• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/arm/mach-sa1100/cpu-sa1110.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * Note: there are two erratas that apply to the SA1110 here:
11  *  7 - SDRAM auto-power-up failure (rev A0)
12  * 13 - Corruption of internal register reads/writes following
13  *      SDRAM reads (rev A0, B0, B1)
14  *
15  * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
16  *
17  * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
18  */
19 #include <linux/moduleparam.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/io.h>
27 
28 #include <mach/hardware.h>
29 #include <asm/cputype.h>
30 #include <asm/mach-types.h>
31 #include <asm/system.h>
32 
33 #include "generic.h"
34 
35 #undef DEBUG
36 
37 static struct cpufreq_driver sa1110_driver;
38 
39 struct sdram_params {
40 	const char name[16];
41 	u_char  rows;		/* bits				 */
42 	u_char  cas_latency;	/* cycles			 */
43 	u_char  tck;		/* clock cycle time (ns)	 */
44 	u_char  trcd;		/* activate to r/w (ns)		 */
45 	u_char  trp;		/* precharge to activate (ns)	 */
46 	u_char  twr;		/* write recovery time (ns)	 */
47 	u_short refresh;	/* refresh time for array (us)	 */
48 };
49 
50 struct sdram_info {
51 	u_int	mdcnfg;
52 	u_int	mdrefr;
53 	u_int	mdcas[3];
54 };
55 
56 static struct sdram_params sdram_tbl[] __initdata = {
57 	{	/* Toshiba TC59SM716 CL2 */
58 		.name		= "TC59SM716-CL2",
59 		.rows		= 12,
60 		.tck		= 10,
61 		.trcd		= 20,
62 		.trp		= 20,
63 		.twr		= 10,
64 		.refresh	= 64000,
65 		.cas_latency	= 2,
66 	}, {	/* Toshiba TC59SM716 CL3 */
67 		.name		= "TC59SM716-CL3",
68 		.rows		= 12,
69 		.tck		= 8,
70 		.trcd		= 20,
71 		.trp		= 20,
72 		.twr		= 8,
73 		.refresh	= 64000,
74 		.cas_latency	= 3,
75 	}, {	/* Samsung K4S641632D TC75 */
76 		.name		= "K4S641632D",
77 		.rows		= 14,
78 		.tck		= 9,
79 		.trcd		= 27,
80 		.trp		= 20,
81 		.twr		= 9,
82 		.refresh	= 64000,
83 		.cas_latency	= 3,
84 	}, {	/* Samsung K4S281632B-1H */
85 		.name           = "K4S281632B-1H",
86 		.rows		= 12,
87 		.tck		= 10,
88 		.trp		= 20,
89 		.twr		= 10,
90 		.refresh	= 64000,
91 		.cas_latency	= 3,
92 	}, {	/* Samsung KM416S4030CT */
93 		.name		= "KM416S4030CT",
94 		.rows		= 13,
95 		.tck		= 8,
96 		.trcd		= 24,	/* 3 CLKs */
97 		.trp		= 24,	/* 3 CLKs */
98 		.twr		= 16,	/* Trdl: 2 CLKs */
99 		.refresh	= 64000,
100 		.cas_latency	= 3,
101 	}, {	/* Winbond W982516AH75L CL3 */
102 		.name		= "W982516AH75L",
103 		.rows		= 16,
104 		.tck		= 8,
105 		.trcd		= 20,
106 		.trp		= 20,
107 		.twr		= 8,
108 		.refresh	= 64000,
109 		.cas_latency	= 3,
110 	},
111 };
112 
113 static struct sdram_params sdram_params;
114 
115 /*
116  * Given a period in ns and frequency in khz, calculate the number of
117  * cycles of frequency in period.  Note that we round up to the next
118  * cycle, even if we are only slightly over.
119  */
ns_to_cycles(u_int ns,u_int khz)120 static inline u_int ns_to_cycles(u_int ns, u_int khz)
121 {
122 	return (ns * khz + 999999) / 1000000;
123 }
124 
125 /*
126  * Create the MDCAS register bit pattern.
127  */
set_mdcas(u_int * mdcas,int delayed,u_int rcd)128 static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
129 {
130 	u_int shift;
131 
132 	rcd = 2 * rcd - 1;
133 	shift = delayed + 1 + rcd;
134 
135 	mdcas[0]  = (1 << rcd) - 1;
136 	mdcas[0] |= 0x55555555 << shift;
137 	mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1);
138 }
139 
140 static void
sdram_calculate_timing(struct sdram_info * sd,u_int cpu_khz,struct sdram_params * sdram)141 sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
142 		       struct sdram_params *sdram)
143 {
144 	u_int mem_khz, sd_khz, trp, twr;
145 
146 	mem_khz = cpu_khz / 2;
147 	sd_khz = mem_khz;
148 
149 	/*
150 	 * If SDCLK would invalidate the SDRAM timings,
151 	 * run SDCLK at half speed.
