED_BASE_USER64;
227 
228 	if (is_kernel_addr(pc))
229 		return;
230 	slb_allocate(pc);
231 
232 	if (esids_match(pc,stack))
233 		return;
234 
235 	if (is_kernel_addr(stack))
236 		return;
237 	slb_allocate(stack);
238 
239 	if (esids_match(pc,unmapped_base) || esids_match(stack,unmapped_base))
240 		return;
241 
242 	if (is_kernel_addr(unmapped_base))
243 		return;
244 	slb_allocate(unmapped_base);
245 }
246 
patch_slb_encoding(unsigned int * insn_addr,unsigned int immed)247 static inline void patch_slb_encoding(unsigned int *insn_addr,
248 				      unsigned int immed)
249 {
250 	/* Assume the instruction had a "0" immediate value, just
251 	 * "or" in the new value
252 	 */
253 	*insn_addr |= immed;
254 	flush_icache_range((unsigned long)insn_addr, 4+
255 			   (unsigned long)insn_addr);
256 }
257 
slb_initialize(void)258 void slb_initialize(void)
259 {
260 	unsigned long linear_llp, vmalloc_llp, io_llp;
261 	unsigned long lflags, vflags;
262 	static int slb_encoding_inited;
263 	extern unsigned int *slb_miss_kernel_load_linear;
264 	extern unsigned int *slb_miss_kernel_load_io;
265 	extern unsigned int *slb_compare_rr_to_size;
266 #ifdef CONFIG_SPARSEMEM_VMEMMAP
267 	extern unsigned int *slb_miss_kernel_load_vmemmap;
268 	unsigned long vmemmap_llp;
269 #endif
270 
271 	/* Prepare our SLB miss handler based on our page size */
272 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
273 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
274 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
275 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
276 #ifdef CONFIG_SPARSEMEM_VMEMMAP
277 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
278 #endif
279 	if (!slb_encoding_inited) {
280 		slb_encoding_inited = 1;
281 		patch_slb_encoding(slb_miss_kernel_load_linear,
282 				   SLB_VSID_KERNEL | linear_llp);
283 		patch_slb_encoding(slb_miss_kernel_load_io,
284 				   SLB_VSID_KERNEL | io_llp);
285 		patch_slb_encoding(slb_compare_rr_to_size,
286 				   mmu_slb_size);
287 
288 		DBG("SLB: linear  LLP = %04lx\n", linear_llp);
289 		DBG("SLB: io      LLP = %04lx\n", io_llp);
290 
291 #ifdef CONFIG_SPARSEMEM_VMEMMAP
292 		patch_slb_encoding(slb_miss_kernel_load_vmemmap,
293 				   SLB_VSID_KERNEL | vmemmap_llp);
294 		DBG("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
295 #endif
296 	}
297 
298 	get_paca()->stab_rr = SLB_NUM_BOLTED;
299 
300 	/* On iSeries the bolted entries have already been set up by
301 	 * the hypervisor from the lparMap data in head.S */
302 	if (firmware_has_feature(FW_FEATURE_ISERIES))
303 		return;
304 
305 	lflags = SLB_VSID_KERNEL | linear_llp;
306 	vflags = SLB_VSID_KERNEL | vmalloc_llp;
307 
308 	/* Invalidate the entire SLB (even slot 0) & all the ERATS */
309 	asm volatile("isync":::"memory");
310 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
311 	asm volatile("isync; slbia; isync":::"memory");
312 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0);
313 
314 	create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
315 
316 	/* For the boot cpu, we're running on the stack in init_thread_union,
317 	 * which is in the first segment of the linear mapping, and also
318 	 * get_paca()->kstack hasn't been initialized yet.
319 	 * For secondary cpus, we need to bolt the kernel stack entry now.
320 	 */
321 	slb_shadow_clear(2);
322 	if (raw_smp_processor_id() != boot_cpuid &&
323 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
324 		create_shadowed_slbe(get_paca()->kstack,
325 				     mmu_kernel_ssize, lflags, 2);
326 
327 	asm volatile("isync":::"memory");
328 }
329