152 	 *
153 	 * CPU steppings prior to B2 must either run the memory at
154 	 * half speed or use delayed read latching (errata 13).
155 	 */
156 	if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
157 	    (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000))
158 		sd_khz /= 2;
159 
160 	sd->mdcnfg = MDCNFG & 0x007f007f;
161 
162 	twr = ns_to_cycles(sdram->twr, mem_khz);
163 
164 	/* trp should always be >1 */
165 	trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
166 	if (trp < 1)
167 		trp = 1;
168 
169 	sd->mdcnfg |= trp << 8;
170 	sd->mdcnfg |= trp << 24;
171 	sd->mdcnfg |= sdram->cas_latency << 12;
172 	sd->mdcnfg |= sdram->cas_latency << 28;
173 	sd->mdcnfg |= twr << 14;
174 	sd->mdcnfg |= twr << 30;
175 
176 	sd->mdrefr = MDREFR & 0xffbffff0;
177 	sd->mdrefr |= 7;
178 
179 	if (sd_khz != mem_khz)
180 		sd->mdrefr |= MDREFR_K1DB2;
181 
182 	/* initial number of '1's in MDCAS + 1 */
183 	set_mdcas(sd->mdcas, sd_khz >= 62000, ns_to_cycles(sdram->trcd, mem_khz));
184 
185 #ifdef DEBUG
186 	printk("MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
187 		sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], sd->mdcas[2]);
188 #endif
189 }
190 
191 /*
192  * Set the SDRAM refresh rate.
193  */
sdram_set_refresh(u_int dri)194 static inline void sdram_set_refresh(u_int dri)
195 {
196 	MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
197 	(void) MDREFR;
198 }
199 
200 /*
201  * Update the refresh period.  We do this such that we always refresh
202  * the SDRAMs within their permissible period.  The refresh period is
203  * always a multiple of the memory clock (fixed at cpu_clock / 2).
204  *
205  * FIXME: we don't currently take account of burst accesses here,
206  * but neither do Intels DM nor Angel.
207  */
208 static void
sdram_update_refresh(u_int cpu_khz,struct sdram_params * sdram)209 sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
210 {
211 	u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
212 	u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
213 
214 #ifdef DEBUG
215 	mdelay(250);
216 	printk("new dri value = %d\n", dri);
217 #endif
218 
219 	sdram_set_refresh(dri);
220 }
221 
222 /*
223  * Ok, set the CPU frequency.
224  */
sa1110_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)225 static int sa1110_target(struct cpufreq_policy *policy,
226 			 unsigned int target_freq,
227 			 unsigned int relation)
228 {
229 	struct sdram_params *sdram = &sdram_params;
230 	struct cpufreq_freqs freqs;
231 	struct sdram_info sd;
232 	unsigned long flags;
233 	unsigned int ppcr, unused;
234 
235 	switch(relation){
236 	case CPUFREQ_RELATION_L:
237 		ppcr = sa11x0_freq_to_ppcr(target_freq);
238 		if (sa11x0_ppcr_to_freq(ppcr) > policy->max)
239 			ppcr--;
240 		break;
241 	case CPUFREQ_RELATION_H:
242 		ppcr = sa11x0_freq_to_ppcr(target_freq);
243 		if (ppcr && (sa11x0_ppcr_to_freq(ppcr) > target_freq) &&
244 		    (sa11x0_ppcr_to_freq(ppcr-1) >= policy->min))
245 			ppcr--;
246 		break;
247 	default:
248 		return -EINVAL;
249 	}
250 
251 	freqs.old = sa11x0_getspeed(0);
252 	freqs.new = sa11x0_ppcr_to_freq(ppcr);
253 	freqs.cpu = 0;
254 
255 	sdram_calculate_timing(&sd, freqs.new, sdram);
256 
257 #if 0
258 	/*
259 	 * These values are wrong according to the SA1110 documentation
260 	 * and errata, but they seem to work.  Need to get a storage
261 	 * scope on to the SDRAM signals to work out why.
262 	 */
263 	if (policy->max < 147500) {
264 		sd.mdrefr |= MDREFR_K1DB2;
265 		sd.mdcas[0] = 0xaaaaaa7f;
266 	} else {
267 		sd.mdrefr &= ~MDREFR_K1DB2;
268 		sd.mdcas[0] = 0xaaaaaa9f;
269 	}
270 	sd.mdcas[1] = 0xaaaaaaaa;
271 	sd.mdcas[2] = 0xaaaaaaaa;
272 #endif
273 
274 	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
275 
276 	/*
277 	 * The clock could be going away for some time.  Set the SDRAMs
278 	 * to refresh rapidly (every 64 memory clock cycles).  To get
279 	 * through the whole array, we need to wait 262144 mclk cycles.
280 	 * We wait 20ms to be safe.
281 	 */
282 	sdram_set_refresh(2);
283 	if (!irqs_disabled()) {
284 		msleep(20);
285 	} else {
286 		mdelay(20);
287 	}
288 
289 	/*
290 	 * Reprogram the DRAM timings with interrupts disabled, and
291 	 * ensure that we are doing this within a complete cache line.
292 	 * This means that we won't access SDRAM for the duration of
293 	 * the programming.
294 	 */
295 	local_irq_save(flags);
296 	asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
297 	udelay(10);
298 	__asm__ __volatile__("					\n\
299 		b	2f					\n\
300 		.align	5					\n\
301 1:		str	%3, [%1, #0]		@ MDCNFG	\n\
302 		str	%4, [%1, #28]		@ MDREFR	\n\
303 		str	%5, [%1, #4]		@ MDCAS0	\n\
304 		str	%6, [%1, #8]		@ MDCAS1	\n\
305 		str	%7, [%1, #12]		@ MDCAS2	\n\
306 		str	%8, [%2, #0]		@ PPCR		\n\
307 		ldr	%0, [%1, #0]				\n\
308 		b	3f					\n\
309 2:		b	1b					\n\
310 3:		nop						\n\
311 		nop"
312 		: "=&r" (unused)
313 		: "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
314 		  "r" (sd.mdrefr), "r" (sd.mdcas[0]),
315 		  "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
316 	local_irq_restore(flags);
317 
318 	/*
319 	 * Now, return the SDRAM refresh back to normal.
320 	 */
321 	sdram_update_refresh(freqs.new, sdram);
322 
323 	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
324 
325 	return 0;
326 }
327 
sa1110_cpu_init(struct cpufreq_policy * policy)328 static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
329 {
330 	if (policy->cpu != 0)
331 		return -EINVAL;
332 	policy->cur = policy->min = policy->max = sa11x0_getspeed(0);
333 	policy->cpuinfo.min_freq = 59000;
334 	policy->cpuinfo.max_freq = 287000;
335 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
336 	return 0;
337 }
338 
339 static struct cpufreq_driver sa1110_driver = {
340 	.flags		= CPUFREQ_STICKY,
341 	.verify		= sa11x0_verify_speed,
342 	.target		= sa1110_target,
343 	.get		= sa11x0_getspeed,
344 	.init		= sa1110_cpu_init,
345 	.name		= "sa1110",
346 };
347 
sa1110_find_sdram(const char * name)348 static struct sdram_params *sa1110_find_sdram(const char *name)
349 {
350 	struct sdram_params *sdram;
351 
352 	for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl); sdram++)
353 		if (strcmp(name, sdram->name) == 0)
354 			return sdram;
355 
356 	return NULL;
357 }
358 
359 static char sdram_name[16];
360 
sa1110_clk_init(void)361 static int __init sa1110_clk_init(void)
362 {
363 	struct sdram_params *sdram;
364 	const char *name = sdram_name;
365 
366 	if (!name[0]) {
367 		if (machine_is_assabet())
368 			name = "TC59SM716-CL3";
369 
370 		if (machine_is_pt_system3())
371 			name = "K4S641632D";
372 
373 		if (machine_is_h3100())
374 			name = "KM416S4030CT";
375 		if (machine_is_jornada720())
376 		        name = "K4S281632B-1H";
377 	}
378 
379 	sdram = sa1110_find_sdram(name);
380 	if (sdram) {
381 		printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
382 			" twr: %d refresh: %d cas_latency: %d\n",
383 			sdram->tck, sdram->trcd, sdram->trp,
384 			sdram->twr, sdram->refresh, sdram->cas_latency);
385 
386 		memcpy(&sdram_params, sdram, sizeof(sdram_params));
387 
388 		return cpufreq_register_driver(&sa1110_driver);
389 	}
390 
391 	return 0;
392 }
393 
394 module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
395 arch_initcall(sa1110_clk_init);
396